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Abstract—Quantitative program analysis is an emerging area
with applications to software reliability, quantitative information
flow, side-channel detection and attack synthesis. Most quan-
titative program analysis techniques rely on model counting
constraint solvers, which are typically the bottleneck for scalabil-
ity. Although the effectiveness of formula caching in expediting
expensive model-counting queries has been demonstrated in prior
work, our key insight is that many subformulas are shared across
non-identical constraints generated during program analyses.
This has not been utilized by prior formula caching approaches.
In this paper we present a subformula caching framework
and integrate it into a model counting constraint solver. We
experimentally evaluate its effectiveness under three quantita-
tive program analysis scenarios: 1) model counting constraints
generated by symbolic execution, 2) reliability analysis using
probabilistic symbolic execution, 3) adaptive attack synthesis
for side-channels. OQur experimental results demonstrate that
our subformula caching approach significantly improves the
performance of quantitative program analysis.

Index Terms—formula caching, model counting, quantitative
program analysis

I. INTRODUCTION

In the last two decades, constraint solvers have had a signif-
icant influence in automated software engineering, especially
in areas such as software verification, analysis and security.
The key factor in increasing effectiveness of constraint solvers
in automating software engineering tasks is the fact that
the efficiency of the constraint solvers has improved signif-
icantly. These research results demonstrate that, despite the
well known worst-case complexity results, in practice, many
software engineering tasks benefit from constraint solvers.

A model counting constraint solver computes the number
of solutions for a given constraint within a given bound [4],
[71, [14], [17], [18], [28]. Recently, model counting constraint
solvers have also been applied to automating quantitative
software verification, analysis and security tasks. The goal in
quantitative program analysis is not to just give a “yes” or
“no” answer, but to also quantify the result. For example,
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rather than answering if there is information leakage in a
program with a “yes” or “no” answer, quantitative analysis
techniques can compute the amount of information leaked.
This type of analysis is crucial for many domains since
“yes” or “no” answers may not be possible. For example,
every password checker leaks some information about the
password (even saying a password does not match a guess
leaks information) but a faulty password checker may leak
more information than necessary. A quantitative vulnerability
detection tool can use a model counting constraint solver
to quantify the amount of information leakage. As another
example, most symbolic execution tools cannot guarantee
absence of an assertion failure in general since they search the
state space up to a certain execution depth. When combined
with a model counting constraint solver, a symbolic execution
tool can quantify the likelihood of reaching an unexplored part
of the state space, hence providing a probabilistic upper bound
on observing an assertion violation. Model counting constraint
solvers have been used in probabilistic analysis [13], [26],
reliability analysis [23], quantitative information flow [6], [8],
[30], [31], and attack synthesis [9], [29].

With respect to algorithmic complexity, model counting
problem is at least as difficult as satisfiability problem, hence,
in the worst case model counting problem is also intractable
like satisfiability. However, as recent results demonstrate,
like constraint solvers, model counting constraint solvers can
also be applied to realistic software verification, analysis and
security tasks. And, as with the constraint solvers, improving
the efficiency of model counting constraint solver can have a
significant impact on automating software engineering tasks.

In this paper, we focus on improving the performance of
model counting constraint solvers. In particular, we present
techniques for reusing results from prior model counting
queries to solve new queries. The idea of memoization
(caching prior results of expensive operations in order to reuse
them to improve efficiency) has been used for constraints in the
past. For example, BDDs, a data structure commonly used for
representing satisfying solutions to Boolean logic formulas,
uses the concept of a compute-cache to store prior results.
Since BDDs are a canonical form for Boolean functions, they
enable a caching approach that guarantees a cache hit if an
equivalent formula has been analyzed before. However, BDDs



can only handle bounded domains and require bit-blasting to
handle numeric or string values which could be inefficient.

Caching prior formulas based on normalization of their
syntax for constraint satisfiability and model counting queries
has also been investigated for more expressive theories such as
linear artithmetic and string constraints and their combinations.
However, these approaches rely on syntactic matching and,
hence, can miss hits for equivalent formulas. Moreover, they
rely on full formula caching and therefore miss opportunities
for cache hits among subformulas.

In this paper, we present a novel approach for formula
caching that combines features of caching techniques that
are based on syntax and canonical representations (building
off of work done in Cashew [15]). Our approach has the
following features that separates it from all prior results in
this domain: First, our caching approach caches intermediate
subformulas that arise in the pre-order traversal of the full
formula enabling cache hits for common subformulas. Second,
our approach combines syntax-based caching, with caching
via a canonical representation in order to reduce the cost of
caching while increasing the number of cache hits. Third,
our approach uses an automata-based constraint representation
which enables us to have a canonical representation of string
and numeric constraints and their combinations.

We demonstrate the effectiveness of our approach in three
different scenarios: 1) We consider model counting queries on
constraints generated from programs via symbolic execution.
In this scenario model counting queries are generated for
full path constraints after the symbolic execution is over. 2)
We consider model counting queries on constraints generated
during symbolic execution. In this scenario model counting
queries are generated on the current path constraint for each
branch during symbolic execution in order to assess the relia-
bility level that can be achieved by analyzing each branch. 3)
We consider model counting queries on constraints generated
while synthesizing side-channel attacks. In this scenario each
attack step is generated by symbolic execution of the code
followed by model counting queries to determine the input
that reveals most information about the secret. Our exper-
iments demonstrate that the subformula caching techniques
we present in this paper can sometimes improve the perfor-
mance for the first scenario, they improve the performance
in most cases for the second scenario, and they improve the
performance significantly (sometimes more than an order-
of-magnitude) for the third scenario. We also observe that
subformula caching is more effective for string constraints
(for which automata construction can be very costly) than for
numeric constraints.

The rest of the paper is organized as follows: In Section II
we provide motivation for our subformula caching approach.
In Section IIT we briefly go over automata-based caching. In
Section IV we describe our subformula caching approach. In
Section V we discuss thee application scenarios for model
counting constraint solvers. In Section VI we discuss some
of the implementation details. In Section VII we present our
experimental results, in Section VIII we discuss the related
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Fig. 1. DFA that accepts the solution sets of the formulas char_at(vg,0) =

[

a” and begins(vg, “a”).

work, and, finally, in Section IX we state our conclusions.

II. MOTIVATION

Techniques we present in this paper aim to improve the
performance of model counting queries generated during quan-
titative program analysis. In particular, we focus on automata-
based model counting constraint solvers. In automata-based
model counting the first task is to generate a deterministic
finite automaton that accepts all solutions to a given formula.

Once the automaton accepting the solutions for a given
formula is generated, the model counting query reduces to path
counting: To find out the satisfying solutions within a bound,
we need to count the number of accepting paths of a certain
length or less that start with the initial state of the automaton
and end in an accepting state. The path counting problem in
graphs can be solved using matrix exponentiation (based on
the adjacency matrix of the automaton), solving recurrence
equations (automatically constructed based on the connections
among the states of the automaton), or using generating
functions (which can also be automatically constructed based
on the connections among the states of the automaton).

Given a formula, the main difficulty in automata-based
model counting is constructing a DFA accepting all solutions
to that formula. Automata construction is exponential in the
worst case as it may require determinization of an intermediate
result automaton. Our caching techniques try to minimize the
number of calls to automata construction operation.

We use two types of caching, which we call syntactic
caching and automata caching, to characterize the way the keys
are generated for the intermediate results we cache. In both
cases the result we are caching is an automaton constructed
for a given formula. In syntactic caching the key for storing
the automaton constructed for a formula is generated based
on the formula syntax. In automata caching we generate a key
for each constructed automaton based on the structure of the
automaton. We use minimized deterministic finite automata
(DFA) which are a canonical representation. Hence, formulas
with the same set of satisfying solutions are mapped to
equivalent automata and the keys generated for them match
if and only if the formulas are semantically equivalent.

Consider the following formulas:

length(x) < 10 A char_at(z,0) = “b” (1)
begins(s, “d”) Alength(s) <10As =1 ()
Existing syntax-based formula caching techniques can be

used to normalize these formulas in order to detect equiv-
alent formulas. Normalization involves transformations such



as variable renaming, character renaming, and sorting of the
operations. Let us assume that the normalized form for the
above formulas are:

length(vg) < 10 A char_at(vg,0) = “a” 3)
length(vg) < 10 A begins(vg, “a”) Avg =v1  (4)

Note that, syntactic normalization enables us to detect that
formulas (1) and (2) have a common subformula length(vg) <
10. However, with full formula caching, since these formulas
(1) and (2) are not equivalent, the fact that they share a sub-
formula will not be exploited during automata construction or
model counting. In this paper, we demonstrate that subformula
caching, which stores automata constructed for intermediate
subformulas during evaluation of the model counting queries,
enables the reuse of the result for subformula length(vy) < 10.

For the above example, if model counting query for con-
straint (1) is processed before the model counting query for
constraint (2), then based on syntactic subformula caching, we
can detect that the subformula length(s) < 10 is equivalent to
length(x) < 10 and use the stored automaton constructed for
length(x) < 10 rather than constructing a new (and equivalent)
automaton for length(s) < 10.

Above discussion explains our motivation for syntactic
subformula caching, however it does not explain why we
need automata caching. In syntactic caching we generate keys
for the intermediate results using normalized syntax of the
formulas. By automata caching we refer to generation of
keys based on the structure of the automata, not the syntax
of the corresponding formula. For example, the formulas
char_at(vg,0) = “a” and begins(vg, “a”) are syntactically
different but they are semantically equivalent. The set of
solutions to both of these formulas is characterized by the
automaton shown in Figure 1.

Again, assume that a model counting query for formula (1)
is processed before a model counting query for the formula
(2). The automata constructed for subformulas length(x) < 10
and char_at(z,0) = “b” and the full formula length(z) < 10A
char_at(z,0) = “b” will be stored in the cache. If we process
a model counting query for formula (2) next, then, syntactic
caching will report a hit on subformula length(s) < 10 and
will return the cached automaton for length(x) < 10 instead of
reconstructing an equivalent one. Then, the syntactic caching
will report a miss for the subformula begins(vg, “a”) and an
automaton for that subformula will be constructed. Next step
is to construct the automaton for the subformula length(vg) <
10 A begins(vg, “a”). Now, syntax based caching will report a
hit for the first argument of the conjunction operation and the
automata based caching will report a hit for the second operand
of the conjunction operation. Then, instead of reconstructing
the automaton corresponding to the conjuction, the cached
automaton for the formula length(vg) < 10Achar_at(vp, 0) =
“a” will be returned. Then, the automaton for the subformula
vy = vy will be constructed, followed by the construction of
the automaton for the second conjunction. Note that syntax-
based caching is necessary to reduce the number of calls to

automata construction, and automata caching is necessary to
catch the cases where syntax based caching is not able to
detect equivalent formulas. In the following sections we will
discuss the implementation of this caching approach.

III. AUTOMATA-BASED MODEL-COUNTING

In this section we given an overview of automata-based
constraint solving and model counting techniques which have
been implemented in prior tools [4], [5]. We implemented
our sub-formula caching approach by extending an existing
automata-based model counting constraint solver.

Given an automaton A, let £(A) denote the set of strings
accepted by A, and given a formula F' let [F] denote the
set of values that satisfy the formula F'. In automata-based
model counting, given a formula F' the goal is to construct an
automaton Ap where L(Ap) = [F]. Note that this requires
encoding of the solutions to formula F' as strings accepted by
the automaton Ap.

In order to construct automata for formulas including string
constraints, it is necessary to handle string operations such as
concat, substring, length, char_at, begins, contains, etc. Using
standard automata construction techniques (such as concate-
nation) and their extensions, automata construction techniques
for string constraints have been implemented in prior work [4],
[5] where the alphabet for the constructed automaton corre-
sponds to the string alphabet used for the string constraints.
Boolean operators negation, conjunction and disjunction are
handled using automata complement and automata product,
respectively. For constraints that involve multiple variables one
can construct multiple single-track automata (one for each
variable) or one multi-track automata that accepts tuples of
strings. Multi-track automata is a generalization of finite state
automata. A multi-track automaton accepts tuples of values
by reading one symbol from each track in each transition.
L.e., given an alphabet 3, a k-track automaton has an alphabet
¥*. In order to achieve better precision, we use multi-track
automata representation.

Automata can also be used to represent solutions to linear
arithmetic constraints. Similar to string constraints, the goal
is to create an automaton that accepts solutions to the given
formula. For numeric constraints, one can use the binary
alphabet ¥ = {0,1} where the set of solutions to the given
numeric constraint is represented as a string of binary symbols
that corresponds to the 2s-complement representation of the
number which is the solution to the constraint. The numeric
automata accept tuples of integer values in binary form, start-
ing from the least significant digit. Numeric constraints consist
of basic numeric constraints and Boolean logic operators. Each
basic numeric constraint is in the form Z?:l a;-x;+ag op0,
where op € {=,#,>,>,<, <}, a; denote integer coefficients
and x; denote integer variables. The automata construction for
basic numeric constraints can be implemented using a basic
binary adder state machine construction [11].

The automata construction techniques we summarize above
have been implemented in a tool called Automata Based
Counter (ABC) model counting constraint solver [4], [5].



The ABC tool is a constraint solver for string and numeric
constrains and their combinations with model counting ca-
pabilities. Given a formula F', ABC constructs a multi-track
deterministic finite-state automaton (DFA) A characterizing
the set of solutions which satisfy F'. For each atomic formula
f in I, ABC constructs a DFA A; for each and combines
them into one DFA using automata operations (complement,
product). The resulting DFA is an over-approximation of the
set of all solutions to F'. Note that ABC supports both string
and numeric constraints, and thus uses two different encod-
ings: ASCII for strings, binary encoding for integers. ABC
keeps two different automata, one for string constraints, and
one for integer constraints, and implements special operations
for keeping track of relations between the two [4], [5].

ABC solves the the model counting problem using
automata-based model-counting. Given a formula F' construct-
ing an automaton Ap for the set of solutions of F' (where
L(Ap) = [F]) reduces the model counting problem to
a path counting problem. Note that the number of strings
accepted by an automaton could be infinite in the presence of
loops. In applications of model counting (such as probabilistic
symbolic execution) a model counting query is accompanied
with a bound that limits the domain of the variable. For string
variables this is the length of the strings, whereas for numeric
variables it is the number of bits. These correspond to the
length of the accepted strings for our automata representation
of string and numeric constraints.

The number of strings of length %k in [F] corresponds to
the number of accepting paths of length %k in the DFA Ap.
Since there is exactly one path for each string recognized by
a DFA, if we can count the number of path in Ap precisely
then we can answer the model counting query precisely.

Note that this approach works both for numeric and string
constraint automata. Hence, using an automata-based con-
straint solver provides a general approach to model counting.

Computation of number of accepting paths within a bound
can be done by constructing the adjacency matrix of the
automaton based on its transition relation, and then using
matrix exponentiation to compute the number of accepting
paths. It is also possible to construct recurrence equations for
the number of paths of a certain length that reach a particular
state in terms of the number of paths that reach the adjacent
states. The recurrence equation can be derived based on the
connections among the states of the automaton. Finally, the
number accepting paths of a certain length can be represented
using generating functions where the generating function can
be constructed based on the connections among the states of
the automaton [4], [5].

IV. CACHING FOR MODEL-COUNTING

Formula caching benefits quantitative program analyses
by improving the performance of their enabling technology,
model-counting constraint solvers. Formula caching frame-
works allow model counters to reuse previously computed
results and avoid performing expensive model counting. In
the past, formula caching has been shown to improve the

performance of model-counting constraint solvers by more
than 10x [15].

Simple formula caching only attempts to reuse the re-
sults for the complete query (F,V,b). We instead integrate
caching into the automata construction process of the model-
counting constraint solver. This increases the potential for
reuse. When constructing the automata for a formula F, we
can reuse the automata of subformulas of F'. For example,
as we discussed earlier, in constructing the automata for the
formula begins(s, “d”) A length(s) < 10 A's = ¢t we can
reuse the automata constructed for the formula length(z) <
10 A char_at(s,0) = “b”.

Extending formula caching with subformula caching allows
us to avoid expensive construction steps by reusing results.
To determine when results can be reused, caching frameworks
must be able to quickly detect when two queries are equivalent
with respect to model-counting. A formula F' is said to be
equivalent to formula G with respect to model counting if the
cardinality of satisfying solutions to F' matches that of G for
any length bound b. Note that two formulas might be equiva-
lent according to this criterion even if they do not possess the
same solution set. Determining if two formulas satisfy this
criteria is non-trivial. Syntactic caching and automata caching
are two different normalization techniques to determine the
equivalence of formula, both of which we use in conjunction
with subformula caching.

A. Syntactic Caching

Under syntactic caching, the formulas of queries are trans-
formed according to syntactic rules into a normal form. This
normal form is then used as a key to the cache under which
to store the automata. The constraint normalization procedure
given in [15] provides an effective, albeit incomplete method
of determining if two formula are equivalent with respect to
model counting. The normalization procedure takes a query
(F,V,b) and produces a normalized query [F, V, b], with vari-
ables V' and bound b. Two queries normalize to the same form
only if they are equivalent with respect to model counting, that
is, only if the cardinality of their solution sets match for every
length bound.

We adopt the syntactic normalization procedure given
in [15]. A query is normalized according to four sub-
procedures which act on its formula. First, the formula con-
juncts are sorted. Then the variable names are normalized in
order of appearance in the sorted formula. Third, alphabet
constants are normalized again in order of appearance, and
finally, arithmetic constraints are shifted by an integral amount
to center them about the origin. Note that normalized alphabet
characters are still treated as characters, regardless of which
character they are normalized to.

As an example, consider formula F’:

b= “.com” A contains(b, url)

and formula G:
contains(s, link) A s = “.net”



After sorting and renaming, both F' and G normalize to the
same form:
vg = “abed” A contains(vg, v1)

which means that the automata constructed for one formula
can be found in the cache and reused should a query be made
on the other.

We use syntactic caching for both full-formula queries and
sub-formula queries. When we receive a query on formula F',
we first syntactically normalize F' and use its normal form as
a key to query the cache as given in Algorithm 3. When a hit
occurs, we use the stored automata for path counting. If a miss
occurs, we turn to subformula caching to determine if we can
reuse intermediate results during automata construction of F'.
If F =op F}...F, where op is any n-ary operator, then we
perform two queries to the cache. One is on the syntactically
normalized op Fy...F,_1 or if n = 2, F;. The other is
on F,,. When a hit occurs, the cached automata is used and
the construction of op F} ... F,,_; or F; bypassed. If a miss
occurs, querying continues recursively to op F; ... Fj,_o and
F,_1 until an atomic! formula is reached. When an atomic
formula is reached, the automaton is constructed. Each time
an automaton is constructed, we store the automaton in the
cache under its syntactic key for future use.

In the example given above, the constraint F' has two
subformulas: b = “.com” and contains(b,url). In the case
where the normalized form of F' is not found in the cache,
the normal forms of these two subformulas would be queried.
b = “.com” normalizes to vg = “abcd” and contains(b, url)
normalizes to contains(vg, v1). During the construction of G
we get a hit since, after normalization, the key generated for
G matches the key for F' which means that the two formulas
are equivalent as far as model counting is concerned.

B. Automata Caching

Formulas that are semantically equivalent can have differ-
ent syntactic normal forms. To capture additional equivalent
formulas, we use automata caching. Under this caching, the
normal form of a formula is its automaton itself. For de-
terministic and minimized automata, two formula have the
same automaton if and only if they are semantically equiv-
alent formulas. This is true since minimized deterministic
DFAs provide a canonical form for regular languages. Unlike
syntactic caching, this type of equivalence check captures all
semantically equivalent formulas.

When syntactic caching results in a cache hit, it is preferable
to automata caching as its normalization is less expensive. We
use automata caching when syntactic caching has failed on a
query on a formula F' = op F)...F,, where op is any n-
ary operator. We construct the automata for each F;. We then
generate a key based on those automata and the operator op
and query the cache with this key. If the resulting automaton
for op has been previously constructed, we can reuse the
result. This procedure is given in Algorithm 4. In cases where
constructing the automaton for op is costly, the overhead of

IFor the definition of atomic formula, see [5]
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Fig. 2. DFA constructed for the formula match(s, (a|b)c*). (a) DFA with
ASCII alphabet, (b) DFA with binary encoding of the ASCII symbols, (c)
Multi-terminal BDD that encodes the DFA.

the caching queries is a beneficial trade-off. Each time we
construct an automaton for a formula F' = op Fj...F),, we
generate its key for automata caching and store the result.

In our implementation of the automata caching we use
the automata package provided by the MONA tool [16].
Generation of keys for deterministic finite automata require
us to encode the automaton as a string. Consider the formula
match(s, (a|b)c*) which states that string variable s can take
any value that matches the regular expression (A|b)c*. In
Fig. 2, we show the automaton constructed for this constraint.
Fig. 2(a) shows the minimized DFA with the ASCII alphabet.

[NUL-255]




{["{-11<0> 0} I{-1]<1> 1}|{1|<2> 2}"];

node; 0 [idx="0"]; 2 [idx="1"]; 3 [idx="2"]; 4 [idx="3"];
5 [idx="4"]; 6 [idx="5"]; 7 [idx="6"]; 8 [idx="7"];
10 [idx="7"]; 11 [idx="0"]; 12 [idx="1"]; 13 [idx="2"];
14 [idx="3"]; 15 [idx="4"]; 16 [idx="5"]; 17 [idx="6"];
terminal;1 ["1"]1;9 ["2"];
s:0 —> 0; s:1 -> 1; s:2 —> 11; 0 -—> 2 [lo];
0 ->1 [hi];2 -> 1 [lo];2 -> 3 [hi];3 -> 1 [lo];3 -> 4 [hi];
4 -> 5 [lo];4 —> 1 [hi];5 -> 6 [lo];5 —> 1 [hi];6 -> 7 [lo];
6 -> 1 [hil];7 -> 10 [lo];7 -> 8 [hi];8 -> 9 [lo];8 -> 1 [hi];
10 => 1 [10];10 -=> 9 [hi];11 -> 12 [lo];11 -> 1 [hi];
12 -=> 1 [lo];12 -> 13 [hi];13 -> 1 [lo];13 -> 14 [hi];
14 -> 15 [lo];14 -> 1 [hi];15 -> 16 [lo];15 -> 1 [hi];
16 -=> 17 [lo];16 -> 1 [hi];17 -> 1 [lo];17 -> 10 [hi];}

Fig. 3. Key generated for the automaton in Figure 2 based on its multi-
terminal BDD representation.

Initial state is 0, 2 is an accepting state and 1 is the sink state.
Transitions are labeled with character ranges for readability.

In order to improve the efficiency of automata manipula-
tion, MONA uses a symbolic DFA representation. The basic
idea is to represent the transition relation of the automata
symbolically using Multi Terminal Binary Decision Diagrams
(MTBDDs) [25]. In order to do this, we first have to use a
binary encoding of the set of characters that can appear in a
string. Fig. 2(b) shows the DFA that is equivalent to the DFA
shown in Fig. 2(a) where the ASCII symbols are encoded using
8-bit binary numbers (X denotes a “don’t care” value). Finally,
Fig. 2(c) shows the symbolic DFA representation based on
the MTBDD data structure. The second row in the table at
the top represents the DFA states while the first row in that
table represents state types which are either accepting state
1 or rejecting state -1. The circle-shaped nodes are the BDD
nodes. Each circle-shaped node has a number n that represents
its level i.e., which BDD variable n (in other words, which
bit n in an alphabet symbol it corresponds to. Each rectangle-
shaped leaf node has a number n that represents the destination
state that the node corresponds to. Dashed line represents a
BDD variable (bit) value of 0 while a regular line represents
a BDD variable (bit) value of 1.

In Fig. 3 we show the key generated from the symbolic
automata representation shown in Fig. 2(c). The key is a string
that represents the nodes and the transitions in the MTBDD
representation of the minimized DFA. Since minimized DFA
representation is a canonical representation, given two formu-
las, the keys generated for them are identical if and only if
the DFAs generated for them are identical.

C. Formula Caching Algorithm

Algorithm 2 outlines how we leverage syntactic caching and
automata caching in conjunction with subformula and full-
formula caching. Given a formula F', we first query whether
the full formula F' can be found in the cache through syntactic
caching. This is the cheapest normalization scheme and would
provide the most benefit, so we check it first. If this check
fails and F' is atomic, the cache can be of no further use to
us, so we construct the automata and store it in the cache
under the syntactic normal form of F. Otherwise, F' is of the
form F' = op F}...F, where op is some n-ary operator. In

this case, sub-formula caching may benefit our construction
process. As described above, we first syntactically query for
the normalized form of op Fy...F,,_1 or if n = 2, I}
and F),. This querying continues recursively until either an
atomic formula is reached or a cache hit occurs. Once the
two automata have been either retrieved or constructed and
stored under the syntactic normal form of the subformula,
we use automata caching to potentially avoid an expensive
construction of the op automata. We query using a key
generated from the two automata and the op operator and
either use the stored result or construct and store the automata.

Algorithm 1 MODELCOUNTING(F, V, b):

Input: A formula F', set of variables V', and bound b
Output: The number of solutions to V' that satisfy F' within bound b.

1: Ap = AUTOMATACONSTRUCTION(F)
2: return PATHCOUNT(Af, V,b)

Algorithm 2 AUTOMATACONSTRUCTION(F):

Input: A formula F.
Output: An automata accepting all solutions of F.

1: Ap = SYNTAXCACHING(F')

2: if Ap is not NULL then

3 return Ap

4: end if

5: if ISATOMIC(F’) then

6: A = CONSTRUCTDFA(F)
7 STORE(NORMALIZE(F), Ap)

8 return Ap

9: else

0 F=o0pFy...F,

1 A1 = AUTOMATACONSTRUCTION(op F ... Fp_1)

2: Ag = AUTOMATACONSTRUCTION(FY,)
13: Ap = AUTOMATACACHING(op, A1, A2)
14: STORE(NORMALIZE(F), Ap)

15: return Ap
16: end if

Algorithm 3 SYNTAXCACHING(F'):

Input: A formula F'.
Output: A cached automata that accepts all solutions of F' or NULL.

1: Krp = NORMALIZE(F)

2: if HIT(K ) then

3: return Ar = LOAD(Kf)
4: end if

5: return NULL

Algorithm 4 AUTOMATACACHING (A1, Aa, op):

Input: Two automata A1, A2 and an operator, op.
Output: Automata for A; op Aa.

K = GENERATEKEY(op, A1, A2)
if HIT(K ) then

return A = LOAD(K )
end if
A = CONSTRUCTDFA(A; op A2)
STORE(K f, A)
. return A

A A Sl




V. APPLICATIONS OF MODEL COUNTING

In this section, we describe three different quantitative pro-
gram analysis scenarios which use model-counting constraint
solvers. For each scenario, we introduce the experimental
benchmark we use to evaluate the effectiveness of our caching
technique for the scenario.

A. Model Counting Constraints

The most straightforward application of model counting is,
given a set of constraints, to simply count the number of
accepting solutions for each. This is common in symbolic
execution, where model counting queries are generated for
full path constraints after symbolic execution has completed.
For this scenario we consider two sets of full path constraints,
each generated from a different symbolic execution engine.

Kaluza Benchmark. The Kaluza benchmark is widely used
benchmark for evaluating constraint solvers and model count-
ing constraint solvers. The benchmark is a set of satisfiable
constraints generated via symbolic execution of JavaScript pro-
grams and were originally solved by Kaluza string solver [34].
The constraints in this benchmark require a constraint solver
to be able to reason over string and numeric constraints and
their combinations. All the constraints from this benchmark
were later divided into two sets: KaluzaSmall and KaluzaBig.
The input format of these constraints were translated into the
SMTLib2 input format by the authors of ABC [4], [5]. The
KaluzaSmall set contains 28059 constraints, while KaluzaBig
7061 constraints. Each constraint contains a query variable
for which to model count. We evaluate the performance of
different caching techniques on this benchmark, comparing the
time taken to count the number of solution strings of length
less than or equal to 50 for each constraint.

Sorting Constraints. We investigate the performance of our
approach on constraints generated from symbolic execution
of four different Java sorting programs: Quicksort, Bubblesort,
Insertionsort, and Selectionsort. We fixed the array size of each
to 7 elements and symbolic execution to a depth of 30. Each
consists solely of numeric constraints, with the total number
of constraints 12856, 5041, 5041, and 5041, respectively.

B. Reliability Analysis

One measure of program reliability is the probability that the
program executes successfully. Symbolic execution provides a
means to compute program reliability. One run of symbolic
execution generates a series of path constraints characterizing
complete program paths. Because symbolic execution requires
a depth bound, it is possible that not all complete program
paths will be generated. Performing model counting over
the generated path constraints and dividing the count by the
domain size gives the probability that a randomly chosen input
will execute that particular program path. By computing this
probability for each complete program path, we can determine
what percentage of the input space is captured by the path
constraints generated by symbolic execution and therefore
provide a lower bound on the reliability of the program.

As an example, consider the password checking function
in Figure 4. If this function were symbolically executed with
length bound 4 for h, five path constraints would be generated.
These constraints are given in Table I. The probability of a
given path can be computed by diving the model count of the
path constraint by the size of the domain. The bound of 4 on
h is a small bound. In general, we have no guarantee on the
length of h, meaning symbolic execution will require a depth
bound to terminate. However, by leveraging model counting,
we can execute a bounded symbolic execution and then
compute what percentage of the input space leads to a program
path that terminates within our depth bound. This gives us
the percentage of input space we can confidently say will
execute without failure and thus provides a lower bound on
the reliability of the program. For the PasswordChecker
example, imagine we limit the search depth so that the loop
symbolically executes only 3 times. In this case, all program
paths for which the first three characters match would not
complete their symbolic execution. Covered probability p.
for reliability analysis will be then the summation of the
probability of path constrains 1, 2 and 3 from Table 1.

In practice, we are also often interested in guaranteeing
a lower bound for program reliability. In this case, we can
perform model counting at each step of symbolic execution
to determine what percentage of input follows which path.
This would allow us to guide the symbolic execution along
the most probable paths in order to increase coverage most
efficiently and stop execution once a certain coverage is
reached. Conversely, one could also guide symbolic execution
towards highly improbable paths in order to test corner cases.

TABLE I
PATH CONSTRAINTS FOR PROGRAM IN FIGURE 4
[ @ ][ Path Constraint [ Observation [ Probability |
1 char_at(l, 0) # char_at(h, 0) 63 0.9000
2 char_at(l, 0) = char_at(h, 0)A 78 0.0900
char_at(l, 1) # char_at(h, 1)
3 char_at(l, 0) = char_at(h, 0)A 93 0.0090
char_at(l, 1) = char_at(h, 1)A
char_at(l, 2) # char_at(h, 2)
4 char_at(l, 0) = char_at(h, 0)A 108 0.0009
char_at(l, 1) = char_at(h, 1)A
char_at(l, 2) = char_at(h, 2)A
char_at(l, 3) # char_at(h, 3)
5 char_at(l,0) = char_at(h, 0)A 123 0.0001
char_at(l, 1) = char_at(h, 1)A
char_at(l, 2) = char_at(h, 2)A
char_at(l, 3) = char_at(h, 3)

Reliability Analysis Benchmark. This benchmark is a mod-
ified version of the experimental benchmark used in [24].
The original benchmark consists of numeric constraints only.
We add more example programs involving string constraints.
Examples with numeric constraints cover couple of sorting
algorithms plus DaisyChain, a small program simulating a
simplified flap controller of an aircraft and RobotGame, a
program to determine and execute robot movements. Exam-
ples with string constraints cover several string manipulating
methods: PasswordCheck compares secret password and
user’s input, StringEquals is a string library function which



public Boolean PasswordCheck(String h,
for (int i = 0; i < h.length(); i++)
if (h.charAt(i) != 1.charAt(i))

return false;
return true;

String 1) {

’ Fig. 4. Password Checking example.
checks if two strings are equal or not, Stringlnequality checks
lexicographical order of two strings character by character,
EditDistance checks minimum edit distance of two strings,
IndexOf is another string library function and Compress is
a simple string compression function.

C. Attack Synthesis

We focus on adaptive attack synthesis for side-channel
vulnerabilities. Attack synthesis techniques generate inputs in
an iterative manner which, when fed to code that accesses the
secret, reveal information about the secret based on the side-
channel observations [9], [29], [32]. Symbolic execution is
used to extract path constraints, automata-based model count-
ing is used to estimate probabilities of execution paths, and
optimization techniques are used to maximize information gain
based on entropy. Consider the password checking function in
Figure 4. The function has a timing side-channel and one can
reveal the secret by measuring execution time. If h and [ have
no common prefix, the program will have the fastest execution
since the loop body will be executed only once; If hA and [
have a common prefix of one character, a longer execution
will be observed since the loop body executes twice. The case
when h and [ match completely, the program has the longest
execution. An attacker can choose an input and use the timing
observation to determine how much of a prefix of the input
has matched the secret. Adaptive attack synthesis approach
starts by automatically generating the path constraints using
symbolic execution. It then uses these constraints to synthesize
an attack which determines the value of the secret (h). Based
on Shannon entropy, the remaining uncertainty of h can be
computed to measure the progress of an attack.

At each step of an adaptive attack, attacker learns new
information about h represented as a constraint on & based on
the observed execution time. Suppose that the secret is “1337”.
The initial uncertainty is log, 10* = 13.13 bits of information
(assuming uniform distribution). Attack synthesis generates
input “8229” at the first step and makes an observation with
cost 63, which corresponds to constraint char_at(h,0) # 8.
Similarly, a second input, “0002”, implies char_at(h,0) # 0.
At the third step the input “1058” yields a different observation
leading to updated constraint on h as below:

char_at(h,0) # 8 A char_at(h,0) # 0 A char_at(h,0) =
1 Achar_at(h,1) #0

The updated constraint at an attack step has subformula
from the previous step. For example, at attack step 2, constraint
char_at(h,0) # 8 A char_at(h,0) # 0 has subformula
char_at(h,0) # 8 from earlier step and at attack step 3, con-
straint char_at(h, 0) # 8Achar_at(h,0) # OAchar_at(h,0) =
1 A char_at(h,1) # 0 has subformula char_at(h,0) # 8 A

char_at(h,0) # 0. A model counting tool without caching
will re-count a number of formulas which was counted in the
earlier steps. This is redundant and reduces the efficiency of
attack synthesis. Results can be reused from prior iterations.
Model counting is in the core of the attack synthesis process
as it is repeatedly used to calculate information gain and
progress of attack synthesis. Reusing model counting query
results from earlier steps should improve the effectiveness of
attack synthesis by reducing attack synthesis time.

Attack Synthesis Benchmark. This benchmark was previ-
ously used in [32], [33] to synthesize attacks for programs
vulnerable to side-channels. Example functions used in this
benchmark includes different string manipulation and arith-
metic operations, setting different sizes and lengths to define
the domain of secret value. The function PCI is an imple-
mentation of password checker comparing a user input and
secret password but inducing a timing side channel due to
early termination optimization. SE is a method from the Java
String library to check equality of two strings and known
to be vulnerable to timing side-channel [20]. A similar side-
channel was discovered in indexOf (IO) method from the Java
String library. Function ED is an implementation of a dynamic
programming algorithm to compute minimum edit distance
between two strings. Function CO is a basic compression
algorithm which collapses repeated sub-strings within two
strings. Sl, SCOI and SCI functions check lexicographic
inequality (<,>=) of two strings whereas first one compares
the strings, second one includes concatenation operation with
inequality and third one compares characters in the strings.

VI. IMPLEMENTATION

We implemented? the caching techniques presented in this
paper into the Automata Based Model Counter (ABC) [4],
[5]. Internally, automata within ABC are represented as multi-
terminal binary decision diagrams, implemented using the tool
MONA [16]. Given the constraint formula F' in SMTLib2
format, ABC first constructs the abstract syntax tree (AST)
in negation normal form representing F' where the root node
represents the satisfiability of F', leaf nodes correspond to
variables and constants, and intermediate nodes represent
string or integer terms with boolean connectives (and, or).
The AST is simplified before DFA construction using sev-
eral heuristics. Dependency analysis identifies independent
components which may be solved separately. Equivalence
class generation detects equivalent variables through equality
clauses and chooses a single representative for the class, and
term re-write rules eliminate redundant terms and propagate
constants. ABC then performs post-order traversal on the
simplified AST, where the DFA for each node is constructed
from the DFAs of its children nodes.

We modify the constraint solving algorithm of ABC with
support for both syntactic and automata caching on the nodes
of the AST. In our implementation, we use the popular open

2subformula caching implementation and dataset available at https://github.
com/vlab-cs-ucsb/ABC
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source in-memory database store Redis [1] as the cache. We set
the maximum database size to 8 GB, with a least recently used
eviction policy (LRU). Note that the LRU algorithm Redis uses
approximates the LRU set using sampling, 3 in this case. Given
a constraint formula, ABC constructs the simplified AST
representing the formula using the approach mentioned above.
Prior to the post-order traversal for DFA construction, the
cache is recursively queried for a smaller subset of the original
formula until either an atomic formula is found, or a DFA is
returned from a cache hit. Note that the key for each query is
simply the string representation of the AST corresponding to
the normalized form of a particular subformula. In either case,
ABC begins its post-order DFA construction traversal from the
corresponding AST node. For each subformula solved from
this point, ABC stores the solution DFA into the cache. By
exploiting the natural post-order traversal of ABC’s constraint
solving algorithm we maximize the probability of a cache hit
while minimizing the number of cache queries.

VII. EXPERIMENTS

We evaluate our caching technique across the three different
quantitative program analysis scenarios described above. For
each experimental scenario, we evaluate four different caching
approaches. The NOCACHING or NC approach performs
the analysis with no caching of model-counting queries and
serves as a baseline for comparison. The FULLFORMULA
or FF approach is an identical re-implementation of Cashew
performs only syntactic normalization and only queries the
cache for hits of the full formula of the model-counting
query. The SUBFORMULA or SF approach is also limited to
syntactic normalization but performs recursive queries on the
sub-formulas of the query formula when the full formula is not
found in the cache. Finally, the SUBFORMULA + AUTOMATA
or SFA approach extends the SF approach with automata
caching. The SFA approach is the most expressive caching
scheme. We report the time in seconds for each benchmark
program to complete (end-to-end) across these four caching
scenarios. We also report the speedup demonstrated by the
SFA approach versus both the NC and FF approaches.

A. Experimental Setup

For all experiments, we use a desktop machine with an Intel
Core 15-2400S 2.50 GHz CPU and 32 GB of DDR3 RAM
running Ubuntu 16.04, with a Linux 4.4.0-81 64-bit kernel.
We used the OpenJDK 64-bit Java VM, build 1.8.0 171.

B. Experimental Results

We discuss how each of the four caching approaches per-
form across the three different quantitative program analysis
scenarios. We evaluate under what kinds of analyses the SF
and SFA approaches prove highly beneficial versus FF and NC
and examine cases where the improvement was only marginal.

Model Counting. The results for model counting constraints
generated by symbolic execution are given in Table II. We
show results the simplified Kaluza benchmark and linear arith-
metic constraints generated from running symbolic execution

on a suite of sorting benchmarks. We found that out of 28059
of the constraints in KaluzaSmall, 647 were unique constraints
after normalization, with the other 27412 being trivially satisfi-
able. KaluzaBig contained 376 unique constraints out of 7061
constraints, with the other 6685 constraints being of reasonable
complexity. For both cases, SFA outperforms NC and FF. For
the numeric constraints, SFA outperforms FF and NC in only
one case. For the other three cases, the overhead of subformula
caching outweighs any benefits gained due to the simplicity
of the numeric constraints.

Reliability Analysis. The results on the reliability analysis
benchmark are given in Table III. The upper half of the table
shows the results on programs that produce only numeric
constraints and the bottom half on programs that also contain
string and mixed string and numeric constraints. We found
no caching approach to be significantly beneficial in the
benchmarks where only numeric constraints are encountered.
In fact, because of the additional overhead of the FF and SFA
approaches, we even observed a slight slowdown versus the
NC or the more light-weight FF approach on some benchmark
programs. Nevertheless, the additional overhead was never
hugely debilitating and the SFA approach never took more
than 15% longer than the NC or FF approaches.

On benchmarks with string or mixed string and numeric
constraints, the SF approach demonstrated notable improve-
ment over both the NC and FF approaches, and the SFA ap-
proach was even more successful. In some cases, the SFA ap-
proach was more than four-fold faster than either the NC or FF
approaches. In all cases, some improvement was observed with
the SFA approach. The reason for the significant improvement
observed on benchmarks with string and mixed constraints lies
in the expensive automata constructions demanded by those
constraints. Numeric constraints, however, do not require ex-
pensive automata constructions making the effects of caching
less beneficial. From these experiments, we learned that the
SFA approach potentially provides enormous benefit when
string or mixed constraints are encountered during the course
of the analyses and does not significantly degrade performance
when only numeric constraints are encountered. From this, we
believe that enabling SFA caching is generally beneficial for
reliability analysis but also note that the analyst could make an
informed choice to enable should they have suspicions about
the type of constraints likely to be encountered.

Attack Synthesis. The results on the attack synthesis bench-
mark are given in Table IV. As shown in the execution time
under the NC approach, this quantitative program analysis
is the most expensive of the three with some benchmark
programs taking 5 hours to run when no caching is enabled.
In all cases, the SF approach improved on the NC and FF
approaches, even reducing a run-time of five hours to less
than eighteen minutes for the SCI benchmark program. The
SFA approach was able to even further improve these already
impressive results. On some benchmarks, SFA demonstrated
a more than twenty-fold improvement versus the NC and FF
approaches. In all cases, the SFA approach was the fastest
evaluated caching approach.



TABLE II
EXPERIMENTAL RESULTS FOR MODEL COUNTING CONSTRAINTS

Benchmark \ NC Time(s) FF Time(s) SF Time(s)  SFA Time(s) \ SFA Speedup v NC  SFA Speedup v FF

QuickSort 195.4 195.2 220.2 225.6 0.87x 0.87x

BubbleSort 124.1 123.8 127.1 133.2 0.93x 0.93x

InsertionSort 129.9 125.3 119.1 123.4 1.05x 1.02x

SelectionSort 122.2 121.8 131.6 144.4 0.85x 0.84x

KaluzaSmall 1173.6 1075.2 1065.3 990.6 1.18x 1.09x

KaluzaBig 5730.7 1247.3 1193.3 1176.1 4.87x 1.06x

TABLE IIT
EXPERIMENTAL RESULTS FOR RELIABILITY ANALYSIS

Benchmark ‘ SE Depth  NC Time(s) FF Time(s) SF Time(s)  SFA Time(s) ‘ SFA Speedup v. NC  SFA Speedup v FF
BubbleSort 20 4573.4 2364.8 2372.3 2335.1 1.96x 1.01x
InsertionSort 15 4183.6 4364.3 4303.9 4311.1 0.99x 1.01x
DaisyChain 30 106.4 107.7 108.3 122.1 0.87x 0.88x
RobotGame 30 80.7 80.7 79.2 80.8 1.00x 1.00x
PasswordCheck 50 830.9 836.0 932.9 648.9 1.29x 1.29x
StringEquals 50 1142.2 1196.8 1269.7 893.1 1.28x 1.34x
Stringlnequality 10 319.2 324.1 251.6 89.7 3.56x 3.61x
EditDistance 8 19241.7 19876.6 15764.1 8384.4 2.29x 2.37x
IndexOf 15 25451.2 26116.3 21457.1 8384.6 3.04x 3.11x
Compress 30 5342.2 5435.9 1868.9 1213.8 4.40x 4.48x

All benchmark programs evaluated under this program anal-
ysis scenario contain string constraints. Based on our obser-
vations from the reliability program analysis benchmarks, we
think that the more expensive automata construction required
for these constraints is part of the reason the SF and SFA
approaches are so successful for these benchmarks.

VIII. RELATED WORK

Model Counting: As the enabling technology for quan-
titative program analyses, model-counting constraint solvers
have received increasing focus from the research community.
SMC [28] and S3# [35] are two model-counting constraint
solvers over the string domain. LattE [7] is a model-counting
constraint solver for linear integer arithmetic that uses the
Barvinok [12] algorithm. ABC, which can handle string,
numeric and mixed constraints, is more expressive than any
of these model-counting constraint solvers and more precise
than either of the string model counters.

Caching: Cashew [15] is a caching framework for model-
counting queries which provides notable improvement on a
variety of program analyses. Cashew is built atop Green [36],
an external solver interface for reusing the results of sat-
isfiability or model counting queries. Cashew introduces an
aggressive normalization scheme and parameterized caching,
allowing it to outperform Green. We adopt the normalization
scheme used by Cashew, but introduce subformula caching
into the automata construction process to enable more reuse
of computation. We also leverage automata caching, a nor-
malization technique guaranteeing completeness to leverage
more information from the cache. We show how both of these
techniques benefits three different program analyses scenarios

with a direct comparison to the full-formula-only caching
implemented by Cashew.

GreenTrie [27], another extension of Green, and Recal [2]
are caching frameworks that detect implication between con-
straints to improve caching for satisfiability queries. Their
techniques are specific to satisfiability queries and, in the gen-
eral case, do not apply to model-counting queries considered
in this paper. Utopia [3] proposes a technique to reuse results
across formulas with similar solution sets but again, is specific
to satisfiability queries and would not aid in model counting.

Incremental Solving: Many modern SMT solvers have
built-in support to expedite the solving of similar constraints.
CVC4 [10], Z3 [21], Yices [22] and MathSATS [19] are
SMT solvers with incremental capabilities. These tools learn
lemmas which can later be (re)used to solve similar con-
straints. During constraint solving, these solvers use a stack-
based approach to keep track of the current solver context,
pushing and popping learned lemmas as conjuncts are added
or removed respectively. Incremental attack synthesis is an
alternative approach that enables reuse of intermediate results
obtained during attack synthesis [32]. However, incremental
attack synthesis approach is a specialized heuristic for at-
tack synthesis, whereas the subformula caching approach we
present in this paper is general, and it is applicable to any
quantitative program analysis technique that relies on model
counting queries.

IX. CONCLUSIONS

Quantitative program analysis techniques rely on model
counting constraint solvers and model counting queries can
be very expensive. In this paper we introduced sub-formula



TABLE IV
EXPERIMENTAL RESULTS FOR ATTACK SYNTHESIS

Benchmark \ NC Time(s) FF Time(s) SF Time(s) = SFA Time(s) \ SFA Speedup v NC  SFA Speedup v FF
PCI 8227.5 2936.6 1363.7 1013.8 8.12x 2.90x
SE 7386.3 2968.7 3186.1 2283.2 3.24x 1.30x
Sl 2329 178.7 88.7 54.6 4.27x 3.27x
ED 18000.0 24126.2 8000.1 1652.2 10.89x 14.60x
10 11167.8 3719.9 3603.1 1163.4 9.60x 3.20x
CO 1908.5 2239.9 1273.1 922 20.7x 24.30x
SCOI 320.3 207.1 75.1 56.8 5.64x 3.65x
SCI 18000.0 11155.6 1076.6 617.9 29.13x 18.05x
caching to improve the efficiency of quantitative program anal-  [13] Mateus Borges, Antonio Filieri, Marcelo d’Amorim, and Corina S.

ysis techniques. We focus on automata-based model counting
for string and numeric constraints. We use both syntactic and
automata-based caching in order to reduce the number of
times automata are constructed. We evaluate our approach in
different scenarios and demonstrate that subformula caching
can significantly improve the performance of quantitative
program analysis techniques.
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