

1 **Silver nitrate *in situ* Upgrades Pyrolysis Biofuels from Brewer's Spent Grain via**
2 **Biotemplating**

4 Cole H. Ashman¹, Lihui Gao^{1,2}, Jillian L. Goldfarb,^{1,3*}

5 1. Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston MA 02215, United
6 States

7 2. School of Chemical Engineering and Technology, China University of Mining and Technology, No 1 Daxue
8 Road Xuzhou 221116, People's Republic of China

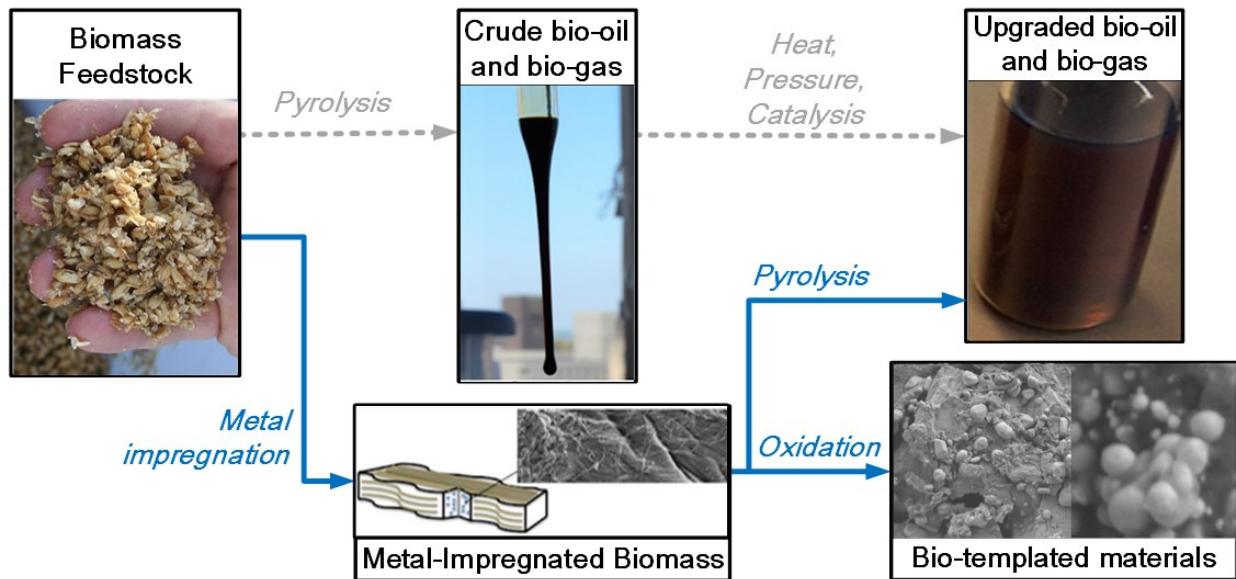
9 3. Department of Biological and Environmental Engineering, Cornell University, 226 Riley-Robb Hall, Ithaca NY
10 14853

11 **Abstract**

12 Bio-based hydrocarbon fuels made from carbonaceous wastes are a renewable and potentially
13 carbon neutral alternative to conventional fossil fuels. Pyrolysis biofuels are limited largely
14 because of a poor overall energy balance along with the fuel's high viscosity and high oxygen
15 content. This study explores an integrated biorefinery approach to manage Brewer's Spent Grain
16 (BSG) waste that combines *in situ* catalytic upgrading of pyrolysis fuel with production of value-
17 added products to improve process economics. By incorporating silver nitrate via a wet
18 impregnation method into BSG prior to pyrolysis, non-condensable gas (particularly hydrogen and
19 ethane) production dramatically increases, while the evolution of methane is largely unchanged.
20 Critically, the peak temperatures at which pyrolysis gases evolve are decreased by the
21 incorporation of silver, suggesting that this process could lower required pyrolysis temperatures.
22 The silver-treated pyrolysis bio-oil showed a considerable increase in furfural, an important
23 precursor in many chemical processes. The silver-impregnated biomass also showed a decrease in
24 2-methyl-propanal and 2-methyl-butanal yields, and virtually eliminated detectable anthracene and
25 pyrene. In conjunction with the evolved gas results, it is likely that molecular rearrangement and
26 dehydrogenation pathways, as opposed to a complete thermochemical cracking of the bio-oil
27 fraction, are likely responsible for the catalytic behavior observed. After pyrolysis, the biochar can
28 be oxidized to yield bio-templated, green-synthesized silver micro- and nanomaterials. The
29 integrated biorefinery approach offers a novel path for upgrading pyrolysis biofuels, unifying
30 synthesis of micro- and nanostructured materials and fuel production.

31 **Keywords**

32 Integrated biorefinery; brewer's spent grain; *in situ* upgrading; biotemplate; pyrolysis; metal
33 impregnation


* To whom correspondence should be addressed: (607) 255 5789; JillianLGoldfarb@gmail.com;
goldfarb@cornell.edu

38 **Graphical Abstract**

39

40 *Pyrolysis biofuels can be *in situ* upgraded by impregnation with catalyst precursors,*
41 *simultaneously forming biotemplated materials, enhancing hydrogen production and decreasing*
42 *oxygenated compounds in condensable bio-oil*

43

44

45

46

47

48

49

50 **1. Introduction**

51 The global demand for sustainable, reliable sources of energy is steadily growing as developing
52 nations expand and world population rises. As this trend continues it is imperative that we work to
53 curb our reliance on non-renewable fossil energy sources, which are inextricably linked to climate
54 change and environmental degradation. One potential alternative to fossil fuels is pyrolysis
55 biofuels derived from lignocellulosic biomasses from agricultural and food waste streams. While
56 biofuel derived from biomass is attractive as a potential renewable, sustainable, and comparatively
57 carbon-neutral energy source, it has received considerable scrutiny over the years on the basis of
58 the overall process' energy balance and economics, as well as net environmental impact^{1,2}. These
59 criticisms may be countered, in part, by recovering both fuels and additional value-added
60 products³⁻⁶.

61

62 Perhaps the most significant issue with the production of biofuels from biomass via pyrolysis
63 (heating in the absence of oxygen) is the relatively poor quality of the liquid bio-oil product. This
64 bio-oil tends to be both acidic and high in oxygen content, leading to corrosion in engines and
65 process units. It also renders the fuels prone to degradation over time⁷. Bio-oil upgrading via both
66 physical and chemical treatment has been investigated by many, from *in situ* and downstream
67 chemical catalysts⁸ to solvent-free mechanocatalytic processes using sacrificial catalysts⁹.
68 Nevertheless, challenges persist such as the presence of viscous, oxygenated polar compounds
69 which are subject to polymerization at temperatures as low as 120°C and are largely responsible
70 for the fuel's thermal instability^{10,11}. In short, poor fuel quality and yield, along with the relatively
71 high cost of fuel upgrading processes — particularly with respect to catalyst degradation and
72 recovery¹² — has stymied large-scale development and adoption of this type of biofuel¹³.
73 However, biomass-to-biofuel processes may be bolstered both in terms of process economics and
74 fuel quality by pursuing an *integrated biorefinery* approach.

75

76 The incorporation of pre-formed nanomaterials into biomass to catalyze biofuel production has
77 been explored throughout the biofuel literature. First-generation biofuels have profited greatly
78 from nanomaterial catalysts, from improved transesterification of bio-oils using nano- Fe₃O₄, CaO,
79 and γ-Al₂O₃^{14,15}, to conversion of glycol to high-value chemical products using ZnO supported Rh
80 and Pt⁶. This extends to second-generation biofuels from lignocellulosic and agricultural waste

81 streams. For example, Ni-W catalysts increase yield of ethylene glycol, and Ru can increase
82 sorbitol, isosorbide, and hexitol yields in bio-oils¹⁶⁻²⁰. Ti and Al nano-catalysts demonstrated
83 potential in improving levoglucosan yield in cellulose and anhydrous sugar pyrolysis^{21,22}, and
84 sulfated metal oxides improved yield of light furans from cellulose pyrolysis²³. Nano-NiO on γ -
85 Al_2O_3 has been explored for upgrading pyrolysis gases and tar removal²¹, while incorporation of
86 nano- SnO_2 particles into hazelnut shell biomass catalyzed pyrolysis and increased biogas
87 generation²⁴. Catalysts naturally found in red mud were also shown to enhance components of fast
88 pyrolysis, particularly with respect to ketone yield²⁵. Still others have studied the efficacy of *in*
89 *situ* upgrading of pyrolysis products by incorporating zeolites into biomass prior to pyrolysis²⁶.
90 These examples and many more clearly demonstrate the benefit of catalyst integration into the
91 biomass-to-biofuel process.

92

93 In the present work, brewer's spent grain (BSG) was used as feedstock for *in situ* catalyzed biofuel
94 production. BSG was selected due to its potential scalability/availability as a biomass, and its
95 dissimilarity to the pure cellulose feedstock previously examined by our laboratory²⁷ and the others
96 cited throughout this paper. Silver was chosen as the *in situ* catalyst for several reasons. First, noble
97 and transition metals used as heterogeneous catalysts in thermochemical conversion systems such
98 as gasification and pyrolysis have been shown to decrease operation temperature and increase
99 biomass conversion^{27,28}. Ag and Au, more so than Cu, Ni, Ru, Rh, Pd and Pt, have been shown to
100 lower activation energy barriers to CO conversion²⁹, and transition metals are responsible for
101 catalytic tar elimination during biomass pyrolysis³⁰ and CO hydrogenation to methanol³¹. Overall,
102 transition metals are responsible for C-C, C-O, C-N, N-O, N-N and O-O dissociation reactions³²,
103 critical to the pyrolysis process. The cost of silver, compared to other transition metals, is
104 considerably lower; early 2019 prices for silver hover around \$0.50 per gram, whereas gold was
105 at \$41/g, ruthenium at \$8/g, palladium at \$44/g and platinum at \$26/g³³. Finally, silver
106 micro/nanomaterials as a byproduct could represent a high-value antimicrobial material³⁴⁻³⁶.

107

108 Another growing body of literature exists surrounding the use of biomass as a template for green
109 synthesis of micro- and nano-structures³⁷⁻³⁹. These processes take advantage of natural organic
110 reducing agents leading to direct nucleation⁴⁰ as well as the naturally complex micro- and nano-
111 scale structures present in biological materials⁴¹. This greener pathway obviates the need for harsh

112 chemical reductants like hydrazines or sodium borohydride as well as volatile organic solvents
113 while presenting a viable means to produce engineered nanomaterials⁴²⁻⁴⁴. This process was used
114 to synthesize silver nanoparticles using a number of organic substances including soluble starch⁴⁵,
115 plant extracts⁴⁶⁻⁴⁹, and cellulose as a structure-directing support for production of nanoparticles⁵⁰.
116 Similar bio-templating of inorganic nanomaterials has been shown for titanium⁵¹⁻⁵³, iron⁵⁴⁻⁵⁶, and
117 zinc⁵⁷⁻⁵⁹. Once these nanomaterials are formed, the organic scaffolding is removed through
118 oxidation in air. Our integrated approach attempts to join bio-templating of ordered micro- and
119 nano-materials as a means itself for catalyzing pyrolysis and upgrading of biofuel components.
120 This paper explores the feasibility of such an integrated biorefinery by simultaneously upgrading
121 pyrolysis biofuel from brewer's spent grain while producing a value-added material, namely bio-
122 templated silver particles, which may be used in medicine, optics, and electrochemistry^{60,61}. This
123 paper explores the catalytic upgrading that can be achieved by incorporating a catalyst precursor
124 into the biomass, rather than a previously formed nano- or microstructured catalyst. As such, the
125 paper directly addresses key concepts in Green Engineering for Sustainable Development that can
126 be achieved via pyrolysis, including the development of environmentally improved
127 routes, synthetic methods and processes to achieve key products and chemicals by exploiting the
128 chemical aspects of renewable energy.

129

130

131 **2. Experimental**

132 Brewer's spent grain (BSG), the residual barley grain malt and other solids left once the
133 fermentable liquid wort is removed, is the main waste product from the beer brewing process,
134 comprising about 85% of the total waste generated⁶². The composition of BSG varies based on the
135 variety of barley used in fermentation, hops, and other additives. Generally speaking, it is
136 comprised of lignocellulosic biomass high in protein and fiber content, roughly 16 to 25%
137 cellulose, 15 to 24% protein, and 11 to 27% lignin (by dry mass basis)^{63,64}. Because of its high
138 protein content, BSG is most commonly used for animal fodder^{65,66}, though it has been explored
139 for many other uses including as a wastewater adsorbent⁶⁷, a growth medium for microorganisms
140 and enzyme production, as well as a feedstock for biochemical compounds such as amino acids
141 and antioxidants⁶⁸. Some have explored the potential for BSG as an energy source, including as a
142 charcoal precursor^{69,70}, as a feedstock for ethanol⁷¹⁻⁷³, in production of bio-gas via anaerobic

143 digestion⁷⁴⁻⁷⁶, and for the production of pyrolysis biofuels^{77,78}. BSG was selected in this work as
144 an attractive biomass feedstock for our process given its low cost, widespread abundance, and
145 large quantity generated each year—approximately 23 kg produced per barrel of beer, with over
146 200 million barrels produced in the US in 2015^{63,65,79}.

147

148 ***2.1 Materials***

149 BSG was obtained in bulk from Anheuser Busch (Everett, MA), and dried in an oven overnight at
150 90 °C to achieve a constant moisture baseline. To ensure studies were not transport limited,
151 biomass particles were reduced to 250-300 µm by ball milling and sieving, which prior work
152 demonstrates yields a Biot number of much less than one⁸⁰. Ultimate analysis was performed using
153 a LECO 628 analyzer equipped with the sulfur module for CHN (ASTM D-5373 standard method)
154 and S (ASTM D-1552 standard method) content determination. Proximate analysis was
155 determined using a Mettler-Toledo TGA-DSC-1 thermogravimetric analyzer (TGA) by heating 3-
156 5 mg samples in 70 µL alumina crucibles. Residual moisture in the pre-dried biomass
157 (approximately 2-3% by mass) was removed from samples by heating to 110°C and holding for
158 15 minutes under a flow of 100 mL/min high purity nitrogen to obtain the dry sample mass. The
159 volatile matter content was considered to be the mass loss between 110°C and 850 °C in nitrogen
160 after a 30-minute hold, and the fixed carbon content the additional mass loss in 100 mL/min of dry
161 air at 850 °C after 30 minutes. Residual inorganic matter, loosely termed “ash”, was considered to
162 be anything remaining after oxidation.

163

164 ***2.2 Silver Impregnation***

165 An incipient wetness impregnation technique was used to incorporate silver into the biomass,
166 whereby the BSG was soaked in a 0.1 M aqueous silver nitrate (AgNO₃) solution (ACROS
167 Organics, 99.5% pure) in a ratio of 6 g biomass per 30 mL solution at room temperature and
168 pressure. The soaked biomass sample was then vacuum filtered to remove excess solution and
169 dried in a desiccator overnight. To understand the kinetics associated with silver metal loading
170 onto our biomass, BSG samples were soaked in the silver nitrate solution for 2, 5, 10, 30, 60
171 minutes, and 24 hours in both 0.1 M aqueous silver nitrate and in de-ionized water as a control.

172

173

174 **2.3 Thermal Treatment**

175 Bio-templated materials are commonly produced by calcining metal-impregnated cellulosic
176 samples around 450-500°C in air to remove the biomass template⁸¹. Production of materials in this
177 manner does not allow for collection of biofuel given that the combustible products quickly oxidize
178 upon devolatilization from the biomass. The novelty of the integrated biorefinery process is the
179 ability to first collect biofuel products produced by pyrolysis prior to a calcination step. Thermal
180 treatment of biomass samples was carried out using a 2-inch MTI tube furnace and porcelain boat
181 containing samples (0.50 g of biomass). Based on derivative thermogravimetric (DTG) analysis,
182 500 °C was selected as the pyrolysis temperature, as more than 90% of mass loss occurs below
183 this temperature and it is above the decomposition point of silver nitrate (440°C) and well below
184 the melting point of silver (960°C). Under a 100 mL/min flow of high-purity nitrogen, samples
185 were dried at 110°C for 15 minutes then heated to 500°C at a rate of 10°C/min and held at that
186 temperature for 1 hour to ensure complete devolatilization. During pyrolysis, evolved gas was
187 tracked with an Extorr RGA XT300M Quadrupole Mass Spectrometer starting at 110°C.
188 Specifically, the m/z signals 2, 16, 26, 27, 30, and 44 were recorded (corresponding to H₂, CH₄,
189 C₂H₂, C₂H₄, C₂H₆, and CO₂, respectively)^{82,83}. CO evolution could not be monitored due to the
190 fact that its primary m/z signal is 28, the same as N₂. In addition to monitoring pyrolysis gases,
191 condensable vapors were collected in a 50 mL dichloromethane cold trap for later analysis. Upon
192 completion of pyrolysis, the sample was exposed to 100 mL/min of dry air at 500°C for 1 hour to
193 remove remaining organic material via oxidation. The sample was then allowed to cool to room
194 temperature before being removed from the furnace. All pyrolysis experiments were repeated
195 twice to ensure reproducibility of results.

196

197 **2.4 Bio-Oil Analysis**

198 Condensable bio-oil was collected in dichloromethane and analyzed using an Agilent 7890B gas
199 chromatograph - 5977A MSD mass spectrometer (GC-MS). The analysis was performed in split-
200 mode at a split ratio of 0.5 with Helium as the carrier gas. The GC injection temperature was
201 250°C. The GC oven was initially held for 10 minutes at 30°C then heated to 250°C at a rate of
202 3.35°C/min, and finally held at 250°C for 5 minutes. Interface temperature was set to 325°C. Mass
203 spectra were recorded under electron ionization mode between m/z ratios of 29–300 after a 7-
204 minute solvent delay. Integration of the largest GC peaks (by area) provided a means for semi-

205 quantitative analysis of the bio-oil compounds. Quantitative yield was calculated for select
206 compounds for which a calibration curve was generated. Calibrated compounds were obtained
207 from Fisher Scientific and ACROS Organics at minimum purities of 99.5 %; calibration curves
208 had a minimum of 7 points spanning a concentration range of 10-700 ppm with minimum R^2 values
209 of 0.994 as discussed in prior work^{27,84}. A threshold of 90% match against the NIST compound
210 library was used in identification of compounds, and validated against commonly detected biofuel
211 components in the literature.

212

213 **2.5 Thermal Analysis**

214 Samples of raw and silver-impregnated biomass were placed into a 70 μ L alumina crucible then
215 inserted into a Mettler-Toledo TGA-DSC-1 for thermogravimetric analysis (TGA). The
216 Distributed Activation Energy Model (DAEM) was applied to determine activation energy of
217 pyrolysis⁸⁵. All thermogravimetric experiments were completed in triplicate to ensure consistency
218 of data and were performed in accordance with ICTAC Kinetics Committee suggestions to remove
219 heating rate and transport dependencies on activation energy across one order of magnitude heating
220 rates with small sample sizes, as used here⁸⁶. Details of the DAEM are given in the online
221 Supplemental Information (SI). To gauge overall reactivity of the sample, TGA plots of
222 conversion, $X(t)$, vs temperature of the solid were constructed using:

223
$$X(t) = \frac{m_0 - m_t}{m_0 - m_f} \quad (1)$$

224 where $X(t)$ is the ratio of the mass of volatiles produced at a given time to the total mass at the end
225 of the pyrolysis reaction, with initial mass as m_0 , mass at time t as m_t , and m_f as mass after complete
226 pyrolysis. Derivative thermogravimetric plots were constructed as $dX(t)/dT(t)$ to show the
227 dependence of reaction rate on temperature (which is a function of heating rate).

228

229 **2.6 Biotemplated Silver Material Characterization**

230 The presence and form of crystalline silver in the calcined sample was confirmed by X-ray
231 Diffractometry (XRD) using a Bruker Discovery D-8 with Cu $K\alpha$ radiation in the 2θ range of 30°
232 to 90° at a 0.05° step with a sampling time of 0.5 seconds using a slit detector. Further
233 characterization of the silver particles was performed by Scanning Electron Microscopy (SEM)
234 analysis using a Zeiss Supra 55VP field emission scanning electron microscope. Calcined silver-
235 impregnated samples were mounted on adhesive copper tape, gold coated, and imaged using the

236 SE2 detector at 2 kV. Energy Dispersive X-ray Spectrometry (EDS) analysis was also performed
237 using an Apollo-40 EDAX detector at 7kV for samples on the same copper adhesive mounts.

238

239 **3. Results and Discussion**

240 To demonstrate the effectiveness of simultaneously bio-templating silver materials and *in situ*
241 upgrading pyrolysis biofuels, we impregnated brewer's spent grain with silver nitrate prior to
242 thermal treatment. Results of the proximate and ultimate analyses of the BSG are detailed in Table
243 1. After silver incorporation, the brewer's spent grain took on a noticeably darker color,
244 presumably due to partial oxidation of the silver (images available in Figure S1 of online
245 Supplemental Information, SI).

246

247 ***3.1 Optimal Soak Time***

248 The silver nitrate solution soak time was considered in this analysis on the basis of practicality for
249 scale-up, given that longer residence times for mixing may be associated with higher process costs.
250 At scale, we envision silver incorporation into the biomass would take place while BSG is still
251 wet, eliminating the pre-drying step. Figure 1 shows that the inorganic content of both the silver
252 nitrate-soaked and water-soaked samples effectively did not change across this entire range of soak
253 times (within a 95% confidence interval), nor did volatile or fixed carbon fractions within
254 experimental error (data available in Figure S2 of SI). The data suggest that the kinetics of silver-
255 to-biomass surface association are rapid, and a soak time on the order of minutes is sufficient for
256 impregnation. Based on this analysis, all further BSG impregnation used a 2-minute silver nitrate
257 soak time. Though some have suggested that a water pre-soak may serve to remove inorganic
258 impurities present in biomass which might contaminate the nanomaterials^{27,87-89}, this effect is not
259 observed for the water-soaked control; the as-received dried BSG and water-soaked BSG have
260 identical proximate analyses within one standard deviation. This suggests that if purer bio-
261 templated materials are desired, further pretreatment may be required such as by chelation. While
262 this is the result for our BSG, it should be noted that this particular biomass feedstock has been
263 extensively soaked in water throughout the brewing process.

264

265 ***3.2 Thermochemical Conversion of Raw and Silver-Impregnated Biomass***

266 The impregnated biomass was pyrolyzed in a fixed bed reactor with approximately 0.5 g and the
267 condensable and non-condensable biofuels analyzed via GC-MS and MS, respectively. After

268 completion of pyrolysis, the samples were calcined (oxidized) to remove remaining organic
269 material and isolate the silver bio-templated materials. Table 2 shows the product distribution of
270 solid, liquid and gas phases. The pyrolyzed fraction for the Ag-soaked biomass increases slightly;
271 this becomes both the condensable and non-condensable portions, whereas the oxidized portion
272 naturally decreases as silver is not lost, but remains in the biomass matrix

273

274 *3.2.1 Analysis of Pyrolysis Gas*

275 The gas evolution profile for the water-soaked BSG sample was virtually indistinguishable from
276 the raw BSG. However, pyrolysis of the silver-impregnated BSG resulted in increased quantities
277 of pyrolysis gas components evolved as compared to the raw, untreated biomass. The silver-
278 impregnated sample evolved substantially more gas and at lower temperatures than the raw
279 biomass, suggesting that the inclusion of silver into the biomass may serve to catalyze
280 devolatilization (primary pyrolysis) of the biomass sample itself. A semi-quantitative comparison
281 between treated and raw biomass can be made by integrating the area under the spectra (in partial
282 pressures) for each gas component devolatilized during the pyrolysis residence time (Table 3).
283 While evolution of CH₄, C₂H₂, and C₂H₄ were largely unaffected by the presence of the silver,
284 hydrogen (H₂) and ethane (C₂H₆) evolution increased significantly (944% and 64%, respectively)
285 in the silver-treated sample as shown in Figure 2 (figures for all gases monitored available in SI).
286 The incorporated silver particles appear to enhance pyrolysis reactions as seen by distinct shifts in
287 both noncondensable gases. This is particularly apparent in ethane evolution, which reaches peak
288 evolution between 350 to 400°C with silver treatment, compared to at the maximum pyrolysis
289 temperature of 500°C with raw BSG. Moreover, the profile of ethane production differed
290 dramatically; the treated sample showed peaks at 340°C, 395°C, and 500°C, compared to a small
291 peak at 320°C and a larger peak at 500°C in the raw sample. This result is also consistent—
292 although the increase more dramatic—with those results observed by Xue *et al.* A 136% and 45%
293 increase in devolatilization for hydrogen and ethane, respectively, was seen during pyrolysis of
294 silver-treated corn stover, as well as 193% and 44%, respectively for silver-treated pure cellulose
295 filter paper²⁷. CO₂ evolution from Ag-treated BSG also increased 22%, similar to our prior work.

296

297 The effects on pyrolysis gas evolution observed here also agree with results from metal-catalyzed
298 pyrolysis reported elsewhere in literature. Crystalline cellulose impregnated with both nickel

299 nitrate and iron nitrate yielded an increase in hydrogen and carbon dioxide, coupled with a decrease
300 in CO and increase in H₂O and char formation⁹⁰. Ni(NO₃)₂ impregnated wood shows increased
301 generation of H₂ and CO while decreasing evolution of CO₂ and C-1 and C-2 hydrocarbons⁹¹. As
302 previously noted, a catalyst's ability to devolatilize oxygen in the solid biomass matrix (e.g. as
303 CO, CO₂, and H₂O) to reduce the oxygen content of the liquid fuel is an important consideration
304 for improving the overall quality and stability of bio-oil. As Richardson *et al.* propose, water-gas
305 shift reactions at the surface of impregnated Nickel nanoparticles may encourage the conversion
306 carbon monoxide produced during pyrolysis to CO₂ and H₂ via oxidation by water⁹¹. Likewise, the
307 oxidation of furfurals is also known to occur over heterogeneous catalysts which can shift the
308 production of key intermediaries like 5-hydroxymethyl furfural to furan-based carboxylic acids⁹².
309 Given that dismutation of CO to C and CO₂ by nano-Ni has also been observed⁹³, it is plausible
310 that incorporated silver particles catalyze similar reactions, increasing carbon dioxide evolution,
311 and possibly CO production (though this species was not measured in this study due to it sharing
312 the same m/z signal as N₂). Further inquiry into the catalytic effects of silver on the bio-fuel
313 products can be investigated by examination of the condensable bio-oil produced during pyrolysis.

314

315 *3.2.2 Analysis of Bio-oil Components*

316 Table 4 shows the bio-oil compounds identified by GC-MS analysis of the condensable bio-oil
317 components collected in DCM during pyrolysis (full chromatograms in SI). The bio-oil formed
318 from BSG pyrolysis is quite heterogeneous; BSG contains a complex mixture of cellulose,
319 hemicellulose, lignin, carbohydrates, and proteins. However, it is reproducible and consistent for
320 both “Raw” (as-received, dried) BSG and water-soaked BSG. As the GC-MS chromatograms
321 show, the bio-oil originating from both raw and water-soaked BSG are almost identical (all the
322 same peaks/compounds were detected; all but two compounds having areas within 2% of each
323 other, one within 5%, one with 8%). Given this, we continue our comparative analysis of the
324 catalytic impact of AgNO₃ impregnation as compared to Raw BSG.

325

326 As expected, the primary condensable components identified with a 90% or better NIST library
327 match were furans, phenols, and alkanes with methyl and carbonyl substituent groups. Similar to
328 prior studies on pyrolysis bio-oil from BSG, the primary compounds noted were holocellulose-
329 derived, rather than lignin-derived compounds like phenols and benzenes⁹⁴. Note that the

330 compounds listed in Table 3 represent only a portion of the total chromatogram area, and their
331 relative areas are given as a fraction of the sum of top 20 GC peak areas. Although this analysis is
332 semi-quantitative, it is nonetheless effective in demonstrating the effects of *in situ* fuel upgrading
333 through incorporation of silver into the biomass feedstock. Quantitative yields of furfural, maple
334 lactone, p-cresol, and phenol were calculated using GC-MS calibration curves. From this
335 calibration data, we estimate that the condensable component yield (which includes condensed
336 water) shows a slightly higher mass yield for raw BSG than AgNO₃-soaked BSG, as shown in
337 Table 2. We note that the sample size was too small to measure water and acid content, but future
338 work will explore this.

339

340 There are a multitude of reactions which the incorporated silver may encourage, including
341 cracking, cyclization, hydrogenation, and dehydrogenation^{95–98}. The underlying mechanism for
342 many of these reactions is the ability of transition and noble metals to adsorb alkene, isocyanide,
343 and aromatic compounds onto their surface due to interactions between the organic compounds'
344 filled π -orbitals and the unoccupied d-orbitals of the metal, a phenomenon known as π back-
345 bonding. The GC results for condensable bio-oil of the silver-treated sample show a slight increase
346 in the quantity of compounds detected at longer retention times; however, the total GC peak areas
347 were approximately unchanged from the untreated sample (full GC data available in SI). This,
348 taken with increased gas devolatilization in the treated sample, suggests molecular rearrangement
349 and dehydrogenation pathways may be preferred over a complete thermochemical cracking of the
350 bio-oil fraction. However, while the chromatogram areas were not substantially changed, the yield
351 of polycyclic aromatic hydrocarbons, comprising the vast majority of tars, were significantly
352 lower. Anthracene and pyrene were detected in the raw sample at a yield of 6.2 and 1.3 g/kg_{BSG},
353 respectively, while only fluorene was detected in the silver impregnated sample with a yield of
354 0.19 g/kg_{BSG}.

355

356 Notably in this analysis, it was found that the silver-treated sample showed a marked increase in
357 furfural, an important precursor in many chemical processes⁹⁹. This agrees with reported
358 observations of increased furans in bio-oil resulting from catalytic activity by silver, iron, and
359 nickel species¹⁰⁰. As Patwardhan, Satrio, and Brown propose, an increase in furan compounds may
360 be due to these metals' ability to hemolytically and heterocyclically cleave pyranose rings and

361 glycosidic bonds⁹⁸. In addition, a decrease in 2-methyl-propanal and 2-methyl-butanal was
362 observed in the silver treated sample. It is possible that this, taken with the increased hydrogen gas
363 evolution and furan yield, can be attributed to a dehydrogenation process via cyclization of linear
364 aldehyde compounds at the silver surface. Prior literature notes that furan ring derivatives may be
365 formed from cyclization followed by dehydration of C4, C5 and C6 fragments generated from
366 pyrolysis¹⁰¹.

367

368 Catalytic biomass pyrolysis by zeolites and other solid acid catalysts are known to encourage
369 dehydration and decarbonylation/decarboxylation reactions (breaking of C-OH and C-CO(OH)
370 bonds)¹⁰². Additionally, silver nitrate has been previously shown to catalyze decarboxylation of
371 saturated and unsaturated fatty acids, silver (I) to decarboxylate aryl carboxylates, and silver (II)
372 to decarboxylate certain amino acids¹⁰³. Given the increase in CO₂ gas evolved after silver
373 treatment, with the decrease in phenol yield and increase in furfural in the bio-oil fraction, it is
374 possible that the silver promotes decarboxylation reactions during pyrolysis. Similarly, increased
375 devolatilization of hydrogen gas may indicate that silver is catalyzing dehydration reactions,
376 perhaps favoring H₂ formation over H₂O given BSG's lower oxygen content (36% versus 40 and
377 49% in feed corn and raw cellulose, respectively)¹⁰⁴.

378

379

380 3.2.3 Thermochemical Conversion Kinetics

381 A chemical catalyst should lower activation energy (E_a) of pyrolysis and/or increase pyrolytic
382 reaction rates. Table 5 shows peak DTG conversion rates and temperatures for the four
383 experimental heating rates. As seen in the sample DTG plot of Figure 3 (all plots available in SI),
384 there are multiple peaks for each biomass sample. Peak 1, which only appears in the raw BSG, is
385 likely attributable to “brewing residue” comprised of soluble proteins and yeast coating the dried
386 brewer’s spent grain following fermentation. (In all experiments, soaking the BSG produced a
387 yellow-colored raffinate). All samples show Peak 2 and Peak 3; these peaks are roughly attributed
388 to the breakdown and subsequent devolatilization of hemicellulose and cellulose, respectively.
389 Although not observed to be as prominent as hemicellulose and cellulose decomposition here;
390 thermal breakdown of lignin is known to occur at temperatures roughly above 450 °C.¹⁰⁵ The peak
391 pyrolytic reactivity temperature of roughly 280-340 °C, as determined by DTG at 10 °C/min,

392 aligns with devolatilization patterns observed in bulk pyrolysis for CO₂, CH₄, and C₂H₆ release.
393 Other gasses recorded did not begin to devolatilize significantly until 400-500 °C.

394
395 For the range of heating rates, the silver-treated BSG shows a consistent trend towards lower peak
396 reaction temperature for both hemicellulose and cellulose decomposition, while the opposite trend
397 is seen for water-only soaked samples. Across the range of heating rates, peak hemicellulose (Peak
398 2) reactivity for Ag-BSG was shifted lower by 0 to 7°C versus raw BSG, and 9—15°C lower than
399 water-soaked BSG. Peak cellulose (Peak 3) reactivity for Ag-BSG occurred 4—11°C lower than
400 raw BSG and 11—28°C lower than the water-soaked BSG. Along with peak shifting, the leading
401 and trailing edges of the DTG curve for Ag-BSG were also noticeably shifted towards lower
402 temperatures as compared to water-soaked BSG. This agrees with gas evolution temperature
403 profiles, which show increased reactivity at lower temperature ranges for silver-treated samples.
404 Though peak reactivity temperatures are lower, peak reaction *rates* for cellulose and hemicellulose
405 decomposition in the silver-treated and raw BSG show little difference, with the Ag-BSG samples
406 displaying slightly lower reaction rates at higher heating rates. For the water-soaked sample the
407 peak reactivity was 31-39% higher for hemicellulose decomposition as compared to the raw, un-
408 soaked sample (though only 2-7% higher for cellulose decomposition). This increase is not
409 observed for the aqueous silver nitrate soaked samples. This is possibly attributable to the more
410 amorphous structure of hemicellulose, which is more prone to hydrolysis by dilute acids or bases,
411 and interactions with certain ionic compounds in the soaked solution¹⁰⁶. The apparent suppression
412 of hemicellulose decomposition in the silver-soaked sample may therefore be due to effects of the
413 nitrate anion, e.g. as a buffer within the raffinate, during the soaking step.

414
415 The activation energy as a function of mass fractional conversion (Figure 4a) shows E_a(X) for
416 silver-treated BSG is slightly higher than that of raw BSG across the entire conversion range,
417 though often within a 95% confidence interval. E_a(X) for the soaked and un-soaked raw BSG
418 samples are similar, though E_a of the soaked sample is higher and statistically significant below
419 X=0.4. Again, this may be explained by residual brewing residue being washed away. Figure 4b,
420 shows the overall average activation energies of pyrolysis for the samples: 160±29 kJ/mol, 179±21
421 kJ/mol, 166±13 kJ/mol for raw, Ag-treated, and water-soaked BSG, respectively. The confidence
422 intervals given here represent standard deviation of average conversion values — note, the

423 variance in activation energies at the various conversion levels leads to a fairly large standard
424 deviation.

425
426 Although the incorporation of silver does not directly increase the peak pyrolytic reaction rate in
427 BSG (as determined by DTG), nor lower the overall pyrolytic activation energy barrier, it does
428 lead to increased yield of bio-gas components and alters the yield of bio-oil marker compounds
429 without changing E_a significantly, as well as lowering peak reactivity temperatures. As literature
430 reveals, it is not uncommon to observe increased pyrolysis gas evolution without a corresponding
431 drop in activation energy during *in-situ* biofuel upgrading¹⁰⁷. While incorporation of metals or
432 metal oxides may or may not lower the overall activation energy barrier for biomass pyrolysis,
433 there are certain reactions or groups of reactions which are encouraged more so than others by
434 their inclusion, signifying catalytic behavior¹⁰⁸. In fact, activation energy effects have been
435 demonstrated to be feedstock-specific even for the same catalyst material^{109,110}. Thus, the
436 practicality of a pyrolysis catalyst should be evaluated holistically based on a combination of
437 changes to bio-gas and bio-oil components, yield, and overall activation energy across the
438 thermochemical conversion range.

439
440 **3.3 Bio-templated Silver Particles**

441 The yield of silver, post-calcination, is approximately 5.59 g/kg_{BSG} (of raw biomass). This silver
442 loading is comparable to the observed yields for prior work²⁷ on corn stover and cellulose paper
443 samples treated with 0.1 M AgNO₃. The XRD spectrum of the calcined silver-impregnated
444 biomass (SI) confirms the signature peaks for face-centered cubic (fcc) crystalline elemental silver
445 at 2 θ angles of 38.0°, 44.1°, 64.3°, 77.3°, and 81.4°, corresponding to d-spacings of (111), (200),
446 (220), (311), and (222), respectively¹¹¹. Additionally, SEM images of the calcined silver-
447 impregnated biomass (Figure 5) clearly show a number of faceted structures not present in the
448 untreated samples, presumably our bio-templated silver. The metal particles formed from the BSG
449 scaffold in this work are similar to other heterogeneous biomass templates, which appear to
450 produce a wider size distribution with larger average particle sizes as compared to plant extracts
451 or pure cellulose^{112,113}. Both He *et al.* and Xue *et al.* have observed bio-templated silver particle
452 size and morphology to be a strong function of the biomass feedstock, ranging in diameter from 5
453 nm to several hundred nanometers and from semi-spherical mesh to well-formed individual
454 particles^{27,81}.

455

456 The practicality of bio-templating nanoparticles using heterogeneous feedstocks will depend,
457 along with particle size distribution, on the requisite purity of nanomaterials; additional biomass
458 pretreatment may be necessary to improve these characteristics for certain applications. Through
459 EDS, the presence of silver on our calcined samples was also confirmed, and the support material
460 seen in the SEM images was determined primarily to be carbonaceous char. Further analysis of
461 the bulk carbonaceous support showed traces of Mg, Si, P, K, and Ca—inorganic compounds
462 likely taken up by the grains from the soil in which brewers' grain is grown. Thus, it is possible
463 that the silver particles contain some fraction of these contaminants, albeit in amorphous form
464 since XRD did not detect other crystalline forms.

465

466 Separation of these silver materials from the carbonaceous char support is another important
467 practical consideration, since as seen here, the carbonaceous support may not fully oxidize away
468 at temperatures lower than 500°C. A higher calcination temperature could be investigated provided
469 there was no degradation to the particles¹¹⁴, although this (1) risks approaching the melting point
470 of silver and particles fusing and (2) would require Ag-ash separation would nonetheless be
471 required. From an overall process perspective, it could be more advantageous to explore the utility
472 of metal-impregnated bio-char materials. In fact, a substantial body of literature exists surrounding
473 the functionalization of bio-char for catalysis and adsorption since bio-char alone has fairly poor
474 surface functionality, somewhat limiting its material applications^{115–117}. Such heterogeneous
475 biochar-catalyst composites are emerging as catalysts for downstream biorefinery applications¹¹⁸.
476 Numerous examples of metal-impregnated biochar have been explored for applications ranging
477 from water treatment to selective separation processes^{119,120}. A silver-impregnated biochar
478 material might also find use in medical applications given the antimicrobial/antiviral/antifungal
479 properties of nano-silver¹²¹, combined with the high adsorption capacity of activated carbon¹²².
480 Zhou *et al.* demonstrated iron-impregnated biochar's ability to sorb and reduce Ag⁺ ions from
481 aqueous solution resulting in a material with strong antimicrobial activity¹²³. Depending on the
482 desired application, future work may consider the effect of altering process variables (e.g. biomass
483 feedstock, soak time, silver nitrate concentration, biomass particle size) on silver-biomass loading,
484 silver particle morphology, particle size distribution, and purity.

485

486 **4. Conclusions**

487 This work proposes an integrated bio-refinery model wherein upgraded biofuels and inorganic bio-
488 templated materials can be co-produced during pyrolysis. Impregnation of brewer's spent grain
489 with silver nitrate followed by slow pyrolysis showed a nearly 10-fold increase in hydrogen gas
490 evolution at the same temperature, along with a 64% increase in ethane generation. In addition,
491 increased devolatilization of CO₂ suggests oxygen elimination from the solid biomass matrix, and
492 therefore from the resultant liquid fuel product. Condensable pyrolysis bio-oil from the Ag-
493 impregnated samples showed significantly higher furfural yield with a corresponding decrease in
494 C3-C4 linear aldehydes and phenol, suggesting dehydrogenation, cyclization, and decarboxylation
495 may be among the reactions selectively encouraged by incorporating silver into the biomass
496 matrix. Silver nitrate treatment did not statistically impact the average activation energy of
497 pyrolysis. Although the overall activation energy barrier did not decrease with silver impregnation,
498 the effects on pyrolysis gas and bio-fuel products strongly suggests a chemically catalytic activity.
499 Silver micro- and nano-particles can be formed using a biomass scaffold and thus produce silver-
500 impregnated char material as a value-added product of bio-fuel upgrading.

501

502 **Acknowledgements**

503 The authors appreciate the assistance of Luca Fiori and Maurizio Volpe in performing the Ultimate
504 Analysis, support from the Boston University Initiative on Cities, the U.S.—Italy Fulbright
505 Commission and the China Scholarship Council. A portion of this work was supported by the
506 National Science Foundation under grant number 1933071 “Collaborative Research: Integrated
507 Biorefinery for Pyrolysis Biofuels and Biotemplated Nanomaterials.”

508

509 **References**

- 510 (1) Koonin, S. E. Getting Serious about Biofuels. *Science*. 2006, p 435.
511 <https://doi.org/10.1126/science.1124886>.
- 512 (2) Williams, C. C. K.; Templer, R.; Murphy, R.; Leak, D. D. J.; Ragauskas, A. A. J.;
513 Williams, C. C. K.; Davison, B. B. H.; Britovsek, G.; Cairney, J.; Eckert, C. A.; et al. The
514 Path Forward for Biofuels and Biomaterials. *Science* (80-.). **2006**, *311* (5760).
- 515 (3) Cherubini, F. The Biorefinery Concept: Using Biomass Instead of Oil for Producing
516 Energy and Chemicals. *Energy Convers. Manag.* **2010**, *51* (7), 1412–1421.
- 517 (4) Corma Canos, A.; Iborra, S.; Velty, A. Chemical Routes for the Transformation of
518 Biomass into Chemicals. *Chemical Reviews*. 2007, pp 2411–2502.
519 <https://doi.org/10.1021/cr050989d>.
- 520 (5) Gallezot, P. Catalytic Routes from Renewables to Fine Chemicals. *Catal. today* **2007**.
- 521 (6) Shuttleworth, P. S.; De bruyn, M.; Parker, H. L.; Hunt, a. J.; Budarin, V. L.; Matharu, a.
522 S.; Clark, J. H. Applications of Nanoparticles in Biomass Conversion to Chemicals and
523 Fuels. *Green Chem.* **2014**, *16* (2), 573. <https://doi.org/10.1039/c3gc41555d>.

524 (7) Zhang, Q.; Chang, J.; Wang, T.; Xu, Y. Review of Biomass Pyrolysis Oil Properties and
525 Upgrading Research. *Energy Convers. Manag.* **2007**, *48* (1), 87–92.
526 <https://doi.org/10.1016/j.enconman.2006.05.010>.

527 (8) Iisa, K.; Robichaud, D. J.; Watson, M. J.; ten Dam, J.; Dutta, A.; Mukarakate, C.; Kim, S.;
528 Nimlos, M. R.; Baldwin, R. M. Improving Biomass Pyrolysis Economics by Integrating
529 Vapor and Liquid Phase Upgrading. *Green Chem.* **2018**, *20* (3), 567–582.
530 <https://doi.org/10.1039/C7GC02947K>.

531 (9) Chacón-Huete, F.; Messina, C.; Chen, F.; Cuccia, L.; Ottenwaelder, X.; Forgione, P.
532 Solvent-Free Mechanochemical Oxidation and Reduction of Biomass-Derived 5-
533 Hydroxymethyl Furfural. *Green Chem.* **2018**. <https://doi.org/10.1039/c8gc02481b>.

534 (10) Zhang, S.; Yan, Y.; Li, T.; Ren, Z. Upgrading of Liquid Fuel from the Pyrolysis of
535 Biomass. *Bioresour. Technol.* **2005**, *96* (5), 545–550.

536 (11) Pinho, A. de R.; Almeida, M. de. Co-Processing Raw Bio-Oil and Gasoil in an FCC Unit.
537 *Fuel Process.* **2015**.

538 (12) Wang, L.; Xiao, F.-S. Nanoporous Catalysts for Biomass Conversion. *Green Chem.* **2015**,
539 *17* (1), 24–39. <https://doi.org/10.1039/C4GC01622J>.

540 (13) Xiu, S.; Shahbazi, A. Bio-Oil Production and Upgrading Research: A Review. *Renew.
541 Sustain. Energy Rev.* **2012**, *16* (7), 4406–4414.

542 (14) Poonjarernsilp, C.; Sano, N.; Sawangpanich, N. Effect of Fe/Fe₂O₃ Loading on the
543 Catalytic Activity of Sulfonated Single-Walled Carbon Nanohorns for the Esterification of
544 Palmitic Acid. *Green Chem.* **2014**, *16* (12), 4936–4943.

545 (15) Wu, H.; Zhang, J.; Wei, Q.; Zheng, J.; Zhang, J. Transesterification of Soybean Oil to
546 Biodiesel Using Zeolite Supported CaO as Strong Base Catalysts. *Fuel Process. Technol.*
547 **2013**, *109* (2), 13–18. <https://doi.org/10.1016/j.fuproc.2012.09.032>.

548 (16) Geboers, J.; Vyver, S. Van de; Carpentier, K. Efficient Catalytic Conversion of
549 Concentrated Cellulose Feeds to Hexitols with Heteropoly Acids and Ru on Carbon.
550 *Chem. Commun.* **2010**, *46* (20), 3577–3579.

551 (17) Deng, W.; Tan, X.; Fang, W.; Zhang, Q.; Wang, Y. Conversion of Cellulose into Sorbitol
552 over Carbon Nanotube-Supported Ruthenium Catalyst. *Catal. Letters* **2009**, *133* (1–2),
553 167–174. <https://doi.org/10.1007/s10562-009-0136-3>.

554 (18) Wang, A.; Zhang, T. One-Pot Conversion of Cellulose to Ethylene Glycol with
555 Multifunctional Tungsten-Based Catalysts. *Acc. Chem. Res.* **2013**, *46* (7), 1377–1386.

556 (19) Liang, G.; Wu, C.; He, L.; Ming, J.; Cheng, H.; Zhuo, L. Selective Conversion of
557 Concentrated Microcrystalline Cellulose to Isosorbide over Ru/C Catalyst. *Green* **2011**.

558 (20) Op De Beeck, B.; Geboers, J.; Van De Vyver, S.; Van Lishout, J.; Snelders, J.; Huijgen,
559 W. J. J.; Courtin, C. M.; Jacobs, P. A.; Sels, B. F. Conversion of (Ligno)Cellulose Feeds
560 to Isosorbide with Heteropoly Acids and Ru on Carbon. *ChemSusChem* **2013**, *6* (1), 199–
561 208. <https://doi.org/10.1002/cssc.201200610>.

562 (21) Torri, C.; Lesci, I.; Fabbri, D. Analytical Study on the Pyrolytic Behaviour of Cellulose in
563 the Presence of MCM-41 Mesoporous Materials. *J. Anal. Appl. Pyrolysis* **2009**, *85* (1),
564 192–196.

565 (22) Fabbri, D.; Torri, C.; Baravelli, V. Effect of Zeolites and Nanopowder Metal Oxides on
566 the Distribution of Chiral Anhydrosugars Evolved from Pyrolysis of Cellulose: An
567 Analytical Study. *J. Anal. Appl. Pyrolysis* **2007**, *80* (1), 24–29.

568 (23) Lu, Q.; Xiong, W. M.; Li, W. Z.; Guo, Q. X.; Zhu, X. F. Catalytic Pyrolysis of Cellulose
569 with Sulfated Metal Oxides: A Promising Method for Obtaining High Yield of Light

570 Furan Compounds. *Bioresour. Technol.* **2009**, *100* (20), 4871–4876.
571 <https://doi.org/10.1016/j.biortech.2009.04.068>.

572 (24) Gökday, Z.; Sınağ, A.; Yumak, T. Comparison of the Catalytic Efficiency of Synthesized
573 Nano Tin Oxide Particles and Various Catalysts for the Pyrolysis of Hazelnut Shell.
574 *Biomass and Bioenergy* **2010**, *34* (3), 402–410.

575 (25) Kastner, J.; Hiltén, R.; Weber, J.; McFarlane, A. Continuous Catalytic Upgrading of Fast
576 Pyrolysis Oil Using Iron Oxides in Red Mud. *RSC Adv.* **2015**, *5* (37), 29375–29385.

577 (26) Ben, H.; Huang, F.; Li, L.; Ragauskas, A. In Situ Upgrading of Whole Biomass to Biofuel
578 Precursors with Low Average Molecular Weight and Acidity by the Use of Zeolite
579 Mixture. *RSC Adv.* **2015**, *5* (91), 74821–74827.

580 (27) Xue, J.; Dou, G.; Ziade, E.; Goldfarb, J. L. Integrating Sustainable Biofuel and Silver
581 Nanomaterial Production for in Situ Upgrading of Cellulosic Biomass Pyrolysis. *Energy
582 Convers. Manag.* **2017**, *142*, 143–152. <https://doi.org/10.1016/j.enconman.2017.03.001>.

583 (28) Elliott, D. C. Catalytic Hydrothermal Gasification of Biomass. *Biofuels, Bioproducts and
584 Biorefining*. John Wiley & Sons, Ltd May 1, 2008, pp 254–265.
585 <https://doi.org/10.1002/bbb.74>.

586 (29) Falsig, H.; Hvolbæk, B.; Kristensen, I. S.; Jiang, T.; Bligaard, T.; Christensen, C. H.;
587 Nørskov, J. K. Trends in the Catalytic CO Oxidation Activity of Nanoparticles. *Angew. Chemie* **2008**, *120* (26), 4913–4917. <https://doi.org/10.1002/ange.200801479>.

588 (30) Shen, Y.; Yoshikawa, K. Recent Progresses in Catalytic Tar Elimination during Biomass
589 Gasification or Pyrolysis - A Review. *Renewable and Sustainable Energy Reviews*. 2013,
590 pp 371–392. <https://doi.org/10.1016/j.rser.2012.12.062>.

591 (31) Studt, F.; Abild-Pedersen, F.; Wu, Q.; Jensen, A. D.; Temel, B.; Grunwaldt, J. D.;
592 Nørskov, J. K. CO Hydrogenation to Methanol on Cu-Ni Catalysts: Theory and
593 Experiment. *J. Catal.* **2012**, *293*, 51–60. <https://doi.org/10.1016/j.jcat.2012.06.004>.

594 (32) Wang, S.; Temel, B.; Shen, J.; Jones, G.; Grabow, L. C.; Studt, F.; Bligaard, T.; Abild-
595 Pedersen, F.; Christensen, C. H.; Nørskov, J. K. Universal Br??Nsted-Evans-Polanyi
596 Relations for C-C, C-O, C-N, N-O, N-N, and O-O Dissociation Reactions. *Catal. Letters*
597 **2011**, *141* (3), 370–373. <https://doi.org/10.1007/s10562-010-0477-y>.

598 (33) InfoMine Inc. Commodity and Metal Prices <http://www.infomine.com/investment/metal-prices/> (accessed Jan 20, 2019).

599 (34) Zargar, M.; Hamid, A. A.; Bakar, F. A.; Shamsudin, M. N.; Shamel, K.; Jahanshiri, F.;
600 Farahani, F. Green Synthesis and Antibacterial Effect of Silver Nanoparticles Using Vitex
601 Negundo L. *Molecules* **2011**, *16* (8), 6667–6676.
602 <https://doi.org/10.3390/molecules16086667>.

603 (35) Rujitanaroj, P.; Pimpha, N.; Supaphol, P. Wound-Dressing Materials with Antibacterial
604 Activity from Electrospun Gelatin Fiber Mats Containing Silver Nanoparticles. *Polymer
605 (Guildf).* **2008**.

606 (36) Tulve, N. S.; Stefaniak, A. B.; Vance, M. E.; Rogers, K.; Mwili, S.; LeBouf, R. F.;
607 Schwegler-Berry, D.; Willis, R.; Thomas, T. A.; Marr, L. C. Characterization of Silver
608 Nanoparticles in Selected Consumer Products and Its Relevance for Predicting Children's
609 Potential Exposures. *Int. J. Hyg. Environ. Health* **2015**, *218* (3), 345–357.
610 <https://doi.org/10.1016/j.ijheh.2015.02.002>.

611 (37) Fan, T. X. T.; Chow, S. K. S.; Zhang, D. *Biomorphic Mineralization: From Biology to
612 Materials*; 2009; Vol. 54, pp 542–659. <https://doi.org/10.1016/j.pmatsci.2009.02.001>.

613 (38) Huang, J.; Lin, L.; Sun, D.; Chen, H.; Yang, D.; Li, Q. Bio-Inspired Synthesis of Metal

616 Nanomaterials and Applications. *Chem. Soc. Rev.* **2015**, *44* (17), 6330–6374.
617 <https://doi.org/10.1039/C5CS00133A>.

618 (39) Martin-Martinez, F. J.; Jin, K.; López Barreiro, D.; Buehler, M. J. The Rise of
619 Hierarchical Nanostructured Materials from Renewable Sources: Learning from Nature.
620 *ACS Nano* **2018**, *acsnano.8b04379*. <https://doi.org/10.1021/acsnano.8b04379>.

621 (40) Vilchis-Nestor, A.; Sánchez-Mendieta, V. Solventless Synthesis and Optical Properties of
622 Au and Ag Nanoparticles Using Camellia Sinensis Extract. *Mater. Lett.* **2008**.

623 (41) Bao, S.-J.; Lei, C.; Xu, M.-W.; Cai, C.-J.; Cheng, C.-J.; Li, C. M. Environmentally-
624 Friendly Biomimicking Synthesis of TiO₂ Nanomaterials Using Saccharides to Tailor
625 Morphology, Crystal Phase and Photocatalytic Activity. *CrystEngComm* **2013**, *15* (23),
626 4694. <https://doi.org/10.1039/c3ce40310f>.

627 (42) Varma, R. Journey on Greener Pathways: From the Use of Alternate Energy Inputs and
628 Benign Reaction Media to Sustainable Applications of Nano-Catalysts in Synthesis.
629 *Green Chem.* **2014**.

630 (43) Adlakha-Hutcheon, G.; Khaydarov, R.; Korenstein, R.; Varma, R.; Vaseashta, A.; Stamm,
631 H.; Abdel-Mottaleb, M. Nanomaterials, Nanotechnology. In *Nanomaterials: Risks and*
632 *Benefits*; Springer Netherlands: Dordrecht, 2009; pp 195–207.
633 https://doi.org/10.1007/978-1-4020-9491-0_14.

634 (44) Rafael, L.; S, V. R.; Varma, R. S.; H, C. J.; Kraus, G. a. *Sustainable Preparation of Metal*
635 *Nanoparticles: Methods and Applications*, 1st ed.; Luque, R., Varma, R. S., Eds.; The
636 Royal Society of Chemistry: Cambridge, 2012. <https://doi.org/10.1039/9781849735469>.

637 (45) Vigneshwaran, N.; Nachane, R. A Novel One-Pot 'green' synthesis of Stable Silver
638 Nanoparticles Using Soluble Starch. *Carbohydr. Res.* **2006**, *341* (12), 2012–2018.

639 (46) Bakar, N.; Ismail, J.; Bakar, M. Synthesis and Characterization of Silver Nanoparticles in
640 Natural Rubber. *Mater. Chem. Phys.* **2007**.

641 (47) Ahmad, N.; Sharma, S. Green Synthesis of Silver Nanoparticles Using Extracts of Ananas
642 Comosus. *Green Sustain. Chem.* **2012**, *2* (November), 141–147.
643 <https://doi.org/10.4236/gsc.2012.24020>.

644 (48) Kouvaris, P.; Delimitis, A.; Zaspalis, V.; Papadopoulos, D.; Tsipas, S. A.; Michailidis, N.
645 Green Synthesis and Characterization of Silver Nanoparticles Produced Using Arbutus
646 Unedo Leaf Extract. *Mater. Lett.* **2012**, *76*, 18–20.
647 <https://doi.org/10.1016/j.matlet.2012.02.025>.

648 (49) Ajitha, B.; Reddy, Y. A. K.; Reddy, P. S. Biosynthesis of Silver Nanoparticles Using
649 Momordica Charantia Leaf Broth: Evaluation of Their Innate Antimicrobial and Catalytic
650 Activities. *J. Photochem. Photobiol. B Biol.* **2015**, *146*, 1–9.
651 <https://doi.org/10.1016/j.jphotobiol.2015.02.017>.

652 (50) He, J.; Kunitake, T.; Nakao, A. Facile In Situ Synthesis of Noble Metal Nanoparticles in
653 Porous Cellulose Fibers. *Chem. Mater.* **2003**, *15* (23), 4401–4406.
654 <https://doi.org/10.1021/cm034720r>.

655 (51) Cao, J.; Rusina, O.; Sieber, H. Processing of Porous TiO₂-Ceramics from Biological
656 Preforms. In *Ceramics International*; 2004; Vol. 30, pp 1971–1974.
657 <https://doi.org/10.1016/j.ceramint.2003.12.180>.

658 (52) Chang, Y. C.; Lee, C. Y.; Chiu, H. T. Porous Inorganic Materials from Living Porogens:
659 Channel-like TiO₂ from Yeast-Assisted Sol-Gel Process. *ACS Appl. Mater. Interfaces*
660 **2014**, *6* (1), 31–35. <https://doi.org/10.1021/am405149a>.

661 (53) Venkataraman, N. N. S.; Matsui, K.; Kawanami, H.; Ikushima, Y. Green Synthesis of

662 Titania Nanowire Composites on Natural Cellulose Fibers. *Green Chem.* **2007**, *9* (1), 18.
663 <https://doi.org/10.1039/b609887h>.

664 (54) Cao, F.; Li, D. Biotemplate Synthesis of Monodispersed Iron Phosphate Hollow
665 Microspheres. **2010**, *5* (5), 16005–16006. <https://doi.org/10.1088/1748-3182/5/1/016005>.

666 (55) Kim, Y. Small Structures Fabricated Using Ash-Forming Biological Materials as
667 Templates. *Biomacromolecules* **2003**, *4* (4), 908–913. <https://doi.org/10.1021/bm0257558>.

668 (56) Zhou, W.; He, W.; Zhang, X.; Yan, S.; Sun, X.; Tian, X.; Han, X. Biosynthesis of Iron
669 Phosphate Nanopowders. *Powder Technol.* **2009**, *194* (1–2), 106–108.
670 <https://doi.org/10.1016/j.powtec.2009.03.034>.

671 (57) Dong, Q.; Su, H.; Xu, J.; Zhang, D.; Wang, R. Synthesis of Biomorphic ZnO Interwoven
672 Microfibers Using Eggshell Membrane as the Biotemplate. *Mater. Lett.* **2007**.
673 <https://doi.org/10.1016/j.matlet.2006.06.091>.

674 (58) Zhang, W.; Zhang, D.; Fan, T.; Ding, J.; Guo, Q.; Ogawa, H. Fabrication of ZnO
675 Microtubes with Adjustable Nanopores on the Walls by the Templating of Butterfly Wing
676 Scales. *Nanotechnology* **2006**, *17* (3), 840–844. <https://doi.org/10.1088/0957-4484/17/3/038>.

677 (59) Upneja, A.; Dou, G.; Gopu, C.; Johnson, C. A. C. A.; Newman, A.; Suleimenov, A.;
678 Goldfarb, J. L. Sustainable Waste Mitigation: Biotemplated Nanostructured ZnO for
679 Photocatalytic Water Treatment via Extraction of Biofuels from Hydrothermal
680 Carbonization of Banana Stalk. *RSC Adv.* **2016**, *6* (95).

681 (60) Dallas, P.; Sharma, V.; Zboril, R. Silver Polymeric Nanocomposites as Advanced
682 Antimicrobial Agents: Classification, Synthetic Paths, Applications, and Perspectives.
683 *Adv. Colloid Interface Sci.* **2011**.

684 (61) Wang, F.; Hu, S. Electrochemical Sensors Based on Metal and Semiconductor
685 Nanoparticles. *Microchim. Acta* **2009**.

686 (62) Mishra, P. K.; Gregor, T.; Wimmer, R. Utilising Brewer's Spent Grain as a Source of
687 Cellulose Nanofibres Following Separation of Protein-Based Biomass. *BioResources*
688 **2017**, *12* (1), 107–116. <https://doi.org/10.15376/biores.12.1.107-116>.

689 (63) Mussatto, S. I.; Dragone, G.; Roberto, I. C. Brewers' Spent Grain: Generation,
690 Characteristics and Potential Applications. *Journal of Cereal Science*. Academic Press
691 January 1, 2006, pp 1–14. <https://doi.org/10.1016/j.jcs.2005.06.001>.

692 (64) Santos, M.; Jiménez, J. .; Bartolomé, B.; Gómez-Cordovés, C.; del Nozal, M. . Variability
693 of Brewer's Spent Grain within a Brewery. *Food Chem.* **2003**, *80* (1), 17–21.
694 [https://doi.org/10.1016/S0308-8146\(02\)00229-7](https://doi.org/10.1016/S0308-8146(02)00229-7).

695 (65) Ben-Hamed, U.; Seddighi, H.; Thomas, K. Economic Returns of Using Brewery's Spent
696 Grain in Animal Feed. *Int. J. Econ. Manag. Eng.* **2011**, *5* (2), 142–145.

697 (66) Aliyu, S.; Bala, M. Brewer's Spent Grain: A Review of Its Potentials and Applications.
698 *African J. Biotechnol.* **2011**, *10* (3), 324–331. <https://doi.org/10.5897/AJBx10.006>.

699 (67) Vanreppelen, K.; Vanderheyden, S.; Kuppens, T.; Schreurs, S.; Yperman, J.; Carleer, R.
700 Activated Carbon from Pyrolysis of Brewer's Spent Grain: Production and Adsorption
701 Properties. *Waste Manag. Res.* **2014**, *32* (7), 634–645.
702 <https://doi.org/10.1177/0734242X14538306>.

703 (68) Cooray, S. T.; Chen, W. N. Valorization of Brewer's Spent Grain Using Fungi Solid-State
704 Fermentation to Enhance Nutritional Value. *J. Funct. Foods* **2018**, *42*, 85–94.
705 <https://doi.org/10.1016/j.jff.2017.12.027>.

706 (69) Okamoto, H.; Sato, K.; Yagi, N.; Inoue, M.; Yamasaki, S.; Ishida, S.; Shibata, J.

708 Development of Production Process of Charcoal Bricks from Spent Grain. *KAGAKU*
709 *KOGAKU RONBUNSHU* **2002**, 28 (2), 137–142.
710 <https://doi.org/10.1252/kakorobunshu.28.137>.

711 (70) Sato, K.; Yagi, N.; Okamoto, H.; Inoue, M.; Ajiri, T.; Shibata, J. Physical Property and
712 Burning Property of Spent Grain Charcoal. *Shigen-to-Sozai* **2001**, 117 (7), 587–590.
713 <https://doi.org/10.2473/shigentosozai.117.587>.

714 (71) Xiros, C.; Christakopoulos, P. Enhanced Ethanol Production from Brewer's Spent Grain
715 by a *Fusarium Oxysporum* Consolidated System. *Biotechnol. Biofuels* **2009**, 2 (1), 4.
716 <https://doi.org/10.1186/1754-6834-2-4>.

717 (72) Xiros, C.; Topakas, E.; Katapodis, P.; Christakopoulos, P. Hydrolysis and Fermentation of
718 Brewer's Spent Grain by *Neurospora Crassa*. *Bioresour. Technol.* **2008**, 99 (13), 5427–
719 5435. <https://doi.org/10.1016/j.biortech.2007.11.010>.

720 (73) De Smidt, O.; Du Preez, J. C.; Albertyn, J. The Alcohol Dehydrogenases of
721 *Saccharomyces Cerevisiae*: A Comprehensive Review. In *FEMS Yeast Research*; 2008;
722 Vol. 8, pp 967–978. <https://doi.org/10.1111/j.1567-1364.2008.00387.x>.

723 (74) Ezeonu, F. C.; Okaka, A. N. C. Process Kinetics and Digestion Efficiency of Anaerobic
724 Batch Fermentation of Brewer's Spent Grains (BSG). *Process Biochem.* **1996**, 31 (1), 7–
725 12. [https://doi.org/10.1016/0032-9592\(94\)00064-6](https://doi.org/10.1016/0032-9592(94)00064-6).

726 (75) Sežun, M.; Grilc, V.; Zupančič, G. D.; Logar, R. M. Anaerobic Digestion of Brewery
727 Spent Grain in a Semi-Continuous Bioreactor: Inhibition by Phenolic Degradation
728 Products. *Acta Chim. Slov.* **2011**, 58 (1), 158–166.
729 <https://doi.org/10.15585/mmwr.mm6712a1>.

730 (76) Bochmann, G.; Drosig, B.; Fuchs, W. Anaerobic Digestion of Thermal Pretreated Brewers'
731 Spent Grains. *Environ. Prog. Sustain. Energy* **2015**, 34 (4), 1092–1096.
732 <https://doi.org/10.1002/ep.12110>.

733 (77) Mahmood, A. S. N.; Brammer, J. G.; Hornung, A.; Steele, A.; Poulston, S. The
734 Intermediate Pyrolysis and Catalytic Steam Reforming of Brewers Spent Grain. In *Journal*
735 *of Analytical and Applied Pyrolysis*; Elsevier, 2013; Vol. 103, pp 328–342.
736 <https://doi.org/10.1016/j.jaap.2012.09.009>.

737 (78) Goldfarb, J. L.; Ceylan, S. Second-Generation Sustainability: Application of the
738 Distributed Activation Energy Model to the Pyrolysis of Locally Sourced Biomass-Coal
739 Blends for Use in Co-Firing Scenarios. *Fuel* **2015**, 160.
740 <https://doi.org/10.1016/j.fuel.2015.07.071>.

741 (79) McGreevy, J. 2015–2016 Beer Institute Annual Report http://www.beerinstitute.org/wp-content/uploads/2016/11/BeerInstitute_AnnualReport_090316-pages.pdf (accessed Nov
742 17, 2018).

744 (80) Xue, J.; Chellappa, T.; Ceylan, S.; Goldfarb, J. L. Enhancing Biomass + Coal Co-Firing
745 Scenarios via Biomass Torrefaction and Carbonization: Case Study of Avocado Pit
746 Biomass and Illinois No. 6 Coal. *Renew. Energy* **2018**, 122, 152–162.
747 <https://doi.org/10.1016/j.renene.2018.01.066>.

748 (81) He, J.; Kunitake, T.; Watanabe, T. Porous and Nonporous Ag Nanostructures Fabricated
749 Using Cellulose Fiber as a Template. *Chem Commun* **2005**, 1 (6), 795–796.
750 <https://doi.org/10.1039/b416316h>.

751 (82) Evans, R.; Milne, T. Molecular Characterization of the Pyrolysis of Biomass. *Energy &*
752 *Fuels* **1987**, 1 (2), 123–137.

753 (83) Huang, Y. F.; Kuan, W. H.; Chiueh, P. T.; Lo, S. L. Pyrolysis of Biomass by Thermal

754 Analysis – Mass Spectrometry (TA – MS). *Bioresour. Technol.* **2011**, *102*, 3527–3534.
755 <https://doi.org/10.1016/j.biortech.2010.11.049>.

756 (84) Dou, G.; Goldfarb, J. In Situ Upgrading of Pyrolysis Biofuels by Bentonite Clay with
757 Simultaneous Production of Heterogeneous Adsorbents for Water Treatment. *Fuel* **2017**,
758 *195*, 273–283. <https://doi.org/10.1016/j.fuel.2017.01.052>.

759 (85) Cai, J.; Liu, R. New Distributed Activation Energy Model: Numerical Solution and
760 Application to Pyrolysis Kinetics of Some Types of Biomass. *Bioresour Technol* **2008**, *99*
761 (8), 2795–2799. <https://doi.org/10.1016/j.biortech.2007.06.033>.

762 (86) Vyazovkin, S.; Chrissafis, K.; Di Lorenzo, M. L.; Koga, N.; Pijolat, M.; Roduit, B.;
763 Sbirrazzuoli, N.; Suñol, J. J. ICTAC Kinetics Committee Recommendations for Collecting
764 Experimental Thermal Analysis Data for Kinetic Computations. *Thermochim. Acta* **2014**,
765 *590*, 1–23. <https://doi.org/10.1016/j.tca.2014.05.036>.

766 (87) Fahmi, R.; Bridgwater, A. V.; Darvell, L. I.; Jones, J. M.; Yates, N.; Thain, S.; Donnison,
767 I. S. The Effect of Alkali Metals on Combustion and Pyrolysis of Lolium and Festuca
768 Grasses, Switchgrass and Willow. *Fuel* **2007**, *86* (10–11), 1560–1569.
769 <https://doi.org/10.1016/j.fuel.2006.11.030>.

770 (88) Deng, L.; Zhang, T.; Che, D. Effect of Water Washing on Fuel Properties, Pyrolysis and
771 Combustion Characteristics, and Ash Fusibility of Biomass. *Fuel Process. Technol.* **2013**,
772 *106*, 712–720. <https://doi.org/10.1016/j.fuproc.2012.10.006>.

773 (89) Lv, D.; Xu, M.; Liu, X.; Zhan, Z.; Li, Z.; Yao, H. Effect of Cellulose, Lignin, Alkali and
774 Alkaline Earth Metallic Species on Biomass Pyrolysis and Gasification. In *Fuel
775 Processing Technology*; 2010; Vol. 91, pp 903–909.
776 <https://doi.org/10.1016/j.fuproc.2009.09.014>.

777 (90) Collard, F. X.; Blin, J.; Bensakhria, A.; Valette, J. Influence of Impregnated Metal on the
778 Pyrolysis Conversion of Biomass Constituents. *J. Anal. Appl. Pyrolysis* **2012**, *95*, 213–
779 226. <https://doi.org/10.1016/j.jaap.2012.02.009>.

780 (91) Richardson, Y.; Motuzas, J.; Julbe, A.; Volle, G.; Blin, J. Catalytic Investigation of in Situ
781 Generated Ni Metal Nanoparticles for Tar Conversion during Biomass Pyrolysis. *J. Phys.
782 Chem. C* **2013**, *117* (45), 23812–23831. <https://doi.org/10.1021/jp408191p>.

783 (92) Sajid, M.; Zhao, X.; Liu, D. Production of 2,5-Furandicarboxylic Acid (FDCA) from 5-
784 Hydroxymethyl Furfural (HMF): A Recent Progress Focusing on the Chemical-Catalytic
785 Routes. *Green Chem.* **2018**. <https://doi.org/10.1039/C8GC02680G>.

786 (93) Zhang, Q.; Han, B.; Tang, X.; Heier, K.; Li, J. On the Mechanisms of Carbon Formation
787 Reaction on Ni (111) Surface. *J.* **2012**.

788 (94) Borel, L. D. M. S.; Lira, T. S.; Ribeiro, J. A.; Ataíde, C. H.; Barrozo, M. A. S. Pyrolysis of
789 Brewer’s Spent Grain: Kinetic Study and Products Identification. *Ind. Crops Prod.* **2018**,
790 *121*, 388–395. <https://doi.org/10.1016/j.indcrop.2018.05.051>.

791 (95) Alonso, D. M.; Bond, J. Q.; Dumesic, J. A. Catalytic Conversion of Biomass to Biofuels.
792 *Green Chem.* **2010**, *12* (October), 1493–1513. <https://doi.org/10.1039/c004654j>.

793 (96) Garcia-Perez, M.; Chaala, A.; Pakdel, H. Characterization of Bio-Oils in Chemical
794 Families. *Biomass and* **2007**.

795 (97) Yoon, Y.; Rousseau, R.; Weber, R.; Mei, D. First-Principles Study of Phenol
796 Hydrogenation on Pt and Ni Catalysts in Aqueous Phase. *Chem. Soc.* **2014**.

797 (98) Patwardhan, P. R.; Satrio, J. A.; Brown, R. C.; Shanks, B. H. Influence of Inorganic Salts
798 on the Primary Pyrolysis Products of Cellulose. *Bioresour. Technol.* **2010**, *101* (12),
799 4646–4655. <https://doi.org/10.1016/j.biortech.2010.01.112>.

800 (99) Zhang, Z.; Zhao, Z. Production of 5-Hydroxymethylfurfural from Glucose Catalyzed by
801 Hydroxyapatite Supported Chromium Chloride. *Bioresour. Technol.* **2011**, *102* (4), 3970–
802 3972.

803 (100) Collard, F. X.; Bensakhria, A.; Drobek, M.; Volle, G.; Blin, J. Influence of Impregnated
804 Iron and Nickel on the Pyrolysis of Cellulose. *Biomass and Bioenergy* **2015**, *80*, 52–62.
805 <https://doi.org/10.1016/j.biombioe.2015.04.032>.

806 (101) Paine, J. B.; Pithawalla, Y. B.; Naworal, J. D. Carbohydrate Pyrolysis Mechanisms from
807 Isotopic Labeling. Part 4. The Pyrolysis of d-Glucose: The Formation of Furans. *J. Anal.*
808 *Appl. Pyrolysis* **2008**, *83* (1), 37–63. <https://doi.org/10.1016/j.jaap.2008.05.008>.

809 (102) Lin, Y.; Huber, G. The Critical Role of Heterogeneous Catalysis in Lignocellulosic
810 Biomass Conversion. *Energy Environ. Sci.* **2009**.

811 (103) Dawes, G. J. S.; Scott, E. L.; Le Notre, J.; Sanders, J. P. M.; Bitter, J. H. Deoxygenation of
812 Biobased Molecules by Decarboxylation and Decarbonylation - A Review on the Role of
813 Heterogeneous, Homogeneous and Bio-Catalysis. *Green Chemistry*. 2015, pp 3231–3250.
814 <https://doi.org/10.1039/c5gc00023h>.

815 (104) Stephanidis, S.; Nitsos, C.; Kalogiannis, K.; Iliopoulou, E. Catalytic Upgrading of
816 Lignocellulosic Biomass Pyrolysis Vapours: Effect of Hydrothermal Pre-Treatment of
817 Biomass. *Catal. Today* **2011**, *167* (1), 37–45.

818 (105) Williams, P. T.; Besler, S. The Influence of Temperature and Heating Rate on the Slow
819 Pyrolysis of Biomass. *Renew. Energy* **1996**, *7* (3), 233–250. [https://doi.org/10.1016/0960-1481\(96\)00006-7](https://doi.org/10.1016/0960-1481(96)00006-7).

820 (106) Jacobsen, S. E.; Wyman, C. E. Cellulose and Hemicellulose Hydrolysis Models for
821 Application to Current and Novel Pretreatment Processes. In *Applied Biochemistry and*
822 *Biotechnology - Part A Enzyme Engineering and Biotechnology*; Humana Press: Totowa,
823 NJ, 2000; Vol. 84–86, pp 81–96. <https://doi.org/10.1385/ABAB:84-86:1-9:81>.

824 (107) Nowakowski, D. J.; Jones, J. M.; Brydson, R. M. D.; Ross, A. B. Potassium Catalysis in
825 the Pyrolysis Behaviour of Short Rotation Willow Coppice. *Fuel* **2007**, *86* (15), 2389–
826 2402. <https://doi.org/10.1016/j.fuel.2007.01.026>.

827 (108) Lu, C.; Song, W.; Lin, W. Kinetics of Biomass Catalytic Pyrolysis. *Biotechnol. Adv.* **2009**,
828 *27* (5), 583–587. <https://doi.org/10.1016/j.biotechadv.2009.04.014>.

829 (109) Li, J.; Yan, R.; Xiao, B.; Liang, D.; Lee, D. Preparation of Nano-NiO Particles and
830 Evaluation of Their Catalytic Activity in Pyrolyzing Biomass Components†. *Energy &*
831 *Fuels* **2007**, *333* (Part 2), 16–23.

832 (110) Li, J.; Yan, R.; Xiao, B.; Liang, D. T.; Lee, D. H. Preparation of Nano-NiO Particles and
833 Evaluation of Their Catalytic Activity in Pyrolyzing Biomass Components. In *Energy and*
834 *Fuels*; 2008; Vol. 22, pp 16–23. <https://doi.org/10.1021/ef700283j>.

835 (111) Temgire, M. K.; Joshi, S. S. Optical and Structural Studies of Silver Nanoparticles.
836 *Radiat. Phys. Chem.* **2004**, *71* (5), 1039–1044.
837 <https://doi.org/10.1016/j.radphyschem.2003.10.016>.

838 (112) Mandal, D.; Dash, S.; Das, B.; Chattopadhyay, S. Bio-Fabricated Silver Nanoparticles
839 Preferentially Targets Gram Positive Depending on Cell Surface Charge. *Biomed.* **2016**.

840 (113) Chen, P.; Wu, Q. S.; Ding, Y. P. Facile Synthesis of Monodisperse Silver Nanoparticles
841 by Bio-Template of Squama Inner Coat of Onion. *J. Nanoparticle Res.* **2008**, *10* (1), 207–
842 213. <https://doi.org/10.1007/s11051-007-9220-z>.

843 (114) Liu, X.; Yang, P.; Jiang, Q. Size Effect on Melting Temperature of Nanostructured Drugs.
844 *Mater. Chem. Phys.* **2007**, *103* (1), 1–4.

845

846 https://doi.org/10.1016/j.matchemphys.2007.01.014.

847 (115) Liu, W. J.; Jiang, H.; Yu, H. Q. Development of Biochar-Based Functional Materials:
848 Toward a Sustainable Platform Carbon Material. *Chemical Reviews*. American Chemical
849 Society November 25, 2015, pp 12251–12285.
850 https://doi.org/10.1021/acs.chemrev.5b00195.

851 (116) Mullen, C. A.; Boateng, A. A.; Goldberg, N. M.; Lima, I. M.; Laird, D. A.; Hicks, K. B.
852 Bio-Oil and Bio-Char Production from Corn Cobs and Stover by Fast Pyrolysis. *Biomass*
853 and *Bioenergy* **2010**, *34* (1), 67–74. https://doi.org/10.1016/j.biombioe.2009.09.012.

854 (117) Liu, W. J.; Zeng, F. X.; Jiang, H.; Zhang, X. S. Preparation of High Adsorption Capacity
855 Bio-Chars from Waste Biomass. *Bioresour. Technol.* **2011**, *102* (17), 8247–8252.
856 https://doi.org/10.1016/j.biortech.2011.06.014.

857 (118) Yu, I. K.; Xiong, X.; Tsang, D. C.; Wang, L.; Hunt, A. J.; Song, H. C.; Shang, J.; Ok, Y.
858 S.; Poon, C. S. Aluminium-Biochar Composites as Sustainable Heterogeneous Catalysts
859 for Glucose Isomerisation in a Biorefinery. *Green Chem.* **2018**.
860 https://doi.org/10.1039/C8GC02466A.

861 (119) Tan, X. fei; Liu, Y. guo; Gu, Y. ling; Xu, Y.; Zeng, G. ming; Hu, X. jiang; Liu, S. bo;
862 Wang, X.; Liu, S. mian; Li, J. Biochar-Based Nano-Composites for the Decontamination
863 of Wastewater: A Review. *Bioresource Technology*, 2016, *212*, 318–333.
864 https://doi.org/10.1016/j.biortech.2016.04.093.

865 (120) He, R.; Peng, Z.; Lyu, H.; Huang, H.; Nan, Q.; Tang, J. Synthesis and Characterization of
866 an Iron-Impregnated Biochar for Aqueous Arsenic Removal. *Sci. Total Environ.* **2018**,
867 *612*, 1177–1186. https://doi.org/10.1016/j.scitotenv.2017.09.016.

868 (121) Tran, Q. H.; Nguyen, V. Q.; Le, A. T. Silver Nanoparticles: Synthesis, Properties,
869 Toxicology, Applications and Perspectives. *Advances in Natural Sciences: Nanoscience*
870 and *Nanotechnology*. IOP Publishing May 14, 2013, p 033001.
871 https://doi.org/10.1088/2043-6262/4/3/033001.

872 (122) Kadirvelu, K.; Kavipriya, M.; Karthika, C.; Radhika, M.; Vennilamani, N.; Pattabhi, S.
873 Utilization of Various Agricultural Wastes for Activated Carbon Preparation and
874 Application for the Removal of Dyes and Metal Ions from Aqueous Solutions. *Bioresour.*
875 *Technol.* **2003**, *87* (1), 129–132. https://doi.org/10.1016/S0960-8524(02)00201-8.

876 (123) Zhou, Y.; Gao, B.; Zimmerman, A. R.; Cao, X. Biochar-Supported Zerovalent Iron
877 Reclaims Silver from Aqueous Solution to Form Antimicrobial Nanocomposite.
878 *Chemosphere* **2014**, *117* (1), 801–805.
879 https://doi.org/10.1016/j.chemosphere.2014.10.057.

880

881 **Table 1.** Proximate and ultimate analysis of brewer's spent grain

<i>Ultimate Analysis (dry wt%)</i>		
C	50.57 ±	2.01
H	6.46 ±	0.32
N	6.41 ±	0.23
O*	36.02 ±	1.13
S	0.56 ±	0.04
<i>Proximate Analysis (wt%, dry basis)</i>		
Volatile Matter	80.07 ±	1.40
Fixed Carbon	17.18 ±	0.26
Ash	2.75 ±	0.03

*by difference

882

883

884 **Table 2.** Product distribution for raw and Ag-impregnated BSG

	Mass Fraction Pyrolyzed	Mass Fraction Oxidized	Inorganic Yield
Raw BSG	0.805 ± 0.010	0.171 ± 0.003	0.024 ± 0.005
Ag-Soaked BSG	0.813 ± 0.006	0.107 ± 0.003	0.080 ± 0.004
	Condensable Yield (g/kg_{BSG})	Pyrolysis Gas Yield (g/kg_{BSG})	Silver Yield (g/kg_{BSG})
Raw BSG	190.5 ± 6.2	614.5 ± 17.6	(not applicable)
Ag-Soaked BSG	178.4 ± 2.5	643.8 ± 14.8	5.59 ± 0.98

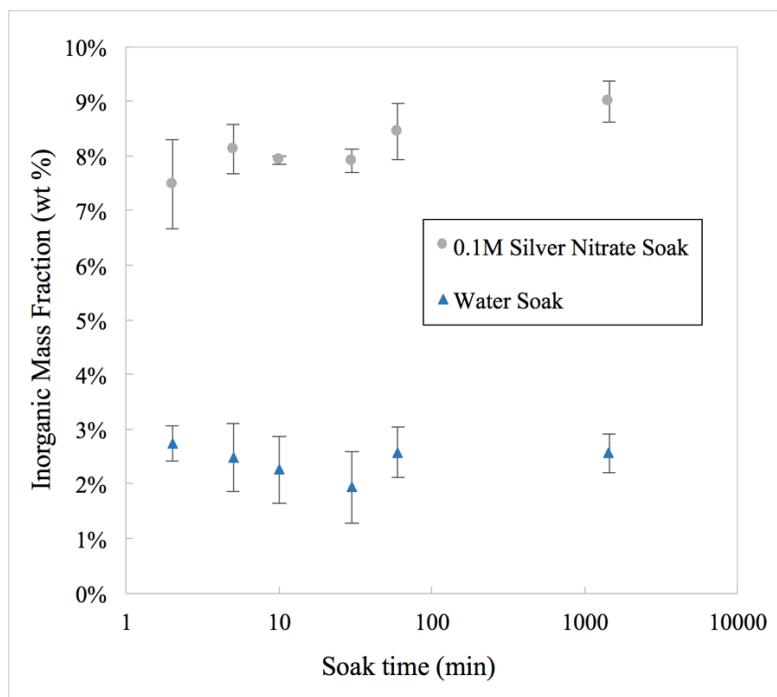
885

886

887

888 **Table 3.** Relative (Rel.) change in amount of pyrolysis gases evolved due to impregnation of
889 silver in brewer's spent grain

<i>Integrated MS Area</i>	H ₂ m/z = 2	CH ₄ m/z = 16	C ₂ H ₂ m/z = 26	C ₂ H ₄ m/z = 27	C ₂ H ₆ m/z = 30	CO ₂ m/z = 44
Raw BSG	7.856E-05	2.243E-04	4.571E-05	1.811E-04	2.097E-05	7.531E-04
Ag BSG	8.200E-04	2.159E-04	4.127E-05	1.849E-04	3.433E-05	9.183E-04
Rel. Change:	944%	-4%	-10%	2%	64%	22%


Table 4. Bio-oil compounds identified by GC-MS from raw and impregnated biomass pyrolysis at 10°C/min up to 500°C. Quantitative yields are show for compounds for which calibration curves were available.

Retention Time (min)	Compound	CAS Number	Area (% chromatogram peaks)	Raw BSG		Ag soaked BSG	
				Normalized peak area	Yield (g/kg _{BSG})	Normalized peak area	Yield (g/kg _{BSG})
8.7	2-hexene	592-43-8	5.0%	66140			n.d.
8.8	2(3H)-furanone	20825-71-2	11.0%	153475		10.0%	98313
11.6	2-Furancarboxaldehyde	98-01-1		n.d.		21.0%	210306
15.9	2,5-hexanedione	110-13-4	3.0%	36570	19.5	1.0%	14845
16.3	Phenol	108-95-2	2.0%	25019	2.5		n.d.
17.5	2-Acetyl furan	1192-62-7	1.0%	12711			n.d.
19.7	2-methylpropanal	78-84-2		n.d.		9.0%	86965
22.7	2,6-dimethoxyphenol (syringol)	91-10-1	2.0%	25019	2.5		n.d.
23.3	3-methyl-1,2-cyclopentanedione	765-70-8	2.0%	31678	5.9		n.d.
25.2	2-propenyl ester-Acetic acid	591-87-7	5.0%	74819		4.0%	41550
25.6	2-methylbutyraldehyde	96-17-3	5.0%	206240		8.0%	77012
27.7	p-cresol	106-44-5	0.3%	4140		2.0%	15016
35.7	5-hydroxymethylfurfural	67-47-0	6.0%	80858		2.0%	16423
46.3	fluorene	86-73-7		n.d.		1.0%	5532
49.3	anthracene	120-12-7	3.0%	34828	6.2		n.d.
55.3	pyrene	129-00-0	6.0%	7908	1.3		n.d.
66.5	hexadecanoic acid	57-10-3	1.0%	17051		4.0%	35067

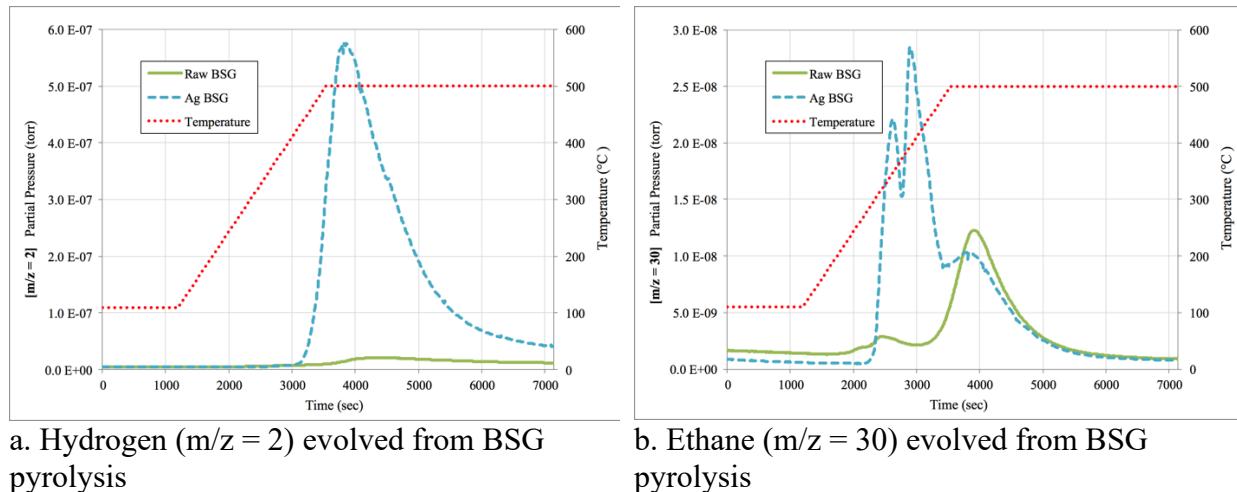
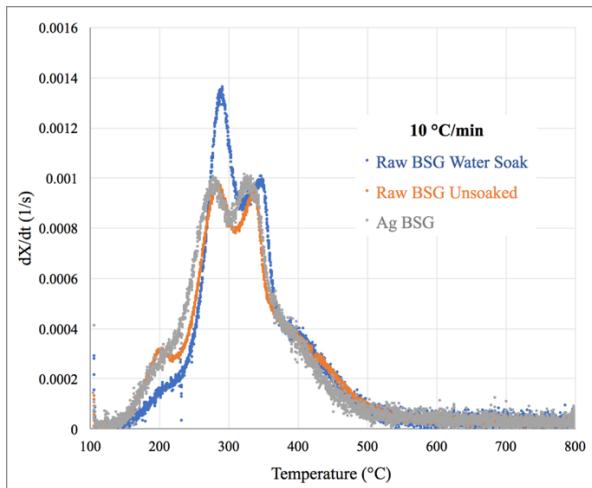

n.d. = not detected

Table 5. Thermogravimetric results of pyrolysis of raw un-soaked BSG, water-soaked BSG, and silver-impregnated BSG biomass samples.


	Peak DTG					
	Peak 1 T (°C)	Peak 1 Rate (1/s)	Peak 2 T (°C)	Peak 2 Rate (1/s)	Peak 3 T (°C)	Peak 3 Rate (1/s)
5 °C/min						
Raw BSG	194	2.18E-04	272	5.21E-04	328	5.18E-04
Ag BSG	-	-	272	5.19E-04	321	5.21E-04
Water Soaked BSG	-	-	281	6.93E-04	335	5.55E-04
10 °C/min						
Raw BSG	202	3.13E-04	285	9.72E-04	338	9.42E-04
Ag BSG	-	-	278	1.01E-03	327	1.01E-03
Water Soaked BSG	-	-	289	1.35E-03	346	1.01E-03
25 °C/min						
Raw BSG	215	9.36E-04	293	2.61E-03	341	2.54E-03
Ag BSG	-	-	289	2.42E-03	337	2.42E-03
Water Soaked BSG	-	-	299	3.50E-03	355	2.58E-03
50 °C/min						
Raw BSG	223	1.71E-03	299	5.12E-03	352	4.97E-03
Ag BSG	-	-	294	4.86E-03	346	4.83E-03
Water Soaked BSG	-	-	309	6.72E-03	357	5.12E-03

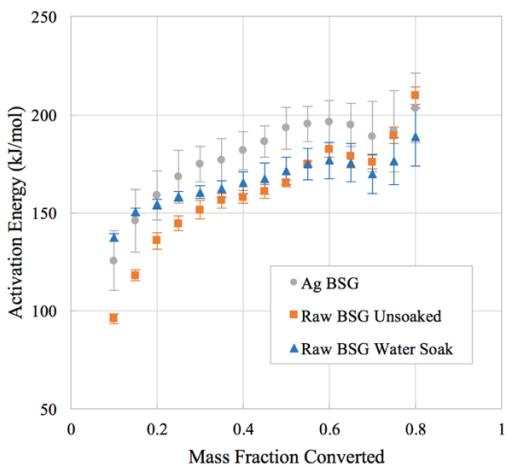
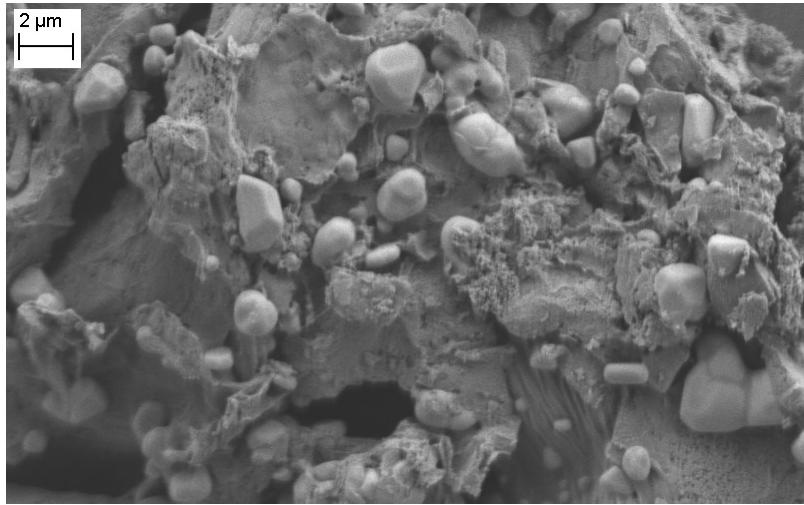

Figure 1. Change in inorganic fraction of biomass versus soak time in 0.1M AgNO_3 solution and in water.

Figure 2. Mass Spectra of (a) H_2 and (b) C_2H_6 evolved during pyrolysis of raw and silver-impregnated BSG (spectra of all monitored gases as function of time (including isothermal hold step) and temperature available in Supplemental Information)

Figure 3. Representative DTG curve for pyrolysis of raw, soaked and Ag-impregnated BSG pyrolyzed at 10 °C/min (additional heating rate plots available in SI)



a. Activation energy as a function of mass fraction converted calculated by DAEM

b. Average activation energy and pre-exponential factors calculated by DAE

Figure 4. Activation energy of pyrolysis of raw un-soaked BSG, water-soaked BSG, and silver-impregnated BSG biomass samples.

Figure 5. SEM image of calcined silver-impregnated brewer's spent grain (scale bar represents 2 μm)