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Abstract
In the problem of random genetic drift, the probability density of one gene is governed
by a degenerated convection-dominated diffusion equation. Dirac singularities will
always be developed at boundary points as time evolves, which is known as the fixation
phenomenon in genetic evolution. Three finite volume methods: FVM1-3, one central
difference method: FDM1 and three finite element methods: FEM1-3 are considered.
These methods lead to different equilibrium states after a long time. It is shown that
only schemes FVM3 and FEM3, which are the same, preserve probability, expectation
and positiveness and predict the correct probability of fixation. FVM1-2 wrongly
predict the probability of fixation due to their intrinsic viscosity, even though they
are unconditionally stable. Contrarily, FDM1 and FEM1-2 introduce different anti-
diffusion terms, which make them unstable and fail to preserve positiveness.

Keywords Random genetic drift · Degenerate equation · Conservations of
probability and expectation · Finite volume method · Finite difference method ·
Finite element method · Numerical viscosity and numerical anti-diffusion

Mathematics Subject Classification 35K65 · 65M06 · 92D10

1 Introduction

The number of a particular gene (allele) of one locus in a population varies randomly
from generation to generation. This process is a kind of stochastic process named
random genetic drift, which was first introduced by one of the founders in the field of
population genetics, Wright [20]. Genetic drift plays an important role in molecular
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evolution [1,11]. Mathematical descriptions of genetic drift are typically built upon the
Wright–Fisher model [5,21] or its diffusion limit [7,9,14]. The Wright–Fisher model
describes the dynamics of a gene with two alleles, A or B in a diploid population
with fixed size of N , i.e., total 2N alleles. The model is formulated as a discrete-time
Markov chain. Let random variable X k denote the fraction of A in k’th generation,
then 1 − Xk is the fraction of B. At the next generation, if the effects of mutation,
migration and selection are negligible, then Xk+ 1 obeys

Xk+ 1 ∼
B(2N , Xk)

2N
, (1.1)

where B (n, p) is the binomial distribution with n trails and p probability of success.
The first and second conditional moments of the Wright–Fisher process satisfy [2]

E [ Xk+ 1|Xk ] = Xk ,

V ar[ Xk+ 1|Xk ] =
1

2N
Xk(1 − Xk).

The first condition expresses the unbiased nature of neutrality. In absence of mutation,
migration and selection, the fixation phenomenon [9] will occur, which means that only
allele A is left and all copies of allele B are lost from the population, vice versa. And
the allele should be fixed with probability equal to its initial frequency.

After the diffusion approximation [5,21] is introduced to model the genetic drift,
Moran [14] and Kimura [7] substantially extended and developed this approach. If we
describe the process by X t , the fraction of type A gene at time t , and f (x , t) denotes
the probability density of X t = x at time t , Kimura [7,10] showed that f (x , t) obeys
the following diffusion equation,

∂ f (x , t)

∂t
+

∂ j (x , t)

∂x
= 0, x ∈ (0, 1), (1.2)

where the quantity j (x , t) is the current that characterizes the flow of probability
density, with the form as j (x , t) = − 1

4N
∂

∂x
(x(1 − x) f (x , t)). By rescaling of the

time t → t
4N , j(x , t) has the form as

j(x , t) = −
∂

∂x
(x(1 − x) f (x , t)) . (1.3)

To keep the total probability, the zero current boundary conditions [13] are imposed
as

j (0, t) = 0, j (1, t) = 0. (1.4)

For problem (1.2)–(1.4), Tran et al. [18] proved the existence and uniqueness of a
weak solution in the sense of distribution. A distribution f (·, t) ∈ H is called as a
weak solution of problem (1.2)–(1.4) with a initial state f (x , 0) = f0(x) ∈ H , if
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1

0
f (x , t)φ (x , t)d x =

1

0
f0(x)φ (x , 0)d x

+
t

0

1

0
f (

∂φ

∂t
+ x(1 − x)

∂2φ

∂x2
)dt d x, ∀φ ∈ C∞ ([0, 1] × [ 0, ∞)), (1.5)

where H = { f : [0, 1] → [ 0, ∞]| 1
0 f gd x < ∞, ∀g ∈ C∞ [0, 1]} is the set of all

distribution functions on [0, 1].
In definition (1.5), if we set φ = 1, we can find that problem (1.2)–(1.4) conserve

the total probability, for any time t > 0,

1

0
f (x , t) dx =

1

0
f (x , 0) dx = 1. (1.6)

Furthermore, if we chose φ = x in (1.5), then we get the conservation of the mean
gene frequency (expectation), i.e.,

1

0
x f (x , t) dx ≡

1

0
x f (x , 0) dx . (1.7)

McKane and Waxman [13] gave a closed form solution to the above problem (1.2)

f (x , t) = Π 0(t)δ(x) + Π 1(t)δ(1 − x) + fr (x , t), (1.8)

where Π0(t), Π1(t) and f r (x , t) are smooth functions and f r (x , t) is in a form of
infinite series. (1.8) means the solution has three parts: two singular part Π0(t)δ(x),
Π1(t)δ(1 − x) and a smooth part fr . If we consider the problem (1.2)–(1.4) subject
to the condition that the population has an initial A-gene frequency of p ∈ ( 0, 1), so
f (x , 0) should be a Dirac delta function at x = p. i.e.,

f (x , 0) = δ( x − p). (1.9)

In this case, by the conservation of total probability (1.6) and the conservation of
expectation (1.7), Mckane and Waxman proved that

lim
t→∞

f (x , t) = ( 1 − p)δ(x) + pδ(1 − x), (1.10)

in the sense of distribution. This is the fixation phenomenon corresponding to the
Wright–Fisher model. However, it is not easy to compute the infinite series in (1.8).
For more complex situations, such as the effects of mutation, migration and selection
are involved, one can hardly derive the closed form solutions as above. Thus direct
numerical solution is necessary for this problem.

A numerical scheme should be designed to find a complete solution [22], which
preserves the conservations of total probability (1.6) and expectation (1.7). Among
various numerical methods, we first choose finite volume method (FVM) [4,15] since
it is easy to preserve the conservation laws numerically. Equation (1.2) looks like a
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pure diffusion equation; actually it is a convection-dominated diffusion equation. If
we rewrite (1.2) as

∂ f

∂t
−

∂

∂x
x(1 − x)

∂ f

∂x
+

∂

∂x
((2x − 1) f ) = 0, (1.11)

then it is clear that (1.11) is convection-dominated near boundaries x= 0 and x = 1,
where convection velocity is up to 1 while diffusion coefficient is degenerate to 0.
The convection dominance will induce strongly irregular solution, for example, large
jump and discontinuity.

Remark 1.1 At the boundary points, (1.11) is degenerated to a pure convection prob-
lem. Whether or not a boundary condition should be imposed is the key point to obtain
a well-posed solution. For problem (1.11), the situation is that both the left and right
boundaries are out-flow ones. That means we can get a unique regular solution without
any boundary condition. But this solution is not a complete one: it does not maintain
conservation of probability (1.6). So when the no-flux boundary condition (1.4) is
imposed, we can not expect to obtain a regular solution. See the discussions on the
boundary condition in the appendix of [22].

In general, a upwind finite volume method (referred to FVM1) is a better choice
for the convection-dominated diffusion problem to achieve stability due to its intrinsic
numerical viscosity. While it does produce a stable numerical solution, we always get
the same equilibrium-state, no matter what the initial state is. This is obviously wrong
for genetic drift (see (1.10)) because it can not keep the conservation of the expectation
(1.7).

Then we turn to the central scheme of FVM. There are two choices: to discretize
the fluxes induced by the diffusion, − ∂

∂x
(x(1 − x) ∂ f

∂x
), and convection,

∂
∂x

((2x −
1) f ), respectively (referred to FVM2); or to discretize the flux j(x , t) = − ∂

∂x
(x(1 −

x) f ) in (1.3) as a whole (referred to FVM3). We find that both FVM2 and FVM3
are unconditionally stable, which is a surprising since we are solving a convection-
dominated problem by central schemes. We also observe that the equilibrium solution
of FVM2 is always the same one no matter what the initial state is, just as FVM1,
but it takes a much longer time to achieve the equilibrium state. FVM3 is the simplest
method but could yield a complete solution and predict the correct fixation probability.
Dirac singularities develop at both boundary points with proper weights rather than
for FVM2, same weight develop at both ends.

A careful analysis shows that FVM3 is unconditionally stable and its solution
always converges to the true solution and FVM2 is equivalent to FVM3 plus a 2nd

order viscosity term − h2

4 fx x. That is the reason why FVM2 is also unconditionally
stable and takes a much longer time to reach the equilibrium state than FVM1, which
is equivalent to FVM2 plus a much larger first-order O(h) viscosity term.

By the method of vanishing viscosity, i.e., a small viscosity term is first added in,
then the limit behavior of the solutions is considered when the added viscosity tends
to zero, we see that the limit of the equilibrium state solution is uniquely determined
and has nothing to do with the initial states. This means that the long time behavior of
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the original problem will be changed by any added infinitesimal viscosity. This is the
reason why the central scheme FVM2 does not work for the genetic drift problem. The
upwind scheme FVM1 introduces a more complicated viscosity. Further investigation
shows that the viscosity acts as an artificial two-way mutation near two boundary
points, which also leads to a unique artificial equilibrium state.

However, the fact that a central scheme is unconditionally stable for a convection-
dominated problem beyond the common understanding on the constrain of Peclet’s
number, which is necessary for a central scheme to achieve stability. So we check
a central finite difference method (referred to FDM1). For this scheme, we see that
the constrain on Peclet’s number does matter. Due to the degeneration, the Peclet’s
number can never be less than 1. Comparing with FVM3, FDM1 introduces an anti-
diffusion term, which makes the scheme unstable and can not keep the positiveness of
the solution. We also discuss three finite element methods (referred to FEM1-3) with or
without numerical quadrature. We find that if the mass matrix is got by quadrature and
stiffness matrix is got by exact integration (referred to FEM3), we exactly duplicate
FVM3; if the mass matrix is got by exact integration (FEM1) or the stiffness matrix is
got by quadrature (FEM2), anti-diffusion terms must be introduced, which make both
schemes unstable and can not keep the positiveness of the solution.

Our study shows that for this kind of problems, numerical methods must be carefully
chosen and any method with intrinsic numerical viscosity or contrarily with numerical
anti-diffusion should be avoided.

This paper is organized as follows. We present three different FVMs for genetic
drift problem in Sect. 2. Numerical results and analysis for FVMs are presented in
Sect. 3. In Sect. 4, we discuss one central FDM and three FEMs. The final section
gives some concluding remarks.

2 Numerical methods

In order to maintain the total probability, we start with a finite volume method (FVM)
[4]. A uniform grid, with grid spacing h = 1/ M and grid points x i = i h, i =
0, . . . ,M , is used to discretize the space domain [0, 1]. Likewise, the time domain is
uniformly discretized with step size τ and the grid points are tn = nτ, n = 0, 1, . . ..
Let jn

i and f n
i be the numerical approximations of j(xi , tn), f (xi , tn), respectively.

For inner mesh point xi (0 < i < M), the control volume is

Di = x | xi− 1
2

≤ x ≤ xi+ 1
2

,

where xi+ 1
2

= ( i + 1
2
)h. Given f n− 1, by FVM, we have, for n = 1, 2, . . . ,

f n
i − f n− 1

i

τ +
jn
i+ 1

2

− jn
i− 1

2

h
= 0. (2.1)
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For the boundary points x0 = 0 and xM = 1, the control volumes are

D0 = x | 0 ≤ x ≤ x 1
2

, and DM = x | xM− 1
2

≤ x ≤ 1 .

By the boundary conditions j (0, t) = j(1, t) = 0, we have

f n
0 − f n− 1

0

τ +
jn

1
2

− 0

h/ 2
= 0 and

f n
M − f n− 1

M

τ +
0 − jn

M− 1
2

h/ 2
= 0. (2.2)

To get a fully discrete scheme, we still need to approximate the flux j n
i+ 1

2

, for

i = 0, . . . ,M − 1. It is treated differently by the following three schemes:

– FVM1: approximate j (x , t) = − x(1− x) ∂ f
∂x +( 2x − 1) f at point xi+ 1

2
by upwind

scheme

jn
i+ 1

2

=

⎧
⎨
⎩

− xi+ 1
2

(1 − xi+ 1
2

) f n
i+ 1− f n

i
h + ( 2xi+ 1

2
− 1) f n

i+ 1
, 2x i+ 1

2
− 1 < 0,

− xi+ 1
2

(1 − xi+ 1
2

) f n
i+ 1− f n

i
h + ( 2xi+ 1

2
− 1) f n

i
, 2xi+ 1

2
− 1 > 0.

(2.3)

– FVM2: approximate j (x , t) = −( x(1 − x)) ∂ f
∂x + ( 2x − 1) f at point xi+ 1

2
by

central scheme

jn
i+ 1

2

= − xi+ 1
2

(1 − xi+ 1
2

)
f n
i+ 1 − f n

i

h
+ ( 2xi+ 1

2
− 1)

f n
i+ 1 + f n

i

2
. (2.4)

– FVM3: approximate j (x , t) = − ∂
∂x

(x(1 − x) f (x , t)) at point xi+ 1
2

by central

scheme

jn
i+ 1

2

= −
xi+ 1(1 − xi+ 1) f n

i+ 1 − xi (1 − xi ) f n
i

h
. (2.5)

FVM3 was recently used in [22] for a numerical investigation on the random genetic
problems, where some applications can be found on more complicated topics such as
time-dependent probability of fixation for a neutral locus or in the presence of selection
effect within a population of constant size; probability of fixation in the presence of
selection and demographic change. In this paper, we confine ourselves to the simplest
case to see the behaviors of different schemes.

3 Numerical results and analysis

3.1 Numerical results

The numerical results of different schemes for the genetic drift problem (1.2)–(1.4)
and (1.9) are presented in this section. We first approximate the initial Dirac delta
function (1.9) by a normal distribution function:
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Fig. 1 Numerical results of FVM1 with initial state f (x , 0) ∼ N ( 0.4, 0.012) at different time t =
0.01, 0.05, 1, 50. The step sizes are h = 1/ 1000, τ = 1/ 1000. At the equilibrium, heights of two pikes are
equal due to the O (h) numerical viscosity

f (x , 0) ∼ N ( p, σ2) (3.1)

with σ << 1. Later, we will show the dependence on the mean value p of the results.

Spike developing In Figs. 1, 2, 3, 4, 5 and 6, the numerical probability density at
different time with various initial states are presented for three methods FVM1-3.
These figures show that, for all three schemes, two spikes are formed at the boundary
(x = 0 and x = 1) as time evolves. But the heights of the spikes at the equilibrium state
are different. For FVM3, the heights of the two spikes at the boundary of equilibrium-
state are dependent on the mean of initial probability density. For FVM1 and FVM2,
the heights are equal and have nothing to do with the initial condition. This means
FVM1 and FVM2 can not keep the conservation of expectation, and can not give a
complete solution.

Expectation evolving The evolution of the discrete expectation was presented in Fig. 7
for all the schemes. It is clear that FVM3 preserves expectation while FVM1 and
FVM2 do not. This means only FVM3 may yield a complete solution. And it is
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Fig. 2 Numerical results of FVM1 with initial state f (x , 0) ∼ N ( 0.7, 0.012) at different time t =
0.01, 0.05, 1, 50. The step sizes are h = 1/ 1000, τ = 1/ 1000. At the equilibrium, heights of two pikes are
equal due to the O (h) numerical viscosity

observed that it takes a much longer time for FVM2 to achieve the equilibrium state
than for FVM1.

Delta singularity checking Table 1 presents the probability density and focused prob-
ability at the boundaries ( fn0 , f n

M and h
2 f n

0 , h
2 f n

M ) for FVM3, with different space grid

sizes (h = 1
100

, 1
1000

, 1
10,000 ) and different initial states ( f (x , 0) ∼ N ( 0.4, 0.012)

and N ( 0.7, 0.012)) at t n = 6 (τ = 0.0001). It is shown that the probabilities con-
centrated on the boundary at the equilibrium state are independent of the space grid
size h. This verifies that Dirac delta singularities do develop at the boundary points.
This is just the fixation phenomena. It is also shown that the fixation probabilities are
dependent on the expectation of the initial condition, and conservations of probability
and expectation are always kept.

Table 2 shows the equilibrium state solution got by FVM2 at time t n = 20,000
with time step τ = 1/ 100 and initial state f (x , 0) = N ( 0.7, 0.012). Combining with
Figs. 3 and 4, the equilibrium state tends to 1

2
δ(x) + 1

2
δ(1 − x) as h tends to zero, no

matter what the initial state is. This scheme predicts a wrong fixation probability.
Table 3 shows the equilibrium state solution got by FVM1 at time t n = 50 with

time step τ = 1/ 100 and initial state f (x , 0) = N ( 0.7, 0.012). Singularity but not
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Fig. 3 Numerical results of FVM2 with initial state f (x , 0) ∼ N ( 0.4, 0.012) at different time t =
0.01, 1, 100, 10,000. The step sizes are h = 1/ 1000, τ = 1/ 1000. At the equilibrium, heights of two pikes
are equal due to the O (h2) numerical viscosity

Dirac delta is developed, i.e., no fixation happens. This scheme fails to predict the
fixation phenomena.

Stability checking. In Table 4, for fixed grid spacing h = 1/ 1000 and two different
initial states f 0 ∼ N ( 0.4, 0.012) and f 0 ∼ N ( 0.7, 0.012), the time stepτ is changed
from 1

10 to 1
10,000 . The results shows that FVM 3 can get the same equilibrium state

and keep conservation of total probability and expectation for different mesh ratio
γ = τ

h2 . This means that FVM3 for the genetic drift problem (1.2), (1.3), (1.4) and
(1.9) is stable and independent of the mesh ratio γ , i.e., unconditional stable.

Dynamics checking In Fig. 8, we compare the results of Monte Carlo simulation
for Wright–Fisher model (1.1) with numerical solution of FVM3. The initial state is
f (x , 0) ∼ N ( 0.3, 0.012). The Monte Carlo simulations are done with N = 100
alleles, 5000 time steps and 5000 samples. The left panel shows the dynamics of mass
at points x = 0 and x = 1; the right panel shows the dynamics of inner region (0, 1)
mass. The results validate that FVM3 could predict the correct long-time probability
behavior (Fig. 7).

3.2 Numerical analysis

In this subsection, we will present the numerical analysis of above 3 FVM schemes.
FVM3 can predict the correct long-time probability because it preserves probability,
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Fig. 4 Numerical results of FVM2 with initial state f (x , 0) ∼ N ( 0.7, 0.012) at different time t =
0.01, 1, 100, 10,000. The step sizes are h = 1/ 1000, τ = 1/ 1000. At the equilibrium, heights of two pikes
are equal due to the O (h2) numerical viscosity

expectation and positiveness. At same time, we also prove that any extra infinitesimal
viscosity leads to a unique artificial equilibrium state, no matter the initial states. So
FVM1-2 predict wrong probabilities of fixation due to their intrinsic viscosity, even
though they are stable.

3.2.1 Stability, expectation conservation and long-time behavior of FVM3

In this part, we will prove the stability and long-time convergence for FVM3. (2.1),
(2.2) and (2.5) can be split into three independent parts. For inner points, 0< i < M ,

f n
i − f n− 1

i

τ −
Di+ 1 f n

i+ 1 − 2D i f n
i + Di− 1 f n

i− 1

h2
= 0, (3.2)

with D i = xi (1 − xi ); For the boundary points,

f n
0 − f n− 1

0

τ −
2D1 f n

1

h2
= 0,

f n
M − f n− 1

M

τ −
2D M− 1 f n

M− 1

h2
= 0. (3.3)

Due to D0 = DM = 0, the unknowns at inner points f n
1

, . . . ,f n
M− 1 form a closed

linear system which can be solved first. Then the boundary points f n
0

, f n
M can be

updated by the inner points f n
1

, f n
M− 1 respectively.
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Fig. 5 Numerical results of FVM3 with initial state f (x , 0) ∼ N ( 0.4, 0.012) at different time t =
0.01, 0.05, 1, 6. The step sizes are h = 1/ 1000, τ = 1/ 1000. At the equilibrium, the ratio of two pikes’
heights is 3:2 and the expectation is 0.4 which is equal to the initial one

Theorem 3.1 The central scheme FVM3 is unconditionally stable. Its solution keeps
non-negative, if the initial state is non-negative.

Proof Denote byK the matrix of the inner system (3.2). We have thatK is tri-diagonal
and with entries

ki i = 1 + 2γ Di , ki ,i± 1 = −γ Di± 1,

where the mesh ratio γ = τ
h2 . The system (3.2) yields a linear system

K ∗ ( f n
1

, . . . ,f n
M− 1

)T = ( f n− 1
1

, . . . ,f n− 1
M− 1

)T .

Noting that 2D i − Di+ 1 − Di− 1 = 2h2 > 0, ∀i = 1, . . . ,M − 1, we get K is a
M-matrix, i.e., a diagonal dominant matrix with positiveness diagonal entries and non-
positive off-diagonal entries. This guarantees the unconditional stability and positive
preservation of FVM3.

In the following, we prove all FVMs preserves discrete total probability and FVM3
also preserves the expectation. The discrete total probability and expectation at step  n
are defined as follows.
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Fig. 6 Numerical results of FVM3 with initial state f (x , 0) ∼ N ( 0.7, 0.012) at different time t =
0.01, 0.05, 1, 6. The step sizes are h = 1/ 1000, τ = 1/ 1000. At the equilibrium, the ratio of two pikes’
heights is 3:7 and the expectation is 0.7 which is equal to the initial one

⎧
⎪⎪⎨
⎪⎪⎩

Pn = h
2 f n

0 + h
2 f n

M +
M− 1

i= 1
f n
i h,

En = h
2 x0 f n

0 + h
2 xM f n

M +
M− 1

i= 1
xi f n

i h,
(3.4)

Theorem 3.2 The finite volume methods (2.1), (2.2) keep the discrete total probability,
Pn = Pn− 1, for n = 1, 2, . . .. Furthermore, FVM3 yields a complete solution, which
preserves the discrete expectation, En = En− 1, for n = 1, 2, . . ..

Proof By the definition of Pn ,

Pn − Pn− 1 =
h

2
( f n

0 − f n− 1
0 ) +

h

2
( f n

M − f n− 1
M ) +

M− 1

i= 1

( f n
i − f n− 1

i
)h.
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Fig. 7 Expectation produced by different schemes with initial state f (x , 0) ∼ N ( 0.4, 0.012) under the
logarithm time scale. The discrete expectation is defined in (3.4). Here Schemes 1,2 and 3 represent FVM1,
FVM2 and FVM3. Only FVM3 preserves the expectation. Both FVM1 and FVM2 achieve the same expec-
tation which is not dependent on the initial value. And it can also be found that it takes a much longer time
for FVM2 to achieve the equilibrium state than for FVM1

Table 1 Numerical results of FVM3 at the boundaries at equilibrium state (tn = 6, time stepτ = 1/ 10,000)
with different initial states and space grid sizes

Space step h f (x , 0) = N ( 0.4, 0.012)

f n
0 f n

M
h
2 f n

0
h
2 f n

M

1/ 100 1.19999123e2 7.99991237e1 0.59999562 0.39999562

1/ 1000 1.19999115e3 7.99991154e2 0.59999558 0.39999558

1/ 10,000 1.19999115e4 7.99991146e3 0.59999557 0.39999557

Space step h f (x , 0) = N ( 0.7, 0.012)

f n
0 f n

M
h
2 f n

0
h
2 f n

M

1/ 100 5.99992332e1 1.39999236e2 0.29999617 0.69999617

1/ 1000 5.99992260e2 1.39999226e3 0.29999613 0.69999613

1/ 10,000 5.99992253e3 1.39999225e4 0.29999613 0.69999613

The equilibrium state is (1 − p)δ(x ) + pδ(1 − x ) if the initial state is with an expectation of p

Using (2.1) and (2.2), we have

Pn − Pn− 1 = −τ
M− 1

i= 1

( jn
i+ 1

2

− jn
i− 1

2

) − τ jn
1
2

+ τ jn
M− 1

2

= 0.
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Table 2 Numerical results of
FVM2 at the boundaries at
equilibrium state (tn = 20,000,
time step τ = 1/ 100) with initial
state f (x , 0) = N ( 0.7, 0.012)

Step h f n
0 f n

M
h
2 f n

0
h
2 f n

M

1/ 200 197.10 197.10 0.4928 0.4928

1/ 400 396.74 396.74 0.4959 0.4959

1/ 800 796.39 796.39 0.4977 0.4977

1/ 1600 1596.0 1596.0 0.4988 0.4988

1/ 3200 3193.2 3198.2 0.4989 0.4997

The equilibrium state tends to 1
2

δ(x ) + 1
2

δ(1 − x) as h tends to zero,
no matter what the initial state is

Table 3 Numerical results of
upwind scheme FVM1 at the
boundaries at equilibrium state
(tn = 50, time step τ = 1/ 100)
with f (x , 0) = N ( 0.7, 0.012)

Step h f n
0 f n

M
h
2 f n

0
h
2 f n

M

1/ 200 32.348 32.348 0.08087 0.08087

1/ 400 57.931 57.931 0.07241 0.07241

1/ 800 105.03 105.03 0.06564 0.06564

1/ 1600 192.25 192.25 0.06008 0.06008

1/ 3200 354.64 354.64 0.05541 0.05541

Singularity but not Dirac delta is developed, i.e., no fixation happens

Table 4 Numerical results of FVM3 at the boundaries at equilibrium state (t n = 6) with space grid size
h = 1/ 1000

Time step τ f (x , 0) = N ( 0.4, 0.012)

f n
0 f n

M
h
2 f n

0
h
2 f n

M

1/ 10 1.19997448e3 7.99974480e2 0.59998724 0.39998724

1/ 100 1.19999005e3 7.99990054e2 0.59999503 0.39999502

1/ 1000 1.19999106e3 7.99991058e2 0.59999553 0.39999553

1/ 10,000 1.19999115e3 7.99991154e2 0.59999558 0.39999558

Time step τ f (x , 0) = N ( 0.7, 0.012)

f n
0 f n

M
h
2 f n

0
h
2 f n

M

1/ 10 5.99977672e2 1.39997767e3 0.29998884 0.69998884

1/ 100 5.99991298e2 1.39999130e3 0.29999565 0.69999565

1/ 1000 5.99992177e2 1.39999218e3 0.29999609 0.69999608

1/ 10,000 5.99992260e2 1.39999226e3 0.29999613 0.69999613

The scheme works well for any ratio of grid

On the other hand,

En − En− 1 =
h

2
x0( f n

0 − f n− 1
0 ) +

h

2
xM ( f n

M − f n− 1
M ) +

M− 1

i= 1

xi ( f n
i − f n− 1

i
)h.
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Fig. 8 Consistency between Mont Carlo simulations of Wright–Fisher model and FVM3 numerical solu-
tions with initial state f (x , 0) ∼ N ( 0.3, 0.012). Left: the dynamics of mass at points x = 0 and x = 1;
Right: the dynamics of inner region (0, 1) mass. The Mont Carlo simulations are done with number of
alleles N = 100, number of sample 5000 and time step 5000. FVM3 is set to be h = 1/ 200, τ = 1/ 400

Using (2.1), (2.2) and (2.5), we have, by summation by parts, that

En − En− 1 = −τ
M− 1

i= 1

xi ( jn
i+ 1

2

− jn
i− 1

2

) + τ xM jn
M− 1

2

= hτ
M− 1

i= 1

jn
i+ 1

2

= τ
M− 1

i= 1

(Di+ 1 f n
i+ 1 − Di f n

i ) = 0.

The proof is completed.

We now turn to the long-time behavior of FVM3. First we have the following decay
estimate on the inner part of the solution.

Lemma 3.3 Let f n be the solution of the central scheme FVM3. Then for any step
sizes h, τ > 0,

M− 1

i= 1

| f n
i |2 ≤

1

1 + 4τ

n M− 1

i= 1

| f 0
i |2, tn = nτ.

Proof Denote by Δ hvi =
vi− 1 − 2vi + v i+ 1

h2
the discrete Laplacian. Multiplying by

f n
i on both sides of (3.2), summing from i = 1 to M − 1, we have that

1

2τ

M− 1

i= 1

| f n
i |2 −

M− 1

i= 1

Δ h(Di f n
i

) f n
i ≤

1

2τ

M− 1

i= 1

| f n− 1
i |2. (3.5)

We claim that

−
M− 1

i= 1

Δ h(Di vi )vi ≥ 2

M− 1

i= 1

|vi |2, ∀ v ∈ R M− 1. (3.6)
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Actually in matrix form, the above formula is

vT M̃v ≥ 2vT v, ∀ v ∈ R M− 1,

where M̃ is a tri-diagonal matrix with entries

m̃ i ,i = 2D i / h2, m̃ i ,i± 1 = − Di± 1/ h2.

Noting that−Δ h Di = −Δ h xi (1− xi ) = ˜m i ,i− 1 + m̃ i ,i + m̃i ,i+ 1 ≡ 2, we haveM̃− 2I
is still diagonal dominant and semi-positive definite. So inequality (3.6) is true.

Combining (3.5) and (3.6), we obtain

M− 1

i= 1

| f n
i |2 ≤

1

1 + 4τ

M− 1

i= 1

| f n− 1
i |2 ≤

1

1 + 4τ

n M− 1

i= 1

| f 0
i |2.

So the proof is completed.

Theorem 3.4 As to the long-time behavior of the solution f n of the central scheme
FVM3, we have, for any fixed step sizes h and τ , as n → ∞ ,

⎧
⎪⎨
⎪⎩

f n
i → 0, for i = 1, . . . ,M − 1,

h
2 f n

0 + h
2 f n

M → P0,

h
2 x0 f n

0 + h
2 xM f n

M → E0.

If the initial state is approximated by (3.1), we further have

h
2 f n

0 → ( P0 − E0) ≈ 1 − p,

h
2 f n

M → E0 ≈ p.

The means that FVM3 predicts the right fixation probability.

Proof From the decay property of Lemma 3.3, we have as n→ ∞ , f n
i → 0, for i =

1, . . . ,M − 1. The other convergence results come from the conservation properties
of Theorem 3.2. The proof is completed.

3.2.2 Effect of additional viscosity

As shown in Figs. 1, 2, 3 and 4, in the results of the first two schemes, the values of
equilibrium-state solutions at boundaries x= 0 and x = 1 are of the same height with
different initial states. This is not consistent with the equilibrium state of the singular
solutions given in (1.10), and also does not satisfy conservation of expectation.

To see what’s wrong here, taking the difference between these schemes, we have
the following results.
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Theorem 3.5 Denote by D(x) = x(1− x) and by b(x) = D (x) = 1− 2x . The central
Scheme FVM2, (2.1), (2.2) and (2.4) can be regraded as FVM3 plus a viscosity term

Λ i = − h2

4 ∗ f n
i+ 1− 2 f n

i + f n
i− 1

h2 , i.e.,

FVM2:
f n
i − f n− 1

i

τ −
Di+ 1 f n

i+ 1 − 2D i f n
i + Di− 1 f n

i− 1

h2
+ Λ i = 0.

The upwind Scheme FVM1, (2.1)–(2.3) can be regarded as FVM2 plus a viscosity
term

Λ̃ i = −
h

2
∗

|bi+ 1
2
| f n

i+ 1 − |bi+ 1
2
| + | bi− 1

2
| | f n

i + | bi− 1
2
| f n

i− 1

h2
, i .e.,

FVM1:
f n
i − f n− 1

i

τ −
Di+ 1 f n

i+ 1 − 2D i f n
i + Di− 1 f n

i− 1

h2
+ Λ i + Λ̃ i = 0.

Proof of Theorem 3.5. Λ i is the difference between FVM2 and FVM3. We have after
direct computation that

Λ i =
1

h2
Di+ 1 − Di+ 1

2
−

h

2
bi+ 1

2
f n
i+ 1 + Di− 1 − Di− 1

2
+

h

2
bi− 1

2
f n
i− 1

+
1

h2
Di+ 1

2
+ Di− 1

2
− 2D i −

h

2
bi+ 1

2
− bi− 1

2
f n
i

=
1

h2

h2

8
D (x) f n

i+ 1 +
h2

8
D (x) f n

i− 1 −
h2

4
D (x) f n

i

= −
h2

4
∗

f n
i+ 1 − 2 f n

i + f n
i− 1

h2
,

where we have used the facts that D (x) = − 2 and dn

d xn D = 0, n > 2.

Note that Λ̃ i is the difference between FVM1 and FVM2, which, as well-known,
is a first-order (O (h)) viscosity term introduced by the upwind technique [12].

So FVM1 and FVM2 are unconditionally stable since they introduce extra vis-
cosities to the stable scheme FVM3. FVM2 is equivalent to discretize the problem
∂t f − ∂ x x x(1 − x) + h2

4 f = 0 by FVM3. To see the effect of this constant vis-
cosity, we consider a viscosity vanishing procedure to the equilibrium state problem.
First, a infinitesimal diffusion is added, then the limit behavior of the equilibrium-state
solution is investigated.

For ε > 0, find non-zero f ε(x) such that

− d2

dx 2
((x(1 − x) + ε) fε) = 0, x ∈ (0, 1),

d
dx

((x(1 − x) + ε) fε)
x= 0,1 = 0,

(3.7)

with a constraint
1

0 fε(x)dx = 1.
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Fig. 9 Two equilibrium-state
solutions f ε of equation (3.7)
with artificial viscosity ε = 0.5,
and 0.01
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Theorem 3.6 If fε is a non-zero solution of (3.7), then lim
ε→ 0

fε(x) = 1
2
δ(x)+ 1

2
δ(x − 1)

in the sense of distribution.

Proof Integrating the problem (3.7), we get from the boundary condition that

fε(x) =
bε

x(1 − x) + ε
. (3.8)

The constraint on the total probability yields that

bε =
√

1/ 4 + ε

ln(
√

1/ 4 + ε + 1/ 2) − ln(
√

1/ 4 + ε − 1/ 2)
.

See Fig. 9 for some profiles of fε .
For any ϕ ∈ C∞ [0, 1], we want to prove that fε , ϕ → 1

2
ϕ(0) + 1

2
ϕ(1) as ε → 0.

By symmetry,
1
2

0 fεd x = 1
1
2

fεd x = 1
2 , so we have

fε, ϕ =
1/ 2

0
fε(x)(ϕ( x) − ϕ( 0))dx +

1

1/ 2
fε(x)(ϕ( x) − ϕ( 1))dx

+
1

2
ϕ(0) +

1

2
ϕ(1).

Now we need to prove lim
ε→ 0

1
2

0 fε (ϕ( x)−ϕ( 0))dx = lim
ε→ 0

1
1
2

fε (ϕ( x)−ϕ( 1))dx = 0.

Actually, we have, by denoting by M1 = max
x∈[ 0, 1

2 ]
|ϕ (x)|,

1
2

0
fε(ϕ( x) − ϕ( 0))dx = bε

1
2

0

1

x(1 − x) + ε
(ϕ( x) − ϕ( 0)) dx

≤ bε M1

1
2

0

x

x(1 − x) + ε
dx ≤ bε M1

1
2

0

x

x(1 − x) dx

= bε M1 ∗ ln 2 → 0, as ε → 0,
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Table 5 Numerical results of upwind scheme FVM1 at the left boundary at equilibrium state (t = 50) with

f (x , 0) = N ( 0.7, 0.012) and time step τ = 1/ 100. D fi ≡ fi+ 1− fi
h

Steph 1/ 200 1/ 400 1/ 800 1/ 1600 1/ 3200

D f0/ D f1 5.0103 5.0051 5.0025 5.0013 5.0006

since bε → 0.
Similarly, we also have lim

ε→ 0

1
1
2

fε (ϕ( x) − ϕ( 1))dx = 0.

Thus we have that lim
ε→ 0

fε, ϕ = 1
2
ϕ(0) + 1

2
ϕ(1), ∀ϕ(x) ∈ C∞ [0, 1]. The proof is

completed.

The above theorem verifies the observation in Figs. 3 and 4 and Table 2, i.e., the
equilibrium state got by FVM2 tends to 1

2
δ(x) + 1

2
δ(1 − x ) as h tends to zero, no

matter what the initial state is.This means that conservation of expectation is violated
by any extra viscosity.

The upwind scheme FVM1 also introduces a viscosity termΛ̃ i (see Theorem 3.5).
Its behavior in Figs. 1 and 2 and Table 3 can not be explained by Theorem 3.6 since this
viscosity is much more complicated than the constant viscosity introduced by FVM2.
Let us rewrite Λ̃ i as

Λ̃ i = −
1

2
|bi+ 1

2
|

f n
i+ 1 − f n

i

h
+

1

2
|bi− 1

2
|

f n
i − f n

i− 1

h

≈ −
1

2

f n
i+ 1 − f n

i

h
+

1

2

f n
i − f n

i− 1

h
, near boundary points.

Denote by D f i = fi+ 1− fi
h . From Table 5, we have that at the left boundary, D f0 ≈

5D f1, i.e.,

Λ̃ 1 ≈ 2
f n
1 − f n

0

h
.

Symmetrically, we have that, at the right boundary,

Λ̃ M− 1 ≈ − 2
f n
M − f n

M− 1

h
.

It means that the extra viscosity term̃Λ i behaviors as a one-way mutation term∂x (2(1−
x) f ) near the left boundary and as another one-way mutation term−∂ x (2x f ) near the
right boundary. This artificial two-way mutation leads to the unique equilibrium state
as in Figs. 1 and 2, no matter what the initial state is (see [6]).

Finally, FVM1 introduces a viscosity of first-order (O(h)) while FVM2 introduces
a viscosity of second-order (O(h2)). This is the reason why FVM2 takes a much longer
time than FVM1 to achieve the equilibrium state (see Fig. 7).
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Remark 3.7 The equilibrium state problem (3.7) is actually to find an eigenfunction for
the zero eigenvalue. For the original diffusion operator, i.e.,ε = 0, there exists infinite
eigenfunctions with the form as(1 − p)δ(x) + pδ(1 − x), ∀p ∈ [ 0, 1], corresponding
to the zero eigenvalue. But for any ε > 0, (3.7) has a unique eigenfunction (3.8). So
numerical schemes with any extra viscosity will lead to a unique equilibrium state no
matter what the initial state is.

4 Discussion of finite di erence methods and finite element methodsff

We have shown that a central scheme FVM2 is unconditionally stable for a convection-
dominated problem. It seems beyond the common understanding on the constraint of
Peclet’s number [15], which is necessary for a central scheme to achieve stability. In
the following, we will check a central finite difference method (FDM). We will see
that the constrain on Peclet’s number does matter. We also discuss some finite element
methods (FEM) for this problem.

4.1 Finite difference method

If the diffusion term and convection term in (1.11) is discretized by central difference
directly, we get

FDM1:
f n
i − f n− 1

i

τ −
Di+ 1/ 2 f n

i+ 1 − ( Di+ 1/ 2 + Di− 1/ 2) f n
i + Di− 1/ 2 f n

i− 1

h2

+
bi+ 1 f n

i+ 1 − bi− 1 f n
i− 1

2h
= 0, 1 < i < M , (4.1)

Noting that

bi+ 1 f n
i+ 1 − bi− 1 f n

i− 1

2h
=

bi+ 1/ 2
f n
i+ 1+ f n

i
2 − bi− 1/ 2

f n
i + f n

i− 1
2

h
+

h2

2

f n
i− 1 − 2 f n

i + f n
i+ 1

h2
,

so we have from Theorem 3.5 that

Proposition 4.1 The following results are always true for FDM1.

– FDM1 is just FVM2 plus an anti-diffusion h2

2

f n
i− 1− 2 f n

i + f n
i+ 1

h2 .

– FDM1 is just FVM3 plus an anti-diffusion h2

4

f n
i− 1− 2 f n

i + f n
i+ 1

h2 .

– The Peclet’s number P e ≡ maxi { h
2

|bi+ 1|
Di+ 1/ 2

, h
2

|bi− 1|
Di− 1/ 2

} = 1
1− h/ 2

> 1 for any space

step h.

For non-degenerated convection-diffusion problems, we can choose the space step  h
sufficiently small to make sure the Peclet’s number Pe ≤ 1, which is sufficient to get a
stable scheme. Due to the degeneration of the diffusion coefficient  D(x), the Peclet’s
number here can never be less than 1. The numerical results in Fig. 10 also show that
FDM1 is not stable and can not preserve the positivity of the solution.

123



Behavior of different numerical schemes for random genetic… 817

0 0.2 0.4 0.6 0.8 1

x

-6

-4

-2

0

2

4

6
f

105 Max= 5.912e+005, Min= -5.911e+005

0 0.2 0.4 0.6 0.8 1

x

-1

-0.5

0

0.5

1

f

104  Max= 6630, Min= -6425

Fig. 10 Numerical solution at t = 500 by FDM1 with initial state f (x , 0) ∼ N ( 0.7, 0.012). τ = 0.01.
Left: h = 0.02; Right: h = 0.01

Remark 4.2 The scheme in (4.1) is not completed. Only inner point equations are
involved. FDM is not easy to treat the no-flow boundary conditions in (1.3)–(1.4).
Improper treatment may even break the conservation of mass. In the numerical tests
of Fig. 10, to be consistent with the inner points, Proposition 4.1 indicate to discretize
the equation f t − (( D(x) − h2/ 4) f )x x = 0 by FVM3 at both boundary points.

4.2 Finite element methods

In this subsection, we consider three linear FEM schemes with or without numerical
quadrature (see [16] for standard language on FEM). Taking the same uniform partition
as before, we have the grid points as xi = i h, tn = nτ, i = 0, . . . ,M , n = 0, 1, . . ..
We now have the elements as e i = [ xi , xi+ 1], i = 0, . . . ,M − 1. The linear FE
space is defined as S h = {v h ∈ C [0, 1] : vh |ei is linear for i = 0, . . . ,M − 1} =
span{ϕ0, . . . , ϕM }, where ϕi is the nodal basis of piecewise linear interpolation at
node xi . The L 2-inner product by exact integration and discrete L2-inner product by
quadrature are defined respectively as:

(uh , vh) ≡
1

0
uh(x)vh(x)d x; (uh , vh)h ≡ ( u0v0 + uMvM ) h

2
+

M− 1

i= 1

ui vi h.

Three FEM schemes are defined as follows: Given f 0
h = M

i= 0 f 0
i

ϕi (x), find
f n
h ∈ Sh , for n = 1, 2, . . . ,such that

FEM1 :
f n
h − f n− 1

h

τ
, vh + ∂x (D(x) f n

h
), ∂xvh = 0, ∀ vh ∈ Sh , (4.2)

FEM2 :
f n
h − f n− 1

h

τ
, vh

h

+ ∂x (D(x) f n
h

), ∂x vh h
= 0, ∀ v h ∈ Sh , (4.3)
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FEM3 :
f n
h − f n− 1

h

τ
, vh

h

+ ∂x (D(x) f n
h

), ∂x vh = 0, ∀ v h ∈ Sh . (4.4)

FEM1 is the standard P1 finite element method. In FEM2 and FEM3, quadrature with
trapezoidal rule is used. In matrix form, they are equivalent to

FEM1 : M
f n − f n− 1

τ + K f n = 0,

FEM2 : M h
f n − f n− 1

τ + K h f n = 0,

FEM3 : M h
f n − f n− 1

τ + K f n = 0,

where f n = ( f n
0

, . . . ,f n
M

)T and the mass matrix M , the stiffness matrices K and K h

are tri-diagonal, the lumped mass matrixM h is diagonal, their entries are respectively
m i , j = (ϕ j , ϕi ), ki , j = (∂ x (D(x)ϕ j ), ∂x ϕi ), kh

i , j = (∂ x (D(x)ϕ j ), ∂xϕi )h , and mh
i ,i =

(ϕi , ϕi )h , i , j = 0, . . . ,M.
After direct calculation, we have

Proposition 4.3 The following results are valid for FEMs.

– FEM3 is exactly FVM3 (3.2) and (3.3), which works well.

– FEM2 is just FVM3 plus an anti-diffusion h2

2

f n
i− 1− 2 f n

i + f n
i+ 1

h2 at the left hand side,
which is induced by the numerical quadrature applying to the diffusion term.

– FEM1 is FVM3 plus an anti-diffusion h2

6τ
f n
i− 1− 2 f n

i + f n
i+ 1

h2 at the left hand side and

plus an term h2

6τ
f n− 1
i− 1 − 2 f n− 1

i + f n− 1
i+ 1

h2 at right hand side.

The existence of the anti-diffusion in FEM1 and FEM2 leads to non-stability and
fails to preserve the positiveness of the solution. The numerical results are depicted in
Fig. 11. In the left figure, the numerical solution by FEM1 becomes to negative very
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Fig. 11 Numerical solution by FEM with initial state f (x , 0) ∼ N ( 0.7, 0.012). Left: FEM1 at t = 0.001
with τ = 0.0001, h = 0.05; Right: FEM2 at t = 500 with τ = 0.01, h = 0.01
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early. In the right one, the numerical solution by FEM2 becomes very negative after a
long time.

Remark 4.4 Taking vh = 1 and then vh = x in FEM1 (4.2), we have that FEM1
preserve the total of mass (or total of probability) and the mass center (or expectation).
Unfortunately, it is not locally conservative and can not preserve the positiveness of
solution. M + τK is not a M-matrix for sufficiently small τ > 0.

In FEM3 (4.4), mass matrix is determined by numerical quadrature, while the
stiffness matrix is determined by exact integration. It is very tricky. Otherwise, anti-
diffusion will always be introduced if we calculate the mass matrix by exact integration
as FEM1, or calculate the stiffness matrix by quadrature as FEM2.

5 Conclusions

We have considered three FVM schemes, one central FDM scheme and three FEM
schemes for the genetic drift problem. FVM1 and FVM2 discretize the flux in con-
vection and diffusion form using upwind and central methods, respectively. FVM3
discretizes the flux as a whole using the central method. FDM1 is a central difference
scheme. FEM1,2, and 3 are P1 finite element methods with or without quadrature.

Numerical experiments and numerical analysis show that

– Only schemes, preserving all the probability, expectation and the positivity, yield
the correct fixation probabilities, such as FVM3 and FEM3.

– Any numerical viscosity will lead to an artificial equilibrium state. Comparing
with FVM3, FVM1 introduces a first-order of O (h) viscosity term since it is a
upwind scheme, while FVM2, as a central scheme, introduces a second-order of
O(h2) viscosity term. That is the reason why they are also unconditionally stable
and it takes quite different time for them to reach the wrong equilibrium state.

– All the three FVM schemes are unconditionally stable and preserve the total prob-
ability.

– FDM1, as a central difference scheme, is unconditionally unstable since it intro-
duces an anti-diffusion term of O(h2) order and the numerical Peclet’s number is
always larger than 1.

– FEM1 and FEM2 are unstable, since they introduce anti-diffusion terms. In FEM1,
anti-diffusion comes from the exact integration of the mass matrix, while in FEM2,
anti-diffusion comes from the quadrature error to the stiffness matrix.

All the complexity comes from diffusion degeneration and convection dominance.
For this kind of problem, the numerical method should be carefully chosen. Any
method with intrinsic numerical viscosity or anti-diffusion must be avoided, though
they might be ignorable for non-degenerated problems.

Recently, we construct another numerical method for the 1-d genetic drift problem
with pure diffusion or semi-selection by a framework of energetic variational approach
[3]. If a population or species of organisms typically includes multiple alleles at each
locus among various individuals, which is called multiple alleles, the problem is high
dimensional [8,17,19]. It is a great challenge to find a complete solution since the
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singularity will always be developed on the boundary surface rather than only two
points for 1-D case. The numerical methods for the multiple alleles include the fixation
phenomena will be addressed in the future work.
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