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NUMERICAL METHOD FOR MULTI-ALLELES GENETIC DRIFT
PROBLEM '**

SHIXIN XU '“99NFU CHEN '9%8899UN LIU 'S AND XINGYE YUE ‘P

\bfA \bfb \bfsdbétichififi\b€adlifes\befitdom fluctuations in the number of genes variants in a
population. One of the most popular models is the Wright--Fisher model. The diffusion limit of
this model is a degenerate diffusion-convection equation.  Due to the degeneration and convection,
Dirac singularities will always develop at the boundaries as time evolves, i.e., the fixation phenomenon
occurs. Theoretical analysis has proven that the weak solution of this equation, regarded as measure,
conserves total probability and expectations. In the current work, we propose a scheme for 3-alleles
model with absolute stability and generalize it to N-alleles case (N > 3). Our method can conserve
not only total  probability and expectations, but also positivity. We also prove that the discrete
solution converges to a measure as the mesh size tends to zero, which is the exact measure solution
of the original problem. The simulations illustrate that the probability density decays to zero first on
the inner nodes, then also on the edge nodes except at the three vertex nodes, on which the density
finally concentrates.  The results correctly predict the fixation probability and are consistent with
theoretical ones and with direct Monte Carlo simulations.

\bfK \bfe \bfym\liffwildiée dbfictlsfdithfiegenerate diffusion-convection equation, measure solu-
tion, complete solution, fixation

\bfA \bfM \bfS \bfs \bfu \bfb \bf566,\6FE2Bf02MFC \bfl \bfa \bfs \bfs \bfi filbfc \bfa \bft \bfi \bfo \bfn \bfs .

\bfD \bf@\bFF/.18M1211581

1. Introduction. Genetic drift is one of the mechanisms that cause changes
over time in frequencies of an allele, which is an alternative form of a gene located
at a specific position on a specific chromosome [14]. For example, there are different
alleles which determine the gene for blood type in humans. In a finite population,
the DNA coding of alleles determines distinct traits that can be passed from patents
to offspring through sexual reproduction and the allele's frequency shifts by random
chance. The simplest model of random genetic drift is known as the Wright--Fisher
model by Wright [19, 20] and Fisher[7]. Moran [8] and Kimura [9, 12, 10, 11] derived
the diffusion limit of random Wright--Fisher model. In this paper, we perform a
mathematical and numerical analysis of the model.

The model derivation and numerical analysis for 2-alleles could be found in [21,
6, 22]. In this work we focus on the genetic drift problem about 3-alleles, denoted by
A, B, and C, at a given locus in a population with a fixed size \scrN Then, there are a
total of \r := 2IscrN alleles in the population of any generatiotunder the assumptions
of the Wright--Fisher model, the random process is a discrete-time Markov chainLet
X« = (X k» Yk), where xk and yx denote the fractions of alleles A and B, respectively,
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in the kth generation. The transition probability is assumed to be

\Bigl( o \Biém \Bigri yi R f
= (L, Dy\pEm = XY (-x-y) i
(1.1) \BEKR-1 = ( = )\ G (X, y) it -1 -)]
foreach i, jlin \{ 0, 1, . nl}, Wwith i + j \legn\emd for each

_\bigl\{; L . \bigr\{
olin () | 4 jNin \{0,1,...,n\},i+llleq \=
Note that zk :=1 - x « - Yk is the fraction of allele C in the kth generation. Using the
transition probability, the first and second conditional moments could be given by

\Bbb& =Xk, . .
\Bigl( §ﬁ m’ 1(xx(\)Bigr)l Kblg(g_l(x 2 .xy \biggr)
Cov (xk+1 ’ xk+1 )\ grﬂ: (X! y) = KT: - Xy y-y2 .

Thus, \{x\}“ggy is a martingale process, which is called neutral. Waxman [18] proved
that for a neutral Wright--Fisher model without mutation, the phenomenon of fixation
will happen; that is, after sufficient generations, only one of the alleles remains in the
population. The fixation probability of each allele is equal to its initial fraction.

Given a population with a total of kralleles and a probability measure \myy of
the initial ~ distribution of \bfftXhe transition probability (1.1) determines a unique
stochastic process \{ lﬁf[ﬁ(. We scale the time by setting t = k/(2\#) and X {. = X}~
As YF\rightarrod] \}Zﬁg{ya[j{)%aches a continuous stochastic Markov process \{ X(t)\kq o0
Let Imu (t) be the probability distribution of X(t).It is regarded as a bounded functional
over continuous functions by, for any \zeta Owkﬁmega ),

\int \suMiigall \biggr]
(1.2) \Vlangle \mu Wetadtg yargley,®)dxdy + Vi(s, t)\zeta{)bltx \zeta R(t) -
\Omega i=1 0

and subject to an initial state as a point measure
(1.3) \gLt \delfa ¥R),

which means that the initial ~ fractions of three alleles are, respectively, X%, Y, and
20=1-x 0 -y% Here we denote

\Omega =\{ (x,y)| x>0,y>0,z:=1 - x - y>01} ,
(14) \bf(@;: (Or S)! ‘gqg: (S! O)! ‘bfigz(511 - S),
\Gamfrb s lin (0, 1)1}, Py =(1,0), P,=(0, 1), P3=(0,0).
Thus, u(\cdot , \cdot, t) is indeed the probability density of X(t); fod@mégara@amiia
on Pi. One can derive that (u, v 1, Vo, V3, Wy, W, W3) is a solution of an initial  value

problem of the following partial and ordinary differential equations [17]:

MUy 0 So-x Do Y-y Dy -2l () inBmega,

Vit (s, t) =[(s-s ?)vilss +u(\bfiey, 1), i=1,2,3, slin [0, 1],

(1.5) \Iew1 o \right] \Ief‘t}z(ﬁ 0+ vs(1, B \right]
Wa (1) = Vi(1, ) +v3(0,8) t>0.
Wa(t) v4(0, 1) + v2(0, t)

Here subscripts [\adof\bgot[lcgot[lcdatidnote partial derivatives. The initial state shall
be one of the following situations:



1772 SHIXIN XU, XINFU CHEN, CHUN LIU, AND XINGYE YUE

\bullet the initial point measure centers inside the domain, i.&, ¥%) \in \Omega ,

\left\
ix y, 0) =u’(x, y) := \delfa B), (x, y) \in \Omega ,

(1.6) Vi(s, 0)—v(s) =0, /—123
Wi(0)=wf:=0, i=1,2 3;

\bullet the initial point measure centers at one of the edges, i.&. % \in \Gamma

\Ieft\% 40 .
ux, ¥, 0) =u"(x, ) :==0, (x,y)lin \Omega,

Vi (s, 0) = v, (s) = \del, (sSo \in (0, 1)oiin \{ 1, 2, 31},
V/ (s 0) = vP(s) 0, %L \in \{1,2 3,
wi0)=w?y:=0, i=1,23;

(1.7)

\bullet the initial point measure centers at one of the vertexes, i.8, )% =P,

\Ieft\i 0 .
ulx,y, 0)=u(x, y):=0, (x, y)lin \Omega,
Vi(s, O)—v,():=0, i=1,23,

Wi (O)—W, =1, dglin \{1,2 3},

w; (0) w? =0, ilnopdin \{1,2, 3\}.

(1.8)

The density function f of iImu (t) can be expressed as

\sum
(1.9) f=u+ V,\Q@Jﬁna W \delta

=1 =1

Here \@glis.the line Dirac measure concentrated on the edge \Ganthé#elia the point
¢ measure concentrated on the vertex P i, which are defined as < \del@@.\phi >=
«GaPhi dgnd < \deftalphi >= \phj {6t any \phi \in\@hale pall fin (1.9) a complete
solution [21, 22] of the Wright--Fisher equation

(1.10) fr =\scrL £=[(x - x 2)f 1 - 2[xyf] x +[(y -y 2)flyy on\Bmega \times (O, \infty ).

To illustrate that fixation probabilities (v 1, Vo, V3, Wy, W, W) are related by the above
equation, we define the adjoint \sébf \scrL under th#ibner product by

(1.11) \SBfeta :=(x -¥\zeta 2xy\zeta(y -y 2)\zeta

A complete solution of (1.10) in terms of measure is defined as follows.

Definition 1.1, Let a probability measure \g1on \®mega be given as inAc8n-
plete solution of (1.10) with initial Measure \gus a family of ~ probability measures

i \mu ()\}\@mega such that for any T > 0 and any ¥eidtiega \times [0, T 1),

\Bigl\langle \B|gr\‘ﬂin‘@qgl\langle \Bigr\raBigklangléBigri\rangle
(1.12) \mu (T), \zeta (\cdot i (t)(\eded ta’i?é&gerl(dﬂdot \fpu\zeta (\cdot, 0)

Here C2.1 (\\Gmega \times [0, T ]) édrediensdraving continuous second order spatial
derivatives and first order time derivative.

This definition of a complete solution is equivalent to that \mu (t) is given by (1.2)
with a family of functions \{ u, v4, Vo, V3, Wy, W, W3\} satisfying (1.5) subject to one of
the initial states (1.6)--(1.8).
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Taking \zeta =wle obtain conservation of total probability. Taking \zeta (x, y, t) = x
and \zeta (x, y, t) = y, respectively, we obtain conservation of expectations

(1.13) (% )3 := \BbbH §X\Bbbg BX(x °, Y°) \forall t\geq O.

Tran, Hofrichter, and Jost in [16] solved the eigenproblem for the operator \scrL arfi'\scrL
constructed a solution via Fourier series, and showed that the solution satisfies, with
=1-\=x-\¥

A dth Vsl Vo Woo o ¥5) = (0,0, 0, O
This illustrates the fixation phenomenon of the Wright--Fisher model.

This paper is devoted to the design of a numerical scheme that provides a complete
solution. We intend to discretize (1.10) to obtain a complete solution given by (1.5).
One main contribution of this paper is to extend the original state space \\Gmeg?a alodBbbR
convert (1.10) to the following form:

\pahBigl( \Bign)salRigl(  \BighBiglariap AN \Bigr)

(114) Te=lserl fggu X 20 + mgidi &1+ ‘ariidpartialy Y|
wherez=1-x-yanda * =max\{a, 0} .We notice that in the literature, “"no-
flux"™ boundary conditions with certain specific meaning were frequently imposed on
the boundaries \{ x = 01}, \{ y = O\}and \{ z = 0\} . Here, we enlarge the state space to
\Bhbiich implies those *"no-flux™ boundary conditions. Please note that the no-flux
boundary conditions are also implied in the definition of (1.12). Also, we extend
the covariance matrix in such a way that the probability density is supported on the
state space \Bmangtiiaify so. We shall discretize (1.14) in a manner such that it is
symmetricin x, y, and z :=1 - x - y preserves the total probability, expectations,
and the positivity. Note that problem (1.10) is degenerated and there exists a second
order mixed derivative term. It is a considerably difficult task to discretize (1.10) in
its original form to obtain a monotonic scheme which maintains positivity (see [13]).

For two-alleles problem, the corresponding governing equation is

e =(x(1-x)H)  xx =(x(1-X)f x)x +((1-2x))

for x \in [0, 1] and t > 00Onecouldregard - x(1 - x)f x asadiffusionfluxand - (1 - 2x)f
as a convection flux. For the convection-dominated equation, the upwind scheme is
typically a good choice. However, the authors in [21] proved that an upwind scheme
will violate the conservation of expectations due to the numerical dissipation and
proposed an absolute stable central difference scheme based on finite volume method.
The method in [21] cannot be extended directly to the 3-allele problem. Instead,
based on the new formula (1.14), a numerical scheme is designed to find a complete
solution. The scheme preserves the discrete total probability, expectations, and posi-
tivity. Some estimates on discrete L"™4nd H' norms are given to show the absolute
stability of this scheme. Both the numerical analysis and simulations illustrate that
the probability density decays to zero first on the inner nodes, then also on the edge
nodes except at the three vertex nodes, on which the density finally concentrates.
The results correctly predict the fixation probability and are consistent with theoret-
ical ones and with direct Monte Carlo simulations. We also prove that the discrete
solution converges to a measure,which is the exact solution of problems (1.10) and
(1.3) as the mesh size tends to zero. It means that we prove again the existence of
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the solution of the problem, which was first proved in [16] by a constructive method.

Taking into account more factors such as selection or mutation [15], the method in
[2, 16] may fail since one can hardly construct the solution; our discrete method will

still work. This is another contribution of the paper. Furthermore, our method could
be easily extended to the case of N-alleles (N > 3).

This paper is organized as follows. The numerical scheme, corresponding conver-
gence, and stability analysis are presented in section 2In section 3, simulations with
different initial values are used to illustrate that the scheme could admit a complete
solution and capture the fixation phenomenon of 3-alleles evolution. The conclusions
and discussions are given in section 4.

2. Numerical analysis.

2.1. The numericalscheme.ln this section, we present the discretization of
the operator \scrL in (1.14)In fact, \scrL is indeed a surface diffusion operator on the
equilateral triangle S defined by

S=\{(x,y,z)| x\geg 0, x\geq 0,z\geq 0, x+y+z=1\}.
Also, IscrL is symmetric in x, yThus, we first discretize the original physical space by

equilateral triangle meshes and then project the equilateral triangle mesh of S onto
\\Gmega to design the corresponding discretization of fsake drigiisoR

0

J”': l

Fig. 1. Schematic of computational ~domain.

Let h = 1/n, \Delta t = T /m for some positive integers n and m be the spatial and
temporal mesh sizes, respectively We use grid points

Xi=ih, Yj=jh, Zj =1-x i -Yj, lk=KkDeltat.
We discretize (1.10) as follows:
f,f -f,jf'1 \Sum
= DE(\sjglﬁa i, j\in \BbbZ , k lin \BbbN ,

\Delta t =1

2.1)
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where we use notation \ﬁhi: \pf}i = \phi i » t&) and D%, D2, and D% are second order
finite differences along lines parallel to the x, y, and z level sets, respectively:
o i \Bi&;l\_{ _ ~ \Bigr\}
\S{W z", D‘1 \ff/"= h2 | - 2\d71l+ \pj]lu' ’
_ _ 1 \Bigl{ \Bigr\}
(2.2) \sjgmgat z+, D3\hi= - \dhi, - 2idhi+ \phi 4
, 1 \BL?I\{ ' _
\sjgmar y*, D2\dhi= o A, - 2idhi+ o, o

As to the initial values \{ f{ | (i, j) in \Bpb®e take the situation (1.6) (x% }°) lin \Omega as
an example. Assume that x° = j oh, Y0 = oh, then

\Bigr\}

(2.3) fRi . =h "% f9 =0if(i ) \net(i o Jo) in $BbbZ
Then we could obtain the initial total probability and expectations as follows:
\&tlh \&tftn \¥ilh
@ay o fpRe=1 Cxffhe=xO=w o yfphe=y0 =y
i,j= - \infty ij= - \infty ij= - \infty

We divide the spatial index (i, j) \in \BbinZo four groups:
1. Exterior nodes: \\Eﬁmegé(i, Nl i<0orj<Qori+j>n\}.
2. Interior nodes: \Gmedé(i, j) \in \Bbb2q i,1\leq j,i+j\leq n - 1} .
3. Interior edge nodes: \Gam\Galoogh \SEgiTh@aenena

\Gamfia )| 1leq jleg n -1},  \Gariitao)| 1\leg illeg n - 11},
\Gartfrthn - )] 1Vleq Neg n - 11} .
4. Vertex nodes:Pn = P} \cugg eugs P
Pl=(n0), P2=(0n), P?=(0,0)

Then, we have the following well-posedness theorem of the numerical scheme
(2.1)--(2.3).

Theorem 2.1.  The scheme (2.1)--(2.3) admits a unique nonnegative solution
£ 1.J) Vin BisbZ) \BbbN |} .

In addition, the following holds:
1. For exterior nodes, f,;? =0 each k \geq 1 and (i, j) mega
2. For interior nodes, \{ ¥ | (i, j) \in \O&y#n a closed system:

k -f k-1

j i K K K
(2.5) —Deita - D 102f)i + D2Wyzl)j + D30T ) -
3. Forinterioredgenodes,i.e.,forij,I=1,2,...,n - 1,
k R
fi,o 'fil,(01 =D2(XZf)I-< + szl_‘; +Xi-1f,-k.1,1,
\Deltat ' »o h
k _fk-1 Z-fk.+y»1fk.
26 0, 0, =D 2(yzf koo 1) 71 J-1714-1
(26 \Delta t 2021 )o, h
fro. - = D 2(xyf) +X/-1f/k.1,n-/ +Yn-/-1f/f(n./-1
\Delta t 30V in -1 h
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4. For vertex nodes,
foo X' _1-h \'?ng( rk \Bigr)
Deltat _h_ n-10 " Tn1
2.7) f§n f85" _1-n'BRIC, \Bion
. \Delta t h 0n-1 -1
foo ~foo _1-h \B|9I(+ ck \Bigr)
\Delta t h 01710 -
5. For each k \geq Y& | (i, j) lin \BBbE a mean preserving probability measure
in the sense that f ,f is nonnegative for any i, j and

\$tih 8, 8t
(2.8) f,/-h2:1, x,-f,-th:\ze, yjf,jh2:\¢
i,j= - \infty i,j= - \infty i,j= - \infty

Proof. 1. Wheni<0and k = 1, (2.1) can be written as

(2.9) fl =D2(y*z*f)]} \Deltart.
Thus, fj =0Owhenj<0orj>n - i. WhenO<j<n - j,onehasaclosedsystem
as \BbbA WESHE=f 1. fL. ..., f..i.4 1, sinceyz =0atj =Oorn - i. Due to

-D3(yz)j = -D3(y(1-x i -y))j =2, \BbbA is a tridiagohbmatrix, i.e., diagonal
entries are positive, off-diagonal entries are nonpositive, and the matrix is diagonal
dominated. Thus, F= W& the only solution. Then from (2.9), fl =0forj=0
orn-i. Hence,f] =0ifi<0. Byinduction, one can show thatfj =0 for each
k \geg 1 and i < OAfter a similar analysis for the case j <0 and the case i +j>n,

we conclude that f,-f =0 when (i, j) lin \\€§mega

2. The interior node system (2.5) follows from (2.1). Note that the right-hand
side of (2.5) depends only on the interior nodes, due to the fact that xyz = 0 on the
boundary of \OmElas, the system is closed, in a form as \BbBB=F - ', where F¥ is
a vector with all the unknowns f,-fj- , (i, /) \in \GQmeagd \BbbB is a seven-diagorettix.
Thanksto -D #(xz) = -D %(yz) = -D 3(xy) =2, BisaM-matrix. Then one has
that the system admits a unique solution and the solution is nonnegative if F - is
nonnegative.

3. The interior edge systems (2.6) follow from (2.1). When the interior system
(2.5) is solved, one has a closed system for interior edge unknowns at each eddech
linear system has a tridiagonal M-matrix. So the solution is nonnegative since the
interior unknowns have been shown to be nonnegative and unknowns at last time step
are assumed to be nonnegative.

4. The assertion follows from (2.1) and the fact that xyz = 0 on \partial \Omega .

5. The assertion follows by applying the following identity:

\sum \sum .
WhD3(sigifa=  (\sigfeP 5\
i if
to linear functions. This completes the proof. d

As to the numerical implementation, for each time step tk, k=1, 2, ..., one first
solves the closed system (2.5) for interior unknowns f,f (7, ) \in \@mibga solves the
three closed systems (2.6), respectively, for interior edge unknowns f ,f (7, ) lin \Gamma
and finally gets the unknowns at the three vertexes f,j‘ (i, ) \in R from (2.7).
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2.2. Convergence othe scheme and well-posedness tfe PDE. We
define

(2.10) US =f £ lonidy: v =hF [ e Wi =h2f5 e, ()

where 4 (a) is the indicate function: 1a(a) = 1ifalin A and 4(a) = 0 otherwise. Let
\phi i3 (BbliRes [0, T 1) be a test function with compact suppartd have continuous
second order spatial derivatives and first order time derivative. Multiplying (2.1) by

- \Ifﬂﬁ'z\Delta t and summing the resulting equation over j, j, and k, we obtain

\8um \&tin  \biggl \$um \biggr)
0= h2 \ghif k-1 - f ) + \Delta tiphP 3(\sigisa
k=1 ij= - \infty d=1
. . \biggh - \biggr)
\sunbigl \bigr) "sursum, ‘P! -\phi \sum . )
= WW"(:? ik ! fi WP - e i \sigBhi h2\Delta t
y L \Deltat
. k=1 i d=1
. . \biggh . \biggr)
\sumbig|  \bigr) Msum \sum , P\ -\ghi \sum . )
= W’;’f} -\ ! ujf Ll 5 fﬂﬁ; \sigrghi h2\Delta ¢
(.,)Vin \Omega k=1 (i,j)\in \Omega elta d=1
. . \bj ; \biggr)
\surbig|  \bigry®um \sum_ ‘PG _\pni \um :
@1y gy - i B v WH \si@rBhi mDelta ¢
(i,)lin \Gamma k=1 (ij)lin \Gamma elta d=1
\sumbig| . \bi m \sum , \dht - \ohi
+ m?%&vg - \ﬁ,ﬁwl’]” +gP\Flj W,’j M \Delta t.
o o \Delta t
(ij\in P n k=1 (ij)in P n

We define u MPef&t y, 1), V'P&! 1), w"'Pelg) i =1, 2, 3, as piecewise constant
functions

\lefg{’"De'(% v,y =u k, (x, y, ) \in ¥ \times ((k - 1)\Delta t,k\Delta ],

VIRl =v g (v, \in (y - 2.y + 2itimes ((k - 1)\Delta t,k\Delta ],

ol =v (x, ) \in (x - 2 X + ;]\times ((k - 1)\Delta t,K\Delta ],

(2.12) vePRl ) =v K. (s B lin (x - 3. X+ 2\iimes ((k - 1)\Delta t,k\Delta f],
wiPY =w k. tlin ((k - 1)\Delta t,k\Delta ],

wh'PeR =y K . tin ((k - 1)\Delta t,K\Delta ],
WPl =w &, tlin ((k - 1)\Delta t K\Delta f]

where Vf =(x i - % Xi + %] \times-(gh Y+ %] is the control volume of node (xi: ).

Denote Br := BAtimes [0, Fo}. a temporal function \psi \in°[, T ],we define its
piecewise interpolation / é{8$i in a backward way as in the definition (2.12). For a
spatial function \psi \ino(bmwged)afine its piecewise interpolations / a \psi in a central
way as in the definition (2.12) with B = \Omega ioi ¥Ghr@nt For any \psi lif (\Omeiga
we define its piecewise interpolations /5, \psi =Pei€\dsi with B = \Omegathen@amma
have

(2.13) \[\psi g/ \psi Mg ;) \rightamevs, Welta t \rightarrow 0 for B=\Omega , \Gamma

. i - i
" mFor \phi i 'GOmeiave denote by \square phiséiphi and by'\HﬂUare\ﬁﬁTﬂ +
%:1 \sigrpghi we have

(2.14) ]| (\square\wthi#fik - \rightasdw/\Delta t \rightarrow O.

max
(i,j)\in \Omégain [0, T
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With all of these notations, (2.11) can be rewritten as, for \phi \ir® §\Omega

\int \ing himd
0=\phij, - UMy, T)howhai(x, v, T)dxdy +  uMPeRE aequare \phi )dxdydt
\Bi ega .. 0 \Omega \Bigar
maiégl'I;T\DeI t \Int-\lmh\Del t gg]
- Vy (% T Yhcaphi (\bfitx (s), T)dsV (% Dl \gemfdsquare \phi )(\bfitx (s), t)dsdt
r},]Blggl[ \|nt—lpnme \Blggr]
(2.15) - wi P Y \phig) - W PeRPMSquare, \pbit ) (P
0
i gs'l[Jm \Bigl \Bign)  \sum, \Bigl \Bigr) 2199"]
+ Uk \sqfiaresGhdireh \Deltat+ Vi \sqiareshiglren\Delta t
k=1 (i,/)lin \Omega (i,)\in \Gamma
Ysum \sum  \Bigl \Bigr)
+ wj \quﬁaré\SﬂWPe \Delta t,

k=1 (ij)\in P n

where TP2'¥ - \Deltaatnd we have used \square Apdti the\mlitexes Pi, i = 1, 2, 3 and
V}} = W,, \equ 0 \foraIgrdgr to take the limit in the above equation, we need the
following weak aséompact result on Radon measures Proposition 1.48 in [5].

Lemma 2.2. Let\{ y\} be a nonnegative bounded sequence in(B). Then, \{ 4}

is weakly'*tompact in M (B), i.e., there exists a subsequenced; and u\in M(B) such
that

\int
(2.16) lim U, \phi dx = langle &, yaki \fahgey \phi \ind@),

k\rlghtarrg/v \lm"fy

where M(B) \subse} () rigghe set of nonnegative linear functional on Co(), ie
Radon measures.

Then, by Lemma 2.2 and the first equality of (2.8), we have, for any fixed T >0
anduptoasubsequence,that,whenh,\Delta t - \rightarrow 0,

uh\Betat\rightarrow w)inveEBrhegs (\Omega

uh\Deligty, T - \rightdproyy F) lin M (\Omega ) weakly* in M (\Omega ),
(2.17)  vMPetalirightairauw \Gamveakly* in M (\Gamma= 1, 2, 3,

v PRIRIT - \rigiidsiom)\tin M (\Gesakdg* in M (\Gamia1, 2, 3,

wh Pt \rightaigrom (o, T 1) weakly* in M ([0, T1),= 1, 2, 3,

w P \righta(Fowi 1, 2, 3,

where, to get the first five results, we set B = \Ome§amega\@&anhida T ], respectively
in Lemma 2.2.
Taking the limit of (2.15) along the subsequences and thanks to the inequalities
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(2.13) and (2.14), we find that, for any \phi \ir”'©\Omega

\int \inkint
0 =\landleyepilkx, y, 0)\rargley,-T )\phi (x, y, T )dxdy+ u(x, y, t)[\amischbhi Jdxdydt
: \Omega Lo 0 \Omega .
\Gurntl \inkint  \Bigl( _\Bigr) \Bigar]
(2.18) - (s, T )\phii(Bfiftyds - Va(s, 1) \aht \sERbhihfisy, t)dsdt
d=1 0 00 .
\§ur>]B|ggl[ \in \Biggr]
- Wt (T )\phic P) - Wq(t)\pHiPd, t)dt -
0

a=1

Thanks to the above equation, we have u(x, y, T)=\t(x, ¥, T), Vi(s, T) =\Wi(s, T),
and wi (T ) = W; (T ), just as the initial condition is fulfilled u(x, y, 0) = \delt4 () in the
weak senseThis means ¢'\°e{&y, T) - \rightarrow u(x,y, T)weakly*inM(\GT&& T)v- \rightarrow
Vi(s, T) weakly* in M (\Garamaw P - \rightaFovinn2.17).
Thus, (U, vi» Yo, V5, Wy, Wy, W3) is a weak solution of (1.5)--(1.6), i.e., a complete
solution of (1.10) and (1.3).
It was proved in [16] that there exists a unique distribution solution of the problem
(1.10) and (1.3). The uniqueness leads to the fact that the sequences u \Deltay/\Deliat
and w/"°®9'= 1, 2, 3 converge as a whole.

Theorem 2.3.  The piecewise numerical solutions (2.12) from the discrete scheme
(2.1) and (2.3) converge as the step size h, \Delta t eghtAedmiOis a solution of the
problem (1.5) and (1.6).

~ 2.3. Stability analysis of numericalchemeuln this section, we study the
L'""™2nd discrete H ' stability of the numerical scheme,and long-time behavior of
the numerical solution. The L "estimates illustrate that the numerical ~ solution at
the inner nodes and edge nodes exponentially decays to zero and all the mass (or
probability) is gradually concentrated to the three vertexes.

2.3.1. \Hﬁﬂ&tability and long-time behaviolf we define
M(t k) =max K,
(i,))lin \Omega

M(tx) = max _fh,
(i,)lin \Gamma

My(tk) = max\{X=f S h? x=f & h? x=f K h2\},

we have the following L"tability results.
Theorem 2.4. For each tlin (W,

(2.19) M) Veq (o) 6t '”“*G%D:.:f,”\,Bigr]

(2.20) M (1) VegM+(0) + fm(0) =R,
\Blgl[ 1 \Bl_gzrtl In(1+2\Delta t)

(2.21) Mz(t) \quM1(O) + ZM(O) e 2Deltat .

Proof. Fix k \geq Suppose (i, j) \in imegeinterior node such that f ,j‘ = M(t «).
Then we obtain from (2.5) that

Mt i) - F K1 \Bigl\{ \Bigr\}

M T i leqg Mk) D3(xz)ij +D3(yz)j +D35(xy)i =-6M(t k)
\Delta t ! 2 3 :
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Thus,

(t k-1 ) af_M@f_\ﬁ & In(1+6\Detta )
M t I eltat .
() Veqr et ? “OTr + Bl e

Suppose (i, j) in ¥Garaminterior edge node such that My(tx) = f ,fh By symme-
try, without loss of generality we can assume that i = 0. Then multiplying (2.6) by h
we find that

M(tk) - hf §

\Delta t Veq Mt )D3(vz)oj + (24 +Yj-1)M (tk)

=-2M 1(tk)+[1 - 2AIM(t  &).
Thus,

M(tk-1) , \Delta 1 - 2h]mKt
1+2\Deltat 1+ 2\Delta t

Mi(tk-1) , \Delta {1 - 2n]M(0)
1 + 2\Delta {1 + 2\Delta t)(1 + 6\Delta t)

M y(tx) le

By induction we obtain

M. () Ve M)  'sumBiglo\paRgR) (1 - 2n)\Deit 0)
1k e 2\Defta 1 _, 1+6\Deltat (1+2\Deftdt ?”‘

_ My, 1- ({58 (1-2mM(©)
(1 +2\Defta t) (1 + 2\Defta 1) 4

From (2.8) and the above uniform decay estimates we find that

fkh2 = fk h2 = fkh2 =\&
k\nghtarr’&g/ \infty k\r/ghtangﬂ/ \infty -V k\nghtarrgg/ \linfty

In addition, from (2.7) we find that

floh? -1k 1h2 2[M+1(0) + M (0)]
q— - G
0\le \Delta 1 \leq 2(1 - h)M(tk) \le (1 + 2\Defa )

Thus

AE K h2 = \Stdih mp2 _fm-1pH2
0 Ve -\ no - [f n0 ]

m=k+1
\biggl[ \biggh,

lleq 2\Béi0) + 2 M(0) !

oy (1+2\Defta 1)

_ M4(0) + 7M(0)
© (1+2\Deftat)

A similar estimate for f ,’,(O and f(’fo then completes the proof of Theorem 2.4.
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2.3.2. \bfifigtimatesNow we consider the discrete H' stability of the numer-
ical scheme.We introduce
e b - \phi
D7 \phi= / ’h D, \phi=

D3 \ppi= \gﬁq . \p,/w’ D; \npi= \ghi - \pi]/

. \nhi; - \phi . \ghi-\phi, .,
D3 \phi= 4m'd'1h il D \phi= 7‘7/7 ’;/7”1.

\ghi - \phl1 J

3

Interior estimatesSince Llj = 0 when (i, j) \not YOmedeave
-t TR \sum, uf -ub)
\Delta t T \Delta t
ij= - \infty 1]
\sum \BI% k\B|gr]
=2 D%(xzu)f +D 3(yzu)§ +D 2(xyu) §
i
\surgum \ \sum
=- Sdgm\ggm | BigRBgm B@QE Ty

i d=1

Multiplying both sides by \Delta t(1 + 6\Déltaignoring the nonnegative term involving
§ -uk-1|2, and summing over k, we then obtain the following estimate.

I
Proposition 2.5.  If welet uk =f ¥ when (i, j) in \QmisfAU = 0 otherwise,

then
\4iin \suhsu 1\
[1+6\Deffa1t\]3elstgt T&fgn%%[n \B@mlam \Q% Suml;}-’lzh%

k=1 i d=1 \ @i, /)\\/n \Omega
sum sum
In(1+6\Delf
sup € “eoaar | f [2h2\leq | 19 [2h2,
kigeg 0 ij (i,))\in \Omega

Boundary estimatesNext, we consider v = vff). Since ' = 0 when (i, 0) \not \in
\Gammbave

\g’iﬂhvk Vk -yk-1 \sum \B|g|( \Blgr)
% Vi DZ(XZV)IO +zj Uy, +Xi-1”f'<-1,1

1
\sum mk Bl
= X[1- x,] @%@#@gﬁ

\sum \sum
'2 |‘f2 Z/1Vk+XIVI+1 )Ul»]

i i

i= - \infty

Thus, by Cauchy's inequality ab \leq {& b?)/2, we obtain

\su , V- 12 \sum v (Bl \BID
M1-+\Delta/tff v 1V "12 i(1-x 1) E} §E§%§%}Jﬁ§§| m

\Delta t

\SUW|Z1I2+|x:|2|uﬁ|2 Ssdmdf 12 | (&)IZ Veq | M (O)F
2

\le \le
q ed 5h[1 + 12\Dédlta 1]

=1
Hence, multiplying both sides by (1 + \Defta'th\Delta t and summing over k, we obtain the
following proposition.
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Proposition 2.6.  Ifweletvf = hf X fori=1,...,n - 1andv ¥ = 0 otherwise,

then
\$tih Fsdm \biggHh| _ vk \Bi mlyk \ \g’ﬁfr]
(1 +\Defta’\Delta ¥; (1 - x i) \ ’ %@éﬁﬁ@%p@:

k=1 i=1

ksum
\leq h|¥|? +

i=1

IMOF
22

Discrete time derivative estimatélore particularly, if we set

fk¥1 _fkK
o = e
\Delta ¢
then, by linearity, \{gf \} satisfies the same linear system as that of f:
gff -9 k K k
~beia - 0 129 +D3(yzg); +D30xg); -
(2.22) 9 =D F(xzf ©)j + D 3(yzf °)j +D5(xyf )i -

Same as the above proposition, we obtain the following estimate for \{@\} .
Proposition 2.7.  Ifweletg? pe defined as in (2.22) and set

O)=max |4l M,0)=max h|¢|,
( ) @i)\in \Omegg 4( ) @i)\in \Gﬁmmg)

B@M
sup \
(i)in \Omega \ eltat T+ 6\Defta )
\ 1
0) + M50
sup @@%j§ 4(0) + IMa(0)
(i,f)\in \Gamma \Delta t (1 +2\Defta t)

3. Simulation results.n this section, we present several simulation results
by using the scheme (2.1)--(2.3). The results illustrate that the scheme is stable,
positivity-preserving, and could yield a complete solution. The results correctly pre-
dict the fixation probability and are consistent with both theoretical results and direct
Monte Carlo simulations.

then for each k \geq 0,

Example 1. In this example, we test the consistency between 3-alleles and 2-alleles
by choosing the fraction of allele C be zero in the two-dimensional (2D) model. The
initial value is chosen as \me& \delta (0.7, 0.3), and correspondingly

o - P9 ¢ ) = 07, 0.3)

(3-1) 0 otherwise,

which means ¢=)s%5 = (0.7, 0.3, 0). The mesh size is chosen to be h = 1/200 and the
time step is fixed as \Delta t = 1/1000this case, the 2D genetic problem is reduced to
the one-dimensional (1D) problem. Figure 2 shows the simulation results with this
initial value, which is not zero only on the boundary z = 0. Panels (a-d) confirm that
values of inner nodes are always zero and evolution only happens on the boundary
z=0. The dynamics of values on the boundary z = 0 shown in Figure 3 is consistent
with the results presented in [21] for the 1D genetic drift problem.
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(c) t=0.1 (d) t=5

Fig. 2. Numerical results withinitial  state (\x, yz ¥ =(0.7,0.3,0) at different timet =
0.01, 0.05, 0.1, 5. The step sizes are h = 1/200, \Delta t = 1/1000.

Example 2. In this example, we test two initial values with Dirac measures cen-
tered inside the domain \Omega to show the evolutiongaifil probabilities inside the
domain, on the edges and at vertex nodes, respectively.

We consider
\bi%;l\z{ .

"< if (xi»Y)=(0.4, 0.3),

foO =
(3-2) Y 0 otherwise,

which means (=5 = (0.4, 0.3, 0.3). Next, we consider
\biggl&{ )
2 if (xi»Y) =(0.3, 0.6),
0 otherwise,

which means (5% = (0.3, 0.6, 0.1).
In Figure 4, we plot the dynamics of genetic shift of alleles by the following
functions:

(3.3) fy =

\sum

m(tk) = fih2,
(i,j{\in \Omega
Pa(tk) = f,;(hzl d=1,23,
(i,j\\in \Gamma
sum
Qu(t) = fih?, d=1,2 3.

(iinP g
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« 300
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100} 739 ]
0.00246; 1.874e-13 o 0.001594
0 02 04 06 08 1 0 02 04 06 08 1
y y
(a) t=0.01 (b) t=0.05
4
1500 3x10 :
2.8e+004
25
1000 2
- - 15 1
1.2e+004
500 1 1
0.5
2.53
ol ‘ ‘ ‘ 0
0 02 04 06 08 1 0 02 04 06 08 1
y y
(c) t=0.1 (d)t=5
Fig. 3. One-dimensional numerical results with initial  state fO at different time t =

0.01, 0.05, 0.1, 5atz=0. The step sizes are h = 1/200, \Delta t = 1/1000.

The curves p1(t), p1(t) + p 2(t), P1(t) +p 2() +p 3(t), P1(t) +p 2() +p 3(t) + g 1 (1),
P1(t) + p2(t) + ps(t) + q1(8) + g 2(t), P1(t) + p2(t) +ps(t) +q4(f) +q2(t) +gs(t), and
1=pq(@) + p2(t) + p3(t) + g1(t) + g2(t) + g3(t) + m(t) are plotted on the same picture

to show the probabilities of mono allele and binary alleles populations. The left panel

is the results for the initial value (% y5&F = (0.4, 0.3, 0.3) and right panel is the results
for the initial value (Y y5x%F = (0.3, 0.6, 0.1). The simulation results for the initial

value (¢ )=%F = (0.4, 0.3, 0.3) are presented in Figure 5. Panels (a--d) illustrate that

the probability density on the inner nodes first decay to zero, then the nodes on the
edges decay to zero, and finally all of the mass are concentrated on three vertex nodes,
which is consistent with our theoretical results.

1 1
0.87 087
06" '\ 06 P,
045 . ~\~"’*~~--.-._.-__________________._._; 04t " o
0.2 o2l T
I N 0
0 500 1000 1500 2000 0 500 1000 1500 2000
Fig. 4. Dynamics of genetic shift of alleles. Left: (& )=¥ =(0.4,0.3,0.3). Right: ()58 =

(0.3, 0.6, 0.1). The step sizes are h = 1/200, \Delta t = 1/400.
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20 100

1500

1000

500

L

Fig. 5. Numerical results with initial state (\x, Y5 ¥ =(0.4,0.3,0.3) at different timet =
0.025, 0.125, 0.25, 12.5.The step sizes are h = 1/200, \Delta t = 1/400.-

Example 3. In this example, we make a comparison between the direct Monte
Carlo simulations for stochastic process (1.1) and numerical simulations for the PDE
model (1.10). The initial states are the same as in Example 2.  In Figure 6, the
dynamics of mass on points (P, P? and P?), edges (\(Ga@emachi3aramdinner domain
\Onadgél .10) are presented. Monte Carlo simulations are done with \=n = 2\scrN = 200
alleles, 2000 time steps, and 5000 sample pathsPDE simulation results are obtained
with mesh size h = 1/(2\scrN ), \bigtriangleipe¢se Bi@siatidns demonstrate that both
methods are consistent with each other.

4. Conclusions and discussiond/e have proposed a numerical method for
a 3-alleles genetic drift problem, which is a two-dimensional degenerate convection-
dominated parabolic equation. Due to the degeneration, there will always be Dirac
singularities developed at the boundary points (0, 0),(1, 0), and (0, 1).By introducing
a variable z = 1 - x - y and a directional derivative s | s pandhe scheme is
designed to be symmetric to variables x, ¥, z. The numerical scheme is proved to be
a stable scheme and could yield a complete solution, which preserves total probability,
expectations, and positivity. The numerical simulations with different initial values
illustrated the robustness of the scheme.

The method could be generated to N-alleles, N >3 case. For example, the
4-alleles genetic problem could be described by following [16],

_\Sum _\pj \bigr
(4.1) \pértial \ﬁiar?»g)‘qe/wij ) =gd on VBmega \times (0, \infty ),

ij=1
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05 n=200, (x,,Y,,2,) =(0.4,0.3,0.3) n=200,(X,.Y,,2,)=(0.4,0.3,0.3)
. MCp,
0471 08ty e H,
H -----MCMM
1 O pdep,
0.3r 0.6 H o pdep,
I8 O pdepg
02} e, 04f i o Moty
MCa, 1
MC 1
01} o pdeq, 0.2 g%,
O pdeq, ’f:\ﬂ
0 . . . O pdeg, 0 / “a SR
0 500 1000 1500 2000 0 500 1000 1500 2000

wea, |N=200,(X,,Y,,Z,)=(0.3,0.6,0.1)

MCaq,

n:200,(xn,yn,zn):(0.3,0.6,0.1 )

——MCp,
MCq,
0.6| 0 poeq, - ==MCp,
o pieq,| oA L08Rk e MCp,
0.5 © wpeealp” 4 e MC M,
O pdep,
0.4r O pdep,
O pde Py
0371 O pde Mm
0.2
0.1r o,
S, o
0¢ . . . SR s
0 500 1000 1500 2000 500 1000 1500 2000

Fig. 6. Comparison between Monte Carlo and PDE simulations. Top: (% )58 = (0.4, 0.3, 0.3).
Bottom: (¥ \& ¥ = (0.3, 0.6, 0.1). Left: Dynamics of mass at points P 1, P 2, P 3. Right: Dynamics

of mass at edges \Ga inner domain \Omeghaines: Monte Carlo simulation results.  Circles:
PDE simulation results.  The step sizes are h = 1/200, \Delta t = 1/400.

where \gekal, fori=j, \gekao, fori\agt \Omega =% (%) | x1 >0, x2 >0, x3 >

0, x4 \equiv 14- xX 5 - X3 >0\},and x¢, Xp, X3, X4 are the fractions of the four alleles,
respectively.

Similarly, due to the degeneration of the diffusion coefficient, the static solution
has Dirac singularities at boundary points (0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, O, 1),
i.e., one can observe the fixation phenomena. In order to design a stable scheme

which could yield the complete solution, we rewrite the original equation into a more
symmetric form:

\RaLtighrtiah X 4f) + \pgpabXaf) + \0gs@bX4f )
+ (\partidaR R, X of ) + (\partidPgPgLX st ) + (\partidpgPiRhX (f ).
In this new formula,

4.2)

a key feature is that we have six second order directional de-
rivatives, just along side the six edges of the simplex \Omé&¥a can approximate each

of them by a second order 3-points central difference scheme. For example, on an
equidistance mesh,

(\parti@gftid]; . = Uingjoak FUjqek - 2Uijk

h2 + O(h 2)7
. Uiivg k. +Uii 1+ - 2uij,
(artigghiy = —rvket Ttk ZSWIK o2,
. Uiqip. + Ui 1K+ - 2Uij
(\partimaPad;, = —Lk U/h12,/,k1 Yigk Oo(h?).

Then similar results can be obtained as for 3-alleles in section 2. Of course, to prove
the similar convergence as in Theorem 2.3, we have four scales now: keep the scale
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inside the domain, rescale by h on the four sides, rescale by # on the six edges, and
rescale by I at the four vertexes. For even more alleles problems N > 4, the method
still works. However, it is not a practical numerical scheme any more due to the curse
of dimension. Anyway, it could be used as a theoretical tool to prove the existence of
solution to the original problem by compactness argument.
In Theorem 2.3, it is proved that the numerical solution weakly\aséonverges to the
exact solution as a measure on \Omega \times (0, T), i.e., the whole domain with space and time.
It is possible that the exact solution f (x, t) in (1.9) is a probability measure in space
and continuous in time. To verify this, one need at least prove an enhanced result
that the numerical solution in (2.12) weakly ‘aséonverges to f (\cdot, t) in M (\Omega ) \forall t \in [0, T].
Similar results on measure solutions can be found in [1, 3, 4]. We will address this in
future work.
In this paper we have only considered the simplest genetic drift case, where the
only evolutionary force acting on a randomly mating diploid population is diffusion.
The mutation, migration, and selection forces can be taken into account to generate
analogous schemesWe will also discuss this in further work.
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