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NUMERICAL METHOD FOR MULTI-ALLELES GENETIC DRIFT
PROBLEM \ast 

SHIXIN XU \dagger , XINFU CHEN \ddagger , CHUN LIU \S , AND XINGYE YUE \P 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft .Genetic drift describes random fluctuations in the number of genes variants in a
population. One of the most popular models is the Wright--Fisher model. The diffusion limit of
this model is a degenerate diffusion-convection equation. Due to the degeneration and convection,
Dirac singularities will always develop at the boundaries as time evolves, i.e., the fixation phenomenon
occurs. Theoretical analysis has proven that the weak solution of this equation, regarded as measure,
conserves total probability and expectations. In the current work, we propose a scheme for 3-alleles
model with absolute stability and generalize it to N-alleles case (N > 3). Our method can conserve
not only total probability and expectations, but also positivity. We also prove that the discrete
solution converges to a measure as the mesh size tends to zero, which is the exact measure solution
of the original problem. The simulations illustrate that the probability density decays to zero first on
the inner nodes, then also on the edge nodes except at the three vertex nodes, on which the density
finally concentrates. The results correctly predict the fixation probability and are consistent with
theoretical ones and with direct Monte Carlo simulations.

\bfK \bfe \bfy  \bfw \bfo \bfr \bfd \bfs .multi-alleles genetic drift, degenerate diffusion-convection equation, measure solu-
tion, complete solution, fixation

\bfA \bfM \bfS  \bfs \bfu \bfb \bfj \bfe \bfc \bft  \bfc \bfl \bfa \bfs \bfs \bfi fi\bfc \bfa \bft \bfi \bfo \bfn \bfs .65M06, 65N22, 92B05

\bfD \bfO \bfI .10.1137/18M1211581

1. Introduction. Genetic drift is one of the mechanisms that cause changes
over time in frequencies of an allele, which is an alternative form of a gene located
at a specific position on a specific chromosome [14].For example, there are different
alleles which determine the gene for blood type in humans. In a finite population,
the DNA coding of alleles determines distinct traits that can be passed from patents
to offspring through sexual reproduction and the allele's frequency shifts by random
chance. The simplest model of random genetic drift is known as the Wright--Fisher
model by Wright [19, 20] and Fisher[7]. Moran [8] and Kimura [9, 12, 10, 11] derived
the diffusion limit of random Wright--Fisher model. In this paper, we perform a
mathematical and numerical analysis of the model.

The model derivation and numerical analysis for 2-alleles could be found in [21,
6, 22]. In this work we focus on the genetic drift problem about 3-alleles, denoted by
A, B, and C, at a given locus in a population with a fixed size \scrN  .Then, there are a
total of \=n := 2\scrN  alleles in the population of any generation.Under the assumptions
of the Wright--Fisher model, the random process is a discrete-time Markov chain.Let
Xk = (x k , yk ), where xk and yk denote the fractions of alleles A and B, respectively,
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in the kth generation. The transition probability is assumed to be

\BbbP 
\Bigl( 
Xk+1 = ( i

\=n
, j

\=n )
\bigm| \bigm| \bigm| Xk = (x, y)

\Bigr) 
=

x i yj (1 - x - y) \=n - i - j \=n!
i!j!(\=n - i - j)!

(1.1)

for each i, j \in  \{ 0, 1, . . . , \=n\}  with i + j \leq  \=n and for each

(x, y) \in 
\bigl\{ 

( i
\=n

, j
\=n ) |  i, j \in  \{ 0, 1, . . . , n\} , i + j \leq  \=n

\bigr\} 
.

Note that z k :=1 - x k  - yk is the fraction of allele C in the kth generation. Using the
transition probability, the first and second conditional moments could be given by

\BbbE (Xk+1 | Xk ) = X k ,

Cov
\Bigl( 

(X k+1 , Xk+1 )
\bigm| \bigm| \bigm| Xk = (x, y)

\Bigr) 
=

1
\=n

\biggl( 
x - x 2  - xy
 - xy y - y 2

\biggr) 
.

Thus, \{ Xk \} \infty 
k=0 is a martingale process, which is called neutral. Waxman [18] proved

that for a neutral Wright--Fisher model without mutation, the phenomenon of fixation
will happen; that is, after sufficient generations, only one of the alleles remains in the
population. The fixation probability of each allele is equal to its initial fraction.

Given a population with a total of \=n alleles and a probability measure \mu 0 of
the initial distribution of \bfitX \=n

0 , the transition probability (1.1) determines a unique
stochastic process \{ \bfitX \=n

k \} \infty 
k=0 . We scale the time by setting tk = k/(2\=n) and X \=n

t k = X \=n
k .

As \=n \rightarrow  \infty , \{ X\=n
t k

\} \infty 
k=0 approaches a continuous stochastic Markov process \{ X(t)\} t\geq 0.

Let \mu (t) be the probability distribution of X(t).It is regarded as a bounded functional
over continuous functions by, for any \zeta  \in  C0( \=\Omega ),

\langle \mu (t), \zeta \rangle  =
\int 

\Omega 
\zeta (x, y)u(x, y, t)dxdy +

3\sum 

i=1

\biggl[ \int 1

0
vi (s, t)\zeta (\bfitx i (s)ds + \zeta (Pi )wi (t)

\biggr] 
,(1.2)

and subject to an initial state as a point measure

\mu 0 = \delta (x0, y0),(1.3)

which means that the initial fractions of three alleles are, respectively, x0, y0, and
z0 =1 - x 0  - y 0. Here we denote

\Omega =\{ (x,y)| x>0,y>0,z:=1 - x - y>0\} ,
\bfitx 1(s) = (0, s), \bfitx 2(s) = (s, 0), \bfitx 3(s)=(s,1 - s),(1.4)

\Gamma i = \{ \bfitx i (s) |  s \in  (0, 1)\} , P1 = (1, 0), P2 = (0, 1), P3 = (0, 0).

Thus, u(\cdot , \cdot , t) is indeed the probability density of X(t) on \Omega , vi (\cdot , t) on \Gamma i , and w i (t)
on P i . One can derive that (u, v 1, v2, v3, w1, w2, w3) is a solution of an initial value
problem of the following partial and ordinary differential equations [17]:

\left\{ 
       

       

ut (x, y, t) =[(x - x 2)u]xx +[(y - y 2)u]yy  - 2[xyu] xy , (x, y) \in \=\Omega ,
vi,t (s, t) =[(s - s 2)vi ]ss + u(\bfitx i (s), t), i = 1, 2, 3, s \in  [0, 1],

\left[ 

 
w1(t)
w2(t)
w3(t)

\right] 

 

t

=

\left[ 

 
v2(1, t) + v3(1, t)
v1(1, t) + v3(0, t)
v1(0, t) + v2(0, t)

\right] 

 , t > 0.

(1.5)

Here subscripts [\cdot ]xx , [\cdot ]xy , [\cdot ]yy , [\cdot ]ss denote partial derivatives. The initial state shall
be one of the following situations:
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\bullet  the initial point measure centers inside the domain, i.e., (x0, y0) \in  \Omega ,
\left\{ 
 

 

u(x, y, 0) = u 0(x, y) := \delta (x0, y0), (x, y) \in  \Omega ,
vi (s, 0) = v 0

i (s) := 0, i = 1, 2, 3,
wi (0) = w 0

i := 0, i = 1, 2, 3;
(1.6)

\bullet  the initial point measure centers at one of the edges, i.e., (x0, y0) \in  \Gamma i 0 ,
\left\{ 
   

   

u(x, y, 0) = u 0(x, y) := 0, (x, y) \in  \Omega ,
vi 0 (s, 0) = v 0

i 0
(s) := \delta (s0), s0 \in  (0, 1), i0 \in  \{ 1, 2, 3\} ,

vi (s, 0) = v 0
i (s) := 0, i \not = i 0 \in  \{ 1, 2, 3\} ,

wi (0) = w 0
i := 0, i = 1, 2, 3;

(1.7)

\bullet  the initial point measure centers at one of the vertexes, i.e., (x0, y0) = P i 0 ,
\left\{ 
   

   

u(x, y, 0) = u 0(x, y) := 0, (x, y) \in  \Omega ,
vi (s, 0) = v 0

i (s) := 0, i = 1, 2, 3,
wi 0 (0) = w 0

i 0
:= 1, i 0 \in  \{ 1, 2, 3\} ,

wi (0) = w 0
i := 0, i \not = i0 \in  \{ 1, 2, 3\} .

(1.8)

The density function f of \mu (t) can be expressed as

f = u +
3\sum 

i=1

vi \delta \Gamma i +
3\sum 

i=1

wi \delta P i
.(1.9)

Here \delta \Gamma i is the line Dirac measure concentrated on the edge \Gamma i and \delta P i is the point
Dirac measure concentrated on the vertex P i , which are defined as < \delta \Gamma i , \phi  >=\int 

\Gamma i
\phi ds,and < \delta P i , \phi  >= \phi (Pi ) for any \phi  \in  C(\=\Omega ).We call f in (1.9) a complete

solution [21, 22] of the Wright--Fisher equation

f t =\scrL f:=[(x - x 2)f ] xx  - 2[xyf] xy +[(y - y 2)f ]yy on \=\Omega  \times  (0, \infty ).(1.10)

To illustrate that fixation probabilities (v 1, v2, v3, w1, w2, w3) are related by the above
equation, we define the adjoint \scrL \ast of \scrL  under the L2 inner product by

\scrL \ast \zeta :=(x - x2)\zeta xx  - 2xy\zeta xy +(y - y 2)\zeta yy .(1.11)

A complete solution of (1.10) in terms of measure is defined as follows.

Definition 1.1. Let a probability measure \mu 0 on \=\Omega  be given as in (1.3).A com-
plete solution of (1.10) with initial measure \mu 0 is a family of probability measures
\{ \mu (t)\}  on\=\Omega  such that for any T > 0 and any \zeta  \in  C2,1 ( \=\Omega  \times  [0, T ]),

\Bigl\langle 
\mu (T ), \zeta (\cdot , T )

\Bigr\rangle 
 - 

\int T

0

\Bigl\langle 
\mu (t), \zeta t (\cdot , t) + \scrL \ast \zeta  (\cdot , t)

\Bigr\rangle 
dt =

\Bigl\langle 
\mu 0, \zeta  (\cdot , 0)

\Bigr\rangle 
.(1.12)

Here C 2,1 ( \=\Omega  \times  [0, T ]) consists offunctions having continuous second order spatial
derivatives and first order time derivative.

This definition of a complete solution is equivalent to that \mu (t) is given by (1.2)
with a family of functions \{ u, v1, v2, v3, w1, w2, w3\}  satisfying (1.5) subject to one of
the initial states (1.6)--(1.8).
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Taking \zeta  = 1,we obtain conservation of total probability. Taking \zeta (x, y, t) = x
and \zeta (x, y, t) = y, respectively, we obtain conservation of expectations

(\=x, \=y) := \BbbE [Xt ] = \BbbE [X0] = (x 0, y0) \forall  t \geq  0.(1.13)

Tran, Hofrichter, and Jost in [16] solved the eigenproblem for the operator \scrL  and \scrL \ast ,
constructed a solution via Fourier series, and showed that the solution satisfies, with
\=z:=1 - \= x - \=y,

lim
t\rightarrow \infty 

(u, v1, v2, v3, w1, w2, w3) = (0, 0, 0, 0, \=x, \=y, \=z).

This illustrates the fixation phenomenon of the Wright--Fisher model.
This paper is devoted to the design of a numerical scheme that provides a complete

solution. We intend to discretize (1.10) to obtain a complete solution given by (1.5).
One main contribution of this paper is to extend the original state space \=\Omega  to \BbbR 2 and
convert (1.10) to the following form:

f t = \scrL f :=
\partial 2

\partial x2

\Bigl( 
x+ z+ f

\Bigr) 
+

\partial 2

\partial y2

\Bigl( 
y+ z+ f

\Bigr) 
+

\Bigl( \partial 
\partial x

 - 
\partial 
\partial y

\Bigr) 2\Bigl( 
x+ y+ f

\Bigr) 
,(1.14)

where z = 1 - x - y and a + = max\{ a, 0\} .We notice that in the literature, ``no-
flux"" boundary conditions with certain specific meaning were frequently imposed on
the boundaries \{ x = 0\} , \{ y = 0\} ,and \{ z = 0\} . Here, we enlarge the state space to
\BbbR 2, which implies those ``no-flux"" boundary conditions. Please note that the no-flux
boundary conditions are also implied in the definition of (1.12). Also, we extend
the covariance matrix in such a way that the probability density is supported on the
state space \=\Omega  ifinitially so. We shall discretize (1.14) in a manner such that it is
symmetric in x, y, and z :=1 - x - y preserves the total probability, expectations,
and the positivity. Note that problem (1.10) is degenerated and there exists a second
order mixed derivative term. It is a considerably difficult task to discretize (1.10) in
its original form to obtain a monotonic scheme which maintains positivity (see [13]).

For two-alleles problem, the corresponding governing equation is

f t (x,t)=(x(1 - x)f) xx =(x(1 - x)f x )x +((1 - 2x)f) x

for x \in  [0, 1] and t > 0.Onecouldregard - x(1 - x)f x asadiffusionfluxand - (1 - 2x)f
as a convection flux. For the convection-dominated equation, the upwind scheme is
typically a good choice. However, the authors in [21] proved that an upwind scheme
will violate the conservation of expectations due to the numerical dissipation and
proposed an absolute stable central difference scheme based on finite volume method.

The method in [21] cannot be extended directly to the 3-allele problem. Instead,
based on the new formula (1.14), a numerical scheme is designed to find a complete
solution. The scheme preserves the discrete total probability, expectations, and posi-
tivity. Some estimates on discrete L\infty and H 1 norms are given to show the absolute
stability of this scheme. Both the numerical analysis and simulations illustrate that
the probability density decays to zero first on the inner nodes, then also on the edge
nodes except at the three vertex nodes, on which the density finally concentrates.
The results correctly predict the fixation probability and are consistent with theoret-
ical ones and with direct Monte Carlo simulations. We also prove that the discrete
solution converges to a measure,which is the exact solution of problems (1.10) and
(1.3) as the mesh size tends to zero. It means that we prove again the existence of
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the solution of the problem, which was first proved in [16] by a constructive method.
Taking into account more factors such as selection or mutation [15], the method in
[2, 16] may fail since one can hardly construct the solution; our discrete method will
still work. This is another contribution of the paper. Furthermore, our method could
be easily extended to the case of N-alleles (N > 3).

This paper is organized as follows.The numerical scheme, corresponding conver-
gence, and stability analysis are presented in section 2.In section 3, simulations with
different initial values are used to illustrate that the scheme could admit a complete
solution and capture the fixation phenomenon of 3-alleles evolution. The conclusions
and discussions are given in section 4.

2. Numerical analysis.

2.1. The numericalscheme.In this section, we present the discretization of
the operator \scrL  in (1.14).In fact, \scrL  is indeed a surface diffusion operator on the
equilateral triangle S defined by

S = \{ (x, y, z) |  x \geq  0, x \geq  0, z \geq  0, x + y + z = 1\} .

Also, \scrL  is symmetric in x, y, z.Thus, we first discretize the original physical space by
equilateral triangle meshes and then project the equilateral triangle mesh of S onto
\=\Omega  to design the corresponding discretization of \scrL  on \BbbR 2; see Figure 1.

Fig. 1. Schematic of computational domain.

Let h = 1/n, \Delta t = T /m for some positive integers n and m be the spatial and
temporal mesh sizes, respectively.We use grid points

x i = ih, yj = jh, zij =1 - x i  - y j , tk = k\Delta t.

We discretize (1.10) as follows:

f k
ij  - f k - 1

ij

\Delta t
=

3\sum 

d=1

D 2
d(\sigma df )k

ij , i, j \in  \BbbZ , k \in  \BbbN ,(2.1)
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where we use notation \phi k
ij = \phi k

i,j = \phi (xi , yj , tk ) and D 2
1 , D2

2 , and D 2
3 are second order

finite differences along lines parallel to the x, y, and z level sets, respectively:

\sigma 1 = x + z+ , D 2
1 \phi k

ij =
1
h2

\Bigl\{ 
\phi k

i+1,j  - 2\phi k
ij + \phi k

i - 1,j

\Bigr\} 
,

\sigma 2 = y + z+ , D 2
2 \phi k

ij =
1
h2

\Bigl\{ 
\phi k

i,j+1  - 2\phi k
ij + \phi k

i,j - 1

\Bigr\} 
,(2.2)

\sigma 3 = x + y+ , D 2
3 \phi k

ij =
1
h2

\Bigl\{ 
\phi k

i+1,j - 1  - 2\phi k
ij + \phi k

i - 1,j+1

\Bigr\} 
.

As to the initial values \{ f 0
ij |  (i, j) \in  \BbbZ 2\} , we take the situation (1.6) (x 0, y0) \in  \Omega  as

an example. Assume that x0 = i 0h, y0 = j 0h, then

f 0
i 0 ,j 0

= h  - 2; f 0
ij = 0 if (i, j) \not = (i 0, j0) \in  \BbbZ 2.(2.3)

Then we could obtain the initial total probability and expectations as follows:
\infty \sum 

i,j= - \infty 

f 0
ij h2 = 1,

\infty \sum 

i,j= - \infty 

x i f 0
ij h2 = x 0 = \=x,

\infty \sum 

i,j= - \infty 

yj f 0
ij h2 = y 0 = \=y.(2.4)

We divide the spatial index (i, j) \in  \BbbZ 2 into four groups:
1. Exterior nodes: \=\Omega c

n := \{ (i, j) |  i < 0 or j < 0 or i + j > n\} .
2. Interior nodes: \Omega n := \{ (i, j) \in  \BbbZ 2| 1\leq i,1\leq j,i+j\leq n - 1\} .
3. Interior edge nodes: \Gamma n = \Gamma 1

n \cup  \Gamma 2
n \cup  \Gamma 3

n , where

\Gamma 1
n =\{ (0,j)| 1\leq j\leq n - 1\} , \Gamma 2

n =\{ (i,0)| 1\leq i\leq n - 1\} ,

\Gamma 3
n =\{ (l,n - l)| 1\leq l\leq n - 1\} .

4. Vertex nodes:Pn = P 1
n \cup  P2

n \cup  P3
n ,

P 1
n = (n, 0), P 2

n = (0, n), P 3
n = (0, 0).

Then, we have the following well-posedness theorem of the numerical scheme
(2.1)--(2.3).

Theorem 2.1. The scheme (2.1)--(2.3) admits a unique nonnegative solution

\{ fkij | (i, j) \in  \BbbZ 2, k \in  \BbbN \} .

In addition, the following holds:
1. For exterior nodes, f k

ij = 0 each k \geq  1 and (i, j) \in \=\Omega c
n .

2. For interior nodes, \{ f k
i,j |  (i, j) \in  \Omega n \}  form a closed system:

f k
ij  - f k - 1

ij

\Delta t
= D 2

1(xzf ) k
ij + D 2

2(yzf ) k
ij + D 2

3(xyf ) k
ij .(2.5)

3. Forinterioredgenodes,i.e.,fori,j,l=1,2,...,n - 1,

f k
i,0  - f k - 1

i,0

\Delta t
= D 2

1(xzf ) k
i,0 +

zi,1 f k
i1 + x i - 1 f k

i - 1,1
h

,

f k
0,j

 - f k - 1
0,j

\Delta t
= D 2

2(yzf ) k
0,j +

z1,j f k
1j + y j - 1 f k

1,j - 1
h

,(2.6)

f k
l,n - l  - f k - 1

l,n - l

\Delta t
= D 2

3(xyf ) k
l,n - l +

x l - 1 f k
l - 1,n - l + y n - l - 1 f k

l,n - l - 1
h

.
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4. For vertex nodes,

f k
n,0  - f k - 1

n,0

\Delta t
=

1 - h
h

\Bigl( 
f k

n - 1,0 + f k
n - 1,1

\Bigr) 
,

f k
0,n

 - f k - 1
0,n

\Delta t
=

1 - h
h

\Bigl( 
f k

0,n - 1 + f k
1,n - 1

\Bigr) 
,(2.7)

f k
0,0  - f k - 1

0,0

\Delta t
=

1 - h
h

\Bigl( 
f k

0,1 + f k
1,0

\Bigr) 
.

5. For each k \geq  1,\{ fkij |  (i, j) \in  \BbbZ 2\}  is a mean preserving probability measure
in the sense that f k

ij is nonnegative for any i, j and

\infty \sum 

i,j= - \infty 

f k
ij h2 = 1,

\infty \sum 

i,j= - \infty 

x i f
k
ij h2 = \=x,

\infty \sum 

i,j= - \infty 

yj f k
ij h2 = \=y.(2.8)

Proof. 1. When i < 0 and k = 1, (2.1) can be written as

f 1
ij = D 2

2(y+ z+ f )1
ij \Delta t.(2.9)

Thus, f 1
ij =0whenj<0orj>n - i. When0<j<n - i,onehasaclosedsystem

as \BbbA F =\vec{}0 for F = [f 1
i1 , f 1

i2 , . . . , f1
i,n - i - 1 ]T , sinceyz =0atj =0orn - i. Due to

 - D2
2(yz) ij =  - D 2

2(y(1 - x i  - y)) j = 2, \BbbA  is a tridiagonalM-matrix, i.e., diagonal
entries are positive, off-diagonal entries are nonpositive, and the matrix is diagonal
dominated. Thus, F = \vec{}0 is the only solution. Then from (2.9), f 1

ij = 0 for j = 0
orn - i. Hence, f 1

ij = 0 if i < 0. By induction, one can show that f k
ij = 0 for each

k \geq  1 and i < 0.After a similar analysis for the case j < 0 and the case i + j > n,
we conclude that f k

ij = 0 when (i, j) \in \=\Omega c
ij .

2. The interior node system (2.5) follows from (2.1). Note that the right-hand
side of (2.5) depends only on the interior nodes, due to the fact that xyz = 0 on the
boundary of \Omega .Thus, the system is closed, in a form as \BbbB Fk = F k - 1 , where F k is
a vector with all the unknowns f k

i,j , (i, j) \in  \Omega n , and \BbbB  is a seven-diagonalmatrix.
Thanks to  - D 2

1(xz) =  - D 2
2(yz) =  - D 2

3(xy) = 2, B is a M-matrix. Then one has
that the system admits a unique solution and the solution is nonnegative if F k - 1 is
nonnegative.

3. The interior edge systems (2.6) follow from (2.1). When the interior system
(2.5) is solved, one has a closed system for interior edge unknowns at each edge.Each
linear system has a tridiagonal M-matrix. So the solution is nonnegative since the
interior unknowns have been shown to be nonnegative and unknowns at last time step
are assumed to be nonnegative.

4. The assertion follows from (2.1) and the fact that xyz = 0 on \partial \Omega .
5. The assertion follows by applying the following identity:

\sum 

ij

\phi ij D 2
d(\sigma d f )k

ij =
\sum 

ij

(\sigma d f )k
ij D 2

d \phi ij

to linear functions. This completes the proof.
As to the numerical implementation, for each time step t k , k = 1, 2, . . . , one first

solves the closed system (2.5) for interior unknowns f k
ij , (i, j) \in  \Omega n , then solves the

three closed systems (2.6), respectively, for interior edge unknowns f k
ij , (i, j) \in  \Gamma n ,

and finally gets the unknowns at the three vertexes f k
ij , (i, j) \in  Pn from (2.7).
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2.2. Convergence ofthe scheme and well-posedness ofthe PDE. We
define

uk
ij = f k

ij 1\Omega n (i,j) , vk
ij = hf k

ij 1\Gamma n (i,j) , wk
ij = h 2f k

ij 1Pn (i,j) ,(2.10)

where 1A (a) is the indicate function: 1A (a) = 1 if a \in  A and 1A (a) = 0 otherwise. Let
\phi  \in  C2,1

c (\BbbR 2 \times  [0, T ]) be a test function with compact support,and have continuous
second order spatial derivatives and first order time derivative. Multiplying (2.1) by
 - \phi k

ij h2\Delta t and summing the resulting equation over i, j, and k, we obtain

0 =
m\sum 

k=1

\infty \sum 

i,j= - \infty 

h2
\biggl( 

\phi k
ij (f k - 1

ij  - f k
ij ) + \Delta t\phi k

ij

3\sum 

d=1

D 2
d (\sigma d f )k

ij

\biggr) 

=
\sum 

i,j

\bigl( 
\phi 1

ij f 0
ij  - \phi m

ij f m
ij

\bigr) 
h2 +

m - 1\sum 

k=1

\sum 

i,j

f k
ij

\biggl( \phi k+1
ij  - \phi k

ij

\Delta t
+

3\sum 

d=1

\sigma dD 2
d \phi k

ij

\biggr) 
h2\Delta t

=
\sum 

(i,j)\in \Omega n

\bigl( 
\phi 1

ij u0
ij  - \phi m

ij um
ij

\bigr) 
h2 +

m - 1\sum 

k=1

\sum 

(i,j)\in \Omega n

uk
ij

\biggl( \phi k+1
ij  - \phi k

ij

\Delta t
+

3\sum 

d=1

\sigma dD 2
d \phi k

ij

\biggr) 
h2\Delta t

+
\sum 

(i,j)\in \Gamma n

\bigl( 
\phi 1

ij v0
ij  - \phi m

ij vm
ij

\bigr) 
h +

m - 1\sum 

k=1

\sum 

(i,j)\in \Gamma n

vk
ij

\biggl( \phi k+1
ij  - \phi k

ij

\Delta t
+

3\sum 

d=1

\sigma dD 2
d \phi k

ij

\biggr) 
h\Delta t(2.11)

+
\sum 

(i,j)\in P n

\bigl( 
\phi 1

ij w0
ij  - \phi m

ij wm
ij

\bigr) 
+

m - 1\sum 

k=1

\sum 

(i,j)\in P n

wk
ij

\phi k+1
ij  - \phi k

ij

\Delta t
\Delta t.

We define u h,\Delta t(x, y, t), vh,\Delta t
i (s, t), wh,\Delta t

i (t), i = 1, 2, 3, as piecewise constant
functions

\left\{ 
          

          

uh,\Delta t(x, y, t) = u k
ij , (x, y, t) \in  Vij \times ((k - 1)\Delta t,k\Delta t],

vh,\Delta t
1 (y, t) = v k

0,j
, (y, t) \in  (yj  - h

2
, yj + h

2 ]\times ((k - 1)\Delta t,k\Delta t],
vh,\Delta t

2 (x, t) = v k
i,0 , (x, t) \in  (xi  - h

2
, xi + h

2 ]\times ((k - 1)\Delta t,k\Delta t],
vh,\Delta t

3 (s, t) = v k
i,n - i , (s, t) \in  (xi  - h

2
, xi + h

2 ]\times ((k - 1)\Delta t,k\Delta t],
wh,\Delta t

1 (t) = w k
n,0 , t\in ((k - 1)\Delta t,k\Delta t],

wh,\Delta t
2 (t) = w k

0,n
, t\in ((k - 1)\Delta t,k\Delta t],

wh,\Delta t
3 (t) = w k

0,0 , t\in ((k - 1)\Delta t,k\Delta t],

(2.12)

where Vij = (x i  - h
2

, xi + h
2 ] \times  (yj  - h

2
, yj + h

2 ] is the control volume of node (x i , yj ).
Denote B T := \=B \times  [0, T ].For a temporal function \psi  \in  C0[0, T ],we define its

piecewise interpolation I \Delta t
T \psi  in a backward way as in the definition (2.12). For a

spatial function \psi  \in  C0( \=\Omega ),we define its piecewise interpolations I h
B \psi  in a central

way as in the definition (2.12) with B = \Omega  or \Gamma i , i = 1, 2, 3. For any \psi  \in  C0(\Omega T ), if
we define its piecewise interpolations IB T \psi  = I\Delta t

T \circ  Ih
B \psi  with B = \Omega  or \Gamma i , then we

have

\| \psi  - IB T
\psi \| L \infty (B T ) \rightarrow  0,as h, \Delta t \rightarrow  0 for B = \Omega , \Gamma i , or Pi .(2.13)

For \phi  \in  C2,1 (\Omega T ), if we denote by \square \phi  = \phi t + \scrL \ast \phi  and by \square h \phi k
ij =

\phi k+1
ij  - \phi k

ij

\Delta t +
\sum 3

d=1 \sigma dD 2
d \phi k

ij , we have

max
(i,j)\in \Omega n ,t k \in [0,T ]

| (\square \phi )k
ij  - \square h \phi k

ij |  - \rightarrow 0,as h, \Delta t \rightarrow  0.(2.14)
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With all of these notations, (2.11) can be rewritten as, for \phi  \in  C2,1 (\Omega T ),

0 = \phi 1
i 0 ,j 0

 - 
\int 

\Omega 
uh,\Delta t(x, y, T )I\Omega \phi (x, y, T )dxdy +

\int T \prime 

0

\int 

\Omega 
uh,\Delta tI \Omega T (\square \phi )dxdydt

 - 
3\sum 

d=1

\Biggl[ \int 1

0
vh,\Delta t

d (s, T )I\Gamma d \phi (\bfitx (s),T)ds - 
\int T \prime 

0

\int 1

0
vh,\Delta t

d (s, t)I \Gamma d,T (\square \phi )(\bfitx (s), t)dsdt

\Biggr] 

 - 
3\sum 

d=1

\Biggl[ 
wh,\Delta t

d (T )\phi (Pd ,T) - 
\int T \prime 

0
wh,\Delta t

d I \Delta t
T (\square \phi )(Pd , t)dt

\Biggr] 

(2.15)

+
m - 1\sum 

k=1

\Biggl[ 
\sum 

(i,j)\in \Omega n

uk
ij

\Bigl( 
\square \phi k

ij  - \square h \phi k
ij

\Bigr) 
h2\Delta t +

\sum 

(i,j)\in \Gamma n

vk
ij

\Bigl( 
\square \phi k

ij  - \square h \phi k
ij

\Bigr) 
h\Delta t

\Biggr] 

+
m - 1\sum 

k=1

\sum 

(i,j)\in P n

wk
ij

\Bigl( 
\square \phi k

ij  - \square h \phi k
ij

\Bigr) 
\Delta t,

where T \prime = T  - \Delta t,and we have used \square \phi  = \phi t at the vertexes P i , i = 1, 2, 3 and
v0

ij = w 0
ij \equiv  0 \forall (i, j).In order to take the limit in the above equation, we need the

following weak\ast compact result on Radon measures Proposition 1.48 in [5].

Lemma 2.2. Let \{ un \}  be a nonnegative bounded sequence in L1(B). Then, \{ un \} 
is weakly \ast compact in M (B), i.e., there exists a subsequence un k and u \in  M(B) such
that

lim
k\rightarrow \infty 

\int 

B
un k \phi dx = \langle u, \phi \rangle M(B),C 0

c (B) for any \phi  \in  C0
c (B),(2.16)

where M(B) \subset  (C0
c (B)) \prime is the set of nonnegative linear functional on C 0

c (B), i.e.,
Radon measures.

Then, by Lemma 2.2 and the first equality of (2.8), we have, for any fixed T > 0
anduptoasubsequence,that,whenh,\Delta t - \rightarrow 0,

uh,\Delta t - \rightarrow u\in M(\Omega T ) weakly* in M (\Omega T ),
uh,\Delta t(x,y,T) - \rightarrow \~u(x, y, T ) \in  M (\Omega ) weakly* in M (\Omega ),
vh,\Delta t

i  - \rightarrow vi \in  M(\Gamma i,T ) weakly* in M (\Gamma i,T ), i = 1, 2, 3,(2.17)
vh,\Delta t

i (s,T) - \rightarrow \~vi (s, T ) \in  M (\Gamma i ) weakly* in M (\Gamma i ), i = 1, 2, 3,

wh,\Delta t
i  - \rightarrow wi \in  M ([0, T ]) weakly* in M ([0, T ]),i = 1, 2, 3,

wh,\Delta t
i (T) - \rightarrow  \~wi (T ), i = 1, 2, 3,

where, to get the first five results, we set B = \Omega T , \Omega , \Gamma i,T , \Gamma i , and [0, T ], respectively
in Lemma 2.2.

Taking the limit of (2.15) along the subsequences and thanks to the inequalities
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(2.13) and (2.14), we find that, for any \phi  \in  C2,1 (\Omega T ),

0 =\langle \delta (x0, y0),\phi (x,y,0)\rangle  - 
\int 

\Omega 
\~u(x, y, T )\phi (x, y, T )dxdy+

\int T

0

\int 

\Omega 
u(x, y, t)[\phi t+\scrL \ast \phi ]dxdydt

 - 
3\sum 

d=1

\Biggl[ \int 1

0
\~vd(s, T )\phi (\bfitx d(s),T)ds - 

\int T

0

\int 1

0
vd(s, t)

\Bigl( 
\phi t + \scrL \ast \phi 

\Bigr) 
(\bfitx d(s), t)dsdt

\Biggr] 

(2.18)

 - 
3\sum 

d=1

\Biggl[ 

\~wd(T )\phi (Pd,T) - 
\int T

0
wd(t)\phi t (Pd, t)dt

\Biggr] 
.

Thanks to the above equation, we have u(x, y, T ) = \~u(x, y, T ), vi (s, T ) = \~vi (s, T ),
and wi (T ) = \~wi (T ), just as the initial condition is fulfilled u(x, y, 0) = \delta (x0, y0) in the
weak sense.This means uh,\Delta t(x,y,T) - \rightarrow u(x,y,T)weakly*inM(\Omega ),vh,\Delta t

i (s,T) - \rightarrow 
vi (s, T ) weakly* in M (\Gamma i ), and w h,\Delta t

i (T) - \rightarrow wi (T ) in (2.17).
Thus, (u, v1, v2, v3, w1, w2, w3) is a weak solution of (1.5)--(1.6), i.e., a complete

solution of (1.10) and (1.3).
It was proved in [16] that there exists a unique distribution solution of the problem

(1.10) and (1.3). The uniqueness leads to the fact that the sequences u h,\Delta t, vh,\Delta t
i ,

and wh,\Delta t
i , i = 1, 2, 3 converge as a whole.

Theorem 2.3. The piecewise numerical solutions (2.12) from the discrete scheme
(2.1) and (2.3) converge as the step size h, \Delta t \rightarrow  0.And the limit is a solution of the
problem (1.5) and (1.6).

2.3. Stability analysis of numericalscheme.In this section, we study the
L \infty and discrete H 1 stability of the numerical scheme,and long-time behavior of
the numerical solution. The L \infty estimates illustrate that the numerical solution at
the inner nodes and edge nodes exponentially decays to zero and all the mass (or
probability) is gradually concentrated to the three vertexes.

2.3.1. \bfitL \infty stability and long-time behavior.If we define

M(t k ) = max
(i,j)\in \Omega n

f k
ij ,

M 1(t k ) = max
(i,j)\in \Gamma n

f k
ij h,

M 2(t k ) = max\{ \=x - f k
n0 h2, \=y - f k

0n
h2, \=z - f k

00h2\} ,

we have the following L\infty stability results.
Theorem 2.4. For each t \in  \{ tk \} \infty 

k=0 ,

M(t) \leq  M(0)e - 6t ln(1+6\Delta t)
6\Delta t ,(2.19)

M 1(t) \leq 
\Bigl[ 
M 1(0) + 1

4 M(0)
\Bigr] 
e - 2t ln(1+2\Delta t)

2\Delta t ,(2.20)

M 2(t) \leq 
\Bigl[ 
M 1(0) + 1

4 M(0)
\Bigr] 
e - 2t ln(1+2\Delta t)

2\Delta t .(2.21)

Proof. Fix k \geq  1.Suppose (i, j) \in  \Omega n is an interior node such that f k
ij = M(t k ).

Then we obtain from (2.5) that

M(t k ) - f k - 1
ij

\Delta t
\leq  M(tk )

\Bigl\{ 
D 2

1(xz) ij + D 2
2(yz) ij + D 2

3(xy) ij

\Bigr\} 
= - 6M(t k ).
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Thus,

M(t k ) \leq 
M(t k - 1 )
1 + 6\Delta t

\leq  \cdot  \cdot  \cdot  \leq M(0)
(1 + 6\Delta t)k = M(0)e  - 6t k

ln(1+6\Delta t)
6\Delta t .

Suppose (i, j) \in  \Gamma n is an interior edge node such that M1(t k ) = f k
ij h. By symme-

try, without loss of generality we can assume that i = 0. Then multiplying (2.6) by h
we find that

M 1(t k ) - hf k - 1
0j

\Delta t
\leq  M1(t k )D 2

2 (yz) 0j + (z 1j + y j - 1 )M (t k )

= - 2M 1(t k )+[1 - 2h]M(t k ).

Thus,

M 1(t k ) \leq 
M 1(t k - 1 )
1 + 2\Delta t

+
\Delta t[1 - 2h]M(tk )

1 + 2\Delta t

\leq 
M 1(t k - 1 )
1 + 2\Delta t

+
\Delta t[1 - 2h]M(0)

(1 + 2\Delta t)(1 + 6\Delta t)k
.

By induction we obtain

M 1(t k ) \leq 
M 1(0)

(1 + 2\Delta t)k +
k - 1\sum 

m=0

\Bigl( 1 + 2\Delta t
1 + 6\Delta t

\Bigr) k - m (1 - 2h)\Delta t
(1 + 2\Delta t)k+1 M(0)

=
M 1(0)

(1 + 2\Delta t)k +
1 - ( 1+2\Delta t

1+6\Delta t)k

(1 + 2\Delta t)k
(1 - 2h)M(0)

4
.

From (2.8) and the above uniform decay estimates we find that

lim
k\rightarrow \infty 

f k
n0 h2 = \=x, lim

k\rightarrow \infty 
f k

0n
h2 = \=y, lim

k\rightarrow \infty 
f k

00h2 = \=z.

In addition, from (2.7) we find that

0 \leq 
f k

n0 h2  - f k - 1
n0 h2

\Delta t
\leq 2(1 - h)M1(t k ) \leq 

2[M1(0) + 1
4 M (0)]

(1 + 2\Delta t)k .
.

Thus

0 \leq  \=x - f k
n0 h2 =

\infty \sum 

m=k+1

[f m
n0 h2  - f m - 1

n0 h2]

\leq  2\Delta t
\biggl[ 
M 1(0) +

1
4

M(0)
\biggr] \infty \sum 

m=k+1

1
(1 + 2\Delta t)m

=
M 1(0) + 1

4 M(0)
(1 + 2\Delta t)k

.

A similar estimate for f k
n0 and f k

00 then completes the proof of Theorem 2.4.
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2.3.2. \bfitH \bfone estimates.Now we consider the discrete H1 stability of the numer-
ical scheme.We introduce

D +
1 \phi ij =

\phi i+1,j  - \phi ij

h
, D  - 

1 \phi ij =
\phi ij  - \phi i - 1,j

h
,

D +
2 \phi ij =

\phi i,j+1  - \phi ij

h
, D  - 

2 \phi ij =
\phi ij  - \phi i,j - 1

h
,

D +
3 \phi ij =

\phi i+1,j - 1  - \phi i,j

h
, D  - 

3 \phi ij =
\phi ij  - \phi i - 1,j+1

h
.

Interior estimates.Since uk
ij = 0 when (i, j) \not \in  \Omega n , we have

\infty \sum 

i,j= - \infty 

| ukij  - u k - 1
ij | 2 + | uk

ij | 2  - | uk - 1
ij | 2

\Delta t
= 2

\sum 

i,j

uk
ij

(uk
ij  - u k - 1

ij )
\Delta t

= 2
\sum 

ij

uk
ij

\Bigl[ 
D 2

1 (xzu) k
ij + D 2

2(yzu) k
ij + D 2

3(xyu) k
ij

\Bigr] 

= - 
\sum 

ij

3\sum 

d=1

\sigma dij

\Bigl( \bigm| \bigm| D +
d uk

ij

\bigm| \bigm| 2 +
\bigm| \bigm| D  - 

d uk
ij

\bigm| \bigm| 2
\Bigr) 

 - 6
\sum 

ij

| uk
ij | 2.

Multiplying both sides by \Delta t(1 + 6\Delta t)k - 1 , ignoring the nonnegative term involving
| uk

ij  - u k - 1
ij | 2, and summing over k, we then obtain the following estimate.

Proposition 2.5. If we let uk
ij = f k

ij when (i, j) \in  \Omega n and uk
ij = 0 otherwise,

then
\infty \sum 

k=1

[1+6\Delta t]k - 1\Delta t
\sum 

ij

3\sum 

d=1

\sigma dij

\Bigl[ \bigm| \bigm| D +
d uk

ij

\bigm| \bigm| 2 +
\bigm| \bigm| D  - 

d uk
ij

\bigm| \bigm| 2
\Bigr] 
h2\leq 

\sum 

(i,j)\in \Omega n

| f0ij | 2h2,

sup
k\geq 0

e6t k
ln(1+6\Delta t)

6\Delta t
\sum 

i,j

| uk
ij | 2h2\leq 

\sum 

(i,j)\in \Omega n

| f0
ij | 2h2.

Boundary estimates.Next, we consider vk
i = v k

i0 . Since vk
i = 0 when (i, 0) \not \in 

\Gamma 2
n , we have

2
\infty \sum 

i= - \infty 

vk
i (vk

i  - v k - 1
i )

\Delta t
=

\sum 

i

vk
i

\Bigl( 
D 2

1(xzv) k
i0 + z i1 uk

i1 + x i - 1 uk
i - 1,1

\Bigr) 

= - 
\sum 

i

x i [1 - x i ]
\Bigl( \bigm| \bigm| \bigm| 

vk
i+1  - v k

i

h

\bigm| \bigm| \bigm| 
2

+
\bigm| \bigm| \bigm| 
vk

i  - v k
i - 1

h

\bigm| \bigm| \bigm| 
2\Bigr) 

 - 2
\sum 

i

| vki | 2 +
\sum 

i

(zi1 vk
i + x i v

k
i+1 )uk

i,1 .

Thus, by Cauchy's inequality ab \leq  (a2 + b2)/2, we obtain
\sum 

i

(1+\Delta t)| vk
i | 2  - | vk - 1

i | 2

\Delta t
+

\sum 

i

x i (1 - x i )
\Bigl( \bigm| \bigm| \bigm| 

vk
i+1  - vk

i

h

\bigm| \bigm| \bigm| 
2

+
\bigm| \bigm| \bigm| 
vk

i  - vk
i - 1

h

\bigm| \bigm| \bigm| 
2\Bigr) 

\leq 
\sum 

i

(| zi1 | 2 + | xi | 2)| uk
i1 | 2

2
\leq 

n - 1\sum 

i=1

| uk
i1 | 2

2
\leq | M (tk )| 2

2h
\leq | M (0)| 2

2h[1 + 12\Delta t]k
.

Hence, multiplying both sides by (1 + \Delta t)k - 1 h\Delta t and summing over k, we obtain the
following proposition.
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Proposition 2.6. If we let v k
i = hf k

i0 fori=1,...,n - 1andv k
i = 0 otherwise,

then

\infty \sum 

k=1

(1 + \Delta t)k - 1 \Delta t
n - 1\sum 

i=1

x i (1 - x i )
\biggl[ \bigm| \bigm| \bigm| 

vk
i+1  - v k

i

h

\bigm| \bigm| \bigm| 
2
+

\bigm| \bigm| \bigm| 
vk

i  - v k
i - 1

h

\bigm| \bigm| \bigm| 
2
\biggr] 
h

\leq 
n - 1\sum 

i=1

h| v0i | 2 +
| M (0)| 2

22
.

Discrete time derivative estimate.More particularly, if we set

gk
ij =

f k+1
ij  - f k

ij

\Delta t
,

then, by linearity, \{ gk
ij \}  satisfies the same linear system as that of f :

gk
ij  - gk - 1

ij

\Delta t
= D 2

1(xzg) k
ij + D 2

2(yzg)k
ij + D 2

3(xyg) k
ij ,

g0
ij = D 2

1(xzf 0) ij + D 2
2(yzf 0) ij + D 2

3(xyf 0) ij .(2.22)

Same as the above proposition, we obtain the following estimate for \{ gkij \} .

Proposition 2.7. If we let g 0
ij be defined as in (2.22) and set

M 3(0) = max
(i,j)\in \Omega n

| g0ij | , M 4(0) = max
(i,j)\in \Gamma n

h| g0ij | ,

then for each k \geq  0,

sup
(i,j)\in \Omega n

\bigm| \bigm| \bigm| 
uk+1

ij  - u k
ij

\Delta t

\bigm| \bigm| \bigm| \leq 
M 3(0)

(1 + 6\Delta t)k
,

sup
(i,j)\in \Gamma n

\bigm| \bigm| \bigm| 
vk+1

ij  - v k
ij

\Delta t

\bigm| \bigm| \bigm| \leq 
M 4(0) + 1

4
M 3(0)

(1 + 2\Delta t)k
.

3. Simulation results.In this section, we present several simulation results
by using the scheme (2.1)--(2.3). The results illustrate that the scheme is stable,
positivity-preserving, and could yield a complete solution. The results correctly pre-
dict the fixation probability and are consistent with both theoretical results and direct
Monte Carlo simulations.

Example 1. In this example, we test the consistency between 3-alleles and 2-alleles
by choosing the fraction of allele C be zero in the two-dimensional (2D) model. The
initial value is chosen as \mu 0 = \delta (0.7, 0.3), and correspondingly

f 0
ij =

\biggl\{ 
h - 2 if (x i , yj ) = (0.7, 0.3),
0 otherwise,

(3.1)

which means (\=x, \=y, \=z) = (0.7, 0.3, 0). The mesh size is chosen to be h = 1/200 and the
time step is fixed as \Delta t = 1/1000.In this case, the 2D genetic problem is reduced to
the one-dimensional (1D) problem. Figure 2 shows the simulation results with this
initial value, which is not zero only on the boundary z = 0. Panels (a-d) confirm that
values of inner nodes are always zero and evolution only happens on the boundary
z = 0. The dynamics of values on the boundary z = 0 shown in Figure 3 is consistent
with the results presented in [21] for the 1D genetic drift problem.
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(a) t=0.01 (b) t=0.05

(c) t=0.1 (d) t=5

Fig. 2. Numerical results with initial state (\=x, \=y, \=z) = (0.7, 0.3, 0) at different time t =
0.01, 0.05, 0.1, 5.The step sizes are h = 1/200, \Delta t = 1/1000.

Example 2. In this example, we test two initial values with Dirac measures cen-
tered inside the domain \Omega  to show the evolutions oftotal probabilities inside the
domain, on the edges and at vertex nodes, respectively.

We consider

f 0
ij =

\biggl\{ 
h - 2 if (x i , yj ) = (0.4, 0.3),
0 otherwise,

(3.2)

which means (\=x, \=y, \=z) = (0.4, 0.3, 0.3). Next, we consider

f 0
ij =

\biggl\{ 
h - 2 if (x i , yj ) = (0.3, 0.6),
0 otherwise,

(3.3)

which means (\=x, \=y, \=z) = (0.3, 0.6, 0.1).
In Figure 4, we plot the dynamics of genetic shift of alleles by the following

functions:

m(t k ) =
\sum 

(i,j)\in \Omega n

f k
ij h2,

pd(t k ) =
\sum 

(i,j)\in \Gamma d
n

f k
ij h2, d = 1, 2, 3,

qd(t) =
\sum 

(i,j)\in P d
n

f k
ij h2, d = 1, 2, 3.
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Fig. 3. One-dimensional numerical results with initial state f 0 at different time t =
0.01, 0.05, 0.1, 5 at z = 0. The step sizes are h = 1/200, \Delta t = 1/1000.

The curves p 1(t), p1(t) + p 2(t), p1(t) + p 2(t) + p 3(t), p1(t) + p 2(t) + p 3(t) + q 1(t),
p1(t) + p 2(t) + p 3(t) + q 1(t) + q 2(t), p1(t) + p 2(t) + p 3(t) + q 1(t) + q 2(t) + q 3(t), and
1 = p1(t) + p 2(t) + p 3(t) + q1(t) + q2(t) + q3(t) + m(t) are plotted on the same picture
to show the probabilities of mono allele and binary alleles populations. The left panel
is the results for the initial value (\=x, \=y, \=z) = (0.4, 0.3, 0.3) and right panel is the results
for the initial value (\=x, \=y, \=z) = (0.3, 0.6, 0.1). The simulation results for the initial
value (\=x, \=y, \=z) = (0.4, 0.3, 0.3) are presented in Figure 5. Panels (a--d) illustrate that
the probability density on the inner nodes first decay to zero, then the nodes on the
edges decay to zero, and finally all of the mass are concentrated on three vertex nodes,
which is consistent with our theoretical results.
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Fig. 4. Dynamics of genetic shift of alleles. Left: (\=x, \=y, \=z) = (0.4, 0.3, 0.3). Right: (\=x, \=y, \=z) =
(0.3, 0.6, 0.1). The step sizes are h = 1/200, \Delta t = 1/400.

.
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Fig. 5. Numerical results with initial state (\=x, \=y, \=z) = (0.4, 0.3, 0.3) at different time t =
0.025, 0.125, 0.25, 12.5.The step sizes are h = 1/200, \Delta t = 1/400..

Example 3. In this example, we make a comparison between the direct Monte
Carlo simulations for stochastic process (1.1) and numerical simulations for the PDE
model (1.10). The initial states are the same as in Example 2. In Figure 6, the
dynamics of mass on points (P1n , P2

n and P3
n ), edges (\Gamma 1

n , \Gamma 2
n and \Gamma 3

n ), and inner domain
\Omega n of (1.10) are presented. Monte Carlo simulations are done with \=n = 2\scrN  = 200
alleles, 2000 time steps, and 5000 sample paths.PDE simulation results are obtained
with mesh size h = 1/(2\scrN  ), \bigtriangleup t = 1/(4\scrN  ).These simulations demonstrate that both
methods are consistent with each other.

4. Conclusions and discussions.We have proposed a numericalmethod for
a 3-alleles genetic drift problem, which is a two-dimensional degenerate convection-
dominated parabolic equation. Due to the degeneration, there will always be Dirac
singularities developed at the boundary points (0, 0),(1, 0), and (0, 1).By introducing
a variable z = 1 - x - y and a directional derivative \partial 

\partial \zeta = \partial 
\partial x

 - \partial 
\partial y, the scheme is

designed to be symmetric to variables x, y, z. The numerical scheme is proved to be
a stable scheme and could yield a complete solution, which preserves total probability,
expectations, and positivity. The numerical simulations with different initial values
illustrated the robustness of the scheme.

The method could be generated to N-alleles, N > 3 case. For example, the
4-alleles genetic problem could be described by following [16],

\partial t f - 
3\sum 

i,j=1

\partial 2
ij

\bigl( 
(x i \delta ij  - x i x j )f

\bigr) 
= 0 on \=\Omega  \times  (0, \infty ),(4.1)
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Fig. 6. Comparison between Monte Carlo and PDE simulations. Top: (\=x, \=y, \=z) = (0.4, 0.3, 0.3).
Bottom: (\=x, \=y, \=z) = (0.3, 0.6, 0.1). Left: Dynamics of mass at points P 1

n , P 2
n , P 3

n . Right: Dynamics
of mass at edges \Gamma 1

n , \Gamma 2
n , \Gamma 3

n and inner domain \Omega n . Lines: Monte Carlo simulation results. Circles:
PDE simulation results. The step sizes are h = 1/200, \Delta t = 1/400.

where \delta ij = 1, for i = j, \delta ij = 0, for i \not = j, \Omega  = \{ (x1, x2, x3) |  x1 > 0, x 2 > 0, x 3 >
0, x4 \equiv 1 - x1  - x 2  - x 3 > 0\} , and x1, x2, x3, x4 are the fractions of the four alleles,
respectively.

Similarly, due to the degeneration of the diffusion coefficient, the static solution
has Dirac singularities at boundary points (0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1),
i.e., one can observe the fixation phenomena. In order to design a stable scheme
which could yield the complete solution, we rewrite the original equation into a more
symmetric form:

\partial t f = \partial 2
11(x 1x4f) + \partial 2

22(x 2x4f) + \partial 2
33(x 3x4f )

+ (\partial 1  - \partial 2)2(x 1x2f ) + (\partial 2  - \partial 3)2(x2x3f ) + (\partial 3  - \partial 1)2(x3x1f ).(4.2)

In this new formula, a key feature is that we have six second order directional de-
rivatives, just along side the six edges of the simplex \Omega .We can approximate each
of them by a second order 3-points central difference scheme. For example, on an
equidistance mesh,

(\partial 1  - \partial 2)2u| i,j,k =
ui+1,j - 1,k + u i - 1,j+1,k  - 2u i,j,k

h2 + O(h 2),

(\partial 2  - \partial 3)2u| i,j,k =
ui,j+1,k - 1 + u i,j - 1,k+1  - 2u i,j,k

h2 + O(h 2),

(\partial 3  - \partial 1)2u| i,j,k =
ui+1,j,k - 1 + u i - 1,j,k+1  - 2u i,j,k

h2 + O(h 2).

Then similar results can be obtained as for 3-alleles in section 2. Of course, to prove
the similar convergence as in Theorem 2.3, we have four scales now: keep the scale
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inside the domain, rescale by h on the four sides, rescale by h2 on the six edges, and
rescale by h3 at the four vertexes. For even more alleles problems N > 4, the method
still works. However, it is not a practical numerical scheme any more due to the curse
of dimension. Anyway, it could be used as a theoretical tool to prove the existence of
solution to the original problem by compactness argument.

In Theorem 2.3, it is proved that the numerical solution weakly \ast converges to the
exact solution as a measure on \Omega  \times  (0, T ), i.e., the whole domain with space and time.
It is possible that the exact solution f (x, t) in (1.9) is a probability measure in space
and continuous in time. To verify this, one need at least prove an enhanced result
that the numerical solution in (2.12) weakly \ast converges to f (\cdot , t) in M (\Omega ) \forall t \in  [0, T ].
Similar results on measure solutions can be found in [1, 3, 4]. We will address this in
future work.

In this paper we have only considered the simplest genetic drift case, where the
only evolutionary force acting on a randomly mating diploid population is diffusion.
The mutation, migration, and selection forces can be taken into account to generate
analogous schemes.We will also discuss this in further work.
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