SEMICLASSICAL ESTIMATES FOR SCATTERING ON THE REAL LINE

KIRIL DATCHEV AND JACOB SHAPIRO

ABSTRACT. We prove explicit semiclassical resolvent estimates for an integrable potential on the
real line. The proof is a comparatively easy case of the spherical energies method, which has
been used to prove similar theorems in higher dimensions and in more complicated geometric
situations. The novelty in our results lies in the weakness of the assumptions on the potential.

1. INTRODUCTION

In this paper we prove explicit resolvent estimates for the Schrodinger operator
P=—h?0>+V,
where h > 0 is a semiclassical parameter, and V: R — R is integrable.

Theorem 1. Let V € LY(R). Then

o 2FE~12 [m
Hm1/2(P — FE —ig) 1m1/2||L2(]R)HL2(R) < exp (“) 7 (1)

for any m € LY(R) such that |V| < m, and for any E > 2¢ >0 and h > 0.

For example, if |V| < A(14|z|)~'79, then we get a bound between the usual weighted spaces of
the limiting absorption principle (1 + \x|)7lTHL2(]R) — (14 \x|)#L2(R); see [ReSi, §XIIL.8]. We
have not attempted to optimize the numerical constants, and the same proof gives similar bounds
in other sectors E > ce > 0. The estimate is invariant under two rescalings of the operator, one
is P = h?(—02 + h=2V) and the other is x = hy.

Estimates like (1) are important for their applications to smoothing, wave decay, and resonance
free regions; see [DyZw, Chapter 6] for an introduction and [Zw2, §3.2] for a survey of recent
results. When V' is compactly supported, we also have an improvement away from the support of
V in Theorem 2 below.

The main novelty lies in the sharp dependence on € and h (see [DaDyZw, DalJi] for corresponding
lower bounds), under weak regularity and decay assumptions on V. The decay assumption is
essentially optimal; examples due to Wigner and Von Neumann show that P may have a positive
eigenvalue if V decays like |#|~! [ReSi, §XIII.13], and in such a situation m'/?(P — E —ig)~'m!/?
is unbounded as ¢ — 0. Bounds for more slowly decaying V hold under assumptions on V' [Da].
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Our proof is a comparatively easy case of the method of estimating spherical energies, which
has been used to prove versions of (1) in more complicated geometric situations, but with stronger
regularity and decay assumptions. For semiclassical resolvent estimates, this method goes back
to the work of Cardoso and Vodev [CaVo], and more generally in scattering theory it goes back to
the work of Kato [Ka]. In our setting, among other simplifications, in place of a spherical energy
we have the pointwise energy

F(z) = |h(z)* + Elu()[. (2)
A similar pointwise energy is used implicitly in [ChDa, §2] to prove uniform resolvent estimates
for repulsive potentials on the half-line.

When V is smooth, the exponential bound (1) (with different constants) was first proved by
Burq [Bul, Bu2|, who also considered higher dimensional problems and other generalizations.
Further proofs and generalizations can be found in [CaVo, RoTa, Vol, Da, DadH, Shl, Ga]. If
V € L*(R™) with n > 1, then only weaker versions of (1) are known [Sh2, KIVo, Vo2, Vo3, Vo4],
M/h M/R? with p > 1, even if V has compact support.

with e replaced by e

If V is compactly supported (or, more generally, holomorphic near infinity), then the bound (1)
implies the existence of an exponentially small resonance free region near the real axis, thanks to
an identity of Vodev [Vol, (5.4)]. For V' € L>®(R) compactly supported, such regions have been
known to exist for some time: see [Hal, and also [DyZw, §2.8] for another proof as well as detailed
examples and more references. But the reverse problem of deducing a resolvent estimate like (1)
from the existence of a resonance free region seems to be more difficult.

To the authors’ knowledge, (1) is the first semiclassical resolvent estimate for V ¢ L*°(R),
but there has been much work on related problems. Zworski [Zw1] and Hitrik [Hi] analyzed the
distribution of resonances for V' € L'(R) either compactly supported or exponentially decaying,
using Melin’s representation of the scattering matrix [Me]. More recently Korotyaev (see [Ko] and
references therein) has proved many further results in this topic and other related ones, including
trace formulas and inverse results. Note however that the methods in those papers require at
least (1 + |z|)V € L(R), due to the finer aspects of scattering theory being analyzed, whereas
in the present paper we require only V € L!'(R). The condition that V € L'(R) is called the
short range condition, and it allows one to extend the integral kernel of the resolvent up to the
continuous spectrum, while as mentioned above if V ¢ L'(R) then the continuous spectrum may
contain embedded eigenvalues: see [Yal, §5.1] and [Ya2] and references therein for more on this
and for other results concerning short and long range potential scattering in one dimension.

When V' is compactly supported, we have an improvement away from the support of V.
Theorem 2. Let V € L'(R) be supported in [—R, R]. Then

145 . _14s 8(1+ R)%~1p-1/2
oL+ Ja) 5 (P = B = i) (14 o)~ Lol oy < S e

for any E > 2¢ >0 and §, h >0, where 1,5 is the characteristic function of {z: |z| > R}.

When V is smooth, the improvement (3) away from the support of V' was first proved by
Cardoso and Vodev [CaVo], refining earlier work of Burq [Bu2], and again analogous results hold
for much more general operators [CaVo, RoTa, Vol, Da, DadH, Shl]. But if n > 1, then the
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cutoff 1),~ may need to be replaced by 1,5 with R’ > R, even when V' € C°(R"); see
[DalJi] for corresponding lower bounds, and also for an application of an exterior estimate like (3)
to integrated wave decay.

The rest of the paper is organized as follows. In §2, we prove a stronger weighted resolvent
estimate which implies both (1) and (3). In §3, we prove (3) in the case ¢ = 0 by estimating the
integral kernel of the resolvent using Wronskian identities; it would be interesting to know if such
an approach could be applied to (1). Throughout, L” means LP(R).

2. WEIGHTED RESOLVENT ESTIMATES
We will deduce Theorems 1 and 2 from the following stronger result.
Theorem 3. Let V € L', let h >0, and E > 2¢ > 0. Fiz w: R — [—1,1] such that w' € L' and
k /
7 IVw <, (4)

where k = 4/E'Y/2. Then

o 8E—1/2
[(w)/2(P = B —ie) ™" (w)/?|| 212 < P (5)

Note that w may depend on h, V', and E. As a simpler first case, the reader can consider V =0
and w(z) =1—-(1+2)7% >0, >0, and w odd. A variant of this is used in the proof of
Theorem 2 below.

To prove Theorem 3, we will need the following essentially well-known lemma.

Lemma. Let D be the set of all w € L?> N L™ such that v € L?> N L>® and Pu € L?>. Then P is
self-adjoint on L? with domain D. In particular, P — z is bijective from D to L? for all z € C\R.

Proof of Lemma. Let Diax be the set of all u € L? such that v’ € LllOC and Pu € L?. We begin

by proving that Dyax = D. Indeed, for any a > 0 and u € Dy, by integration by parts and
Cauchy—Schwarz we have

a a
/ 2 = wlal®, — / W5 <2 sup [ul] sup Jul + h V][ sup [ul? + B2 Pull gz ull 2,

—a —a [70,,@] [70'70'] [7@,0,]
x a 1/2
sup |ul?> = sup (\u(0)|2 + 2Re/ u’u> < |u(0)* 42 (/ ]u’]2> |lull 2,
[—a,a] z€[—a,a) 0 —a

a 1/2

sup |u/|? < [u/(0)]2 + 2072 V|2 sup |u| sup |u| + 2h 72| Pul| 2 (/ ]u'|2> .
[—a,a] [—a,a] [—a,a] —a

This is a system of inequalities of the form z? < 2yz+ Ay? + B, y> < C+ Dz, 2> < E+ Fyz+Gx.

After using the second to eliminate ¥y, we obtain a system in x and z with quadratic left hand sides

and subquadratic right hand sides. Hence x, y, and z are each bounded in terms of A, B, ..., G.

Letting a — oo, we conclude that «/ € L?, u € L>®, and v’ € L>. Hence Dyax = D.

Equip P with the domain Dy,.x = D C L?. By integration by parts, P C P*. But, by Sturm—
Liouville theory, P* C P: see [We, §3.B], [Na, §17.4], or [Ze, Lemma 10.3.1]. Hence P = P*. [
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Proof of Theorem 3. Since L? N L™ is dense in L?, it is enough to prove

FE 1 15
- /w'|u|2 +z /w'mu'\? <o / WP, forallve L2N L%, (6)

where u = (P — E — i)~ (w')/?v.
To prove (6), define F by (2). By the Lemma, F’ € L' and is given by

F' = —2(w')?Re v’ 4+ 2V Reud’ — 2 Reieui,
and we have
(wF) = —2w(w)? Re v’ + 2wV Reuit’ — 2w Reicud’ + w'|hu)? + Ew'|ul?.
Using |w| < 1 and (4) gives
(wF) > —2(w)"?|vd| — %wﬂuu'\ — 2¢|wun| + w'|h|? + Bw'|ul?. (7)
Observe now that, by the Lemma, wF and (wF)" are in L', so that [(wF)" =0, and hence

oh
E/w’yu\2+/w’yhu'\2 < 2/(w’)1/2]vu’]+k/w’]uu’|+25/]wuu’]. (8)

The first two terms on the right contain w’, and that will make them easy to handle. The last
term requires more work and we begin by showing how to estimate it using integrals containing
w’. By Cauchy—Schwarz and integration by parts we have

1/2
25/|wuu'| <2 </5\u|2/5w2]u’|2> , /5\u|2 = —Im/(w’)l/%a < /( N2 ul. (9)
Similarly,
/5w2]u’|2 < /5|w\|u'|2 = —Re/e|w|’u’ﬂ—Re/5|wu”ﬂ

—_R "W+ R € n1/2, - ek 2 £ Viul?
= —Re [ ¢|lw|/'v'u + Re ﬁ|w|(w) v+ —2|w||u| - ﬁ|w\ |ul

£ 1/2 E 1/2 2
Ss/w'|uu'|+h2/( N2 pu| + = /( )/|vu|+hk/w'|u|,

where we used |w|u't € L, (jw|u'@)" € L', |w| < 1, the second of (9), and (4). Substituting into
the first of (9) gives

2: [ !wuu’léz( J@) o ( [ttt + Z2E [l + 5 /w,|u|2)>>1/2

eh T 2(E+5)1/2 n1/2 € 12
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where we used 2v/ab < a + b with a = [(w')"/?|vu|(E + ¢)'/2/h. Using the bounds ¢ < F/2 and
e/(E +¢)Y/? < (E/6)'/2, and substituting into (8) gives

E1/2
(E_61/2k> /wl|u2+/wl|hul‘2 S

2h  EY?p 6F)/2
2/(w')1/2|vu/|—|— <k+61/2> /w’|uu'!+(h)/(w’)l/2|vu|.

Now we estimate the three terms on the right using Cauchy—Schwarz and 2vab < a+ b, balancing
the constants so that all terms with « can be absorbed back into the left side.

3 1
1/2 2 2
2/(w')/]vu/§h2/|v —}—3/10/|hu']7

2
2h  EY/?h W1 (2 EY2 1
sh  BTTR P R N2 o o2
<k+ 61/2>/u}|uu_ k+61/2 /w‘u| _|_2/w|hU|,

6E)/2 9 E
CB [y oul < oz [P+ 2 [whp

2
2F EY? 1 (2 EY? T N e 5
- _ -  _ | Z4y= - <
5 T ok 2<kz+61/2 /w|U\+6/w|hu_2h2/|v|,

which implies (6). O

w(z) = 2exp (_212 /m> sinh <z / m) ,

with a € R chosen such that [*°m = [*__m. Then substituting

w(z) = 2 exp <—2’; / m) e
into (5) gives (1). O

giving

Proof of Theorem 1. Let

Proof of Theorem 2. We apply (5) with w an odd function vanishing on [—R, R] and obeying

1 4
w(x)zl_((l—_i—‘_f))&’ when z > R,
and use w'(z) = 6(1 + R)°(1 + |$‘)_1_51|x\>3' -

3. INTEGRAL KERNEL ESTIMATES

We conclude by proving (3) for ¢ = 0 in another way, by estimating the integral kernel of
(P — E —i0)~!. By direct calculation (by the method of variation of parameters, or see [TaZw,
(1.28)] or [Yal, Proposition 5.1.4]) this integral kernel is given by

K(z,y) = —u-(2)us (y)/W*W(u_,uy),  forz<y, (10)
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and it obeys K (z,y) = K(y,x), where (P — E)ut =0,
eteA when =z > R, (2) Ce™ 4+ De~™*  when = > R,
u_(x) =

uy(x) = ‘ , ,
Ae"™ 4 Be~™™A  when = < —R, e~ when x < — R,

where A = EV/2/h, and W (u_,u) = u_u/; —u’ uy is the Wronskian. The solutions u4 are (mul-
tiples of) distorted plane waves or Jost solutions, and they are also used to define the scattering
matrix. See [DyZw, §2.4] for an introduction, and [Yal, §5.1.1] for more on u4 and K when V is
not necessarily compactly supported.

Since the Wronskian is independent of x, we compute it when £ > R and equate to obtain
W(u—,uy) = 24i\ = 2Di) = A=D.
Repeating the above with W (uy, uy), W(u—,u_), and W(u_,uy), gives
1=|AP~|B]>, -1=|CP~-[D]*, -B=C,

(which is equivalent to unitarity of the scattering matrix). We conclude that when |z| > R and
ly| > R we have

Al + B 1
2|A|hEL/2 = hE (1)

Combining this with [2°(1 + y)f%éf(y)dac < ||fHL2(R)5_1/2(1 + R)~%/? gives

K (z,y)] <

2
(1 + R)zSEl/Z’

— 140 Lo — _ 18
11> r (1 +121)™ 2 (P = B=i0) " (14 [2]) > 1> mllreore < 5=
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