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Many domains of science have developed complex simulations to
describe phenomena of interest. While these simulations provide
high-fidelity models, they are poorly suited for inference and lead
to challenging inverse problems. We review the rapidly devel-
oping field of simulation-based inference and identify the forces
giving additional momentum to the field. Finally, we describe how
the frontier is expanding so that a broad audience can appreciate
the profound influence these developments may have on science.

statistical inference | implicit models | likelihood-free inference |
approximate Bayesian computation | neural density estimation

Mechanistic models can be used to predict how systems
will behave in a variety of circumstances. These run the

gamut of distance scales, with notable examples including par-
ticle physics, molecular dynamics, protein folding, population
genetics, neuroscience, epidemiology, economics, ecology, cli-
mate science, astrophysics, and cosmology. The expressiveness of
programming languages facilitates the development of complex,
high-fidelity simulations and the power of modern computing
provides the ability to generate synthetic data from them. Unfor-
tunately, these simulators are poorly suited for statistical infer-
ence. The source of the challenge is that the probability density
(or likelihood) for a given observation—an essential ingredient
for both frequentist and Bayesian inference methods—is typi-
cally intractable. Such models are often referred to as implicit
models and contrasted against prescribed models where the like-
lihood for an observation can be explicitly calculated (1). The
problem setting of statistical inference under intractable likeli-
hoods has been dubbed likelihood-free inference—although it
is a bit of a misnomer as typically one attempts to estimate
the intractable likelihood, so we feel the term simulation-based
inference is more apt.

The intractability of the likelihood is an obstruction for scien-
tific progress as statistical inference is a key component of the
scientific method. In areas where this obstruction has appeared,
scientists have developed various ad hoc or field-specific meth-
ods to overcome it. In particular, two common traditional
approaches rely on scientists to use their insight into the sys-
tem to construct powerful summary statistics and then compare
the observed data to the simulated data. In the first one, density
estimation methods are used to approximate the distribution of
the summary statistics from samples generated by the simulator
(1). This approach was used for the discovery of the Higgs boson
in a frequentist paradigm and is illustrated in Fig. 1E). Alterna-
tively, a technique known as approximate Bayesian computation
(ABC) (2, 3) compares the observed and simulated data based on
some distance measure involving the summary statistics. ABC is
widely used in population biology, computational neuroscience,
and cosmology and is depicted in Fig. 1A. Both techniques have
served a large and diverse segment of the scientific community.

Recently, the toolbox of simulation-based inference has expe-
rienced an accelerated expansion. Broadly speaking, three forces
are giving new momentum to the field. First, there has been a
significant cross-pollination between those studying simulation-
based inference and those studying probabilistic models in
machine learning (ML) (4), and the impressive growth of ML
capabilities enables new approaches. Second, active learning—
the idea of continuously using the acquired knowledge to guide

the simulator—is being recognized as a key idea to improve the
sample efficiency of various inference methods. A third direction
of research has stopped treating the simulator as a black box and
focused on integrations that allow the inference engine to tap
into the internal details of the simulator directly.

Amidst this ongoing revolution, the landscape of simulation-
based inference is changing rapidly. In this review we aim to
provide the reader with a high-level overview of the basic ideas
behind both old and new inference techniques. Rather than
discussing the algorithms in technical detail, we focus on the
current frontiers of research and comment on some ongoing
developments that we deem particularly exciting.

Simulation-Based Inference
Simulators. Statistical inference is performed within the context
of a statistical model, and in simulation-based inference the
simulator itself defines the statistical model. For the purpose
of this paper, a simulator is a computer program that takes
as input a vector of parameters θ, samples a series of internal
states or latent variables zi ∼ pi(zi |θ, z<i), and finally produces
a data vector x ∼ p(x |θ, z ) as output. Programs that involve
random samplings and are interpreted as statistical models are
known as probabilistic programs, and simulators are an exam-
ple. Within this general formulation, real-life simulators can vary
substantially:

• The parameters θ describe the underlying mechanistic model
and thus affect the transition probabilities pi(zi |θ, z<i). Typ-
ically the mechanistic model is interpretable by a domain
scientist and θ has relatively few components and a fixed
dimensionality. Examples include coefficients found in the
Hamiltonian of a physical system, the virulence and incubation
rate of a pathogen, or fundamental constants of Nature.

• The latent variables z that appear in the data-generating pro-
cess may directly or indirectly correspond to a physically mean-
ingful state of a system, but typically this state is unobservable
in practice. The structure of the latent space varies substantially
between simulators. The latent variables may be continuous
or discrete and the dimensionality of the latent space may be
fixed or may vary, depending on the control flow of the sim-
ulator. The simulation can freely combine deterministic and
stochastic steps. The deterministic components of the simula-
tor may be differentiable or may involve discontinuous control
flow elements. In practice, some simulators may provide conve-
nient access to the latent variables, while others are effectively
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Fig. 1. (A–H) Overview of different approaches to simulation-based inference.

black boxes. Any given simulator may combine these different
aspects in almost any way.

• Finally, the output data x correspond to the observations.
They can range from a few unstructured numbers to high-
dimensional and highly structured data, such as images or
geospatial information.

For instance, particle physics processes often depend only
on a small number of parameters of interest such as parti-
cle masses or coupling strengths. The latent process combines
a high-energy interaction, rigorously described by a quantum-
field theory, with the passage of the resulting particles through
an incredibly complex detector, most accurately modeled with
stochastic simulations with billions of latent variables. Epidemi-
ological simulations can be based on a network structure with
geospatial properties, and the latent process consists of many
repeated structurally identical stochastic time steps. In contrast,
cosmological simulations of the evolution of the Universe may
consist of a highly structured stochastic initial state followed by a
smooth, deterministic time evolution.

These differences lead to an absence of a one-size-fits-all infer-
ence method. In this review we aim to clarify the considerations
needed to choose the most appropriate approach for a given
problem.

Inference. Scientific inference tasks differ by what is being
inferred: Given observed data x , is the goal to infer the input
parameters θ, or the latent variables z , or both? We will focus on
the common problem of inferring θ in a parametric setting, we
will comment on methods that allow inference on z , and we will
not focus on nonparametric inverse problems. Sometimes only a

subset of the parameters is of interest, while the rest are nuisance
parameters.

Inference may be performed either in a frequentist or in a
Bayesian approach and may be limited to point estimates θ̂(x ) or
extended to include a probabilistic notion of uncertainty. In the
frequentist case, confidence sets are often formed from invert-
ing hypothesis tests based on the likelihood-ratio test statistic. In
Bayesian inference, the goal is typically to calculate the posterior
p(θ|x )= p(x |θ)p(θ)/

∫
dθ′p(x |θ′)p(θ′) for observed data x and a

given prior p(θ). In both cases the likelihood function p(x |θ) is a
key ingredient.

The fundamental challenge for simulation-based inference
problems is that the likelihood function p(x |θ) implicitly defined
by the simulator is typically not tractable, as it corresponds to
an integral over all possible trajectories through the latent space
(i.e., all possible execution traces of the simulator). That is,

p(x |θ)=
∫

dz p(x , z |θ), [1]

where p(x , z |θ) is the joint probability density of data x and
latent variables z . For real-life simulators with large latent
spaces, it is clearly impossible to compute this integral explic-
itly. Since the likelihood function is the central ingredient in both
frequentist and Bayesian inference, this is a major challenge for
inference in many fields. This paper reviews simulation-based
or likelihood-free inference techniques that enable frequentist
or Bayesian inference despite this intractability. These methods
can be seen as a specialization of inverse uncertainty quantifica-
tion (UQ) on the model parameters in situations with accurate,
stochastic simulators.
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In practice, an important distinction is that between inference
based on a single observation and that based on multiple inde-
pendent and identically distributed (i.i.d.) observations. In the
second case, the likelihood factorizes into individual likelihood
terms for each i.i.d. observation, as p(x |θ)=

∏
i pindividual(xi |θ).

For example, time-series data are typically non-i.i.d. and must
be treated as a single high-dimensional observation, whereas
the analysis of collision data in the search for the Higgs boson
constitutes a dataset with many i.i.d. measurements. This dis-
tinction is important when it comes to the computational cost of
an inference technique, as inference in the i.i.d. case will neces-
sitate many repeated evaluations of the individual likelihood
pindividual(xi |θ).

Traditional Methods. The problem of inference without tractable
likelihoods is not a new one, and two major approaches have
been developed to address it. Arguably the most well known
is ABC (2, 3). Until recently, it was so established that the
terms “likelihood-free inference” and “ABC” were often used
interchangeably. In the simplest form of rejection ABC, the
parameters θ are drawn from the prior, the simulator is run with
those values to sample xsim∼ p(·|θ), and θ is retained as the pos-
terior sample if the simulated data are sufficiently close to the
observed data. In essence, the likelihood is approximated by the
probability that the condition ρ(xsim, xobs)<ε is satisfied, where
ρ is some distance measure and ε is a tolerance. The accepted
samples then follow an approximate version of the posterior.
We show a schematic workflow of this algorithm in Fig. 1A (for
a more elaborate Markov chain Monte Carlo algorithm with a
proposal function).

In the limit ε→ 0, inference with ABC becomes exact, but for
continuous data the acceptance probability vanishes. In prac-
tice, small values of ε require unfeasibly many simulations. For
large ε, sample efficiency is increased at the expense of inference
quality. Similarly, the sample efficiency of ABC scales poorly to
high-dimensional data x . Since the data immediately affect the
rejection process (and in more advanced ABC algorithms the
proposal distribution), inference for new observations requires
repeating the entire inference algorithm. ABC is thus best suited
for the case of a single observation or at most a few i.i.d. data
points. Lacking space to do the vast ABC literature justice, we
refer the reader to a review of ABC methods, see ref. 5, and high-
light the combination with Markov chain Monte Carlo (MCMC)
(6) and sequential Monte Carlo (SMC) (7, 8).

The second classical approach to simulation-based inference
is based on creating a model for the likelihood by estimating the
distribution of simulated data with histograms or kernel density
estimation (1). Frequentist and Bayesian inference then pro-
ceeds as if the likelihood were tractable. We sketch this algorithm
in Fig. 1E (replacing the green learning step with a classical den-
sity estimation method). This approach has enough similarities
to ABC to be dubbed “approximate frequentist computation” by
the authors of ref. 9. One advantage over ABC is that it is amor-
tized: After an upfront computational cost at the simulation and
density estimation stage, new data points can be evaluated effi-
ciently. In Fig. 1E this is depicted by the blue “data” box entering
only at the inference stage and not affecting the simulation
step. This property makes density estimation-based inference
particularly well suited for problems with many i.i.d. observa-
tions, a key reason for its widespread use in particle physics
measurements.

Both of the traditional approaches suffer from the curse of
dimensionality: In the worst case, the required number of sim-
ulations increases exponentially with the dimension of the data
x . Therefore both approaches rely on low-dimensional summary
statistics y(x ) and the quality of inference is tied to how well
those summaries retain information about the parameters θ. Tra-
ditionally, the development of powerful summary statistics has

been the task of a domain expert, and the summary statistics have
been prescribed prior to inference.

Frontiers of Simulation-Based Inference. These traditional simu-
lation-based inference techniques have played a key role in
several fields for years. However, they suffer from shortcomings
in three crucial aspects:

• Sample efficiency: The number of simulated samples needed
to provide a good estimate of the likelihood or posterior can
be prohibitively expensive.

• Quality of inference: The reduction of the data to low-
dimensional summary statistics invariably discards some of the
information in the data about θ, which results in a loss in
statistical power. Large values of the ε parameter in ABC or
the bandwidth parameter for kernel density estimation lead to
poor approximations of the true likelihood. Both reduce the
overall quality of inference.

• Amortization: Performing inference with ABC for a new set
of observed data requires repeating most steps of the infer-
ence chain, in particular if the proposal distribution depends
on the observed data. The method scales poorly when applied
to large numbers of observations. On the other hand, inference
based on density estimation is amortized: The computationally
expensive steps do not have to repeated for new observa-
tions. This is particularly desirable for the case with i.i.d.
observations.

In recent years, new capabilities have become available that let
us improve all three of these aspects. We loosely group them into
three main directions of progress:

1) The ML revolution allows us to work with higher-dimensional
data, which can improve the quality of inference. Inference
methods based on neural network surrogates are directly
benefiting from the impressive rate of progress in deep
learning.

2) Active learning methods can systematically improve sample
efficiency, letting us tackle more computationally expensive
simulators.

3) The deep integration of automatic differentiation and proba-
bilistic programming into the simulation code, as well as the
augmentation of training data with information that can be
extracted from the simulator, is changing the way the simu-
lator is treated in inference: It is no longer a black box, but
exposed to the inference workflow.

A Revolution in Machine Learning. Over the last decade, ML tech-
niques, in particular deep neural networks, have turned into
versatile, powerful, and popular tools for a variety of problems
(10). Neural networks initially demonstrated breakthroughs in
supervised learning tasks such as classification and regression.
They can easily be composed to solve higher-level tasks, lend-
ing themselves to problems with a hierarchical or compositional
structure. Architectures tailored to various data structures have
been developed, including dense or fully connected networks
aimed at unstructured data, convolutional neural networks that
leverage spatial structure for instance in image data, recurrent
neural networks for variable-length sequences, and graph neu-
ral networks for graph-structured data. Choosing an architecture
well suited for a specific data structure is an example of inductive
bias, which more generally refers to the assumptions inherent in
a learning algorithm independent of the data. Inductive bias is
one of the key ingredients behind most successful applications
of deep learning, although it is difficult to characterize its role
precisely.

One area where neural networks are being actively developed
is density estimation in high dimensions: Given a set of points
{x}∼ p(x ), the goal is to estimate the probability density p(x ).

Cranmer et al. PNAS Latest Articles | 3 of 8
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As there are no explicit labels, this is usually considered an
unsupervised learning task. We have already discussed that clas-
sical methods based for instance on histograms or kernel density
estimation do not scale well to high-dimensional data. In this
regime, density estimation techniques based on neural networks
are becoming more and more popular. One class of these neu-
ral density estimation techniques is normalizing flows (11–26), in
which variables described by a simple base distribution p(u) such
as a multivariate Gaussian are transformed through a parame-
terized invertible transformation x = gφ(u) that has a tractable
Jacobian. The target density pg(x ) is then given by the change-
of-variables formula as a product of the base density and the
determinant of the transformation’s Jacobian. Several such steps
can be stacked, with the probability density “flowing” through
the successive variable transformations. The parameters φ of the
transformations are trained by maximizing the likelihood of the
observed data under the model pg(xobs), resulting in a model
density that approximates the true, unknown density p(x ). In
addition to having a tractable density, it is possible to generate
data from the model by drawing the hidden variables u from the
base distribution and applying the flow transformations. Neural
density estimators have been generalized to model the depen-
dency on additional inputs, i.e., to model a conditional density
such as the likelihood p(x |θ) or posterior p(θ|x ).

Generative adversarial networks (GANs) are an alternative
type of generative model based on neural networks. Unlike in
normalizing flows, the transformation implemented by the gen-
erator is not restricted to be invertible. While this allows for
more expressiveness, the density defined by the generator is
intractable. Since maximum likelihood is not a possible train-
ing objective, the generator is pitted against an adversary, whose
role is to distinguish the generated data from the target distri-
bution. We will later discuss how the same idea can be used
for simulation-based inference, using an idea known as the
“likelihood-ratio trick.”

Active Learning. A simple, but very impactful idea is to run the
simulator at parameter points θ that are expected to increase
our knowledge the most. This can be done iteratively such that
after each simulation the knowledge resulting from all previous
runs is used to guide which parameter point should be used next.
There are multiple technical realizations of this idea of active
learning. It is commonly applied in a Bayesian setting, where the
posterior can be continuously updated and used to steer the pro-
posal distribution of simulator parameters (27–33). But it applies
equally well to efficiently calculating frequentist confidence sets
(34–36). Even simple implementations can lead to a substantial
improvement in sample efficiency.

Similar ideas are discussed in the context of decision making,
experimental design, and reinforcement learning, and we expect
further improvements in inference algorithms from the cross-
pollination between these fields. For instance, a question that
is occasionally discussed in the context of reinforcement learn-
ing (37, 38) or Bayesian optimization (39), but has not yet been
applied to the likelihood-free setting, is how to make use of
multifidelity simulators offering multiple levels of precision or
approximations.

Integration and Augmentation. Both ML and active learning can
substantially improve quality of inference and sample efficiency
compared to classical methods. However, overall they do not
change the basic approach to simulation-based inference dra-
matically: They still treat the simulator as a generative black box
that takes parameters as input and provides data as output, with a
clear separation between the simulator and the inference engine.
A third direction of research is changing this perspective, by
opening the black box and integrating inference and simulation
more tightly.

One example of this shift is the probabilistic programming
paradigm. Gordon et al. (40) describe probabilistic programs
as the usual functional or imperative programs with two added
constructs: 1) the ability to draw values at random from dis-
tributions and 2) the ability to condition values of variables in
a program via observations. We have already described simu-
lators as probabilistic programs focusing on the first construct,
which does not require opening the black box. However, condi-
tioning on the observations requires a deeper integration as it
involves controlling the randomness in the generative process.
This approach abstracts the capabilities needed to implement
particle filters and SMC (41). Previously, this required writ-
ing the program in a special-purpose language; however, recent
work allows these capabilities to be added to existing simulators
with minimal changes to their codebase (42). Ultimately, prob-
abilistic programming aims at providing the tools to infer the
incredibly complex space of all execution traces of the simulator
conditioned on the observation.

A complementary development is the observation that addi-
tional information that characterizes the latent data-generating
process can be extracted from the simulator and used to augment
the data used to train surrogates. Those developing inference
algorithms and those familiar with the details of the simula-
tor should consider whether, in addition to the sole ability to
sample x ∼ p(x |θ), the following quantities are well defined and
tractable:

1) p(x |z , θ)
2) t(x , z |θ)≡∇θ log p(x , z |θ)
3) ∇z log p(x , z |θ)
4) r(x , z |θ, θ′)≡ p(x , z |θ)/p(x , z |θ′)
5) ∇θ(x , z )
6) ∇zx .

These quantities can then be used to augment the usual output
x from the simulator and can be exploited in supervised learning
objectives and can dramatically increase the sample efficiency for
surrogate training (43–45), as we will detail later.

Many of the quantities above involve derivatives, which can
now be efficiently calculated using automatic differentiation
(often referred to simply as autodiff) (46). Autodiff is a family of
techniques similar to but more general than the backpropagation
algorithm that is ubiquitous in deep learning. Automatic differ-
entiation, like probabilistic programming, involves nonstandard
interpretations of the simulation code and has been developed by
a small but established field of computer science. In recent years
several researchers have advocated that deep learning would be
better described as differential programming (47, 48). With this
view, incorporating autodiff into existing simulation codes is a
more direct way to exploit the advances in deep learning than
trying to incorporate domain knowledge into an entirely foreign
substrate such as a deep neural network.

Extracting the necessary information from the simulator again
requires integration deep in the code. While technologies to
incorporate the probabilistic programming paradigm into exist-
ing code bases are just emerging, the development of tools to
enable autodiff in the most commonly used scientific program-
ming languages is well advanced. We highlight that two of the
quantities listed above (quantities 2 and 3) involve both autodiff
and probabilistic programming. The integration of inference and
simulation as well as the idea of augmenting the training data
with additional quantities has the potential to change the way we
think about simulation-based inference. In particular, this per-
spective can influence the way simulation codes are developed to
provide these new capabilities.

Workflows for Simulation-Based Inference
This wide array of capabilities can be combined in different infer-
ence workflows. As a guideline through this array of different
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workflows, let us first discuss common building blocks and the
different approaches that can be taken in each of these compo-
nents. In Fig. 1 and the following sections we will then piece these
blocks together into different inference algorithms.

An integral part of all inference methods is running the simu-
lator, visualized as a yellow pentagon in Fig. 1. The parameters at
which the simulator is run are drawn from some proposal distri-
bution, which may or may not depend on the prior in a Bayesian
setting, and can be chosen either statically or iteratively with an
active learning method. Next, the potentially high-dimensional
output from the simulator may be used directly as input to
the inference method or reduced to low-dimensional summary
statistics.

The inference techniques can be broadly separated into those
which, like ABC, use the simulator itself during inference and
methods which construct a surrogate model and use that for
inference. In the first case, the output of the simulator is directly
compared to data (Fig. 1 A–D). In the latter case, the output
of the simulator is used as training data for an estimation or
ML stage, shown as the green boxes in Fig. 1 E–H. The result-
ing surrogate models, shown as red hexagons, are then used for
inference.

The algorithms address the intractability of the true likelihood
in different ways: Some methods construct a tractable surrogate
for the likelihood function and others that for the likelihood-
ratio function, both of which make frequentist inference straight-
forward. In other methods, the likelihood function never appears
explicitly, for instance when it is implicitly replaced by rejection
probability.

The final target for Bayesian inference is the posterior. Meth-
ods differ in whether they provide access to samples of parameter
points sampled from the posterior, for instance from MCMC
or ABC, or a tractable function that approximates the poste-
rior function. Similarly, some methods require specifying which
quantities are to be inferred early on in the workflow, while
others allow this decision to be postponed.

Using the Simulator Directly during Inference. Let us now discuss
how these blocks and computational capabilities can be com-
bined into inference techniques, beginning with those which, like
ABC, use the simulator directly during inference. We sketch
some of these algorithms in Fig. 1 A–D.

A reason for the poor sample efficiency of the original rejec-
tion ABC algorithm is that the simulator is run at parameter
points drawn from the prior, which may have a large mass in
regions that are in strong disagreement with the observed data.
Different algorithms have been proposed that instead run the
simulator at parameter points that are expected to improve
the knowledge on the posterior the most (27–31). Compared
to vanilla ABC, these techniques improve sample efficiency,
although they still require the choice of summary statistics,
distance measure ρ, and tolerance ε.

In the case where the final stage of the simulator is tractable
or the simulator is differentiable (respectively, properties 1 and
6 from the list in Integration and Augmentation), asymptotically
exact Bayesian inference is possible (43) without relying on a
distance tolerance or summary statistics, removing ABC’s main
limitations in terms of quality of inference.

The probabilistic programming paradigm presents a more fun-
damental change to how inference is performed. First, it requires
the simulator to be written in a probabilistic programming lan-
guage, although recent work allows these capabilities to be added
to existing simulators with minimal changes to their codebase
(42). In addition, probabilistic programming requires either a
tractable likelihood for the final step p(x |z , θ) (quantity 1) or the
introduction of an ABC-like comparison. When these criteria are
satisfied, several inference algorithms exist that can draw samples
from the posterior p(θ, z |x ) of the input parameters θ and the

latent variables z given some observed data x . These techniques
are based either on MCMC (Fig. 1C) or on training a neural net-
work to provide proposal distributions (49) as shown in Fig. 1D.
The key difference from ABC is that the inference engine con-
trols all steps in the program execution and can bias each draw
of random latent variables to make the simulation more likely to
match the observed data, improving sample efficiency.

A strength of these algorithms is that they allow us to infer not
only the input parameters into the simulator, but also the entire
latent process leading to a particular observation. This allows us
to answer entirely different questions about scientific processes,
adding a particular kind of physical interpretability that meth-
ods based on surrogates do not possess. While standard ABC
algorithms in principle allow for inference on z , probabilistic
programming solves this task more efficiently.

Surrogate Models. A key disadvantage of using the simulator
directly during inference is the lack of amortization. When new
observed data become available, the whole inference chain has to
be repeated. By training a tractable surrogate or emulator for the
simulator, inference is amortized: After an upfront simulation
and training phase, new data can be evaluated very efficiently.
This approach scales particularly well to data consisting of many
i.i.d. observations. As discussed in Traditional Methods, this is
not a new idea, and well-established methods use classical den-
sity estimation techniques to create a surrogate model for the
likelihood function. But the new computational capabilities dis-
cussed in Simulation-Based Inference have given new momentum
to this class of inference techniques, some of which are visualized
in Fig. 1 E–H.

A powerful probabilistic approach is to train neural condi-
tional density estimators such as normalizing flows as a surrogate
for the simulator. The conditional density can be defined in two
directions: The network can learn either the posterior p(θ|x )
(32, 50–54) or the likelihood p(x |θ) (33, 55–57). We show these
three techniques in Fig. 1 E and F; note that the likelihood
surrogate algorithm is structurally identical to the classical den-
sity estimation-based approach, but uses more powerful density
estimation techniques.

Relatedly, neural networks can be trained to learn the
likelihood-ratio function p(x |θ0)/p(x |θ1) or p(x |θ0)/p(x ),
where in the latter case the denominator is given by a marginal
model integrated over a proposal or the prior (4, 58–65). We
sketch this approach in Fig. 1G. The key idea is closely related
to the discriminator network in GANs mentioned above: A clas-
sifier is trained using supervised learning to discriminate two sets
of data, although in this case both sets come from the simulator
and are generated for different parameter points θ0 and θ1. The
classifier output function can be converted into an approximation
of the likelihood ratio between θ0 and θ1! This manifestation of
the Neyman–Pearson lemma in an ML setting is often called the
likelihood-ratio trick.

These three surrogate-based approaches are all amortized:
After an upfront simulation and training phase, the surrogates
can be evaluated efficiently for arbitrary data and parameter
points. They require an upfront specification of the parameters
of interest, and the network then implicitly marginalizes over
all other (latent) variables in the simulator. All three classes
of algorithms can employ active learning elements such as an
iteratively updated proposal distribution to guide the simulator
parameters θ toward the relevant parameter region, improving
sample efficiency. Using neural networks eliminates the require-
ment of low-dimensional summary statistics, leaving it to the
employed model to learn the structures in high-dimensional data
and potentially improving quality of inference.

Despite these fundamental similarities, there are some dif-
ferences between emulating the likelihood, the likelihood ratio,
and the posterior. Learning the posterior directly provides the
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main target quantity in Bayesian inference but induces a prior
dependence at every stage of the inference method. Learning
the likelihood or the likelihood ratio enables frequentist infer-
ence or model comparisons, although for Bayesian inference an
additional MCMC or quantity 6 step is necessary to generate
samples from the posterior. The prior independence of likeli-
hood or likelihood-ratio estimators also leads to extra flexibility
to change the prior during inference. An advantage of training
a generative model to approximate the likelihood or posterior
over learning the likelihood-ratio function is the added function-
ality of being able to sample from the surrogate model. On the
other hand, learning the likelihood or posterior is an unsuper-
vised learning problem, whereas estimating the likelihood ratio
through a classifier is an example of supervised learning and
often a simpler task. Since for the higher-level inference goal the
likelihood and the likelihood ratio can be used interchangeably,
learning a surrogate for the likelihood-ratio function may often
be more efficient.

Another strategy that allows us to leverage supervised learning
is based on extracting additional quantities from the simulator
that characterize the likelihood of the latent process (e.g., quan-
tities 2 and 4 from the list in Integration and Augmentation). This
additional information can be used to augment the training data
for surrogate models. The resulting supervised learning task can
often be solved more efficiently, ultimately improving the sample
efficiency in the inference task (9, 44, 45, 66).

Surrogate-based approaches benefit from imposing suitable
inductive bias for a given problem. It is widely acknowledged that
the network architecture of a neural surrogate should be cho-
sen according to the data structure (e.g., images, sequences, or
graphs). Another, potentially more consequential, way of impos-
ing inductive bias is to have the surrogate model reflect the causal
structure of the simulator. Manually identifying the relevant
structures and designing appropriate surrogate architectures is
very domain specific, although has been shown to improve the
performance on some problems (67–69). Recently attempts have
been made to automate the process of creating surrogates that
mimic the simulation (70). Looking farther ahead, we would like
to learn surrogates that reflect the causal structure of a coarse-
grained system. If this is possible, it would allow the surrogate to
model only the relevant degrees of freedom for the phenomena
that emerge from the underlying mechanistic model.

Preprocessing and Postprocessing. There are a number of addi-
tional steps that can surround these core inference algorithms,
either in the form of preprocessing steps that precede the main
inference stage or as an afterburner following the main inference
step.

One preprocessing step is to learn powerful summaries y(x ).
Because of the curse of dimensionality, both ABC and classical
density estimation-based inference methods require a compres-
sion of the data into low-dimensional summary statistics. They
are usually prescribed (i.e., hand chosen by domain scientists
based on their intuition and knowledge of the problem at hand),
but the resulting summaries will generally lose some information
compared to the original data. A minimally invasive extension
of these algorithms is to first learn summary statistics that have
certain optimality properties, before running a standard infer-
ence algorithm such as ABC. We sketch this approach in Fig. 1B
for ABC, but it applies equally to inference based on density
estimation.

The score t(x |θ)≡∇θp(x |θ), the gradient of the log (margi-
nal) likelihood with respect to the parameters of interest, defines
such a vector of optimal summary statistics: In a neighborhood
of θ, the score components are sufficient statistics, and they can
be used for inference without loss of information. Just like the
likelihood, the score itself is generally intractable, but it can
be estimated based on quantity 5 and an exponential family

approximation (71, 72). If quantity 2 is available, augmented data
extracted from the simulator can instead be used to train a neu-
ral network to estimate the score (44) without requiring such an
approximation. Learned summaries can also be made robust with
respect to nuisance parameters (73, 74).

Even if it is not necessary to reduce the data to low-dimens-
ional summary statistics, in some fields the measured raw or
“low-level” data can be very high dimensional. It is then common
practice to compress them to a more manageable set of “high-
level” features of moderate dimensionality and to use these
compressed data as input to the inference workflow.

Inference compilation (49) is a preprocessing step for proba-
bilistic programming algorithms, shown in Fig. 1D. Initial runs
of the simulator are used to train a neural network used for
sequential importance sampling of both θ and z .

After the completion of the core inference workflow, an
important question is whether the results are reliable: Can the
outcome be trusted in the presence of imperfections such as
limited sample size, insufficient network capacity, or inefficient
optimization?

One solution is to calibrate the inference results. Using the
ability of the simulator to generate data for any parameter point,
we can use a parametric bootstrap approach to calculate the
distribution of any quantity involved in the inference workflow.
These distributions can be used to calibrate the inference pro-
cedure to provide confidence sets and posteriors with proper
coverage and credibility (9, 60). While possible in principle, such
procedures may require a large number of simulations. Other
diagnostic tools that can be applied at the end of the infer-
ence stage involve training classifiers to distinguish data from
the surrogate model and the true simulator (60), self-consistency
checks (9, 60), ensemble methods, and comparing distributions
of network output against known asymptotic properties (75–77).
Some of these methods may be used for uncertainty estimation,
although the statistical interpretation of such error bars is not
always obvious.

None of these diagnostics address the issues encountered if
the model is misspecified and the simulator is not an accurate
description of the system being studied. Model misspecification
is a problem that plagues inference with both prescribed and
implicit models equally. Usually this is addressed by expanding
the model to have more flexibility and introducing additional
nuisance parameters.

Recommendations. The considerations needed to choose which of
the approaches described above is best for a given problem will
include the inference goals, the dimensionality of model param-
eters, the latent variables, and the data; whether good summary
statistics are available; the internal structure of the simulator;
the computational cost of the simulator; the level of control over
how the simulator is run; and whether the simulator is a black
box or whether any of the quantities discussed in Integration and
Augmentation can be extracted from it. Nevertheless, we believe
that the existing body of research lets us provide a few general
guidelines.

First, if any of the quantities discussed in Frontiers of Simula-
tion-Based Inference are available, they should be leveraged.
Powerful algorithms are available for the case with differentiable
simulators (43), for simulators for which the joint likelihood of
data and latent variables is accessible (44), and for simulators
explicitly written as a probabilistic model in a probabilistic pro-
gramming framework (78). Probabilistic programming is also the
most versatile approach when the goal is not only inference on
the parameters θ, but also inference on the latent variables z .

If powerful low-dimensional summary statistics are estab-
lished, traditional techniques can still offer a reasonable perfor-
mance. In most cases, however, we recommend trying methods
based on training a neural network surrogate for the likelihood
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(33, 56) or the likelihood ratio (60, 62, 64). If generating synthetic
data from the surrogate is not important, learning the likelihood
ratio rather than the likelihood allows us to leverage powerful
supervised learning methods.

Finally, active learning techniques can improve the sample
efficiency for all inference techniques. There is a tradeoff
between active learning, which tailors the efficiency to a par-
ticular observed dataset, and amortization, which benefits from
surrogates that are agnostic about the observed data. A good
compromise here will depend on the number of observations and
the sharpness of the posterior compared to the prior.

Discussion
Until recently, scientists confronted with inverse problems and
a complex simulator as a forward model had little recourse
other than to choose ABC or methods based on classical den-
sity estimation techniques. While these approaches have served
some domains of science quite well, they have relied heavily on
the labor-intensive process of experts providing powerful sum-
mary statistics. As a result, there is a frontier beyond which
these traditional methods are less useful and new techniques are
needed.

The term likelihood-free inference has served as a point of
convergence for what were previously disparate communities,
and a new lingua franca has emerged. This has catalyzed signifi-

cant cross-pollination and led to a renaissance in simulation-
based inference. The advent of powerful ML methods is enabling
practitioners to work directly with high-dimensional data and to
reduce the reliance on expert-crafted summary statistics. New
programming paradigms such as probabilistic programming and
differentiable programming provide new capabilities that enable
entirely new approaches to simulation-based inference. Finally,
taking a more systems-level view of simulation-based inference
that brings together the statistical and computational considera-
tions has taken root. Here active learning is leading the way, but
we expect more advances like this as simulation-based inference
matures.

The rapidly advancing frontier means that several domains of
science should expect either a significant improvement in infer-
ence quality or the transition from heuristic approaches to those
grounded in statistical terms tied to the underlying mechanistic
model. It is not unreasonable to expect that this transition may
have a profound impact on science.

Data Availability. There are no data associated with this paper.
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(NRB) Chair on Big Data and is thankful for the support of NRB.

1. P. J. Diggle, R. J. Gratton, Monte Carlo methods of inference for implicit statistical
models. J. R. Stat. Soc. Ser. B 46, 193–212 (1984).

2. D. B. Rubin, Bayesianly justifiable and relevant frequency calculations for the applied
statistician. Ann. Stat. 12, 1151–1172 (1984).

3. M. A. Beaumont, W. Zhang, D. J. Balding, Approximate Bayesian computation in
population genetics. Genetics 162, 2025–2035 (2002).

4. S. Mohamed, B. Lakshminarayanan, Learning in implicit generative models.
arXiv:1610.03483 (11 October 2016).

5. S. A. Sisson, Y. Fan, M. Beaumont, Handbook of Approximate Bayesian Computation
(Chapman and Hall/CRC, 2018).

6. P. Marjoram, J. Molitor, V. Plagnol, S. Tavaré, Markov chain Monte Carlo without
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