EXPONENTIAL LOWER RESOLVENT BOUNDS FAR AWAY FROM
TRAPPED SETS

KIRIL DATCHEV AND LONG JIN

ABSTRACT. We give examples of semiclassical Schrédinger operators with exponentially large
cutoff resolvent norms, even when the supports of the cutoff and potential are very far apart.
The examples are radial, which allows us to analyze the resolvent kernel in detail using ordinary
differential equation techniques. In particular, we identify a threshold spatial radius where the
resolvent behavior changes. We apply these results to wave equations with radial wavespeed,
identifying a corresponding threshold radius at which wave decay properties change.

1. INTRODUCTION

In the first part of this paper we study semiclassical resolvent estimates, and in the second part
we apply the results to wave decay and non-decay.

1.1. Semiclassical resolvent estimates. In this paper we investigate resolvent estimates for
the semiclassical Schrodinger operator

P = P(h) = —h*A + V(z),
where V': R" — R, n > 2. Initially we suppose V' € CZ°(R™), but later we will relax this condition.

Question 1. For which Eg > 0, and for which bounded and open sets U C R™, can we find an
interval I containing Ey such that the incoming and outgoing cutoff resolvents obey

sup 11y(P — E £i0) "1y p2rny— r2®n) < C/h, (1.1)
for all h > 0 sufficiently small?

It is well known that the answer depends upon dynamical properties of the classical flow
P(t) = expt(2£0, — 0,V (x)0¢) in T*R™. Of particular importance is the trapped set at energy
Ey, which we denote K(Ep); this is the set of (z,£) € T*R™ such that |¢]> + V(z) = Ep and
|®(t)(x, )| is bounded as |t| — co.

If K(Ep) is empty, that is to say if Ey is nontrapping, then Robert and Tamura [RoTal] show
that the answer to Question 1 is that U can be arbitrary. Analogous results hold in much more
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general nontrapping situations; see e.g. [Vo, HiZw]| for some recent results, and see those papers
and also [BoBuRa, Zw] for some pointers to the substantial literature on this topic.

But if IC(Ey) is not empty, then Bony, Burq, and Ramond [BoBuRa] show that there is U such
that for any interval I containing Ey we have

log(1/h)

s (1.2)

sup [1y(P — E £i0) " 1y || g2y r2(mn) >
Eel
more specifically it is enough if 7*U contains an integral curve in K(Ep). Moreover, as we discuss
below, the right hand side can sometimes be replaced by e“/".

Nevertheless, regardless of any trapping, for all I € (0, 00) there exists r, > 0 such that (1.1)
holds whenever U is disjoint from B(0, 7). Thus, if the distance between T*U and K(Ejp) is large
enough, then all losses due to trapping are removed. This was first shown by Cardoso and Vodev
[CaVol, refining earlier work of Burq [Bu2], and analogous results hold for much more general
operators [CaVo, RoTa2, Vo, Da, DadH, Sh1].

It is not always necessary to cut off so far away: in [DaVa] it is shown that if trapping is
sufficiently mild, then we have (1.1) whenever T*U is disjoint from IC(Ep). (By ‘trapping is
sufficiently mild’ we mean that the resolvent is polynomially bounded in h~!; see [DaVa] and
also the survey [Zw, §3.2] and the book [DyZw, Chapter 6] for more details, including sufficient
conditions on KC(Ey), and for references to some of the many known results of this kind.) Moreover,
in that case (1.1) still holds if we replace 1y by a microlocal cutoff vanishing only in a small
neighborhood of IC(Ey) in T*R™. If C(Ep) is normally hyperbolic, then the vanishing hypothesis
can be weakened further: see [HiVa]. Propagation estimates play an important role in such
results, and the connection between propagation estimates and polynomial resolvent bounds has
been recently studied in [BoFuRaZe].

Our main result is that, when trapping is not mild, the situation can be dramatically different.
Namely, losses due to trapping can show up very far away from the support of V:

Theorem 1. Suppose that V € C°(B(0,1)) is radial, n > 2, and minV < 0. Let R > 1 and let
U be a neighborhood of the sphere OB(0, R): see Figure 1. There is C > 0 such that if

0< Ey<1/CR? (1.3)

then

sup 110(P — E £i0) " 1y]| o (rn) - r2@ny = €/, (1.4)
E€[Eqg—Ch,Eq+Ch]

for all h > 0 small enough.

The key point is that the distance between U and supp V' (and hence, in particular, between
T*U and the trapped set IC(Ep)) can be arbitrarily large. This seems to be a new phenomenon.

Moreover, the conditions on U and V' can be weakened, and in this nice radial setting we can
say more. See Theorem 3 below for a stronger and more general result, and (4.11) for a more
precise version of (1.3).

Lower bounds of the form (1.4) with K(Eg) C T*U stem from O(e~ /") quasimodes, and they
are well known to hold in radial situations or under a barrier assumption, namely when {z | V(x) <



EXPONENTIAL LOWER RESOLVENT BOUNDS FAR AWAY FROM TRAPPED SETS 3

supp V'

U

FiGURE 1. The relative positions of U and supp V.

Ep} has a bounded connected component contained in U. They have been recently investigated
in [DaDyZw], where it is shown that, for V satisfying a barrier assumption, 1y(P — E £i0)" 11y
can be replaced by 1y, (P— E £ z'O)_llUR, with only one of Uy, and Ug containing supp V. Lower
bounds for the continuation of 1y(P — 2)~'1y as z crosses the positive real axis were recently
studied in [BoPe, DyWal.

In the setting of Theroem 1, it is clear that no quasimodes can concentrate in U because of the
flow invariance of support of semiclassical measures. The quasimodes we use are concentrated in
the set where V' is negative, and we show below (in Lemma 3) that their exponential decay away
from this set is very slow. This is a key difference between our result and previous lower bounds
as in [DaDyZw].

The form of the right hand side of (1.4) is essentially optimal: for any I € (0,00) there is
C’ > 0 such that for any U we have

sup 110 (P — B % i0) 1y|| g2 (gn) s r2(rny < CeC /M. (1.5)
€

This was first shown by Burq [Bul, Bu2| in a more general setting, and has been generalized still
further in [CaVo, RoTa2, Vo, Da, DadH, Shl, Ga].

We can define the value R, = R.(Ep; V') for more general potentials V' by
R, :=1inf{r > 0] (1.1) holds for some I containing Ey whenever U N B(0,r) = &}. (1.6)

As we mentioned previously, in [CaVo, RoTa2, Vo, Da, DadH, Sh1] it is shown that R, is finite
for quite general V and Eg > 0. In Theorem 1 we show that R, — +oo as Ey — 0 for a family

1 2 Let us mention here that the finiteness

of examples, and in (4.11) we show that R, ~ E;
of R, in this setting as well as in more general ones, has been applied to a variety of problems
in scattering theory: see e.g. [St, Mil, GuHaSi, Ch]. There are also well-known consequences
for Schrodinger and wave evolution: see §1.2 below. These applications motivate the following

question.

Question 2. What can we say about the value of R, for more general V and Ey?
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For example, it would be interesting to know if the hypothesis that V is radial in Theorem 1
could be weakened. The lower bounds on resonance widths of [DalMa] make it seem unlikely that
the radiality hypothesis could be removed altogether.

1.2. Wave decay and non-decay. We now give an application of the above results to decay
and non-decay estimates for solutions to the wave equation with radial wavespeed, for simplicity
restricting attention! to the case n > 3. Thus, let ¢ € C*(R™; (0,00)) be radial, so that c(z) =
co(r), and suppose

r>p = co(r) =r, (1.7)

for some positive constants p and . Given initial conditions wg, w; € C°(R"), let w € C°(R"™ x
R) be the solution to

(02 — c(z)?A)w(z,t) =0, w(z,0) =wy, w(x,0)=w;.

Then we have conservation of energy in R™:

E = Ele,wo, wi] = /Rn |Vwo(z) |2 + |e(z) " twy (z)|*dx

(1.8)
= / |Vw(z,t))? + |e(z)  ow(z, t)Pdz, vVt € R.
Rn
Our main result in this setting concerns energy on a bounded open set U € R™:
Eu(t) = Eule, wo, wi](t) = / |Vw(z,t)|? + |c(z) " opw(x, t)2da. (1.9)
U

This energy decays logarithmically in the sense that for all U € R™ and k € N there is C > 0
such that

Ey(t) < Cllogt)™  VteR. (1.10)

In fact, these results are very robust. Proving the conservation of energy (1.8) is simple: one
differentiates with respect to ¢ and integrates by parts, and so (1.8) clearly holds for very general
symmetric operators. Proving the logarithmic decay (1.10) is more complicated, but it too has
been established in great generality. The study of wave decay has a long history and we do not
attempt to survey it here. We just mention that the first general logarithmic decay results are
due to Burq [Bul], and refer the reader also to [Bu2, Bo2, Mo, Ga, Sh2] for more recent results
on logarithmic decay and for more references.

We now bring in an assumption which ensures (stable) trapping: namely we assume that
min(r/co(r))" < 0. (1.11)

Such a situation was considered by Ralston [Ra], who showed that then there are sequences of
resonances converging exponentially quickly to the real axis, and it is well-known that in particluar
this means (1.10) cannot be improved if T*U contains the trapped set (see [HoSm, §7] for a recent
version of such a result in the setting of general relativity). Note also that if instead we had
min(r/co(r))’ > 0 then the problem would be nontrapping (see [Ra, p. 571].)

ISee 81.4 for a discussion of why we do this.
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To state our result we will also need the threshold radius

R. = k max r/cy(r), (1.12)
r€(0,p]
and we assume that
R. > p. (1.13)

Theorem 2. Fix ¢ satisfying (1.7) and (1.13).

(1) If U € R™ is disjoint from the closed ball B(0, R.), then there is C > 0 such that
/ E0(t)dt < CE, (1.14)

for all wy, w; € CX(R™).
(2) If U € R™ contains the sphere OB(0, R) for some R € [p, R.], then there is no C' > 0 such
that (1.14) holds for all wy, w1 € C°(R™).

Remarks:

(1) One can check that (1.13) implies (1.11). We make the stronger assumption (1.13) because
it simplifies our work, and because the most interesting examples have R, > p.

(2) It is easy to construct families of examples such that R. — +oo with p and « fixed. One
way is to take ¢ € C2°(]0,1); [0, 1]) such that ) = 1 near 0 and put

co(r) =1 —sy(r),

with s € (0,1). Then R. — oo as s — 1.

(3) We see that R, is a threshold at which wave decay behavior changes, just as in Theorem
3 we see that 79 is a threshold at which resolvent norm behavior changes. Actually, by

setting Fog = k2 and Vo = k2 — 052 we have R, = ry (see §4 for more), and so R, is also
a threshold for the behavior of the resolvent (—c?A — A2)~!: see Lemma 6.

(4) We expect that the second part of Theorem 2 can be strengthened to take into account
a possible loss of derivatives as follows: if U € R™ contains the sphere 0B(0, R) for some

R € [p, R.], then for any N € N, there is no C' > 0 such that

/ EU(t)dt <C (HwOH%{N(Rn) + HwIHZHN—I(Rn)) )

holds for all wg, w1 € C°(R™). (Thanks to Jason Metcalfe for suggesting this comment.)

We can interpret (1.14) as an ‘exterior’ wave decay estimate. Many variations of such estimates,
including different types of smoothing and Strichartz estimates, have been established. See [BoTz,
MaMeTa, MaMeTaTo, BuGuHa, Bol, Mi2, ChWu, ChMe, RoTa2, MeStTa, BoChMePe| and
references therein for results where behavior away from some compact set is better than behavior
in sets which overlap trapping. Our result seems to give the first examples of ‘bad’ behavior
extending arbitrarily far from the trapped set.
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1.3. Outline of the rest of the paper. In §2 we state the main resolvent estimates of the
paper, Theorem 3. In §3 we prove pointwise resolvent kernel bounds for a family of semiclassical
ordinary differential operators, approximating the solutions by Airy functions using the remainder
bounds of Olver [Ol]. In §4 we prove Theorem 3 and use it to prove Theorems 1 and 2.

1.4. Notation. In this paper A < 0 is the Euclidean Laplacian on R™ for some n > 2, h > 0
is a (small) semiclassical parameter, 17 is the characteristic function of U, C' > 0 is a constant
which may change from line to line, A € B means that the closure of A is a compact subset of
B, B(a,b) is the ball with center a and radius b, the sphere 0B(a,b) is its boundary, r = |z| is
the radial coordinate in R™, () = (1 +¢)1/2, and 3", Q(£) = Q(+) + Q(—). Ai and Bi are Airy
functions, see Appendix A.

The radius p and wavespeed « are defined in (1.7), and the radius R, is defined in (1.12). The
potentials V', Vy, and V,,, are defined in (2.1) and the preceding sentences. The angular momentum
My and the radii 79 and r; are defined in terms of the potential V' and the energy level Ey in
(2.2), (2.4), and (2.6) respectively: see also Figure 2 and Lemma 4 for more on these important
quantities. The Schrodinger operator P, is defined in (3.1), its domain D is defined in terms of
the boundary condition B immediately afterwards, and its resolvent kernel K (r,r’) is then given
in (3.2). We also sometimes use the domain D,, given in (3.32). The angular momenta m; are
defined in terms of the spherical eigenvalues o; in (4.2).

In §4.3 we use the homogeneous Sobolev space H!(R"), defined to be the completion of C2°(R™)
with respect to the norm u + ||[Vu| z2gn). When n = 2 this is not a space of distributions and
various technical difficulties arise (e.g. multiplication by a function in C°(R™) is not a bounded
operator). For simplicity, in §1.2 and §4.3 we stick to the case n > 3 (so that, in particular,

Sobolev embedding implies H*(R™) C L (R™)), but see [Sh2] for methods which cover the case
n = 2. Note that in Theorems 1 and 3 these difficulties do not appear and we allow n > 2.

2. MAIN THEOREM

In this section we state our main semiclassical resolvent estimates. We begin with the assump-
tions, which are weaker but more complicated than the ones for Theorem 1.

Let n > 2, and let V: R"\ {0} — R be radial, so that V(z) = Vy(r), and suppose’ Vy(r) €
r=203([0, 00)) is bounded below and |1"2+k8,]f%(r) is bounded for all » > 0 and k € {0, 1, 2, 3}.

Then P = —h2A +V is selfadjoint on a domain containing C°(R™ \ {0}), and we fix such a
domain. For E > 0 we can define and study the incoming and outgoing resolvents (P — E #+40)~!

using separation of variables as we recall in §4 below.

For m € R, let
Vi (r) = Vo(r) +mr~2. (2.1)

2To keep things simpler while still capturing the interesting phenomena, one can restrict attention to the case
Vo(r) € C2°([0, 00)).
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This is the effective potential which arises when we write the Laplacian in polar coordinates; we
think of m as the angular momentum. For Ey > 0, put

My = My(Eg) = sup{m > 0| V' (Ep) has at least two points}, (2.2)

and suppose
My is finite. (2.3)

The trapping we use occurs at the angular momentum M, and we will also need the following
two radii. Put

ry = ro(Lp) = max V]\}&(Eo)a (2.4)
and suppose
Vi, (r) <0 for all 7 > rs. (2.5)
Put
ri = 1(Eo) = max (Vi (Bo)\ {r2(E0)}) (2.6)

Note that if V{ is compactly supported and min Vj < 0, then the assumptions (2.3) and (2.5) are
automatically satisfied for Fy > 0 sufficiently small; we also have more explicit formulas for My,
r1, and ro, which we derive in §4.2 below. These assumptions imply that VA’/IO (r1) = 0, so that
the trapped set IC(Ep) contains circular orbits in 7*0B(0,71), and these are the trapped orbits
that we will use (in Lemma 3) to prove exponential lower bounds. See Figure 2.

1 T2

FIGURE 2. A possible graph of Vyy,.

Theorem 3. Let V, Ey, r1, and ro be as above.

If U C R™ is bounded, open, and disjoint from a neighborhood of B(0,72), then there is an
interval I containing Ey and a constant Cy such that

%UI; ||1U(P o == Z’O)_llU”LQ(Rn)HLQ(Rn) < Co/h, (27)
S

for all h > 0 small enough.

On the other hand, let Up, and Ug be bounded open sets in R™ containing spheres 0B(0,1r)
and 0B(0,rR) respectively, such that min(ry,rg) € [r1,7r2]. Then there are constants Cy and Co
such that

sup 11y, (P — E +i0) ™ 1y, | 2@y 12(m) > e92/", (2.8)
E€[Eq—C1h,Eq+C1h]
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for all h > 0 small enough. If in addition we have maxV < Ey, then
11y, (P — Eo £i0) ™ 1, 2@y 2(ny > €“2/M, (2.9)

for h tending to 0 along a sequence of positive values.

The main point is the value 1o = ra(Ey), which corresponds to R, from (1.6). Comparing (2.7)
with (2.8) and (2.9) we see that ry is a threshold at which the behavior of the resolvent changes.

We now discuss the values of C7 and C5, which come from Lemma 3 below. The former is
related to an eigenvalue of an interior problem, and the latter to an Agmon distance, both for the
effective potential Vjy,. Such eigenvalues are known to approximate real parts of resonances near
the real axis, while Agmon distances correspond to imaginary parts of the same resonances: see
[HeSj] (especially §11 of that paper) and [FulaMa] for results in a well-in-an-island setting, and
[NaStZw, Corollary, §5] for an abstract statement. Let us emphasize that our lower bounds are
in terms of an Agmon distance for Vjy, rather than for V', and the former may be much greater
than the latter (for example, the latter vanishes if max V' < Ej). See also [Se| for one-dimensional
resonance asymptotics using methods in some ways similar to ours, and [DaMa] for a more recent
higher-dimensional result and more references.

An interesting special case is the one where V' has a unique local minimum, located at the
origin, and moreover this minumum is nondegenerate and V;(0) = Ey > 0. Then My(Ey) = 0, so
that V(z) = Vg, (r) is a well-in-an-island type potential, and Ej is at the bottom of the well. In
that case, by [Na, Proposition 4.1], there is u > 0 such that for any U we have

sup 11y(P — E) "1yl z2@ny—s 12®ny < C/h. (2.10)
E€[Eo—ph, Eo+uh)

This upper bound shows that the form of the interval [Ey — C1h, Ep + C1h] in (2.8) is optimal in
general. See also [BoBuRa, §1] and [DaDyZw, §4] for further discussion.

3. SEMICLASSICAL ODE ASYMPTOTICS

In this section we prove pointwise resolvent estimates, for energies E near FEj, for
Py, = Py (h) = —h?02 + Vi (7), (3.1)
where V, is given by (2.1) with m > —h?/4. Let D = D(m, h) C L*(R.) be a domain for P, so
that P, is selfadjoint and C2°((0,00)) C D.

We briefly recall some facts about D. By Proposition 2 and Theorems X.7, X.8, and X.10 of
[ReSi, Appendix to X.I] we have D = {u € L*(R}) | Ppu € L*(R;) and Bu = 0}, where Bu
is a boundary condition at 0 with real coefficients, and moreover B = 0 unless m = O(h?). If
m = O(h?), then we may have B # 0; below we will not need further information about B, but
see [Re, BuGe] and [Ze, §10.4] for descriptions of the possibilities. Note finally that D is preserved
by complex conjugation because P,, has real coefficients.

The outgoing resolvent kernel at energy E > 0 is given by

K(r,7") = K(r,r";m; E;h) = —uo(r)ul(r')/hQVV, for r <1/, (3.2)
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and it obeys K (r,r’) = K(r',r), where uy and u; are certain solutions to
Puj = Euj, (3.3)

and W = ugu — ufu; is their Wronskian. More specifically ug € L?((0,1)) and satisfies Bug = 0,

and wuq(r) is outgoing, that is to say it is asymptotic to a multiple of e"VE/h a5 1 — oo, For

convenience we assume without loss of generality that ug is real-valued.

In the remainder of §3 we prove three lemmas, each of which bounds K(r,r’) for a different
range of v, v/, m, and E. The first two will be used to prove (2.7), and the third to prove (2.8)
and (2.9).

In the first lemma m is small enough that no turning point analysis is needed.

Lemma 1. Fiz roy > 1o, M > 0, and I € (0,00) such that Va(r) < E for all v > roy and
Ee1. Then

h=1(1 + O(h))
(B = Vi (r))V/4(E = Vi (/)14
uniformly for all v > roy, ' > roy, E € 1, and m € [0, M].

K (r,r")| < (3.4)

In §4 we will specify ro; and M; they will be slightly larger than ro and My respectively.

Before giving the proof we give the idea. We will use the fact that ug and u; are each oscillatory,
rather than exponentially growing or decaying, since we are in the classically allowed region
E > V. So the upper bound follows from a lower bound on the Wronskian; this in turn follows
from the fact that, roughly speaking, u is like exp (% [ v/E — Vp,) since it is outgoing, while ug
is equal amounts exp (+ [ VE —V;,) and exp (—£ [ E —V;,) since it is real-valued.

Proof. For any ug as above, by [Ol, §6.2.4] there are real constants A = A(h) and B = B(h) such
that for r > roy we have

uo(r) = (E — Vm(r))_1/4 (Z(A +iB)exp (:I:;L /T VE - Vm(r/)dr/> (1+ 5i(r))> ,  (3.5)

+
where €4 and e_ satisfy
lex ()| + hle’L(r)| < Chr™, (3.6)
when r > roy.

Again by [Ol, §6.2.4], we can normalize u; to be the outgoing solution of (3.3) given by

ui(r) = (E — Vm(r))_1/4 exp (}ZL /r VE — Vm(r’)dr’) (I+e4(r)), (3.7)

for r > roy.

We compute the Wronskian

W= Wigu) = —2—B 2L TG0 £ O ) = 2B + AR, (3.8)

CVE—Vi(r)
where we dropped the remainder because W is independent of . Combining this with (3.2), (3.5),
and (3.7) gives (3.4). O
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In the second lemma m is large enough that a turning point analysis is needed. For our
purposes the following bound which blows up near the turning point is sufficient, even though K
is of course continuous there. We state a result for all » > 0 and ' > 0, even though we only use
a smaller range in our application, since the result for the full range is obtained with no extra
effort. We remark that a closely related turning point analysis appears in a recent paper of Yafaev
on semiclassical asymptotics for eigenfunctions in a potential well [Ya].

Lemma 2. Fiz M > 0 such that Vi, (r) <0 for allT > 1o, and fix I € (0,00) containing Ey such
that Vs (r) > E for allr <ry and E € I. Then

Camh™ (1 4+ O(m~Y/2h))
B = Vol IATE = Vi) |75
uniformly for all >0, 7" >0, m > M and E € I, where C4 is given by (A.6).

K (r,r")] <

(3.9)

Before giving the proof we give the idea. By rescaling, we can use m~'/2h as a new semiclassical
parameter, and the turning point R is roughly given by V,-!(E) > ro; the classically forbidden
region is 7 < R and classically allowed region is r > R. In the classically allowed region the bound
holds for the same reason that it did in Lemma 1. In the classically forbidden region, the solutions
are exponentially growing and decaying, rather than oscillatory, because E < V,,, there. But wug
is forced to have only an exponentially decaying component and no exponentially growing one by
the condition uy € L?((0,1)). Since we are estimating an expression of the form wug(r)uy (') with
r < 1’, the decay from ug beats the growth from u;. The Wronskian cannot be very small for the
same reason as in Lemma 1. Near the turning point these arguments break down, as can be seen
from the weakness of (3.9) when r or 7’ is close to V. 1(E).

Proof. The proof proceeds in four steps. In the first we introduce some useful notation, including
a change of variable r — ((r) in the manner of [Ol, §11.3]. In the second we express ug in terms
of Airy functions, and compute asymptotics as m*/2h~1 and r become large. In the third we do
the same for w1, and in the fourth we compute the Wronskian and combine the previous results
to conclude.

Put
m' =m+"%  and R=V_'E), (3.10)
and note that
R+ |V (Rt < Cm!/? (3.11)

see Figure 3.

Following [Ol, §11.3.1], we rewrite (3.3) as
u = ((m1/2h71)2f + g) u, where f=m'(V,y —E) and g=—1r2 (3.12)
As we will see in (3.17) below, this decomposition leads to good asymptotic properties as r — 0.

Define an increasing bijection (0,00) 3 r — ((r) = {(r;m;h) € R by

r 2/3
C(r)y== 23;1/ VE =V (r)dr'| ,  when &+ (r—R)>0. (3.13)
R

Note that our ¢ differs from the one used in [Ol, §11.3] by a factor of mt/3p=2/3,
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T2 R

FIGURE 3. A possible graph of V.
We will need the following bound for (: for r > 0 sufficiently small we have
gm—l/%(—g(r))?’ﬂ =m~ /2 / * Vi (') = Edr’ > In(1/1)/C. (3.14)
By [Ol, §11.3.3], there are constants Ay = Ag(h) and By = By(h) such that

¢\
udﬂ:=(()> (Ao (Ai(=C(r) +2a(r) + Bo (Bi(~¢(r) +ep(r)),  (3.15)

E =V (r
where Ai and Bi are given by (A.1), and 4 and ep satisfy
lea(r)| + lep(r)] < Cm~Y2h(¢(r)) ™4, when r > R, (3.16)
and
lea(r)] + les(r)] < Cm_1/2h<C(r)>_1/4, when r < R; (3.17)

Ai(=¢(r))  Bi(=¢(r))
see Appendix B for more details. We use m’ rather than m in our definition of { because this
choice makes (3.17) hold uniformly for all » € (0, R], rather than merely uniformly on compact
subintervals of (0, R]: see Appendix B and also [Ol, §11.4.1 and §6.4.3].

Recalling that ug € L%((0,1)), and inserting (3.17), (A.2), and (A.3) into (3.15), we see that
By = 0. Without loss of generality we normalize ug so that Ag = 1 and

. 1/4
w) = (=es) Ai=c) +ea). (3.18)

We now derive the simpler and better asymptotics which hold for large r; these will ease the
computation of the Wronskian later. If » > R + 1, then inserting (3.16) and (A.4) into (3.18)
gives

2

ug(r) = V2B = Vi (r) Y4 (cos (34@«)3/2 — D +O(m™?h) + O(C(r)_3/2)> . (3.19)

On the other hand, as in (3.5), there are real constants A = A(h) and B = B(h) such that for
r > R+ 1 we have

ug(r) = (B = Vy (1)) ~H/4 (Z (A £ iB)exp <:|:;L /T VvVE - Vm/(r/)dr’> (1+ Ei(r))> , (3.20)
T R
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where € and e_ satisfy
e ()] +m~2hlel(r)| < Cm ™V 2hr Y, (3.21)
when r > R+ 1. Setting (3.19) equal to (3.20) and applying (3.21) gives

712 cos <2¢(r) — D +O(m™?h) =) (A+iB)exp (j:;bgo(r)> (1+0(m™%n)), (3.22)
+

for r large enough (depending on m and h), where we used

90(7“):%4 3/2 = /\/E Vi (r')dr’ — 00 as 7 — o0o.

3

Hence
A+iB =27 x 2T L O(m~12h). (3.23)

Now we turn to uj. As in (3.7), we normalize it by setting

() = (B Vo) oo (5 [ VE= V) (4e0). (329

for r > R+ 1. Using [Ol, §11.3.3] again, there are constants A; = Aj(h) and By = Bj(h) such
that for r € (0,00) we have

¢\
ui(r) = <W> (A1 (Ai(=C(r)) +ea(r)) + B1 (Bi(—((r)) +ep(r))) - (3.25)

Proceeding as in the proof of (3.22) gives

Ay (COS <]11<P(7“) - Z) + O(ml/Qh)> — B (Sin <f1L(p(r) — Z) + O(ml/Qh)>
= Vmexp <2¢(7~)> (1+O0(m™2hr=1y).
Hence we have
Ay = re™t £ O(m™V?h), By = re ™A+ O(m~V?h), (3.26)

which implies

1/2

<(r) (Ai(—¢(r)* + Bi(—¢(r)?) (1 + O(m~/2h)). (3.27)

lur () = BV (r)

We compute the Wronskian W = upu} — ugu; as in the proof of (3.8), and apply (3.23):
W =2(B+iA)h~! = 77237411 + O(m~/?h)). (3.28)
Now (3.9) follows from inserting (3.18), (3.27), and (3.28) into (3.2), applying (3.16), (3.17),

and (A.6), and observing that m’ = m+h?/4 allows us to replace Vs by Vi, in the final statement
(actually, keeping V,,,» gives a slightly better bound). O
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In the third lemma the analysis is similar to that in the second, but slightly easier since we
consider only a bounded range of m. To obtain good lower bounds we consider only a particular
energy level, rather than an interval of energies as in the previous two lemmas. We actually obtain
an asymptotic, rather than merely a lower bound, with no extra effort.

Having information about K in (3.30), rather than just |K|, is important for our application
to wave non-decay in Theorem 2, where we need a lower bound on |Im K.
Lemma 3. Fiz ri4 < ro- € (r1,r2) and fix rop > ra2. For any m = m(h) = My + O(h), there is
an energy level E = E(h) = Ey + O(h), such that
eSO/~ (1 + O(h!/3))

K = g o =By aE vy e T e iz (329)
and iw/6oS(r)/heS(r") /R, —1 1/3
n —e TP ReS T + O(hY?)) ,
K(r,r') = V() = BV () — B)A when r, v € [riy,ro_] (3.30)
where

R
S(r) = / SVl = Edr’, (3.31)
with R = max V,,1(E) = ro + O(h). See Figure /.

Moreover, it suffices to take E to be an eigenvalue of Py, as an operator on L?((0,72)) with
domain
D,, = {u € L*((0,73)) | Ppu € L*((0,73)) and Bu = u(ry) = 0}. (3.32)

T1 T1+ ro— R T2 T2t

FIGURE 4. A possible graph of V,,, in the case m = My. We think of roy — ro_
and r14 — rq as being very small, although for clarity this is not so in the picture.
In §4 we will take m = My + O(h), and the graph must be suitably changed: in
particular, in the proof of (2.9) we will need F = Fy and hence m < Mj.

Before giving the proof we give the idea. The operator P,, — F has the same turning point
behavior here as in Lemma 2, but this time we must take advantage of the trapping occuring at
r1. We do this by finding an energy level E = FEy+ O(h) which is also an eigenvalue of an interior
problem (we use the Dirichlet problem on (0,r2)) and then taking as ug the corresponding eigen-
function (this is our quasimode). This way both ug and u; grow exponentially in the classically
forbidden region between r1 and ro, giving the desired result.
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Proof. We begin by proving that P, has an eigenvalue E = Ey-+O(h) as an operator on L2((0,73))
with domain D,,. Note first that the spectrum of this operator is discrete since the domain is
contained in H*((0,72)), and let E be the bottom of the spectrum. Then we have E > Ey — Ch
because Ey = min{ Vi, (r) | r € (0,72)} by (2.2), the definition of M. To see that E < Ey + Ch,
fix a > 0 such that

Vin(r) — Eg < &*(r —r1)? + Ch, (3.33)

near 71, and let w(r) = e~r=m)?*/2hy (1) where y € C2°((0,72);[0,1]) is 1 near 7 and is supported
inside the set where (3.33) holds. Then we have

0< /(_th// + Vypow — Bw)w < (Ey — E+ Ch)/wQ’ (3.34)

which concludes the proof that |E — Ey| < Ch.
Let ug be a corresponding real-valued eigenfunction, and extend ug to solve (3.3) on all of R,..

Now we may again write ug in terms of Airy functions as in the proof of Lemma 2, with ¢
defined by (3.13), but now m’ = m and R are as in the statement of the present Lemma. The
two main differences for our work here compared to that in the proof of Lemma 2 are that we
have good remainder bounds only when r > 71, rather than for all » € (0, 00), and that m stays
bounded.

More precisely, by [Ol, §11.3.3], there are real constants Ay = Ag(h) and By = By(h) such that
for r > r14+ we have (3.15), where €4 and ep satisfy (3.16) for » > R and (3.17) for r € [r14, R].
We will need the following bounds on { near the turning point R:

hIG(r) P2 = [V (R)IV2IR = r[*2(1 + O(IR —r])),  when |r — R| <1, (3.35)
where we used E — Vp,,(r) = (R — )V, (R) + O((R —1)?).
Without loss of generality we normalize ug so that
A2+ B2=1,  Ay>0. (3.36)
Since ug(re) = 0 we have
Ag (Ai(=((r2)) + O(h)) + Bo (Bi(—=((r2)) + O(h)) = 0.

Now observe that by R = ro + O(h) and (3.35) we have |((r9)] < Ch'/3, and since Bi(0) =
Ai(0)y/3 > 0, we obtain
Ao + Bo(V3 +O(h/?)) = 0,

and combining with (3.36) gives

3 1
Ap = f +OM),  By= 5+ 00, (3.37)
When r > ry; we have (3.20) with constants A and B, which we can compute as in (3.23) to find
A+iB =27 72T Ag +iBy) + O(h). (3.38)

We take u; to be given by (3.24) for r» > roy as before, where now (3.25) holds for r > 74
with A; and B; given by (3.26). We now have (3.27) for » > r1,. This time the Wronskian
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W = upu} — ujui obeys
W = 2(B+iA)h~! = M7/12:=12p71(1 4 O(h)), (3.39)
where we used (3.38) and (3.37).
Inserting (A.2) and (A.3) into (3.15) and (3.25) and using (3.17) and (3.35) gives
VTui(r) = Bj(Vi(r) — E)~ Y450/ (1 + O(h)), (3.40)

for r € [ri4,ra—], where j € {0,1}. Then (3.30) follows from inserting (3.39) and (3.40) into (3.2)
and using (3.26) and (3.37). We obtain (3.29) by the same argument with (3.24) in place of (3. 4())
for uy.

4. PROOFS OF THEOREMS

4.1. Proof of Theorem 3. Let 0 = 0y < 01 = 09 < 03 < --- be the eigenvalues of the unit
sphere of dimension n—1, repeated according to multiplicity, and let Y, Y7, ... be a corresponding
sequence of orthonormal real eigenfunctions.

If v is in the domain of P, then

r(n 1)/2PT n—1) /2 ZYP"%UJ where v ZYU] (4'1)

where P, is given by (3.1) with
W_mw_ﬁ@+mﬂm%,ww_/n@mmw. (4.2)

Here df is the usual surface measure on the unit sphere and v; € D for some D = D(m;, h) as in
§3.

Similarly, if v € L?(R™) is compactly supported, then so is v; € L?(R;) and

r( V(P — B 4i0) D20 (2) = Y TGP, — E £10) " (r), (4.3)
7=0

with the outgoing resolvent (P, — E —i0)~! having integral kernel K given by (3.2), and the
incoming resolvent (FPp,; — F + i0)~! having integral kernel given by the complex conjugate of K.
(Actually, in (4.3) we could instead take v in a weighted space but we will not need this.)

Hence if x7, and y g are bounded and compactly supported functions on [0, 00), then

IxL(r)(P — E £i0) " 'Xr(r)|l 2®n)— 2 @) = $€11§ IXL(P)(Pm; — E £40) " Xr(r) I 2® ) 12R )-
Jelo

Proof of (2.8). Suppose without loss of generality that r; < rr. Then (2.8) follows from Lemma
3, applied with m = m; for any j = j(h) chosen such that m; = My+O(h), and with riy, ra_, 724
chosen such that 0B(0,r*) C Up for some r* € [ri4,r2—] and 0B(0,r**) C Ug for some r** €
[T14,7m2—] U [roy, 00). O
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Proof of (2.7). Fix ro4+ > ro such that U is disjoint from a neighborhood of B(0,724). Fix
M > My and I € (0,00) containing Fy such that the hypotheses of Lemmas 1 and 2 are satisfied
(it is enough if M — My and the length of I are sufficiently small). Then apply the Hilbert—Schmidt
bound

() Py = B2 i0) X0 oy < I
supp x

which holds uniformly for all j € Ng. d

/ |K (r,)|?drdr’ < Ch™2,
supp x

Finally, to prove (2.9), by Lemma 3 it suffices to show that Ep is an eigenvalue of P, on D.,,
for some sequence h; — 0 such that m; = m;(h;) obeys |m; — My| < Chy, for j sufficiently large.
This follows from a calculation very similar to that in (3.33) and (3.34), but note that now we
will necessarily have m; < My; this is reasonable because we are now assuming maxV < Ep and
hence My > 0 by definition (2.2). We will first define the sequence h;, then prove that

mj S M(), (4'4)

and then prove that
m; > Mo - Chj. (45)

We define h; for j sufficiently large by demanding that hj_2 be the bottom of the spectrum of
L; = (Eo — Vo(r))™ (—63 + (o) + Mﬂ)r—z) ,
as an operator on L2((0,72), (Eo — Vo(r))dr) with domain
{u € L*((0,79)) | Lju € L*((0,72)) and u(r2) = 0}.

Note that this operator is selfadjoint (that is, there is no need for an analogue of the condition
Bu = 0 as in the definition of D in the beginning of §3) as long as 40; + (n — 1)(n — 3) > 3, that
is to say for all but possibly finitely many j: see [Ze, Theorem 10.4.4] and also [ReSi, Theorem
X.10]. The spectrum is discrete since the domain is contained H'((0,72)). Also, h; — 0 will
follow from (4.4). Hence, to show (2.9) it is enough to prove (4.4) and (4.5).

Proof of (4.4). We have, for u € C2°((0,72)),
| @t B — Vi = [0y + =g ar
0 0

2
> My o) + ("”4(”3))/0 u(r)|2(Eo — Vi(r))dr,

where we used the fact that by definition
Mit = min{r—2(Ey — Vo(r)) ™ | 7 € (0,72)}.
This implies hj_2 > My (o; + W) and hence (4.4). O

Proof of (4.5). Let w(r) = e~*—)?/2hi (), with « as in (3.33) and y as in the line after. Then,
as in (3.34),

0< /Or2 [(Lj - h;2>w(r) w(r)(Eo — Vo(r))dr < /OT2 ((Uj - ]\/.l'ohj_Q)r*2 + Chj_l) w(r)?dr.
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This implies M()hj_2 <o+ Chj_l and hence (4.5). O
4.2. Proof of Theorem 1. To deduce Theorem 1 from 3, we begin with some useful formulas
relating My, r1, and 3. We define
(r) = r?(Ey — Vo(r)).
Lemma 4. With the assumptions and notation of Theorem 3, we have
r>ry = &' (r) >0, (4.6)
®(r1) = @(r2) = Mo, (4.7)
ry<r<ry= ®(r) < My, (4.8)
r <ro = ®(r) < M. (4.9)

See Figure 5.
g

MO .......................... T ‘

T1 T2

FIGURE 5. A possible graph of ®.

Proof. To show (4.6) we compute
¥'(r) = 2r(Eo — Vo(r)) — r*Vg(r) = 2r(Eo — Vagy (1) — Vi, (7),
and the right hand side is positive when r > ry by (2.5). To prove the other three statements we
observe ®(r) < My is the same as Vi () > Eo, with equality always holding simultaneously. [J
Now suppose that Vj is compactly supported in [0,1) and min Vjy < 0. Then ®(1) = Ey. If

Ep < félﬁ)f)(_r%(r)) < e, ®(r) = My,

)

then r; < 1 < r9, and we have moreover

To = TQ(E(]) =V Mo/Eo, (410)

and
lim Fors = lim My = min{m > 0| V;,(r) > 0 for all » > 0} = —min{r?Vy(r)},  (4.11)
E0~>0 E0~>0

as desired.
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4.3. Proof of Theorem 2. It is convenient to work over the Hilbert space # = H'(R") @
L2(R™, dx/co(r)?). Let
0 1
B=—i .
Z( A 0 >

Then B is selfadjoint on H with domain {(ug,u1) € H: Aug € L}*(R"),u; € HY(R")}, and we
will study the unitary wave propagator e**5: H — H.

Theorem 2 follows from

Lemma 5. Let ¢, p, and R, be as in Theorem 2.

(1) If x € CX(R™) has support disjoint from the closed ball B(0, R.), then there is C > 0 such

that -
| InePulBde < Clulf (412)
for allu e H.
(2) If x € C°(R™;[0,00)) is positive on the sphere OB(0, R) for some R € [p, R.], then
sup / e Bul|?,dt = 4o0. (4.13)
l[ull2=1J =00

Indeed, to prove Theorem 2 from Lemma 5, we observe that if suppxo C U and x1; = 1 near
U, then
CYIxoe"Pull3, < Eu(t) < Clxae™Pullg,
with u = (w, dyw), where for the first inequality we used Poincaré’s inequality

[l L2y < ClIVoll2@w),  veCEU).

To prove Lemma 5, we will need some facts about the resolvent of B, based on the formula

(B— )" = AM—c2A — 2?71 —i(—c2A = N1

N (=AA =N+ A=A =T

see [PoVo, p. 265], [Bu3, (2.13)], and [Sh2, (6.6)]. For any x € C°(R"), the cutoff resolvent

x(—=c2A — \2)~1y extends continuously from the lower, or upper, half plane to its closure, as

an operator from L?(R") to H?(R") (see item 1 of [DadH, Lemma 4.1] for a proof using the

Sjostrand—Zworski black box theory [SjZw]). By (4.14) we see that x(B—\) "'y has corresponding

continuous extensions as an operator from H to H, and we denote these by x(B — A 4 i0) "1y,
where A € R.

>, Ae C\R; (4.14)

Lemma 6. Let ¢, p, and R, be as in Theorem 2.

(1) If x € CX(R™) has support disjoint from the closed ball B(0, R.), then there is C > 0 such
that
IX(B — A i0) Syl < C, (4.15)
for all X € R.
(2) If x € C°(R™;]0,00)) is positive on the sphere 0B(0, R) for some R € [p, R.], then there
are C' > 0 and a sequence \j — +o00o such that

I [(B = A +i0) ™ — (B = A —i0) ] allpos > €Y. (4.16)



EXPONENTIAL LOWER RESOLVENT BOUNDS FAR AWAY FROM TRAPPED SETS 19

Proof of Lemma 6. We use the identity
(—*A - (A£i0)?) = (=A*A+V — (k72 440)) T 2N 2,
where h = A=! and V = k72— ¢ 2. To check this, note that if f € L?(R") is compactly supported,
and
(—c*A = N = f, (—R2A4+V — k™ Hu = ¢ 2N 72,

with v and v both outgoing, then u = v (see [DyZw, Theorem 3.34 and Theorem 4.18]).

With Eg = k2 and Vp = k2 — 062, we have, in the notation of Theorem 3 and Lemma 4,
®(r) =r%/c3(r). Then

My = mae ®(r) = R/w* > 0 [* = (p),
re|0,p

and hence r; < p <71y = R,.

(1) By (2.7), for all x € C°(R™) having support disjoint from the closed ball B(0, R.), we
have
IX(=cA = (A £i0)*) " x|z 2 < CN) T
By a standard argument (see for example the proof of [Bu3, Proposition 2.4]), together
with (4.14) this implies (4.15) for all such x.
(2) To prove (4.16), we argue similarly, but using the following refined version of (2.9):
IX [(R5A+V = (k72 +i0) 7" = (=h5A+V — (572 —i0)) '] Xl r2mn) > £2(R7) > eC/lhi,

where x € C2°(R™;[0,00)) is positive on the sphere dB(0, R) for some R € [p, R.], and h;
is the same sequence appearing in (2.9). This refined version follows from (3.30) in the
same way that (2.9) does, and it implies (4.16) with A\; = hj_l.

O

Proof of Lemma 5. This is a version of Kato smoothing [Kal; see also [ReSi, §XIII.7] for another
general presentation of the theory. We will use an AA* argument as in [BuGéTz, §2.3] and [Bu3,
§2]; see also [DyZw, §7.1]. We define the operator

A:H 3 ue xe'Pue S'(R;H)
with adjoint
A S(RyH)> f— / xe B f(s)ds € H.
Boundedness of A from H to L*(R;H) is equivient to boundedness of AA* from L?(R;H) to
L*(R;H) . We write

AAYf = X/t ei(t_s)Bxf(s)ds + X/too ei(t_s)Bxf(s)ds =: xu—(t) + xu(t). (4.17)

—00

Now let us suppose temporarily that there is 7' > 0 such that
Supp f - [_Tv T]v (418)

so that in particular
suppu_ C [T, 00) and suppu4 C (—o0,T].
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We use the equations
ul(t) = iBu(t) F xf(t)
to compute the Fourier—Laplace transforms
Gy (N + ig) = / e IOFE | (1)dt = Ti(B — (A ie)) I f(\ £ ie), (4.19)
R
where A € R and € > 0. By Plancherel’s theorem,

. 1 N : . .
J 1A Bt = 5 [ (= 0) + xi O+ 0)
R T JRr (4.20)

- % /R Ix[(B=2+i0)" = (B=x—i0)"] xf(A)HidA,

where we used (4.17) and (4.19), and where we allow the integrals to take the value +o0o. By
density, (4.20) holds also without the assumption (4.18). Now (4.12) follows from (4.15).

To deduce (4.13) from (4.16), we must show that (4.16) implies
[x[(B—e+i0)"" — (B —e—i0)""] XHL?(R;H)—>L2(R;H) = Foo.

But this is clear since A — x [(B — A+ 10)~' — (B — A — i0) '] x is continuous by the discussion
following (4.14) and unbounded by (4.16).

O
APPENDIX A. AIRY FUNCTIONS
In this appendix we review some needed facts about the Airy functions given by
1 o
Ai(z) = / cos (g + xt) dt,
T Jo
1 o¢] t3 3 (Al)
. - — 5 +xt 3 [
Bl(.’L’)—ﬂ_/O (e 3 —i—sm(3 —i—a:t))dt.
These are solutions to u” = zu satisfying Bi(0) = v/3 Ai(0) > 0, and as x — oo we have
2y/mat/d Ai(z) = e 23 (1 + O(x73/2)), (A.2)
Vra/4Bi(z) = 22731 + 0(z73/2)), (A.3)
Vratt Ai(—z) = cos (%x3/2 - %) +0(x7%?), (A4)
— /mzY/* Bi(—x) = sin <§x3/2 - %) +O0(z7%/?). (A.5)

These results can be found in [Ol, §11.1], among other places. In particular, there is a constant
C'4 > 0 such that, for all real  and 2’ satisfying 2’ < x, we have

122212 Ai(2)2(Ai(z))? + Bi(2')?)| < C3. (A.6)
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APPENDIX B. REMAINDER BOUNDS FOR AIRY APPROXIMATIONS

In this appendix we prove (3.16) and (3.17). By [Ol, Chapter 11, Theorem 3.1], it is enough to
show that [ |G(r)|dr is uniformly bounded for all h and m, where

G(r) = [f) T2 ()72 f () = 4f (r) 7 " (r) = 169(r) = 5f(r)Co(r) %) . (B.1)
with f and ¢ as in (3.12) and

5 2/3
Co(r) = —m YBR2B3¢(r) = + '2/ Vf@hdr'|, when & (R —7r) > 0. (B.2)
R
We will first show that there is 6 > 0 such that
Rt6/m
/ G(r)ldr < C, (B.3)
R—8y/m
and then we will show that
() R—6ym
/ G |dr + / G(r)|dr < C. (B.4)
R+6y/m 0

Proof of (B.3). By Taylor’s theorem, for r € [R — dy/m, R + 6/m| we have
v f"(R)

1) == r) (14 L

where we used f'(R) < —m~%/2/C and |f"(r)| < Cm~5/2 (these follow from (3.11)). Similar

expansions hold for powers and derivatives of f, and inserting the expansion for \/f into (B.2)
gives

(r—R)+O(m™(r — R)2)> ,

f"(R)
10/'(R)

o g (10 )
102 0P = - R (14 T

1 "(R)
f'(R)

ey P
Folr = -1 (14 L0

Combining these and using |g(r)| < Cm~? gives
G(r)| < Om™(r — R)™2,
which implies (B.3). O

Colr) = (r — R)F(R)/? (1 T (r— Ry + O(m™(r - R)?)) |

Hence

(r— R)+ O(m™(r - R)Q)) 7

fFr) 7 f"(r) = (r = R)

(1+O0(m™(r— R)?)),

(r—R)+O(m (r — R)2)> )

Proof of (B.4). To bound the first term in (B.4) we use
ml f(r) +m T ()T g () + 2L )+ et ()] < G

and

2m12¢o (r)3/? _r\/E} - / ' Vi () dr” 75 +RVE| < C, (B.5)

FE — Vm/(r’) +
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for r > R+ 0y/m. These imply
G(r)| < Cm!/*r72,
for r > R + d/m, which implies the bound on the first term in (B.4).

To bound the second term in (B.4), we use
r2f(r) +In"2(R/r)¢o(r) ™3 < C,
for r < R — dy/m (for the last term c.f. (3.14)), which implies

/ v P20 (r)Bdr < C. (B.6)
0

Let F = lim,_,or%f, so that for k € {0, 1, 2} we have
OFf(r) = (—1)*(k + D)IFr=27%(1 4 O(m=2r)),
for r < R — 0y/m. Then, since F' > 1/C, we have

F) T2 [5f(r) 2 (r)? = 4f (1)L (r) = 16g(r)| < Cm~ Y2,
and inserting into (B.1) and combining with (B.6) gives the bound on the second term in (B.4). O
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