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Summary. Bayesian hierarchical models are used to share information
between related samples and obtain more accurate estimates of sample-
level parameters, common structure, and variation between samples. When
the parameter of interest is the distribution or density of a continuous vari-
able, a hierarchical model for continuous distributions is required. A num-
ber of such models have been described in the literature using extensions
of the Dirichlet process and related processes, typically as a distribution
on the parameters of a mixing kernel. We propose a new hierarchical
model based on the Pélya tree, which allows direct modeling of densities
and enjoys some computational advantages over the Dirichlet process.
The Pélya tree also allows more flexible modeling of the variation between
samples, providing more informed shrinkage and permitting posterior in-
ference on the dispersion function, which quantifies the variation among
sample densities. We also show how the model can be extended to cluster
samples in situations where the observed samples are believed to have
been drawn from several latent populations.

1. Introduction

Many statistical applications deal with learning and comparing the dis-
tributions of two or more related samples. We may be interested in learn-
ing how samples are similar or testing whether they are distinguishably
different from each other. Because distributions are complex infinite-
dimensional objects, classical approaches work with low-dimensional pa-
rameterizations of the distribution. Analysis of variance, for example,
reduces distributions to a mean and variance, which are sufficient under
the assumption of normality. A wide range of other parametric models
within both the Bayesian and frequentist inferential frameworks use other
parameterizations of the distribution to reduce the dimensionality of the



problem. Classical nonparametric approaches use features of the sam-
ples such as medians (Westenberg, 1948), rank-based scores (Wilcoxon,
1945), or summaries of the empirical distribution functions, as in the
Kolmogorov-Smirnov (Kolmogorov, 1933) and Cramér-von Mises tests
(Anderson, 1962).

A number of Bayesian nonparametric approaches embrace the infinite-
dimensional nature of the problem using extensions of Dirichlet processes
citepferguson1973. Among the most well-known, The Hierarchical Dirich-
let process (Beal et al., 2002; Teh et al., 2006) builds a hierarchical model
using the Dirichlet process, allowing it to share information between sam-
ples. Tomlinson and Escobar (1999) provide an early description of a
similar model. The Nested Dirichlet process of Rodriguez et al. (2008)
takes a different approach, using a Dirichlet process as the base measure
of a second Dirichlet process. This induces clustering in the samples, with
samples in a cluster being modeled with a single density. Miiller et al.
(2004) model each sample density as a mixture of two components: one
Dirichlet process mixture of Gaussians representing common structure
between samples, and a second Dirichlet process mixture of Gaussians
representing the idiosyncratic structure of the given sample. A variety
of other dependent Dirichlet Processes (MacEachern, 1999) have been
described in the literature. Teh and Jordan (2010) give an overview of
hierarchical models based on the Dirichlet process.

While the Dirichlet process has been the basis of most of the work in
this area, work has also been done on hierarchical extensions of other pri-
ors. For example, Teh (2006) defines a Hierarchical Pitman-Yor process,
taking advantage of the more flexible clustering structure of the Pitman-
Yor process over the Dirichlet process. Camerlenghi et al. (2017) con-
sider hierarchical models based on Normalized Random Measures (Bar-
rios et al., 2013), which includes the Dirichlet process as a special case.

An alternative approach for modeling densities within the Bayesian
nonparametric framework is to use a model derived from Poélya trees
(Freedman, 1963). Pdlya trees are a class of tail-free prior in which an
infinite recursive binary partition is placed on the sample space, and prob-
ability mass assigned to the elements of the partition by a corresponding
infinite sequence of Beta-distributed random variables. A special case
gives the familiar Dirichlet process (Ferguson, 1973), but the Pdlya tree
family is considerably more flexible. With appropriate specification of
the prior parameters, the Pdlya tree assigns probability 1 to the set of
absolutely continuous distributions (Kraft, 1964; Ferguson, 1974). This
property allows it to be used to directly model probability densities with-
out the encumbrance of a mixing kernel.

The Pélya tree model allows tractable computation of the marginal
likelihood, which has made it popular in Bayesian hypothesis testing of



nonparametric density models. Examples include Berger and Guglielmi
(2001); Ma and Wong (2011); Chen and Hanson (2014); Holmes et al.
(2015); Soriano and Ma (2017); Filippi and Holmes (2017). These ap-
proaches are unsatisfactory when estimation and prediction rather than
formal hypothesis testing are of primary interest. Statisticians have rec-
ognized the benefits of partial shrinkage as far back as Stein’s shrinkage
estimator for the mean of a multivariate normal distribution (Stein, 1956).
We may expect that related samples will have similar but not identical dis-
tributions. In this situation, neither independence nor a single common
distribution are appropriate models. A partial shrinkage model allows
borrowing of information across samples while preserving cross-sample
variation. The Polya tree has also been used as a building block for mod-
eling dependent densities. Zhao and Hanson (2011) describe a spatially
dependent Polya tree with an autoregressive structure. When the spatial
dependence is removed, a partially exchangeable model similar to the one
we consider here arises. Schoérgendorfer and Branscum (2013) and Nieto-
Barajas and Quintana (2016) describe dependent Polya tree models with
autoregressive structures inducing dependence among densities over time.
Jara and Hanson (2011) transform Gaussian processes in the framework
of tail-free processes to create a regression model for dependent densities.

Within the Bayesian inference framework, partial shrinkage is natu-
rally achieved with a hierarchical model. While a simple hierarchy of
Pélya trees is possible and is described herein, we build on the richer
Adaptive Pdlya tree model of Ma (2017). This model allows us to learn
the concentration parameters of the Pdlya tree, rather than fixing them
in the prior. In contrast to Dirichlet process-based models, the richer
structure of the Pdlya tree allows us to model both the means and the
cross-sample variation of the densities in a fully nonparametric manner.
This not only improves the estimation of the distributions, but also allows
us to perform inference on how the variation across samples differs over
the sample space.

In Section 2 we describe the model and contrast it with several existing
models. We discuss Bayesian posterior inference and computation in Sec-
tion 3. In Section 4 we give theoretical grounding for the appropriateness
of the method. Section 5 describes two ways in which the model allows
us to go beyond the capabilities of existing models. We show simulation
results in Section 6 and demonstrate application to real data in Section 7.
Finally, we conclude with some discussion in Section 8.



2. Model

2.1. Reviewing the Pdlya tree construction

We begin with a brief sketch of the Pdlya tree; the reader interested in
the mathematical details should refer to Mauldin et al. (1992); Lavine
(1992, 1994). The Pélya tree consists of an infinite recursive partition
A of the sample space and a corresponding infinite sequence of Beta-
distributed random variables which assign mass to the various regions
A € A of the partition. Figure 1 illustrates the partitioning sequentially.
In this illustration our sample space is the interval (0, 1] on the real line,
and our prior mean, shown in the first pane, is the uniform distribution
on that interval. At each level of the recursive partition we cut each
region in half at the midpoint. Although arbitrary partitions may be
used, the dyadic partition described here is convenient and is often used
as a default partition in the absence of a compelling reason to use a
different one. Other partitions may be more convenient in the presence,
for example, of censored data (Muliere and Walker, 1997). The second
pane shows the result after the first cut and mass allocation, in this case
the majority of the mass having been allocated to the right-hand side. In
the next step we cut each of the two regions from the second pane in half
again, and assign the probability mass to each to its children according to
a Beta-distributed random variable. This results in four regions, shown
in the third pane, which are again cut and mass distributed in the fourth
pane. The process continues indefinitely.

We denote the Pélya tree prior as Q@ ~ PT(Qo,v), where Qg is the
centering distribution and v is an (infinite-dimensional) concentration
parameter describing how much @) is expected to vary from @Qg. The
parameters of the sequence of Beta distributions from which the mass
allocations are drawn are derived very simply from Qg and v. For an
arbitrary region A belonging to the recursive partition A, the fraction
of the mass allocated to the left child A, of A is given by the random
variable

0(A) ~ Beta(bo(A)v(A), (1 - bo(A))v(A)),

where 0p(A) = Qo(Ar)/Qo(A), with the remainder of the mass allocated
to the right child A,. Qg thus determines the mean of the mass allocations
(and hence the expectation of the resulting density), while v = {v(A) :
A € A} controls the variation of the mass allocations, and hence the
dispersion of @ around y. Alternatively, v controls the strength of
the shrinkage of the posterior mean density from the empirical process
towards QQg. With an appropriate choice of v, the Pélya tree prior almost
surely generates an absolutely continuous distribution (Kraft, 1964).
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Fig. 1. An illustration of the recursive partitioning and probability allocation of
the standard Podlya tree.

2.2. The Hierarchical Pdlya Tree

It is conceptually straightforward to extend the Pdlya tree to a hierarchi-
cal model. Let Xy, ..., X} be k samples arising from related distributions
on a complete, separable space (). For ease of exposition we again use
2 = (0, 1], though like the Pélya tree the model can be applied to more
general sample spaces. We model these samples as coming from k ex-
changeable distributions @);, which are centered at a common underlying
measure @, itself unknown. Applying Pélya tree priors to both @ and the
@i, all with identical partition structures, gives us the hierarchical model

ind

Xij | Qi ~ Qi
Qi | Q ¥ PT(Q,7) (1)
Q ~ PT(Qo,v).

Here @ is the overall prior mean, 7 controls the variation across samples
around the common structure @, and v controls the variation of the
common structure from g, which determines the smoothness of (). This
model, which we call the Hierarchical Pélya tree, allows nonparametric
estimation of the sample distributions (); and the common structure Q).
The Hierarchical Pélya tree model is illustrated in Figure 2. The first
row shows the upper level of the hierarchy, which like the basic Pdlya tree
illustrated in Figure 1 is centered at the uniform distribution on (0, 1].
The second row shows the lower level of the hierarchy, the individual
sample distributions @); conditioned on ). They follow exactly the same
Pélya tree construction, but each cut is centered on the corresponding cut
from @), rather than on the uniform distribution. () captures the common
structure of the samples, while the deviation of (J; from ) captures the
idiosyncratic structure of each sample.

Because the partition structures are identical, the hierarchy of Pdlya trees
translates directly to the decomposed space as a hierarchical model for
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Fig. 2. An illustration of the Hierarchical Pdlya tree.
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Beta random variables. For an arbitrary region A € A, we have
iid
0i(A) | 0(A) ~ Beta(e(A) (4), (1= 0(A))7(4)) (2)
0(A) ~ Beta(fo(A)v(A), (1 —b0o(A))v(A)).
The representation of the hierarchy of Pdlya trees as a hierarchy of Beta
random variables allows tractable posterior inference, as described in Sec-
tion 3.

2.3. The Stochastically Increasing Shrinkage prior on dispersion

The Pélya tree’s concentration parameter is traditionally set to increase
with depth at a predetermined rate to ensure absolute continuity, with
a constant multiplicative term to control the overall level of variation
which may be treated as a tuning parameter (as in Berger and Guglielmi
(2001)) or have a prior placed on it. Hanson (2006) discusses some of the
necessary considerations when placing a prior on this parameter. More re-
cently, Ma (2017) shows that putting a flexible nonparametric prior on the
concentration parameter allows the Pdlya tree to learn the true distribu-
tion more accurately, particularly when the smoothness of the underlying
density varies over the sample space. We can extend the Hierarchical
Pélya tree model by placing priors on both concentration parameters 7
and v. In addition to more accurate inference on ) and the @Q;, putting
a prior distribution on 7 allows us to learn the variation across samples
in a nonparametric way. That is, we can estimate a posterior dispersion
function which summarizes the variability across sample densities at any
given point in the sample space. Dispersion can be measured in a va-
riety of ways; in Section 5.1 we show how to derive the posterior mean
variance of the densities and interpret a standardized version using the
coefficient of variation to correct for the height of the density. Nonpara-
metric inference on the variation across samples over the sample space is



made possible by the flexibility of the Pélya tree model. We contrast how
several other models treat cross-sample variation in Section 2.5.

A simple approach is to put independent priors on the variance of each
Beta random variable. However, we expect spatial structure in the dis-
persion function—locations near each other in the sample space are likely
to have similar levels of variation. The variance of the Beta distributions
is generally expected to be smaller at deeper levels of the partition, but
the decay in the variance may be heterogeneous over the sample space
depending on the local smoothness of the densities. While the recursive
partitioning allows independent priors to capture some spatial structure,
we can do better by introducing dependency between regions in the par-
tition. Ma (2017) introduces Markov dependency on the concentration
parameter, following the tree topology. The Markov dependency among
the Beta variance parameters allowa the Beta variables to stochastically
transition into lower prior variance (i.e., higher shrinkage) along each
branch of the partition tree, but at potentially different rates, thereby
allowing spatially heterogeneous prior variability in the random densities.
Instead of constructing a continuous state-space model on the prior Beta
variance directly, which would make posterior computation very challeng-
ing, a discrete latent state variable that characterizes a finite number of
different levels of prior variance is introduced for each Beta variable, and
the Markov dependency is then imposed on these latent state variables.
This discretization strategy maintains the computational tractability of
the Pélya tree model when equipped with more flexible prior on the vari-
ance parameters.

More specifically, the Stochastically Increasing Shrinkage (SIS) prior
introduces a state variable S(A) supported on a finite set of integers
1,...,1, corresponding to decreasing prior variance and increasing shrink-
age for the Beta random variables. In particular, the last state I corre-
sponds to complete shrinkage or zero variance, which is achieved through
fixing v(A) at oo when S(A) = I. For example, we may have S(A4) €
{1,2,3,4} with S(A) = ¢ implying v(A)|S(A) = ¢ ~ F; with the F;
stochastically ordered F} < Fy < F3 < Fy and F4 being a point mass
at infinity, corresponding to zero variance. The number of states and
the corresponding distributions can be chosen to balance the flexibil-
ity and computational complexity of the model. A simple way to en-
force such a stochastic ordering is through partitioning the support of
the concentration parameter v(A) into disjoint intervals. Given these
latent states, the SIS prior adopts a transition probability matrix T'(A)
for S(A) | S(Par(A)), where Par(A) represents the parent node of A in
the tree. Ma (2017) discusses several prior possibilities for this transition
matrix. We adopt the recommendation given there to use an exponential
kernel for the transition probabilities. The resulting transition matrix can



be given as

1 B o eﬂ(I 1)
Yiloeft Xilgeft S eri
B(I-2)
— 0 + A €
I'(A) = Srgert zf Teh
0 0 1

This upper-triangular transition probability matrix induces stochastically
increasing shrinkage (or decreasing prior Beta variance) along each branch
in the partition tree (see Figure 3), and ensures that the model gener-
ates absolutely continuous densities (see Theorem 1). The parameter
B controls the stickiness of the transition; that is, larger values of beta
correspond to a stronger dependence in the shrinkage state between ad-
jacent nodes in the Pdlya Tree. 5 can be set equal to zero, in which case
the transition is uniform over the states with shrinkage no less than the
current node. We denote the SIS prior

v ~ SIS(T).
\ D@(\ A
1\ S(4)
diaids N\ N —O— )

Fig. 3. lllustration of the SIS prior. The shrinkage states increase as you follow
the tree down to finer scales—indicated by darker shades of gray—at potentially
different rates across the space, eventually reaching complete shrinkage—but
allowing less shrinkage where the data dictates such.

Figure 3 illustrates the SIS prior in action. The gray-scale in each node
indicates the value of the Beta variance, with darker gray indicates less
variance and higher shrinkage. These Beta variances are determined by
a set of latent state variables, each corresponding to a conditional prior
F; on v(A), represented in the right panel of the figure. As you move
down to finer resolutions the shrinkage state tends to increase, eventually



reaching complete shrinkage, indicated by black nodes, though the rates
at which the shrinkage increases along different branches of the tree are
different and are determined stochastically by the underlying top-down
Markov model linking the latent state variables. This model allows the
amount of shrinkage or prior variance to vary over the sample space to
capture large-scale smooth features in one part of the sample space and
smaller scale features in another part. This allows the resulting density to
have heterogeneous smoothness and variability around the mean across
the sample space.

2.4. The Hierarchical Adaptive Pdlya Tree
Having described the SIS prior, we can adopt this prior for the concen-
tration parameters 7 and v, and write the complete model as follows:

ind
Xij | Qi ~ Qi
itd

Qi | Q, 7~ PT(Q,7)

Qv ~ PT(Qo,v)
T ~ SIS(T';)
v ~ SIS(T,).

We call this model the Hierarchical Adaptive Pélya Tree (HAPT). In
contrast to existing models, this specification allows fully nonparametric
inference on both the densities and the variation across densities. The
inclusion of the SIS priors allows the model to adapt the level of shrinkage
or information borrowing in different parts of the sample space to more
accurately capture the density of each sample, rather than using fixed
uniform shrinkage. Figure 4 gives a graphical representation of the model,
showing the conditional relationships between parameters. The three
boxes indicate the sets of parameters that are handled using three different
computational strategies in the calculation of the posterior; see Section 3.1
for details.

2.4.1. Choice of prior parameters
The Hierarchical Adaptive Pdlya Tree has three prior parameters for
which values must be chosen. The most straightforward is the prior mean
measure (g, which we typically chose from a parametric family. Some
consideration must be given to the choice of the SIS prior parameters I';
and T',.

Ma (2017) recommends an empirical Bayes approach to setting the g
parameters, and where computationally feasible we may also recommend
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Fig. 4. A graphical representation of the HAPT model. The boxes outline the
parts of the model whose posteriors are computed with each of the three strate-
gies described in Section 3.1. From left to right: The posterior of the Q; condi-
tional on other parameters is conjugate and can be integrated out numerically;
the posterior of @, v, and = conditional on S, and S is approximated using
quadrature; and the posterior of S, and S.- is computed using HMM methods.

this approach. When the dataset is quite large or HAPT is embedded in
a larger algorithm, as in Section 5.2, empirical Bayes estimation may not
be practical. Based on our experience the model fit is not very sensitive
to reasonable variation in this parameter; we suggest default values of
B =1 for both 'y and T',,.

2.5. Comparison to existing models

The most prominent existing nonparametric models for estimation of re-
lated distributions are based on the Dirichlet process, including the Hi-
erarchical Dirichlet process (HDP) (Teh et al., 2006), Nested Dirichlet
process (NDP) (Rodriguez et al., 2008; Rodriguez and Dunson, 2014),
and the hierarchical mixture of common and idiosyncratic Dirichlet pro-
cess model of Miiller, Quintana, and Rosner (MQR) (Miiller et al., 2004).
The Hierarchical Adaptive Pélya tree enjoys several advantages over these
methods:

(a) Nonparametric estimation of cross-sample variation. The
HDP and NDP have a single scalar concentration parameter that
controls the dependence across samples. MQR has one scalar pa-
rameter per sample that controls what proportion of the sample
is explained by common structure and how much by idiosyncratic
structure.

10



In contrast, because the concentration parameter 7 = {7(A) : A €
A} in the HAPT is infinite-dimensional, HAPT places a highly flex-
ible prior on the variation across samples, which allows it to learn
spatially heterogeneous variation across samples. Indeed, the varia-
tion between samples at different locations of the sample space may
be of primary interest in some scientific applications: learning where
common structure is largely preserved between samples and where
distributions vary widely may point the way to understanding im-
portant underlying phenomena.

Computation. HDP, NDP, and MQR all rely on MCMC methods
to draw from the posterior. The Hierarchical Adaptive Pdlya tree is
not fully conjugate, but the necessary integration can be split into
low-dimensional integrals and approximated extremely quickly using
adaptive quadrature methods, without concerns about Markov chain
convergence. See Section 3.1 for details. Note that this is not to say
that one will never use MCMC in the presence of HAPT in any
Bayesian model. In some inference tasks, one may embed HAPT
into a more complex hierarchical model, whose other components
may require MCMC for inference. In such cases, the computational
tractability of HAPT implies that one can Rao-Blackwellize (i.e.,
marginalize out) the HAPT part within that MCMC algorithm for
the more complex model. This will substantially simplify the MCMC
sampler. We present one such application of HAPT in Section 5.2.

Interpretability. HAPT provides an easily interpretable estimate
of the common structure: The posterior estimate of @ is both the es-
timate of the mean density across samples, and the posterior predic-
tive distribution for a new sample. In contrast, the HDP estimates
a discrete instead of continuous distribution, and the NDP does not
provide any estimate of common structure. MQR provides an es-
timate of common structure, but it is neither the mean of sample
distributions nor a posterior predictive estimate. Interpretation of
the common structure in the MQR model is most straightforward if
variation between samples involves contamination of an underlying
distribution by an idiosyncratic process for each sample.

Other existing models such as the Hierarchical Pitman-Yor model
(Teh, 2006) and those based on Normalized Random Measures (Regazz-
ini et al., 2003) or more generally Poisson-Kingman models (Pitman,
2003) are subject, to various extents, to limitations similar to those of
the models based on the Dirichlet process. Recent works such as Grif-
fin et al. (2013); Griffin and Leisen (2017); Camerlenghi et al. (2017);
Camerlenghi et al. (2018) provide more flexible means to modeling the
dependency among multiple samples than the classical models, but the

11



aforementioned benefits of the Pdlya tree remain even in view of these
state-of-the-art models.

3. Bayesian inference and computation

The HAPT model is partially conjugate: the conditional posterior for
Q; | Q,T,v,S;, Sy is a standard Pélya tree. Though not fully conjugate,
the conditional posterior for Q, 7,v | Sr, S, can be reliably approximated
using adaptive quadrature methods. The computational strategies used
are described in Section 3.1

To derive the posterior we use the representation of the Pdlya trees Q)
and Q; in terms of Beta-distributed random variables §(A) and 6;(A) for
each node A of the tree. With this notation, The second and third lines
in (1) can be written in terms of the 6 and 6; as in Equation 2:

6:(A) | 6(A) * Beta (6(A)T(A), (1 — 6(A))7(A))

0(A) ~ Beta (6o(A)v(A), (1 = bo(A))r(A)).
Including the concentration parameters, we can write the posterior for

the parameters of a region A in the following form conditional on the
state parameters S;(A), S, (A):

m(0(A), 7(A),v(A) | S-(A), 5, (A), X) o
0( )GU(A)V (1 o H(A))(lfeo(A))l/(A)*lX
[B(B(A)7(A), (1 = 6(A))T(A)] " x

k
HB A) 4+ ni(Ap), (1 — 0(A)T(A) + ni(A,)) x

r(r(A) | S (A)r(r(A) | S,(4)).
3)

where B(+,-) is the Beta function and the function n;(-) counts the num-
ber of observations from the ith sample contained in a region. The full
posterior is the summation of Equation (3) over the possible states of S,
and S,, with their respective priors factored in. The derivation of this
posterior is given in the supplementary material.

—_

3.1. Computation

Posterior computation of the HAPT model requires three distinct com-
putational strategies. We split the model (see Figure 4) into three parts,
each of which requires a different approach. Each part of the model is
conditioned on all parameters which are further to the right in Figure 4.
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We first describe how to integrate out each of the first two parts. This re-
duces the problem to evaluating the posterior probabilities of all possible
combinations of the state variables S ,S,, which can be accomplished
using a forward-backward algorithm for hidden Markov models.

(a) m(Q; | Q,7,v, S+, Sy, X): The individual sample densities @;, con-
ditional on all other parameters, are a priori distributed according
to a standard Pdlya tree. The corresponding conditional posterior
is therefore also a Podlya tree. This allows us to analytically inte-
grate out the ); when computing the posterior. If individual sam-
ple densities are of inferential interest their posteriors can easily be
reconstructed after the main posterior computation is completed.

(b) m(Q,7T,v | S+, Sy, X): The remaining continuous parts of the joint
model, namely the common structure ) and the continuous con-
centration parameters T and v, conditioned on the discrete state
parameters S and S, are not conjugate and must be integrated
numerically. Because all parameter dependence across nodes in the
Pélya tree topology is restricted to the discrete state parameters,
by conditioning on those parameters we are able to compute the
posterior of the remaining parameters for each node of the tree in-
dependently.

This has two significant implications. First, rather than tackling a
very high-dimensional integral over the product space of the param-
eters for all nodes, we have a much more tractable collection of low-
dimensional integrals: we need only integrate the three-dimensional
joint posterior of 0(A),7(A),v(A) for each region A in the Pélya
tree. Each of these integrals is tractable using standard quadrature
techniques. Second, these integrals can be computed in parallel.
An additional observation allows us to further accelerate the adap-
tive quadrature. We note that the joint posterior distribution for
0(A),7(A),v(A) conditional on S;(A) and S,(A), with the other
parameters integrated out, can be factored as

m(0(A), 7(A),v(A) | Su(A), S7(A), X) = g(0(A), 7(A))xh(0(A),v(A)).
This allows us to factor the three dimensional integral:
///W(Q(A),T(A),I/(A) | Su(A), S:(A),z) dr(A)dv(A)di(A)

= [ [ sttty ari) | [ o vy v asca)

This factorization effectively reduces the dimensionality of the in-
tegral: rather than evaluating the unnormalized posterior at points

13



throughout a 3-dimensional space, we need only evaluate it on the
union of two 2-dimensional spaces.

The posterior distribution of the state parameters Sr and S, at
first appears to be the most intimidating part of the model: It is
a distribution over the product space of a large number of discrete
parameters, resulting in an enormous number of level combinations.
The naive computation of the joint posterior,

P ( M) 5-(4) = i, S(4) = jA>

AeA

is straightforward but needs to be repeated for every possible com-
bination of S;(A) and S, (A) for every node in the tree, which is
computationally prohibitive. Here the Markov dependency struc-
ture comes to our rescue. The shrinkage states constitute a Hidden
Markov Model following the tree topology (Crouse et al., 1998), and
we can factor the joint distribution and calculate the posterior prob-
abilities using a forward-backward algorithm in a manner analogous
to inference strategies for linear Hidden Markov Models.

During the forward-backward algorithm we can compute expecta-
tions of any function that can be expressed in the form

FC) =TT 60A). 7(A),v(4)),
A

where f*(-) is an arbitrary function in L;. This includes the marginal
likelihood, the expected value of the estimated common density ¢(-)
or any individual sample density ¢;(-) at any given point, expecta-
tions of random variables Y ~ @ or Y; ~ @Q;, and a wide variety
of other functions, such as the variance function described in Sec-
tion 5.1.

This computation is recursive, and we give a brief example of how it
is carried out for the marginal likelihood. The previous two compu-
tational strategies give us the ability to calculate (up to quadrature
approximation) the marginal likelihood, within a given node, of all
remaining parameters conditional on S and S,,. Combining this
with the prior transition parameters specified in I' we are able to
calculate the posterior probabilities for S;(A) and S,(A4), and the
overall marginal likelihood of the distribution on A, by considering
the recursively-calculated marginal likelihoods of the child regions
of A under each possible state.

Obviously this recursion requires a stopping point. The simplest
method is to truncate the tree at a predetermined depth. Hanson

14



(2006) offers some guidance on how to choose the depth of a trun-
cated Podlya tree based on sample size and other considerations. We
recommend using as large a tree as is computationally feasible in or-
der to minimize approximation errors due to truncation. If the data
deviate very strongly from the prior distribution—as is common,
for example, in high-dimensional settings—a more sophisticated ap-
proach may be required, such as truncating a branch of the tree
when it reaches a depth where the node contains only a few data
points.

4. Theoretical results

We describe several desirable theoretical properties of the HAPT model.
Proofs are given in the supplementary material.

THEOREM 1. (Absolute Continuity) Let Q,Q1, . . ., Qk be random mea-
sures distributed according to a HAPT model with base measure Qq. If
the SIS priors on T and v each include a complete shrinkage state that
absorbs all possible chains in a finite number of steps with probability 1,

then Q,Q1,...,Qr < Qo with probability 1.

REMARK 1. A sufficient condition for the complete shrinkage state to
absorb all chains in a finite number of steps with probability 1 is that
the transition probability from every other state to the complete shrinkage
state is bounded away from zero, which is satisfied by our choice of T'.

REMARK 2. The absorbent, complete shrinkage state in the SIS prior
1s needed to ensure the absolute continuity of the random distributions.
Wong and Ma (2010) showed that in lieu of decreasing the Beta variances
along branches of the partition tree at a sufficiently fast fized rate (Kraft,
1964), one can also ensure the absolute continuity of random distributions
from the Pdlya tree as long as the Beta variables will with probability 1
eventually have zero variance at deep enough levels almost everywhere
on the sample space. The absorbent, complete shrinkage state in the SIS
prior ensures this condition.

THEOREM 2. (Prior support) Let f, fi,..., fr be the probability den-
sity functions corresponding to arbitrary distributions that are absolutely
continuous with respect to a measure p on §2. Let q,q1,...,qr be corre-
sponding densities from a HAPT model satisfying

(a) Qo and p are equivalent measures, that is Qo < p and p < Qo;
(b) There are at least two shrinkage states, including the complete shrink-
age state, at each level.
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Then f, f1,..., fr are in the Ly prior support.

Our final result gives posterior consistency in the case where the sam-
ples have equal sample sizes:

THEOREM 3. (Posterior consistency) Let D, = {Xi,..., Xy} be 0b-
served data consisting of k independent samples, each of size n, from
absolutely continuous distributions Py, ..., Py. Let w(-) be a Hierarchical
Adaptive Polya tree model on the k densities with overall prior mean Q,
and let w(- | Dy,) be the corresponding posterior. If Py < Qf for all i then
we have posterior consistency under the weak topology. That is,

(U | Dy) =1 asn— o

for any weak neighborhood U of the product measure Py X « -+ X Py.

5. Methodological applications of the HAPT

We present two ways in which the HAPT model can be applied to in-
fer structures that existing models have not been able to capture. The
first application is the ability of HAPT to model the “dispersion func-
tion” (defined below) on the sample space; we show how to calculate the
posterior dispersion function from the 7 parameter. According to our
knowledge, at the time of the writing, no existing model permits infer-
ence on the variation across sample densities in this manner. The second
application is clustering samples based on their distributions, while al-
lowing for within-cluster variation. While the Nested Dirichlet process
clusters distributions, it allows no variation among the underlying sam-
pling distributions within each cluster. The importance of allowing for
variation within clusters was first pointed out by MacEachern (2008),
who described a dependent Dirichlet process which would incorporate
within-cluster variation.

5.1. Inferring the cross-sample dispersion function

The primary target of inference in problems with multiple samples is often
the variation across samples. It is this inference, for example, which lends
ANOVA its name, though the model is typically presented in terms of the
overall and sample means.

In the HAPT model, variation across samples is captured by 7, an
infinite-dimensional parameter which characterizes variation at different
locations and scales. Rather than trying to provide guidance on how to
interpret the multiscale structure in 7, we show how to recast it into an
estimate of the variation across samples at any given point in the sample
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space, giving us a posterior dispersion function analogous to the posterior
mean function.

Let g, be density for a new sample drawn from the HAPT model, with
corresponding Beta-distributed random variables 6, (A) for each region A
in the recursive partition. Since ¢, is random, we can estimate a “variance
function” v :  — R which gives, for any point x in the sample space,
the expected variance of ¢,(x) conditional on the density of the common
structure, q(+).

PROPOSITION 1. The variance function is given by

E, [Var (¢:(2) | )] = qo(2)*%

: O(A)(B(A)T(A) + 1) Hoed
E‘A’Ee (HAeI ErEme)
)(1 = 6(A)7(A) +1) Hz€Ar)
A>< \A P(r(A) + 1) S*A)) -
1(z€A,)
L] 1A Eac - A)<!|Ae\|2 ")

A3z

1—(9A 2 1(z€A,)
o ()|

The derivation of this result is given in the supplementary material.
The expectations with respect to #(A) and 7(A) can be estimated during
the same quadrature routines used to compute the posterior distributions
of 8(A), described in Section 3.1. The expectation with respect to S can
then be calculated during the forward-backward routine used to calculate
the posterior distribution of S, as described in the same section.

We naturally expect more absolute variation across samples in areas
where the densities of all the samples are higher, so we also introduce
a standardized dispersion function measuring the coefficient of variation.
The posterior mean coefficient of variation of ¢, at any given point is not
analytically tractable; we can obtain an estimate by taking the square
root of the variance function and dividing by the mean density function.
We illustrate the application of the dispersion functions in Section 6.2
and Section 7.

5.2. Dirichlet Process Mixture of HAPT

Not only can the HAPT be used as a standard-alone Bayesian model, but
it can also be embedded as a component in more complex hierarchical
models to address a variety of inference tasks. Of course, in such cases
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some parts of the larger hierarchical model may require MCMC for in-
ference, but even then, one can numerically marginalize out the HAPT
portion of the model, just like one could integrate out any other conjugate
model component. This often results in very simple MCMC samplers for
very sophisticated nonparametric models. We provide one illustration of
such an inference task in this subsection.

In many applications we may not believe that the samples collected all
share a single common structure. A more appropriate model may be that
the samples are drawn from several latent populations, with samples being
drawn from the same population having structure in common. In this
case we may reconstruct the latent structure by clustering the samples.
To learn the clustering of samples without fixing the number of clusters
in advance, we add a Dirichlet process component to the model. We can
write the model as follows:

Xij | Qi ~ Qi
Qz | sz i* " PT(Qw T; )

@ vi,m) | G%a

G ~DP(aH(Q",v*,T")),

nd

where the base measure can be factored as

H(Q" v, 77) = {m(Q" | v*) x 7(v")} x 7(77)

with 7(Q* | v*) being a PT(Qo,v*), m(v*) a SIS(T}), and 7(7*) a
SIS(I'f). The Dirichlet process introduces clustering among the sam-
ples, so that some set of @;, belonging to the same cluster, have a cluster
centroid )7 and a cluster-specific dispersion parameter, 7;*. The cluster
centroids @) are also allowed to have different smoothness corresponding
to the cluster-specific 7. Conditional on the clustering structure, the
model reduces to a collection of independent HAPT models. In other
words, while the above model may first appear dauntingly complex, it is
nothing but a Dirichlet process mixture model on the space of distribu-
tions using the HAPT as the mixing kernel along with the hyperprior on
the kernel.

We call this model a Dirichlet Process Mixture of Hierarchical Adap-
tive Pélya Trees, or DPM-HAPT. It is comparable to the Nested Dirichlet
process in the way it induces clustering among the samples, but is consid-
erably more flexible. While the NDP requires that all samples in a cluster
have identical distributions (MacEachern, 2008), DPM-HAPT allows the
distributions within each cluster to vary according to the HAPT model.
In addition, the advantages of the HAPT model discussed earlier, such as
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flexible modeling of variation in different parts of the sample space, still
apply.

Posterior computation for DPM-HAPT consists of a combination of
standard Dirichlet Process methods and the HAPT posterior calculations
described in Section 3.1. As noted above, conditional on the clustering
structure, the model consists of a number of independent HAPT models.
Although the HAPT model is not fully conjugate, our posterior compu-
tation strategy allows us to calculate the marginal likelihood to arbitrary
precision. This allows the use of a Dirichlet process algorithm designed for
conjugate mixture models. We use the Pélya urn representation to sam-
ple the clustering structure, using marginal likelihoods calculated from
the HAPT model.

This algorithm requires the computation of

(a) marginal likelihoods under the HAPT model for clusters including
a single sample, and

(b) marginal posterior predictive likelihoods under the HAPT model of
one sample conditional on one or more other samples making up a
cluster.

The first item is straightforward. The second is easily achieved by fitting
the HAPT model twice, and calculating

f(Xi,le, .. .,Xjk)
f(XJ17 . 7X]k)

f(Xi|Xj1a"'ank):

6. Simulation results

6.1. Density estimation and comparison to MQR and a HDP mixture
In this section we use a simulation study to evaluate the performance of
density estimation under the HAPT model and compare it to the MQR
model (Miller et al., 2004), a Hierarchical Dirichlet Process Mixture of
Beta distributions (HDPMBeta) (Teh et al., 2006), and a Linear Depen-
dent Dirichlet Process Mixture model (LDDP) (Iorio et al., 2004). MQR
and LDDP are available in the R package DPpackage (Jara et al., 2011) as
the functions HDPMdensity and LDDPdensity, respectively. HDPMBeta
is available in the R package dirichletprocess (Ross and Markwick,
2019) as the function DirichletProcessHierarchicalBeta.

MQR models k related densities with k+ 1 Dirichlet process mixtures.
The density of each sample is modeled as a mixture of a common compo-
nent and a unique idiosyncratic component, each with a Dirichlet process
mixture prior. In all there are k Dirichlet process mixtures for the k id-
iosyncratic components and one for the common component. HDPMBeta
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fits a mixture model using Beta kernels and a hierarchical Dirichlet Pro-
cess as the mixing distribution. LDDP fits a mixture model using Normal
kernels with a linear model on the kernel locations. In the case we con-
sider, where we have no covariates, this results in sharing information by
way of shrinking kernel locations across samples.

We evaluated HAPT, HDPMBeta, LDDP, and MQR under three sim-
ulation scenarios, with 6 or 10 random samples of 100 observations each.
HAPT, HDPMBeta, and MQR were also compared in scenarios with 10
random samples of 100 observations each. (At this writing, the R func-
tion LDDPdensity for fitting LDDP becomes unstable as the number of
samples increases beyond 6 in our simulation, and so we were not able
to fit LDDP with 10 samples.) In each scenario the sample densities are
mixtures of four components with random weights. The first scenario
constructs a smooth density out of mixtures of Beta distributions. There
are two modes with weights varying from sample to sample. This den-
sity is highly amenable to modeling with a mixture of Normal or Beta
distributions as HDPMBeta, LDDP, and MQR do. The components are:

(a) A Uniform(0,1) distribution, with expected weight 0.1;
(b) A Beta(2,2) distribution, with expected weight 0.1;
(c) A Beta(30,10) distribution, with expected weight 0.4;
(d) A Beta(10,30) distribution, with expected weight 0.4.
The density under the mean weights is illustrated in Figure 5(a).
The second scenario has a low-weighted diffuse base distribution, with
most of the mass being concentrated in 3 spikes. We expect HAPT to
perform better than the other methods in this scenario, as a mixture of

Normal or Beta distributions does not fit the narrow spikes well. The

components are:

(a) A Uniform(0,1) distribution, with expected weight 0.1;
(b) A Uniform(0.18,0.20) distribution, with expected weight 0.3;
(c¢) A Uniform(0.49,0.51) distribution, with expected weight 0.3;
(d) A Uniform(0.80,0.82) distribution, with expected weight 0.3.

The density under the mean weights is illustrated in Figure 5(b)

The third scenario presents a mix of the two situations explored in the
previous scenarios, with a larger-scale smooth component and a narrow
spike. The components of this mixture are:

(a) A Uniform(0,1) distribution, with expected weight 0.1;

(b) A Uniform(.25,.5) distribution, with expected weight 0.3;

(c) A scaled Beta(2,2) distribution, rescaled to cover the interval [.25, .5],
with expected weight 0.4;
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(a) Scenario 1 (b) Scenario 2 (€) Scenario 3

Fig. 5. The four-component mixtures used in the comparison between HAPT,
HDPMBeta, LDDP, and MQR, under the expected weights. (a) shows the den-
sity for the first scenario (smooth structures easily modeled by mixtures of Nor-
mal distributions), (b) gives the density for the second scenario (narrow spikes
not easily modeled by mixtures of Normal distributions), and (c) gives the den-
sity for the third scenario (both smooth structures and a narrow spike). De-
pending on the concentration of the Dirichlet distribution, the individual sample
densities will vary more or less from this density.

(d) A Beta(4000,6000) distribution, with expected weight 0.2.

The density under the mean weights is illustrated in Figure 5(c).

In order to create samples with varying underlying true densities in
each scenario, for each sample the weights of the mixture components
were randomized according to a Dirichlet distribution with the expecta-
tions given above. The concentration of the Dirichlet distribution around
the mean was varied across a wide range, with the sum of the param-
eters taking the values 1, 5, 10, and 50. For example, in the highest
concentration setting, the weights of the four components were given by
a Dirichlet(5,15,20,10) distribution.

We draw the multiple (6 or 10) underlying sample densities and then
draw 100 points from each sample, for a total sample size of 600 or 1,000.
After fitting all four models, we calculate the L; distance between each
sample’s true density and the estimate of the sample density given by each
of the two models. This is averaged across the six samples. We repeat
this procedure twenty times for each value of the Dirichlet concentration
parameter in order to gain a more accurate view of the performance of
each model.

The results of this simulation are shown in Figure 6.1. The first sce-
nario with its smooth Beta components is particularly friendly to HDPM-
Beta (which is nearly the true model), LDDP, and MQR. In the second
scenario HAPT unsurprisingly outperforms the other two methods by a
wide margin across the board. In the third scenario the four methods are
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more or less comparable in performance.
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Fig. 6. Results of the simulation described in Section 6.1, comparing perfor-
mance of HAPT, HDPMBeta, LDDP, and MQR across varying values of the
Dirichlet concentration parameter. (a) presents the result when there are 6
data samples; (b) presents the results when there are 10 data samples. The
LDDPdensity function available in R does not run when the data includes more
than 6 samples, so (b) does not include results for LDDP. The performance of
HAPT improves most substantially as the number of samples increases.

HDPMBeta and LDDP both show much more variable performance
in the third scenario compared to the other two methods and the other
two scenarios. This appears to be due to the models failing to capture
the spike component when run on some of the simulated datasets, result-
ing in high L1 errors for those simulation runs. These simulations were
conducted with the package’s default values for prior parameters, and
it may be possible to avoid this issue with careful selection of the prior
parameters. This would decrease the variability as well as improve the
mean L1 score for HDPMBeta and LDDP on this scenario. Overall, this
simulation demonstrates that HAPT compares favorably to HDPMBeta,
LDDP, and MQR, particularly when the densities contain features not
easily modeled by a mixture of smooth distributions. Moreover, the per-
formance of HAPT improves much more substantially as the number of
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(a) True sample densities (b) Estimated centroid and densities {(c) CV function
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Fig. 7. (a) One hundred sample densities from the simulation setting used in
Section 6.2; (b) Estimated centroid and sample densities after fitting the HAPT
model; (c) Estimated coefficient of variation function.

samples increases, indicating its ability to effectively borrow information
across samples through the hierarchical structure.

6.2. Estimation of the dispersion function

To simulate data with dispersion that varies across the sample space,
we simulate from a mixture of three Beta distributions, such that the
variation across sample densities is low in the middle of the space and
much higher near zero and one. Specifically, each sample is a mixture
of three components: Beta(2,2), Beta(1,12), and Beta(12,1). The corre-
sponding weights w1, wo, w3 of the three components are drawn according
to the following scheme. First we draw w; ~ Beta(80,20). Then we draw
v ~ Beta(1,1) and set we = v(1 — w;) and w3 = (1 — v)(1 — wy). This
results in the central part of the sample space having a small amount of
variation between samples, while the edges on either side have much more
variation. Sample densities are illustrated in Figure 7. One hundred sam-
ple densities are plotted in Figure 7(a). The variation in the dispersion
of the sample densities can be seen clearly.

Figure 7(b) shows the estimated centroid and sample densities from
fitting the HAPT model. The dispersion function, or estimated coefficient
of variation is plotted in Figure 7(c). The dispersion function clearly
shows how the variation across samples is low near the center of the
space and high on either end.

6.3. DPM-HAPT Simulations

We simulate a simple 1-dimensional example to demonstrate the clus-
tering behavior of the DPM-HAPT model. The simulation contains 30
samples belonging to three true clusters, with 15, 10, and 5 samples re-
spectively. Each sample is drawn from a mixture of a Uniform(0,1) distri-
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Fig. 8. (a) Sample densities for the clustering simulation, and (b) probability of
two samples clustering together based on the DPM-HAPT model, which clearly

identifies the three clusters that exist in this simulation, despite significant vari-
ation across samples within clusters.

bution and a Beta distribution, with the parameters of the Beta varying
by cluster: Beta(1,5) for the first cluster, Beta(3,3) for the second clus-
ter, and Beta(5,1) for the third cluster. The weights of the two compo-
nents are randomized in each sample. The weight of one component is
drawn from a Beta(10,10) distribution, which creates weights varying ap-
proximately between 0.3 and 0.7, with the actual observed proportions in
realized samples varying more widely due to the additional Binomial vari-
ation. Sample densities are plotted in Figure 8(a). Each sample contains
n = 300 points.

An MCMC sampler is run using the Pdlya urn scheme to sample the
clustering structure. We summarize the results by looking at how often
each of the 30 samples is clustered together with each other sample. These
results are plotted in Figure 8(b). We can see in the figure that the DPM-
HAPT model clearly identified the three clusters.

We now consider an example in which the variation across samples
differs across the sample space. Samples with heterogeneous variation are
drawn from mixtures of four Beta distributions, with varying parameters
for each cluster. The parameter are chosen so that each cluster has much
higher variation across sample densities on the right half of the space
than on the left half. The data generating process is described in the
supplementary material. We consider 30 samples belonging to three true
clusters, as above. Figure 9 (a) shows one hundred draws from each of
three clusters used in this simulation, to illustrate the variability between
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Fig. 9. (2) One hundred draws from each of three clusters in the heterogeneous
variation clustering example; (b) Probability of two samples clustering together
based on 1,000 MCMC draws for the heterogeneous variance example. Despite
the variation in the dispersion of the densities, HAPT-DPM clearly identifies the
three true clusters.

and within clusters and the heterogeneity across the sample space.

As in the previous example, we simulate three clusters with 15, 10
and 5 samples respectively. We draw 150 observations from each sample,
and apply DPM-HAPT to cluster the resulting samples. We run the
MCMC for 1,000 draws after burnin; estimated coclustering probabilities
are plotted in Figure 9 (b). The three true clusters are clearly identified
even in the presence of substantial heterogeneity.

7. Application: DNase-seq data

DNase sequencing (DNase-seq) is a method used to identify regulatory
regions of the genome (Song and Crawford, 2010). DNA is treated with
Deoxyribonuclease (DNase) I, an enzyme that cuts the DNA strand. The
cut strands are then sequenced and the locations of the cuts are identified
and tallied. The vulnerability of the DNA strand to DNase varies by
location, resulting in a distribution of cut counts which is nonuniform.
The density of this distribution is related to various biological factors of
interest: for example, it tends to be high near potential binding sites
for transcription factors, since these proteins require access to the DNA
strand in much the same way as DNase I, but will be low if a transcription
factor already bound at that site blocks access to the DNA strand.

We consider the problem of clustering DNase-seq profiles near poten-
tial transcription binding sites, identified by a specific genetic motif. Each
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sample consists of observed counts in a range of 100 base pairs on either
side of one occurrence of the motif. A single motif, consisting of 10-20
base pairs, may appear tens of thousands of time in the genome, with
each occurrence presenting one sample for analysis. Many samples, how-
ever, have very few cuts observed. For analysis we restrict ourselves to
samples which meet a minimum sample size threshold.

Different locations where the transcription factor motif of interest ap-
pears may be expected to show different DNase behavior in the region
around the motif for a variety of reasons. This makes clustering a more
appropriate approach to the problem than treating all the samples as
having a single common structure. Identifying clusters of locations which
have similar DNase-seq profiles may reveal previously unrecognized fac-
tors. We also expect within-cluster variation above and beyond sampling
variation, which makes the Nested Dirichlet process unsuitable.

Here we present data from the ENCODE project (ENCODE Project
Consortium, 2012) for locations surrounding a motif associated with the
REl-silencing transcription factor (REST). REST suppresses neuronal
genes in non-neuronal cells (Chong et al., 1995). The data includes 48,549
locations where the REST motif appears in the genome. The motif con-
sists of 21 base pairs, and the data includes an additional 100 base pairs
on each side, for a total of 221 base pairs. In all, 922,704 cuts were tallied,
an average of 19 per location. 468 locations have zero cuts observed. The
number of cuts per location is heavily right skewed, with a median of
13 observations, first and third quartiles of 7 and 21 respectively, and a
maximum of 2,099 cuts observed in a single sample.

For this analysis we restrict ourselves to locations which have at least
200 observations, a total of 265 samples. These samples include a total
of 70,225 observations, an average of 330 observations per sample. The
distribution is still quite skewed, with a minimum of 201 observations and
a maximum of 2099. The median is 279 and the first and third quartiles
are 232 and 366 observations. Histograms of 30 of the 265 locations are
shown in the supplementary material.

We fit the DPM-HAPT clustering model to this data, using 100 post-
burnin draws for inference. The model estimates 7 clusters with high
probability (see Figure 10(a)), of which there are three large clusters
and four singleton locations, each of which consists of a single large spike.
One of the singleton locations occasionally joins one of the larger clusters,
resulting in 6 clusters. A heatmap of the clustering structure is shown
in Figure 10(b). The clusters are clearly differentiated and vary in size,
with the largest cluster containing about 130 locations, though the cluster
sizes vary from iteration to iteration due to uncertainty in the cluster
assignment.

The estimated posterior mean densities of the three largest clusters are
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Fig. 10. (a) Posterior distribution of the number of clusters from the DPM-
HAPT in the DNase-seq application; (b) the model shows clear clustering of
the samples.

plotted in Figure 11. One of these clusters includes locations with cuts
which are roughly symmetric around the transcription factor binding site
with a dip in the middle. The central dip indicates that a transcription
factor may be bound at that location, blocking access for the DNase I
molecule. The other two largest clusters include locations which have
cuts heaped up on one side or another of the binding site, suggestive of
larger-scale patterns in the DNase I sensitivity due to factors like the
folded structure of the DNA. The four singleton clusters show other den-
sities which do not conform to the general patterns of the three largest
clusters. The plots show substantial variation around the cluster centroid,
much more than can be explained by sampling variation alone. The cor-
responding estimated dispersion functions are plotted in the second row,
and are quite noisy; this is not surprising given that they are cross-sample
dispersions (a second-order parameter) estimated with relatively few de-
grees of freedom.

8. Discussion

The HAPT model offers a compelling alternative to existing nonparamet-
ric models that share information across multiple samples. The Pdlya
tree’s ability to directly model the density of an absolutely continuous
distribution frees us from the necessity of using mixture models to obtain
densities, while the computational tractability of the posterior avoids the
need to run MCMC chains for posterior inference. The addition of the

27
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Fig. 11. Posterior mean densities and estimated dispersion functions of the
three largest clusters in the DNase-seq example. The heavy black line shows
the cluster centroid; light gray lines in the background show the estimated
means of each sample in the cluster. The dispersion function is plotted below.

SIS prior allows us not only to more accurately model the densities of
interest, but also to estimate a fully nonparametric dispersion function
over the sample space. The model extends easily—both conceptually and
computationally—to the setting where we do not believe all our sam-
ples have the same common structure, where DPM-HAPT allows us to
learn both clustering structure and the distributional structure within
each cluster.

Although we have presented HAPT in a one-dimensional space for the
sake of clarity, adoption of the randomized recursive partitioning scheme
first introduced in Wong and Ma (2010) allows the extension of HAPT to
model densities in multidimensional spaces. Variables other than simple
continuous ones can also be handled naturally—all that is needed is the
definition of an appropriate recursive partition. This allows inclusion of
categorical and ordinal-valued variables, as well has more exotic possibil-
ities: a continuous variable that lives on the surface of a torus, a partially
ordered categorical variable, or a zero-inflated variable with a point mass
at zero and a continuous component on the positive halfline.

The Pélya tree’s decomposition of the density space into orthogonal
Beta-distributed random variables, which extends to HAPT, is central to
HAPT’s computational efficiency. It also allows the performance of quick
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online updates in the HAPT model: when a new data point arrives we
only need to update the nodes of the Pélya tree which contain the new
data point, rather than recomputing the entire posterior. In a HAPT
truncated at a depth of L levels, this means we need to reevaluate the
posteriors of only L nodes, rather than 2¥. HAPT may thus be used in
streaming data settings where fast online updates are essential. This is
one of our current developments.

The DPM-HAPT model illustrates the flexibility of HAPT as a compo-
nent of larger hierarchical models as well as the computational tractability
resulting from the “almost” conjugacy of the HAPT. Another such ex-
ample is a mixture of HAPT model. Specifically, one well-recognized
limitation of the Pdlya tree and related models is its dependence on the
choice of a particular partition tree on the sample space, which is typically
determined by the quantiles of a given base measure Q. Hanson (2006)
shows that by treating the base measure, and thus the partition tree, as
an unknown and place a hyperprior on it, one can arrive at the so-called
mixture of Pélya trees, which overcomes the sensitivity to the choice of
the partition, and moreover, very simple MCMC strategies can be used
for such models because the Pélya tree can be analytically marginalized
out given each base measure. We note that exactly the same extension
can be applied to the HAPT by placing hyperpriors on the base measure.
The same samplers that work for the mixture of Pélya trees will work for
the mixture of HAPT as the HAPT also be integrated out numerically.

A common phenomenon in applying mixture models for clustering is
that when the variance or dispersion parameter of the kernel is specified
to be too large, the model will reduces down to a single massive cluster a
posteriori. This can be a concern especially when the mixing kernel is as
flexible as a Bayesian nonparametric model such as the PT. As in classical
mixture models, what allows the DPM-HAPT to properly identify clusters
is the constraints it imposes on the underlying within cluster dispersion.
As such the choice of the prior on the dispersion play an important role.
In particular, this prior should allow the model to place more prior mass
around specification of clusters in which densities share general common
structures than around massive clusters without much similarity. We
have adopted the SIS prior for this purpose as a general choice, but in
specific applications, some modification to the prior that incorporates the
background knowledge might be desirable.

Finally, we note that the DPM-HAPT model may also be easily ex-
tended by replacing the Dirichlet process with any cluster-inducing pro-
cess which admits inference given the marginal likelihoods and conditional
probabilities of the clusters. This includes, for example, the Pitman-Yor
process. This allows the properties of the clustering process to be adapted
if the clustering assumptions implicit in the Dirichlet process are not ap-
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propriate.

Software

An R package, HAPT-package, which implements the HAPT model is
available at https://github.com/MaStatLab/HAPT-package. We used
the R package DPpackage (Jara et al., 2011) to fit the MQR and LDDP
models, and used the R package dirichletprocess to fit the HDPMBeta
model. For readers interested in fitting the nested DP model, we note that
though no R packages currently implements this model, the R code for a
recent paper (Zuanetti et al., 2018) provides an implementation.
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