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Abstract—Although Convolutional Neural Networks (CNNs)
have demonstrated the state-of-the-art inference accuracy in
various intelligent applications, each CNN inference involves
millions of expensive floating point multiply-accumulate (MAC)
operations. To energy-efficiently process CNN inferences, prior
work proposes an electro-optical accelerator to process power-
of-2 quantized CNNs by electro-optical ripple-carry adders and
optical binary shifters. The electro-optical accelerator also uses
SRAM registers to store intermediate data. However, electro-
optical ripple-carry adders and SRAMs seriously limit the
operating frequency and inference throughput of the electro-
optical accelerator, due to the long critical path of the adder
and the long access latency of SRAMs. In this paper, we propose
a photonic nonvolatile memory (NVM)-based accelerator, Light-
Bulb, to process binarized CNNs by high frequency photonic
XNOR gates and popcount units. LightBulb also adopts photonic
racetrack memory to serve as input/output registers to achieve
high operating frequency. Compared to prior electro-optical
accelerators, on average, LightBulb improves the CNN inference
throughput by 17× ∼ 173× and the inference throughput per
Watt by 17.5× ∼ 660×.

Index Terms—Optical Accelerator, Photonic Racetrack Mem-
ory, Photonic Phase Change Memory, Binarized Neural Network

I. INTRODUCTION

Due to their high accuracy, convolutional neural networks

(CNNs) have been employed by cloud-based intelligent per-

sonal assistants, e.g., Apple Siri, Google Now, and Microsoft

Cortana, to process a wide range of problems, e.g., object

recognition, speech processing and machine translation. How-

ever, an inference of a CNN involves a large number of com-

putationally expensive convolutions. For instance, an inference

of AlexNet requires 724M floating point multiply-accumulate

(MAC) operations. The essential computing effort of CNN

inferences significantly increases the power consumption and

carbon footprint of data centers.

Billions of inferences will be performed on a trained CNN

model in data centers [8]. Instead of power-hungry GPUs,

ASIC [7], FPGA [31], and ReRAM [25]-based accelerators are

built to more energy-efficiently process CNN inferences. Re-

cent works [17], [26], [16] present optical CNN accelerators to

further improve the inference throughput. There are two types

of optical CNN accelerators, i.e., the all-optical design [26],

[16] and the electro-optical design [17]. Although optical CNN
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accelerators demonstrate up to 13× [17] inference throughput

per Watt over various prior accelerator designs, due to the low

power consumption of photonic devices, two types of optical

CNN accelerators are constrained by different bottlenecks.

All-optical accelerators [26], [16] are limited by their low

inference accuracy. They process an entire CNN all by pho-

tonic devices without involving SRAM registers, their infer-

ence accuracy is hurt by imperfections of photonic devices.

Since all-optical accelerators use an analog optical signal to

represent 8 ∼ 16 bits, the variations of photonic devices

inevitably introduce and accumulate tiny errors in these analog

optical signals, resulting in significant accuracy degradation.

Even on small MNIST dataset, an all-optical accelerator

obtains only 91.75% [16] inference accuracy, which is even

lower than that achieved by a support vector machine [12].

The inference throughput of the electro-optical CNN ac-

celerator [17] is limited by the long critical path of the

electro-optical adders and the long SRAM access latency. Prior

work [17] first quantizes the weights of a CNN into power-of-2

representations, so that expensive floating point MAC opera-

tions can be replaced by cheap fixed point additions and binary

shifts. An electro-optical CNN accelerator [17] is proposed

to process intensive fixed point additions and binary shifts

by electro-optical ripple-carry adders and photonic binary

shifters. The intermediate results are stored in SRAM-based

input/output registers. Since an optical signal represents only 1

bit, the errors caused by optical device variations are trivial in

the electro-optical accelerator. However, the long critical path

of the electro-optical ripple-carry adders and the long SRAM

access latency severely limit the operating frequency of the

electro-optical accelerator, thereby significantly decreasing the

CNN inference throughput per Watt.

In this paper, we propose an electro-optical CNN accelera-

tor, LightBulb, to process the inferences of binarized CNNs by

photonic XNOR and popcount units. LightBulb first binarizes

the weights and activations of a CNN into linear combinations

of {-1, +1}s, so the floating point MAC operations can be

replaced by XNORs and popcounts. We propose a photonic

microdisk-based XNOR gate and a photonic phase change

memory (PCM)-based analog-to-digital converter (ADC) for

LightBulb to accelerate XNORs and popcounts, respectively.

Both our photonic XNOR gate and ADC can be operated at

50GHz. We further integrate photonic racetrack memory into

LightBulb to serve as input and output registers to support

the entire accelerator to work at such high frequency. Our
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contributions can be summarized as follows.

• We propose a high frequency electro-optical CNN ac-

celerator, LightBulb, to accelerate the inferences of bi-

narized CNNs without significant accuracy degradation.

We present a microdisk-based XNOR gate and a photonic

PCM-based ADC for LightBulb to process the XNORs

and popcounts of binarized CNNs.

• We further integrate photonic racetrack memory into

LightBulb to serve as input/output registers. Since the

read and write are two critical steps of the LightBulb

pipeline, the access latency of input/output registers de-

cides its pipeline operating frequency. Photonic racetrack

memory enables LightBulb to work at 50GHz.

• We implement, evaluate and compare LightBulb and

against the state-of-the-art GPU, FPGA, ASIC, ReRAM

and photonic CNN accelerators. Our experimental results

show LightBulb improves the inference throughput by

17× ∼ 173× and the throughput per Watt by 17.5× ∼
660× over various prior CNN accelerators.

II. BACKGROUND, RELATED WORK AND MOTIVATION

A. CNN Basics and Network Binarization

Inference latency matters. The state-of-the-art CNNs [12],

[10], [6] show unreasonable effectiveness in various appli-

cations such as natural language processing, computer vi-

sion, and recommender systems. Although a CNN model is

trained, billions of inferences will be performed on the model.

Particularly, edge devices send their inference tasks to data

centers [8] and rely on the computing power of data centers

to support their real-time CNN applications. Therefore, the

CNN inference latency in data centers matters. In contrast,

CNN trainings are done offline. In this paper, we focus on

accelerating CNN inferences in data centers.

Inference overhead is large. A CNN typically comprises

multiple layers including convolutional, fully-connected, batch

normalization, activation and pooling layers. In a CNN, the

convolutional layers consume > 90% of its inference la-

tency [31]. A convolutional layer receives N feature matrices

as inputs, each of which is convolved by a moving window

with a K ×K weight kernel to produce an element in one of

output feature matrices. The stride of the moving window is

represented by S, which is often smaller than K. The output

consisting of M feature matrices is the input for the next

convolutions layer. An CNN inference [6] involves billions

of floating-point multiply-accumulate (MAC) operations. Be-

cause of the large computing overhead, the battery of Google

Glass stands for only 45 minutes [5] when tracking consecutive

human actions. These edge devices have to rely on data centers

to process computationally expensive CNNs.

Network binarization. To reduce the computing overhead

of CNN inferences, network binarization techniques [21], [15],

[32] are proposed to approximate floating-point inputs, weights

and activations of a CNN by the linear combination of multiple

binary filters constrained to -1 or +1, so that computationally

expensive floating-point MACs can be replaced by bitwise

Fig. 1. Microdisk and pPCM. Fig. 2. Photonic racetrack memory.

XNOR and popcount operations. For example, for a convo-

lutional layer with N input channels and M output channels,

its weight W ∈ R
K×K×N×M is approximated by P binary

filters B0, . . . ,BP−1 ∈ {−1. + 1}K×K×N×M , such that

W ≈ ψ0B0 + ψ1B1 + . . . + ψP−1BP−1, where K is the

weight kernel size, and ψ is the weight scaling factor vector.

In the same way, its input I ∈ R
L×H×N can be approximated

by Q binary filters B0, . . . ,BQ−1 ∈ {−1.+ 1}L×H×N , such

that I ≈ λ0B0 + λ1B1 + . . . + λQ−1BQ−1, where L is the

input length, H is the input height, and λ is the input scaling

factor vector. So the convolution can be approximated by

Conv(W, I) ≈
P−1∑

p=0

Q−1∑

q=0

ψpλqConv(Bp,Bq) (1)

, where the binary convolution Conv(Bp,Bq) can be com-

puted by XNOR and popcount operations.

B. Photonic Devices

Silicon microdisk. The silicon microdisk technology [29],

[30] emerges as one of the most promising solutions to future

photonic computing, due to its CMOS compatibility, small

footprint, i.e., 25μm2, and ultra-low-power consumption, i.e.,

1fJ/bit, as shown in Table I. As Figure 1(a) shows, the

wavelength of a microdisk resonator λ can be controlled by a

forward-bias voltage V . If V = 0, λ = λoff . Only the input

power with λoff , Pλoff
, can pass through the waveguide, so

the output power Pout = Pλoff
. If V = 1, λ = λon. The

output power Pout = Pλon . If both Pλoff
and Pλon are sent

to the waveguide, the output power is decided by the forward-

bias voltage V . We have Pout = V · Pλon
+ V · Pλoff

.
TABLE I

THE COMPARISON BETWEEN SRAM AND PHOTONIC DEVICES.

SRAM microdisk pRacetrack pPCM

area (μm2) 0.15 8.03 100 9.07
bit/cell 1 1 128 5
energy (fJ/bit) 1100 1 10 50
frequency (GHz) 5 50 100 50

Photonic Phase Change Memory. Recent works [1], [22],

[14] adopt photonic Phase Change Memory (pPCM) to accel-

erate floating-point multiplications. As Figure 1(b) shows, a

small block of phase change material GST is fabricated on

a microdisk. By controlling the GST element, a microdisk

can achieve different transmissions. If the GST element is in

the amorphous state, the microdisk has high transmission. In

contrast, if the GST element is in the crystalline state, the

microdisk obtains low transmission. A pPCM cell can store 5

bits [14]. The output power Pout of the pPCM-based microdisk

can be represented by T · Pλ, where T is the transmission of

the pPCM, and Pλ indicates the input power.
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Fig. 3. The inference throughput of HolyLight at various frequencies (FPS:
frames/images per second).

Photonic Racetrack Memories. To implement high den-

sity ultra-fast photonic memory, a recent work [11] creates

photonic racetrack (pRacetrack) memory that can be read and

written by light. Figure 2 shows an example of a pRacetrack

cell whose major component is a racetrack structure consisting

of multiple magnetic domains separated by domain walls.

Each domain has its own magnetization direction. The data

can be represented by the magnetization direction of each

domain. A racetrack structure can contain 128 domains [28].

All domains in a cell share several ports for reads and writes.

The motion of magnetic domain walls in a racetrack structure

can be controlled by a electrical pulse on the head of the

racetrack structure. Unlike the electrical racetrack memory, a

pRacetrack cell has two waveguides orthogonally intersected

on its access port. By simultaneously injecting two light

pulses, a strengthened vertical light switches the magnetization

direction of the target domain. To access a domain, we first

shift the target domain to the access port and then write or read

the domain by light pulses. A write on a pRacetrack cell costs

only 10ps [11]. Two wires connected to a lock-in amplifier

form a Hall cross. During a read, when the light pulse is

applied on a domain, the lock-in amplifier can measure the

out-of-plane magnetization by the anomalous Hall effect.

C. Related Work and Motivation

Although recent works [26], [16] build all-optical accel-

erators to process convolutional, activation, fully-connected

layers of a CNN, their inference accuracy is seriously limited

by the errors caused by imperfections of photonic devices.

For example, a recent all-optical accelerator [16] achieves

only 91.75% inference accuracy on the small hand-written

digit dataset MNIST. The imperfections of photonic devices

completely offset the benefits of a CNN, since even the

traditional support vector machine algorithm [12] can obtain

> 98% inference accuracy.

Prior work [17] presents an electro-optical CNN accel-

erator, HolyLight, that uses photonic matrix-vector multi-

pliers to accelerate convolutions and electrical components

to perform activations to achieve originally high inference

accuracy. However, HolyLight suffers from low frequency,

due to the slow SRAM registers and the long critical path

of its ripple-carry adders. HolyLight integrates SRAM-based

input/output registers into its pipeline, so the SRAM latency

decides its operating frequency. Although HolyLight claims

that it can run at 12.8GHz, the fastest SRAM arrays run

at only 5GHz. As Figure 3 shows, if we consider the low

SRAM frequency (5HGz), on average, the CNN inference

throughput of HolyLight degrades by 58%. If we have ideal

Fig. 4. Photonic XNOR gate: (a) a 1-bit gate and (b) an n-bit unit.

photonic registers and adders enabling HolyLight to work at

25GHz, the inference throughput of HolyLight improves by

40% averagely. Higher frequency significantly improves the

inference throughput of the electro-optical accelerator.

III. LIGHTBULB

To avoid the ripple-carry adders having a long critical

path, we propose a novel electro-optical CNN accelerator,

LightBulb, to accelerate the XNOR and popcount operations of

binarized CNNs using photonic microdisk-based XNOR gates

and pPCM-based ADCs. We also integrate photonic racetrack

memory as the input/output registers to enhance the operating

frequency of LightBulb. At last, we further develop a pipelined

LightBulb design to maximize the CNN inference throughput.

Fig. 5. The binary search tree for a 4-bit ADC. Fig. 6. A pComparator.

A. Binary Convolution: XNOR-Popcount

1) Photonic XNOR unit: We propose a photonic XNOR

gate to compute XNORs by a single microdisk. As Figure 4(a)

exhibits, we uses the bias voltage V of the microdisk to serve

as one input x of the XNOR gate. The input power of the

microdisk is used as the other input y of the XNOR gate.

Particularly, the input power at λon indicates y, while the input

power at λoff represents y. If x = 0, the bias voltage is 0

and the microdisk works at λoff , so the output power of the

microdisk Pout equals to x · y. If x = 1, the bias voltage is 1

and the microdisk is operated at λon, so the output power of

the microdisk Pout equals to x ·y. In short, Pout = x ·y+x ·y.

To compute multiple XNOR operations, we presents an n-bit

XNOR unit consisting of n 1-bit photonic XNOR gates con-

nected to the same waveguide. These photonic XNOR gates

can work simultaneously by wavelength-division multiplexing

(WDM), because the microdisks of the XNOR gate from

the left to the right in Figure 4(b) have enlarging radiuses

and hence they are operated at different wavelengths. To

avoid interferences, we conservatively connect only 16 XNOR

gates having 16 different λons and 16 different λoff s to one

shared waveguide. A 16-bit XNOR unit generates the analog

popcount value of the sum of 16 XNOR operations as its

output power.

2) pPCM-based ADC: An ADC is required to convert the

analog popcount value of the sum of 16 XNOR operations

to a digital value. However, the CMOS ADC has become the
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largest performance and power bottleneck in prior ReRAM-

based [13] and photonic [17] CNN accelerators, due to its

large area overhead and huge power consumption. In this

paper, we propose an all-optical ADC to accelerate analog-to-

digital conversions by pPCMs. We use pPCMs to implement

the Hopfield network [3] for the temporal binary search of

an ADC from the most significant bit (MSB) to the least

significant bit (LSB). The temporal binary search of a 4-bit

ADC example is shown in Figure 5 and can also be described

as follows:

D3 = Neuron(Pin − 8Pr)
D2 = Neuron(Pin − 4Pr − 8PD3

)
D1 = Neuron(Pin − 2Pr − 4PD2 − 8PD3)
D0 = Neuron(Pin − Pr − 2PD1

− 4PD2
− 8PD3

)

(2)

, where Pin is the analog input; D3 ∼ D0 means its digital

value (1 or 0); Neuron denotes a neuron that outputs 1 if its

input > 0, otherwise it produces 0; and Pr is a reference power

equal to the smallest discrete power quantum. Since Dx is 1 or

0, we have Dx = 1−Dx, where 0 ≤ x ≤ 3. And if Dx = 1,

we define the input power PDx
= Pr; otherwise PDx

= 0. As

Equation 2 suggests, computing each digital bit of the ADC

is sequential from D3 to D0. This process can be described

as searching the binary tree with all possible combinations.

Since we cannot deal with subtractions inside the ADC, we

equivalently transform Equation 2 to

D3 = Co(Pin, 8Pr)
D2 = Co(Pin + 8PD̄3

, 12Pr)
D1 = Co(Pin + 4PD̄2

+ 8PD̄3
, 14Pr)

D0 = Co(Pin + 2PD̄1
+ 4PD̄2

+ 8PD̄3
, 15Pr)

(3)

, where the function Co compares its two inputs and outputs

1 if the first input is larger. To compute the MAC operations

of the first input, as Figure 7 shows, we employ a row of

pPCM cells, each of which works at different wavelengths.

The transmissions of the pPCM cells represent the constant

parameters of each item in Equation 3. Pin and PDx
are

multiplexed and transmitted the pPCM row, so that a pPCM

cell with wavelength λDx
can only reacts on the input power

PDx
at the same wavelength. Its output power would be

Tyx · PDx
, where Tyx is the transmission of the xth pPCM

cell for computing Dy . The com function sums output power

of pPCM cells (Pin+
∑

Tyx ·PDx
) and compares the summed

power against a constant threshold. For instance, to compute

D1, in Figure 7(c), the transmissions of the pPCM cells,

T12 and T13, are used to represent 4 and 8. Pin, PD̄2
and

PD̄3
are multiplexed and inputted into the pPCM array, so

that Pin + 4PD̄2
+ 8PD̄3

is computed by the Co function

that will also compare it against 14Pr. We use a broadband

photonic comparator (pComparator) [9] to implement the Co
function. The pComparator consisting of a phase shifter and a

directional coupler can be seen in Figure 6. If the input power

of a pComparator is larger than its threshold, the pComparator

outputs 1, otherwise it generates 0. We set the first input of the

Co function as the pComparator input, and the second input

of the Co function as the pComparator threshold. During an

Fig. 7. A 4-bit pPCM-based ADC.

ADC operation, we do not need to write the pPCM cell, so

the pPCM-based ADC has no worn-out issue.

B. Binarization, Batch Normalization, Activation, and Pooling
1) Binarization: We use CMOS circuits to binarize the

inputs of each layer by the LQ-Nets binarization [32], while

the weights of each layer are binarized during the training.
2) Batch Normalization: Batch normalization layers [21]

significantly enhance the CNN inference accuracy. Each input

x is normalized through x−μ√
σ2+ε

γ+β, where μ is the mean of

the batch, γ is the scale, β is the shift, and σ2 is the variance

with a tiny constant ε to void zero denominator. Except the

input x, all the other variables are obtained during the training.

We use two 16-bit photonic adders and a 16-bit photonic

multiplier to perform the batch normalization.
3) Activation: We adopt electrical activation units to sup-

port various types of activation functions including ReLU ,

sigmoid and tanh.
4) Pooling: We use 16-bit electrical comparators to imple-

ment max pooling units by linearly scanning the data stream

and always keeping the latest maximum value. For an n : 1
max pooling, the latest maximum value is produced and reset

every n cycles. An electrical average pooling unit consists of a

16-bit adder and shifter registers. For an n : 1 average pooling,

the average result is generated every n cycles.

Fig. 8. The overall architecture of LightBulb.

C. Pipelined LightBulb
1) Architecture: The overall architecture of LightBulb is

shown in Figure 8(a), where the LightBulb chip consists of

multiple tiles connected by routers and a network-on-chip.

Each tile communicates with the other tiles via its router. As

Figure 8(b) illustrates, each tile includes a photonic processing

unit (PPU) and electrical peripheral circuits. A PPU uses

photonic XNOR-POP units to accelerate XNOR and popcount

operations. In Figure 8(c), an XNOR-POP unit is composed

of four 16-bit photonic XNOR units and one 4-bit pPCM

ADC. Photonic shifters and adders are employed by a PPU

to support factor scaling and aggregate intermediate results.

All photonic computing devices adopt pRacetrack-based in-

put/output registers to achieve 50GHz operating frequency.

Electrical peripheral circuits are designed to process pooling,

batch normalization, binarization, activations.
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Fig. 9. The LightBulb pipeline.
2) Pipeline: The pipeline of LightBulb is described in

Figure 9. To compute Equation 1, a PPU of LightBulb first

performs binary convolutions (XNOR-POPs), factor scaling

operations and accumulations. It then applies batch normal-

ization, activation and pooling operations on the results of

Equation 1 by electrical circuits, since these operations are

not the performance bottleneck. We design a pipeline for

the binary convolutions, since it costs the largest portion of

the inference time. Four 16-bit photonic XNOR units work

with a 4-bit pPCM-based ADC in a PPU. During each cycle,

the PPU produce a 4-bit digital XNOR-POP value. It adopts

16 photonic serial adders to merge the digital XNOR-POP

values to a 16-bit output of the binary convolution, which

will be written back to pRacetrack-based registers at the end

of the pipeline. After registers are full, the PPU stops binary

convolutions, starts to use all serial adders and a 16-bit shifter

to conduct factor scaling and accumulation operations, and

writes the final result back to pRacetrack-based registers
TABLE II

THE HARDWARE COST OF LIGHTBULB.

name component spec power(mW ) Area(mm2)

XNOR-POP
16-bit XNOR ×4 3.2 0.000514

4-bit ADC ×1 0.2 0.00017

sub-total 3.4 0.00069

XNOR-POP ×25 85 0.0172
50GHz 16 serial pAdder ×25 1060 0.0364

PPU 16-bit pShifter ×25 5.12 0.16
pRacetrack reg. 2.25KB 200 0.0143

sub-total 1350.12 0.228

Tile

PPU ×1 1350.12 0.228
activation ×1 0.26 0.0003

binarization ×1 0.18 0.0002
pooling ×1 0.4 0.000224
eDRAM 128KB 31.2 0.134

bus 384-wire 7 0.009
router 32-flit, 8-port 42 0.151

sub-total 1431.16 0.5227

total tile ×46 65.83W 24.05

HolyLight 68.3W 22.46

D. Design Overhead

The power and area overhead of LightBulb is exhibited in

Table II. To compare against a prior photonic CNN acceler-

ator HolyLight [17], we adopted its electrical activation and

pooling units, eDRAM buffers, bus and routers. The CMOS

circuits are synthesized by Cadence Virtuoso with 32nm

process technology. To simulate our photonic microdisk-based

and pPCM-based components, we used Lumerical FDTD [18]

and INTERCONNECT [19]. We modified CACTI to model

the power and area of pRacetrack-memory-based registers. We

also adopted the optical splitters & combiners, optical multi-

plexers, photodetectors and microdisks from HolyLight [17].

IV. EXPERIMENT METHODOLOGY

Workload. The CNNs we simulated are listed in Table III.

We binarized the weights and activations of all CNNs with

3-bit by the LQ-Nets binarization technique [32]. CNP [4]

and SCNN [27] were trained with MNIST to recognize

simple hand-written digits, while MobileNetV2 [24], Shuf-

fleNetV2 [20] and ResNet-18 were trained with ImageNet to

classify complex objects. We trained all CNNs by Tensorflow.

We also compare the inference accuracy of full precision

and binarized CNNs. Binarized CNNs degrade the inference

accuracy of MNIST CNNs by 0.1% ∼ 0.5% and decreases

the top5% inference accuracy of ImageNet CNNs by 1 ∼ 2%.

TABLE III
THE CNN BENCHMARKS (ACC: ACCURACY; C: CONVOLUTIONAL LAYER; P:

POOLING LAYER; F: FULLY CONNECTED LAYER).

name database topology accorig(%) accbin(%)

CNP MNIST 3C,2P,1F 97.0 96.7

SCNN MNIST 2C,2F 99.0 98.2

MobileNet ImageNet 10C,1P,1F 92.5 91.4

ShuffleNet ImageNet 5C,2P,1F 88.4 87.3

ResNet-18 ImageNet 18C,2P,1F 89.2 87.9

Scheme. We compared LightBulb against six counterparts

shown in Table IV. We selected an Nvidia Tesla GPU, a

Xilinx Virtex7 FPGA [31], two ASIC chips including Da-

DianNao [2] and Google TPU [7], a ReRAM-based PIM

ISAAC [25] and a photonic CNN accelerator [17]. Unlike the

single chip DaDianNao, Google TPU comprises four chips,

each of which can achieve larger throughput but consume

more power. ISAAC accelerates convolutions by ReRAM dot-

product engines. HolyLight quantizes weights into the power-

of-2 representations, so that it can compute convolutions by

additions and shifts. It uses photonic ripple-carry adders and

shifters to accelerate additions and shifts.

TABLE IV
THE SCHEME COMPARISON (NORMALIZED TO 32nm).

Name Description Power (W )

GPU Nvidia Tesla P100 250
FPGA Xilinx Virtex7 VX485T 40
DaDianNao ASIC 20.1
TPU 4-chip ASIC 384
ISAAC ReRAM PIM 65.8
HolyLight photonic accelerator 68.3

Simulation. We used the deep learning accelerator simula-

tor FODLAM [23] to evaluate the inference throughput, power

and energy consumption of all accelerators. We implemented

the pipeline details of LightBulb into FODLAM. Through an

accelerator configuration and a network description, FODLAM

generates details on the throughput and power of each accel-

erator executing the network.

Fig. 10. The inference throughput of various hardware platforms (FPS:
frames/images per second).

V. EVALUATION

Inference throughput. The FPS comparison of all acceler-

ators is shown in Figure 10. Among all prior designs, Google
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TPU obtains the best throughput. On average, compared to

photonic HolyLight, Google TPU improves CNN inference

throughput by 1.77×, since it has 4 chips and costs 5.6×
power consumption. Compared to the other prior CNN ac-

celerator designs, HolyLight enhances inference throughput

by 60% ∼ 7.7×, due to its power-of-2 quantization and

power-efficient photonic devices. Our LightBulb improves the

inference throughput by 16.9× and 5.4× over HolyLight and

TPU, respectively. Because the CNN binarization technique

LightBulb adopts achieves similar inference accuracy with

much smaller computing overhead, when compared to the full

precision and the power-of-2 quantized CNNs. The photonic

XNOR and pPCM-based ADC units in LightBulb work at

much higher frequency than the ripple-carry adders in Holy-

Light. The pRacetrack-based registers further enable the entire

LightBulb accelerator to operate at 50GHz. On the contrary,

the SRAM-based registers limit the frequency of HolyLight to

only 5GHz.

Fig. 11. The inference throughput per Watt of various hardware platforms
(FPS: frames/images per second).

Throughput per Watt. The comparison on FPS per Watt

of all accelerators is shown in Figure 11. When considering

the power consumption, FPGA obtains 11× inference energy

efficiency over GPU, while ASIC designs including DaDian-

Nao and Google TPU improve the FPS per Watt by 45% and

52% respectively over FPGA. The ReRAM-based PIM ISAAC

further enhances the FPS per Watt by only 30% over Google

TPU, mainly because the power-hungry ADCs become the

power bottleneck of ISAAC. Compared to prior non-photonic

CNN accelerators, HolyLight boosts the inference throughput

per Watt by 54% ∼ 34×, due to its power-efficient photonic

adders and shifters. Our LightBulb improves the inference

throughput per Watt by 17.5× over HolyLight. The network

binarization technique of LightBulb greatly reduces the es-

sential computing effort of CNN inferences. Moreover, the

photonic XNOR gates, pPCM-based ADCs and pRacetrack-

based registers make LightBulb work at 50GHz frequency.

VI. CONCLUSION

In this paper, we propose an electro-optical CNN acceler-

ator, LightBulb, to process the inferences of binarized CNNs

by photonic XNOR and popcount units. We first binarize the

weights and activations of CNNs into the linear combinations

of multiple {-1,+1}s, so that floating-point MAC operations

can be replaced by XNORs and popcounts. We then presents

microdisk-based XNOR units and pPCM-based ADCs to

accelerate XNORs and popcounts. Compared to prior CNN

accelerators, LightBulb improves the inference throughput by

17× ∼ 173× and the inference throughput per Watt by

17.5× ∼ 660× with ∼ 2% accuracy degradation.
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