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Abstract—Procedural modeling has produced amazing results, yet fundamental issues such as controllability and limited user
guidance persist. We introduce a novel procedural model called PICO (Procedural Iterative Constrained Optimizer) and PICO-Graph
that is the underlying procedural model designed with optimization in mind. The key novelty of PICO is that it enables the exploration of
generative designs by combining both user and environmental constraints into a single framework by using optimization without the
need to write procedural rules. The PICO-Graph procedural model consists of a set of geometry generating operations and a set of
axioms connected in a directed cyclic graph. The forward generation is initiated by a set of axioms that use the connections to send
coordinate systems and geometric objects through the PICO-Graph, which in turn generates more objects. This allows for fast
generation of complex and varied geometries. Moreover, we combine PICO-Graph with efficient optimization that allows for quick
exploration of the generated models and the generation of variants. The user defines the rules, the axioms, and the set of constraints;
for example, whether an existing object should be supported by the generated model, whether symmetries exist, whether the object
should spin, etc. PICO then generates a class of geometric models and optimizes them so that they fulfill the constraints. The
generation and the optimization in our implementation provides interactive user control during model execution providing continuous
feedback. For example, the user can sketch the constraints and guide the geometry to meet these specified goals. We show PICO on a
variety of examples such as the generation of procedural chairs with multiple supports, generation of support structures for 3D printing,
generation of spinning objects, or generation of procedural terrains matching a given input. Our framework could be used as a
component in a larger design workflow; its strongest application is in the early rapid ideation and prototyping phases.

Index Terms—Computational Geometry and Object Modeling, Three-Dimensional Graphics and Realism

F

1 INTRODUCTION

Procedural modeling has been successfully applied in a
wide variety of areas such as vegetation, texturing, archi-
tecture, and decorative design. One of its most important
strengths is the ability to encapsulate a large variety of
shapes into a concise formal description that can be effi-
ciently parameterized. This, in effect, allows for the genera-
tion of variants of the structures by changing the procedural
model parameters or rules. This approach is also called
forward procedural modeling.

While procedural modeling has been recognized as a
strong and expressive methodology with many application
areas, its strength has not been fully harnessed because of
its disadvantages. Probably the most important problem is
the difficulty to fully comprehend the procedural model
derivation from an initial state (axiom). Procedural models
often exhibit complex behavior and non-linearity between
input parameters and the output shape [1], [2], because
the rules can exponentially amplify some features while
diminishing others. The designer is usually left with trial-
and-error experimentation. Due to the lack of controllability,
practical applications of procedural models usually hide the
procedural rules and show just an interface [3], [4]. Alter-
natively, they may provide sets of examples that are reused
which is a common strategy adopted by many commercial
products [5], [6].
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Procedural models can be targeted to a specific goal
by using optimization. User-defined constraints have been
used to control procedural models as detailed in Section 2.
These approaches attempt to automatically find the pa-
rameters of the procedural system that generate results
matching the user-specified requirements. However, exist-
ing systems target narrow domains and usually focus on a
single procedural model. More general approaches capable
of working with multiple procedural representations often
lack interactivity due to the high-dimensionality of param-
eter space that must be explored and lack of any domain-
specific information that could otherwise speed up the pro-
cess. Furthermore, they optimize a predefined function that
cannot be changed during the optimization. In fact, prior
work focuses predominantly on optimizing the derivation
of a predefined model, e.g., a tree grammar that grows into
a desired shape. However, there has been little work on
optimizing the procedural rules themselves.

Several observations motivate this work. First, a set
of user-defined constraints can be used together to impose
complex requirements on the generated objects. For exam-
ple, the function of the object can be specified with a handful
of geometric constraints, as we demonstrate by generating a
variety of free-form chairs (Figure 1). The second key obser-
vation is that a broader procedural system can be created that
encompasses the commonly used hand-crafted grammars.
This generic system can then be optimized to produce a
wider range of objects that a single hand-crafted grammar
cannot express. User’s intent can then be approximately
achieved by simply defining a set of constraints and se-
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Fig. 1. Chairs. PICO automatically generated various procedural models of a chair. The user first marks the bottom of the character as an active
area and PICO generates the procedural chair that supports it. Additionally, models were constrained to be stable, i.e., not to tip over.

lecting parts from which to build the object, be it simple
primitives or existing geometry. This is again demonstrated
by Figure 1, where no chair-specific grammar has been
created, and the procedural models were evolved automat-
ically. The last observation is that, contrary to existing off-
line approaches, instant visual feedback and the ability to
interactively control the optimization process significantly
improves the expressiveness of procedural modeling.

We introduce PICO (Procedural Iterative Constrained
Optimizer), a framework for procedural geometry opti-
mization and interactive modeling. At its heart is a novel
procedural model which we call PICO-Graph. This model
uses a data-flow paradigm, where nodes represent geome-
try generation operations and edges define travel paths of
objects. Objects travel through this graph between source
(axiom) and sink (scene output) nodes, triggering operations
that generate more geometry whenever they arrive at any
node in the graph. This representation supports branching,
recursion, and instancing. The definition of the geometry
generation operations and traveling objects is flexible and
supports arbitrary 2D and 3D geometry such as user-
defined meshes. The PICO framework itself consists of an
interactive constraint definition system and an optimization
engine that refines the PICO-Graph to match the given
constraints. The optimization uses a multi-objective evo-
lutionary algorithm which is capable of optimizing graphs
with cycles, as opposed to only derivation trees.

An important property of our semi-automatic approach
is that it is a bridge between two very orthogonal worlds:
manual editing that provides absolute control over the gen-
erated model and the procedural modeling that produces
semi-random structures. Our generated models share the
randomness of the procedural models but allow certain
level of control defined by the optimization constraints.
Such generated models are a good starting point for manual
editing or ideation of further models.

We demonstrate the capabilities of PICO on a variety of
examples, including automatically generated geometries of
chairs, trees, 3D printing supports, and terrains. We show
that many of these examples can be controlled interactively
by using simple and intuitive constraints. Furthermore, we
demonstrate that our optimizer coupled with the PICO-
Graph representation outperforms previous work in terms
of speed. We claim the following main contributions:

1) A novel procedural model, called PICO-Graph, that

generates a wide range of 3D and 2D geometry. A
simple design with fast evaluation makes it suitable
for optimization.

2) We couple PICO-Graph with a novel optimization
technique that allows for interactive user-controlled
structure generation.

3) We introduce a novel procedural workflow at a
high level of abstraction, where the user provides
building blocks but the system finds their relation-
ships to generate the desired object.

An example in Figure 1 shows an application of our
framework. The input is a 3D mesh model of a person.
The user interaction consists of marking areas that require
support, specifying additional constraints, e.g., stability and
mass minimization, and choosing the building blocks for the
model. Our optimization then evolves models that satisfy
the given constraints.

2 RELATED WORK

Procedural modeling is a broad topic that has been applied
in a variety of contexts. Early explorations leveraged frac-
tals, focused on generation of terrains [7], [8], and vege-
tation [9]. Shape grammars and split grammars [10] were
successfully applied into architectural models in [11]. Split
grammars were extended in various directions including
procedural buildings [12] and just recently into a procedural
model called CGA++ in [13]. Numerous examples of purely
procedural models exist such as the approach of Merrell
et al. [14] that generates infinite architectural structures by
using only procedural rules. For readers interested in more
broad coverage of the topic, we reference a number of state-
of-the-art surveys. These include the generation of procedu-
ral worlds [15], [16], optimization of procedural models for
games [17], and inverse procedural modeling [18].

Control for Procedural Models: The drawback of most
procedural modeling systems is the lack of artistic control,
which motivates an active research interest. Ijiri et al. [19]
introduced a system that can encode a simple user sketch
as L-system and Palubicky et al. [20] used sketching of
attraction particles to interactively control growth of sim-
ulated vegetation. Closely related is the work of Mitra and
Pauly [21] who optimize 3D structures so that they match
user-defined shadows. Guided procedural modeling [22]
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generalizes the concept of environments by closing proce-
dural models into guides that can communicate by message
passing and Krecklau and Kobbelt [23] introduced a pro-
cedural model that allows for generation of interconnected
structures. Many design tools have been designed around
specific tasks such as the design specific shape classes (e.g.,
chairs [24] or terrains [25]) or handling the arrangement
or placement of shapes [26]. By targeting the system with
some level of domain specificity, more compelling results
can often be achieved. In contrast, our system is agnostic to
the class of shapes allowing it to be used on a a variety of
tasks.

There has been a focus on neural approaches in recent
years. Ritchie et al. suggests controlling procedural models
by stochastically-ordered sequential Monte Carlo programs
in [27], but later introduced neurally-guided procedural
models in [28]. Recently, procedural models were coupled
with sketching and deep learning to provide a more natural
interface for artists [3], [4], where a neural network rec-
ognizes the sketch and predicts the procedural model and
its parameters. Neural based methods have been recently
applied to program optimization as well. One of the most
recent examples is the work of Ellis et al. [29], who proposed
a method that is able to take simple hand-drawn images
and translate them into a graphic programs able to generate
LATEX-style figures. The graphics programs follow a simple
grammar that include simple primitive drawing, loops and
conditional statements. Similarly, Sharma et al. [30] showed
a neural approach that infers a simple program, equivalent
to a CSG hierarchy, that constructs a given 2D or 3D shape.
Their method uses reinforcement learning and encoder-
decoder architecture, where the input is an image of an
object, the output is a program that generates an object,
and the reward is the difference of the two in image space.
Conversely, Du et al. [31] introduced an analytic method
of synthesizing a CSG tree from existing geometry using a
search of possible CSG programs.

Finally, procedural models give rise to an often expo-
nential space of variation. While approaches have been
suggested for navigating and exploring these spaces [32],
more direct artistic control remains challenging.

Procedural Modeling and Optimization: Procedural
models were coupled with various optimization approaches
in the past. Sims used a combination of genetic algorithms
along with competition for resources to evolve virtual crea-
tures in an environment with simple physics in his seminal
paper [33]. Hornby et al. [34] used L-systems and evolu-
tionary algorithms to generate various shapes and Talton
et al. [35] used L-systems to parse states of expression of
a rule set to find an optimal geometry by using Metropo-
lis Hasting variant called Reversible Jump Monte Carlo
Markov Chains (MCMC). Contrary to the previous work,
our approach does not require fixed set of rules and the
rules and their dependencies are generated automatically
during the optimization step. Merrell et al. [36] used similar
approach to organize furniture and MCMC was also used to
layout synthesis in [37]. Yu at al. [38] used environmentally-
sensitive optimization to organize furniture in a room and
Peng et al. [39] used high-level specification of goals to
optimize transportation network that was demonstrated on
furniture layout and street traffic design. Localized learning

of stochastic procedural models for virtual terrains has
been used in brush-like approach in [40]. Although MCMC
approaches provide good results, they tend to be very slow
for large scenes.

Structurally sound masonry buildings were achieved via
optimization in [41] and our approach shares analogy with
this work in that it attempts to use functional constraints.
However, our definition of function does not encompass
only the structure, but also other aspects such as volume,
touching, proximity, etc.

Měch and Miller [42] introduced Deco that uses a script-
ing language to generate 2D or 3D patterns by guiding the
growth of the procedural model to follow the user input. In
our approach, we control the model indirectly by modifying
the constraints and by painting on the objects. Also similar
to our method is the work of [43] who leverage graph
grammars to evolve 3D shapes. However, the control of
their method is low as opposed to our approach that allows
using constraints to guide the procedural optimization to
a desired output. Bergen et al. [44] used aesthetic criteria
to evolve L-systems and Xu et al. [45] optimized shape
collections of genetic algorithms by using a higher seman-
tic representation. Finally, Haubenwallner et al. [46] used
genetic algorithms to find procedural grammar expansion
to match given constraints and was an inspiration for this
work . In Section 6, we compare their approach to ours.

Most previous works use a fixed procedural model or
provide a direct control for its definition. We were inspired
by the seminal work [33] and ours is closest in spirit to [44],
[46], [47]. Compared to Jacob [48], we propose a new ex-
pressive class of procedural models that can create a variety
of shapes, without having to use predefined shapes like
flowers or leaves [48], or use of voxel representation [44].
We also introduce a novel optimization system enabling an
interactive control during the evolution process that allows
for incremental updates.

Procedural model representations: Numerous represen-
tations for procedural models have been proposed, whose
formalism is rooted in programming language design. These
include data flow models as well as stream processing [49],
[50]. Here we mention only the most relevant systems from
which our work takes inspiration. Lindenmayer introduced
L-systems [51] that were extended by geometric interpre-
tation and recursion by Prusinkiewicz [52]. L-systems are
linear, while our approach aims at volumetric objects and
allows for geometric operations on them. In general, L-
system rules are not easy to evolve directly, and as a re-
sult only a relatively simple cases of L-systems have been
evolved so far [48], [53]. Stellar grammars [54] were used to
generate subdivision structures and this approach is similar
to ours, except we attempt to expand each vertex. Similarly,
vv-system allows vertex-vertex expansion to simulate sub-
division surface in [55]. Our procedural model is close to the
operator graph representation [56] with the most important
difference being that we use a mix of coordinate frames and
2D/3D primitives as the traveling objects among the rules
that control the generated shape. Moreover, we also provide
novel optimization approach that allows for reconnecting
the rules, their mutations, and cross-over.

Our system shares similarities with approaches used in
existing software, eg. Grasshopper in Rhinoceros 3D [57],
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Houdini [6] and Substance Designer [58]. These systems
use a data-flow paradigm, however they do not support
optimization of the graph and instead rely on manual spec-
ification of the procedural generation.

3 METHOD OVERVIEW

Forward Generation

PICO-Graph

Building Blocks

Geometry

Optimization

Constraints

Evolutionary 
Algorithm

Fig. 2. Overview of PICO. User defines the building blocks which rep-
resent parameterized geometry generating operations with connectivity
information. During the Forward Generation the user can connect the
operations into a PICO-Graph that generates the output geometry. Alter-
natively, the user can define a set of constraints that are optimized for by
an evolutionary algorithm. The constraints can be modified interactively
while various geometries are generated and shown to the user.

The input to our method (see Figure 2) is a set of building
blocks, i.e., definition of geometry generating operations,
and constraints, i.e., requirements from the user how should
the generated geometry look like. Geometry-generating op-
erations can be either simple geometric objects, such as
spheres or boxes, or user-defined geometries imported from
existing meshes. These operations may be parameterized
(size, orientation, recursion limit) and must contain infor-
mation on how they can be connected to other building
blocks. The connectivity information, in examples shown in
this work, is a set of coordinate frame transformations.

The building blocks are connected into a PICO-Graph,
which is the underlying procedural representation in our
system. Although our framework supports manual defi-
nition of PICO-Graph, this may quickly become an over-
whelming task when modeling complex objects. The key
contribution of our work is the automatic generation of
procedural models by using user-defined constraints and
evolution. Some constraints can be specified by a simple
toggle (e.g., that the object should be stable), some require
manual input (e.g., sketching of support surfaces or image
to match), and some require loading external geometry
(for example for object avoidance). Each constraint has an
associated importance that allows the user to control various
design trade-offs. An important feature of our system is
the fast evolution algorithm that allows for dynamic and
interactive modifications of constraints by the user during
the model generation.

PICO can be used for forward generation to generate
geometry by manually defining the PICO-graph, i.e., con-
necting individual building blocks. The PICO-graph is a
dataflow graph in which objects travel from a source node
(axiom) to a sink node (scene output). The objects traveling
in our implementation are coordinate frames and 2D or 3D
geometry. The geometry-generating operations are therefore

defined as taking either frames or geometry as input and
outputting further frames or geometries or a combination
of both. The actual procedural output geometry-generation
starts by sending initial objects from the source nodes. The
objects trigger the geometry-generating operations on the
nodes they travel to. These operations generate new objects
which are sent further into the graph. Finally, the objects
accumulated at sink node(s) can be gathered into the final
geometry (see an example of forward generation in Figure 3
and the accompanying video).

The optimization iteratively evaluates geometry against
the user-specified constraints and modifies the PICO-Graph
such that the generated geometry satisfies the constraints.
Constraints that cannot be enforced directly are combined
into a fitness that is maximized by solving a weighted multi-
objective optimization problem by using a novel evolution-
ary algorithm. The algorithm maintains a population of
individuals which are defined by using PICO-Graph as their
genotype and the generated geometry as their phenotype.
New solutions are generated using mutation and crossover
operators defined over the PICO-Graph. Furthermore, we
use niching, i.e., we maintain different species in a popula-
tion, to maintain diversity and to explore fitness landscape
that may be multi-modal.

4 FORWARD GENERATION

PICO-Graph is the procedural model used in our system.
It is built by using building blocks, i.e., geometry-generating
nodes that take other geometry as input and create more
geometry. The PICO-Graph defines both the geometry-
generation operations along with the order in which the
operations should be applied to produce the final model.
Figure 4 shows an overview of the PICO-Graph.

Output Frames

Input Frames

Box

Size (𝑤𝑤,ℎ,𝑑𝑑)

Rotation (𝜃𝜃𝑥𝑥,𝜃𝜃𝑦𝑦,𝜃𝜃𝑧𝑧)

Cylinder

Size (ℎ, 𝑟𝑟)

Rotation (𝜃𝜃𝑥𝑥,𝜃𝜃𝑦𝑦,𝜃𝜃𝑧𝑧)

3D object

Fig. 3. An example of two building blocks generating a box and a
cylinder respectively. The input and output frames can be positioned
and orientated arbitrarily and define how the primitive will connect to
others. The size and orientation with respect to an incoming frame are
parameterized.
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4.1 Building Blocks
The building blocks are geometry-generating operations
Op that take in a spatial object Sin (triangle meshes, 3D
coordinate frames, Gaussians, and Constructive Solid Ge-
ometry (CSG) trees in our implementation). The operation
Op generates a new set of spatial objects Si, i ∈ (0, n)
(which can be of different types), subject to the operation’s
parameters pj , j ∈ (0, k):

Op : (Sin, p0, p1, · · · , pk)→ (S0, S1, · · · , Sn). (1)

Figure 4 (bottom) shows a graphical representation of this
general operation. We use two common forms of spatial
objects in our implementation: coordinate frames and 2D/3D
objects. The coordinate frames F describe a linear transfor-
mation as a 4 × 4 matrix. The 2D/3D objects are either de-
fined parameterically, for simple primitives such as spheres
or cuboids, or using data, e.g., a mesh or a signed distance
field. The locations of the coordinate frame is parameterized
and defined by the user. The number of coordinate frames
depends on the number of outgoing connections.

Figure 3 shows two examples of the building blocks,
one generating a box and the other a cylinder. Both take
coordinate frames as input and output a 3D object and
four more coordinate frames. The new coordinate frames
can then be used to generate further objects. The operation
generating a box is written as:

Box : (Fin, w, h, d, θx, θy, θz)→
(Ffront, Ftop, Fleft, Fbottom, Fright, Obox),

Ffront = T (0, h, 0)R(θx, θy, θz)Fin

Ftop = T (0, d/2, 0)R(−π/2, 0, 0)R(θx, θy, θz)Fin

Fleft = T (0, w/2, 0)R(0, 0, π/2)R(θx, θy, θz)Fin

Fbottom = T (0, d/2, 0)R(π/2, 0, 0)R(θx, θy, θz)Fin

Fright = T (0, w/2, 0)R(0, 0,−π/2)R(θx, θy, θz)Fin,

(2)

where T and R are translation and rotation matrices,
respectively. The generated object Obox is a box of size
(w, h, d) at the origin, transformed by R(θx, θy, θz)Fin; in
our implementation, we use θ to adjust the frame of every
generated geometry. Furthermore, consistent in the notation
in L-systems, the y axis is direction of procedural generation
(growth) and it corresponds to the frame Ffront.

Each of the building block’s parameters pj ∈ Pj has
an associated domain Pj ; for example, the rotation an-
gle parameters can be restricted to a certain range, e.g.,
−π/4 ≤ Pθx ≤ π/4. This equips the user with a degree
of control over the general style of the generated geometry
during the optimization (Section 5) .

4.2 PICO-Graph
The PICO-Graph is a data-flow graph that allows geomet-
rical objects (coordinate frames and 2D/3D geometry) to
flow through the graph. The PICO-Graph is a directed
multi-graph G consisting of nodes vi ∈ V and directed
edges ei ∈ E:

G = (V,E). (3)

Each node has a set of inputs Ivi and outputs Ovi , corre-
sponding to I and O in Eqn(1). Edges connect individual
outputs to inputs, providing one-to-one mapping:

E : {Ovi ∀vi ∈ V }� {Ivi ∀vi ∈ V }. (4)

Axiom

Axiom

Scene 
Output

…

Geometry 
Generating 
Operation

Output 1 (type X)

Parameter 1

Parameter p

Parameter 2…
Output 2 (type X)

Output 3 (type Y)

Output N (type Y)

…Input (type X)

Fig. 4. Schematic of the PICO-Graph (top). The graph includes source
(axiom) nodes, geometry generating nodes, and sink nodes (scene
output). Objects travel through this graph from sources to sinks, invoking
geometry generating operations, which create and send more objects
down the graph. A general template for a geometry generating operation
is shown in the zoomed portion. Each operation has a single input
and multiple outputs (shown in different colors) and it has multiple
parameters that influence the objects generation.

Note that this mapping allows multiple outputs connected
to a single input. The set of all nodes V consists of three
subsets: set of source (axiom) nodes, set of building block
(geometry generating) nodes, and a set of sink nodes. Fig-
ure 4 shows a diagram of the graph, as well as a general
building block node (inset). The source nodes (axioms) have
no inputs. The sink nodes have no outputs and collect
objects that traveled to them.

To generate geometry from PICO-Graph, we use the
following iterative process:

1) Initialize queue Q with tuples (S,Ov), where S are
objects produced by axiom nodes and Ov are node
outputs.

2) While Q is not empty

a) Remove tuple (S,Ov) from Q
b) Find node u such that Iu = E(Ov)
c) Execute operation associated with u, i.e.,

S′ = Opu(S)
d) If u is a sink node, accumulate the result,

otherwise add (S′, Ou) to Q

3) Collect accumulated objects from sink nodes

In our implementation, we use Constructive Solid Geometry
hierarchy to accumulate the 3D objects, and a flat array for
2D objects. We denote the generated geometry as G.

The PICO-Graph may contain directed cycles (Figure 5)
leading to a recursive generation. The recursion is tracked
by counting each time an object, or its descendants, visit a
given node, where S′ is a descendant of S if S′ = Op(S).
A recursion limit is enforced to stop further execution of an
object (1-3 in our experiments).
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Fig. 5. An example of a PICO-Graph with cycles (left) and the generated
recursive structure (right). Blue edges represent Constructive Solid Ge-
ometry (CSG) primitives and green edges 3D coordinate frames. The
sink operation blends the incoming primitives and outputs them to the
scene.

If a node has multiple incoming edges, the node is
executed for each object that travels through it. Similarly
to recursion, this produces an instance of the same geometry
(at a different position with a different frame), but contrary
to recursion, it only happens once (unless the node is part
of a cycle as well).

5 OPTIMIZATION

We have designed PICO so that the PICO-Graph can be
generated and efficiently optimized automatically by using
an evolutionary approach; providing immediate visual feed-
back (see the accompanying video) . To guide the optimiza-
tion we use user-defined constraints. Some constraints can
be enforced directly, for example symmetry, while others
have to be quantified as objective functions that are mini-
mized.

5.1 Hard Constraints

Hard constraints must always be met and they can be
specified and enforced directly by modifying the PICO-
Graph. Our current implementation supports a number of
hard constraints including symmetry, spin and parameter
spaces.

Parameter spaces: Pj for parameters pj are defined by
the user and the optimization is constrained to sample val-
ues from these spaces. Each space is defined by specifying
minimum and maximum values. The optimization samples
these spaces uniformly for initialization and perturbs them
by a value sampled from a normal distribution.

Plane and axis symmetry can be set by the user inter-
actively. If the building blocks contain two symmetrical
frames F0 and F1, we modify the graph such that the
outputs O0

vi and O1
vi of a node vi that correspond to these

frames are routed to the same input Ivj of a node vj . Because
the objects output from node vi are oriented according to the
symmetric frames F0 and F1, the two sets of objects created
further down the graph (in vj and further) will be symmetric
as well.

Spinning objects (Figure 13) have their center of mass
aligned to the spinning axis and the spinning axis itself
should be parallel to the maximal axis of inertia [59]. We
transform the geometry to have its center of mass at the
origin and we rotate it by using rotation Q that is computed

by using the eigen-decomposition QΛQT = I where I is the
inertia tensor.

The 3D printing supports in Figure 12 are constrained
to have a maximum angle (45◦ in our example) and the
overhang points are automatically connected to the nearest
geometry. If there’s no geometry in the cone specified by the
above maximum angle, the overhang is connected directly
to the ground to ensure printability.

5.2 Soft Constraints

In addition to hard constraints our system also supports the
modeling of soft constraints. We model each soft constraint
by an associated objective function. The optimization then
minimizes all of the objective functions to find a Pareto opti-
mal solution, subject to the hard constraints outlined above.
The user can modify the importance of each constraint to
further control the optimization. We categorize the objective
functions into two types: environmental and intrinsic.

The environmental objective functions encompass ex-
trinsic properties of the model including 3D protected vol-
umes Pi, the scene bounding box Ω, ground plane G, and
the points from the interacting surfaces from the input
geometry Qi.

The protected volumes are input by the user as 3D
objects and they indicate 3D space that the generated ge-
ometry should avoid. The scene bounding box Ω limits the
operational space of the generated geometry by defining its
extent and making sure that the object does not become
unreasonably large. The ground plane G makes sure the
generated model touches the ground and is also used to
optimize for stability of the objects that should not tip over.

Furthermore, the user can add user-defined objects to the
scene and mark target areas by painting manually on their
surfaces. We refer to them as interacting surfaces and they
specify locations to which the generated geometry should
grow. If the interaction surfaces are present, the goal of
the optimization is to expand the procedural geometry so
that it approximates the shape of the interacting surfaces,
for example by generating a chair that follows the shape a
person that sits on it. The interacting surfaces are sampled
into a set of 3D points denoted by Q and the objective
function attempts to minimize the distance between Q and
the generated procedural geometry G. If the goal is to
generate an object that touches all points in Q, the objective
function is

1

|Q|
∑
q∈Q

d(q,G)

|Ωdiag|
, (5)

where |Ωdiag| denotes the length of the diagonal of the
domain’s bounding box, i.e., the largest possible distance
and d(p,G) is the distance between a point p and G.

If the goal is to only touch the interaction surface, for
example the ground plane G, the function is

min
q∈Q

d(q,G)

|Ωdiag|
. (6)

Protected volumes specify regions into which the gen-
erated objects should not grow. We chose to model this
constraint as soft, as it facilitates intermediate solutions that
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a) b) c)
KG

Fig. 6. Modeling a chair using several constraints. First, the user sketches a side view (a). However, the model is free to grow in the direction away or
to the user. Therefore, a second sketch may be needed from another view (b). Finally, to remove unnecessary parts, a mass minimizing constraint
is applied (c).

eventually lead to a solution without any collisions. The
objective function is defined as

V (P ∩ G)

V (P )
(7)

where P is the protected volume and V denotes the user-
defined volume that should not be entered.

Sketching: To control the shape of the generated geometry
more finely, we introduce a sketch matching constraint. The
sketch is defined as a binary mask Is that is either sketched
or downloaded and it is compared to a perspective projec-
tion of the generated geometry Ig . The objective function is
defined as

smoothstep(N0, 0, Ng)− smoothstep(N1, 0, Ng), (8)

where smoothstep is the Hermite interpolation as imple-
mented in GLSL [60], Ng is the number of set pixels in Ig ,
N0 is the number set in Ig but not in Is, and N1 is the
number set in both Ig and Is.

The stability of the generated geometry G is also opti-
mized. For an object to be stable the following equation
must hold:

m′ ∈ Conv(G ∩G), (9)

where m′ is the center of mass m projected along the gravity
vector to the ground plane G, and Conv denotes a convex
hull. The objective function that maximizes stability is:

|m′ − Conv(G ∩G)centroid|
|Ωdiag|

. (10)

Note that we assume constant density throughout the object
to compute its center of mass .

The spinnability of the object can be guaranteed by the
hard constraints outlined above, but the quality of the spin
can be further improved by minimizing the ratio of its
moments of inertia (Eqn (3)) in [59].

The intrinsic members of the objective function consider
various properties of the generated structure G. Intrinsic
members are the volume of the bounding box of G its mass,
number of generated geometric primitives, and the total
length of the graph induced by the tokens passed around
in the PICO graph.

We control the size of the object by minimizing its
bounding volume using the following objective function

V (GBB)

V (Ω)
. (11)

Furthermore, to avoid bulky objects that contain unnec-
essary parts (with respect to other objectives) we minimize
mass using

ρV (G)

V (Ω)
, (12)

where ρ is the density of the structure. We keep ρ = 1 in our
implementation.

Figure 6 shows the effect of applying several constraints
in the modeling process. The user is free to apply them
at once or subsequently as needed, as is shown in the
figure. First a side sketch is created and then one from
the front, which determines the desired shape of the object.
Finally, a mass minimizing constraint is used to simplify the
generated model.

5.3 Evolutionary Algorithm

The evolutionary approach optimizes the set of objective
functions given by the user-defined constraints. The main
steps of the algorithm are population initialization, speciation,
evaluation, selection, and reproduction. Our overall algorithm
shares commonalities with Genetic Algorithms, i.e., we de-
fine a genotype and a phenotype, and Genetic Program-
ming [61], i.e., we evolve graphs that can be conceptualized
as programs. Furthermore, we adapted techniques from
Neuroevolution of Augmenting Topologies (NEAT) [62] that
allow us to measure compatibility of individuals for repro-
duction versus keeping a separate species.

The population is initialized with a set of random in-
dividuals, each representing the minimal working PICO-
Graph, i.e., one axiom, one geometry generating node, and
one sink, each with randomized parameters. The individual
consist of a genotype and a phenotype. The genotype is a
description of a single PICO-Graph G. The genotype in-
cludes a list of nodes, along with their parameters, and a list
of edges, along with information whether they are enabled
or disabled. We keep an innovation number associated with
every edge, which tracks new topological changes within
the broader population and assist in the crossover operator
and speciation. An edge between nodes is considered to be a
gene. The phenotype is defined as the generated geometry G
and is used for evaluation.

The evaluation consists of computing the fitness F (I)
for each individual I . Because the objective functions may
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have different ranges and distributions, we use the sum of
weighted global ratios [63] to compute the fitness:

F (I) =
1∑N−1

i=0 wi

N−1∑
i=0

wi
fi(I)− fmini

fmaxi − fmini

, (13)

where fi is the i-th objective function out of N , fmini

and fmaxi are the minimum and maximum values of fi
for the entire population throughout all past generations,
and wi is the user-defined importance of a member func-
tion fi. The importance of individual constraints is con-
trolled by user via sliders, such that the sum of all impor-
tance values is equal to one.

Speciation is a process of dividing the population into
multiple distinct species based on a similarity metric, called
compatibility, such that genotypically similar individuals are
grouped together and reproduce only within the species.
This ensures diversity in the population and helps explore
multi-modal fitness landscapes. We use a modified defini-
tion of compatibility from [62] which differs in the term
quantifying identical genes. Our compatibility between two
genotypes ga and gb is defined as:

δ(ga, gb) =
c1E

N
+
c2D

N
+ c3W, (14)

where N is the total number of genes (edges in the graph)
and D and E is the number of disjoint and excess genes
respectively (appearing in only one of the genotypes). The
term W is computed as a distance between parameters pj
of the nodes v ∈ V in the graph. Thanks to the innovation
numbers, we can track nodes that occupy the same position
in the graph topology, but are parameterized differently
in different individuals. Therefore we sum over the all
differences in parameters of nodes that are connected by the
genes that appear in both genotypes. The difference between
two parameters pa and pb are calculated by using an L2-
norm. The coefficients c1, c2 and c3 are used to weight the
contributions of genes in compatibility (c1 = 2, c2 = 2,
and c3 = 1 in our implementation). Finally, to decide if two
individuals belong to same species, we use a threshold tδ . If
δ > tδ , individuals do not belong to the same species and
a new species is created, unless there exists an individual
within an existing species whose compatibility is below the
threshold. We vary tδ during the optimization process to
keep the number of species constant, in our case 3−5 species
for population size of 150. Finally, we employ fitness sharing
within the species.

We select individuals for reproduction from the top 5−
15% individuals in each species. The reproduction uses two
operators, mutation and crossover, to produce children from
selected individuals. We either use mutation only (5% of the
time), crossover only (85% of the time), or crossover with
subsequent mutation.

We use five distinct types of mutations: 1) add a node
(after an existing node), 2) insert node (between connected
nodes), 3) mutate parameter, 4) add an edge, and 5) toggle
edge.

Add node finds an open output in the graph and adds
a randomly initialized node, causing the geometry to grow
outward. Insert node finds an existing edge and replaces it
with a new node and two new edges, again causing the

model the grow by prolongation. Mutate parameter randomly
perturbs parameters of the nodes, with low probability (5%)
but by a large amount (σ = 80% of parameter space P ,
using a normal distribution). Add an edge connects two
nodes that were not previously connected. Note that if this
mutation is not performed, the graph will remain cycle-
free and will resemble a grammar derivation tree, similar
to the work of [46]. Finally, toggle edge randomly disables
and enables edges in the graph, allowing for pruning of
unnecessary parts of the graph or reactivating parts that
may be relevant to the current state of the optimization.

+

Fig. 7. Crossover on PICO-Graphs generating trees. The two middle
orange trees are parents that generate blue off-springs by using the
crossover operator.

We adapted the crossover operator from [62], with the
main difference being that we need to transfer node pa-
rameters from parents to child. Two parent genotypes are
first aligned using their innovation numbers, same as in the
compatibility calculation (Eqn 14). Genes (i.e., edges in the
graph) that occur in both parents are randomly chosen from
one parent to transfer to the child. Excess and disjoint genes
are copied from the fitter parent. Finally, for whichever edge
transfers to the child, the parameters associated with the
nodes that the edge connects are transferred to the child as
well. An example of the result of the crossover operator is
shown in Figure 7.

Figure 7 shows an example of two generated structures
resembling biological trees (top) that were combined into
four by two separate crossover operations.

The children replace all the parents after the reproduc-
tion step and form a new generation. However, we keep the
best individual for each species, ensuring that the best to-
date solution survives. The new generation is divided into
the species again and the process is repeated until a stopping
criterion has been met. In our implementation, we stop if
after 100 generations there is no improvement in the fitness,
or, in interactive sessions, whenever user decides to stop the
optimization.

Our algorithm starts from a minimal graph and pro-
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gressively increases the number of nodes and edges in the
graph, which increases the complexity of the generated
model. The reproduction operators need to generate new
solutions that would, ideally, be fitter than previous gen-
eration. However, in practice, the mutation and crossover
operators often worsen the solution. We have observed that
the rate of improvement gradually slows down with the
increased complexity, particularly because there are a lot
of mutations performed on parts of the graph that do not
need to be mutated. For example, in case of tree growth in
Figure 10, mutations to nodes generating the root and initial
branches do not need to be changed after first few hundred
of generations. For that reason we use gene freezing. We track
whenever a gene mutation contributed to improvement
in fitness. If there has been no improvement in a certain
number of generations (50 in our implementation), the gene
is frozen and cannot be mutated by parameter mutations
and node insertion mutations. We randomly unfreeze frozen
genes with a probability of 0.5%. Finally, we unfreeze all
genes if any of the constraints have changed, so that the
system can adapt to the new environment.

5.4 Convergence
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Fig. 8. Average fitness and its standard deviation through time for the
tree sketch example (Figure 10). Individual curves show convergence
for variations of the algorithm without crossover, speciation, or gene
freezing. Values are an average of five runs.

Individual parts of the algorithm influence the overall
convergence of the algorithm. Figure 8 shows an ablation
experiment where we disabled different parts of the algo-
rithm. We use the structures from Figure 10, where we try
to grow a tree model that matches a sketch. Besides the
full algorithm, we ran a variation without crossover (i.e.,
asexual reproduction through mutation), speciation, and
gene freezing. The fitness improves best over time if all parts
are used and we conclude that all of these parts contribute
to better convergence.

Figure 9 shows the influence of the population size on
the convergence and time. The results are aligned with
common behavior of genetic algorithms [64], [65]: increasing
the size of the population improves the convergence signif-
icantly (left). However, at a cost of increased computation
time (right). We chose the population size of 150 for our
examples, because it gave us a good middle ground between
speed and convergence.
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Fig. 9. Effect of population size N on the average fitness and its standard
deviation through time for the tree sketch example (Figure 10). The
experiment was run for 1,000 generations, and five runs per curve.

6 IMPLEMENTATION AND RESULTS

6.1 Implementation
We have implemented PICO in C++ with support of
OpenGL, GLSL and CUDA for rendering. Results were
generated on a desktop computer with an Intel i7 processor
clocked at 4.0 Ghz, 16 GB of RAM, and an NVIDIA Titan Xp
graphics card.

We represent the 3D objects by a constructive solid
geometry (CSG) tree, i.e., a tree with set operations as inner
nodes and geometric primitives as leafs. Because many
of our objective functions require distance estimation, we
represent geometric primitives by an analytic signed dis-
tance function or a signed distance field. Set operations are
then performed on the signed distance d. For example, the
union operation between two primitives a and b is defined
as min(da(p), db(p)) for a point p.

We render objects by using ray-marching on the GPU
implemented in CUDA, where tree traversals are expensive.
Therefore we convert the CSG tree into a custom program
representation using the Sethi-Ullman [66] algorithm. The
resulting program is then uploaded to the CUDA constant
memory and evaluated on the GPU, or evaluated directly
on the CPU.

In order to quickly detect collisions, we convert all
meshes into a signed distance field (SDF) representation by
first voxelizing using ray-casting and then using the Fast
Marching Method [67]. This conversion happens offline for
each individual mesh (including building blocks) used in
the system, using a 1283 grid to store the distance values.
The collision volume is then calculated as the volume of
the intersection of the SDF of the mesh and SDF of the
CSG tree. We do this calculation recursively, by subdividing
the domain’s axis aligned box (AABB), evaluating the SDF
at the box’s center. If the absolute distance is greater than
half the diagonal of the AABB, the entire AABB is either
completely inside or outside of the volume, depending on
the sign of the distance. Otherwise we subdivide further
until we reach a certain depth (6−8 in our implementation).
The same algorithm is used to compute the mass, volume,
and moment of inertia tensor of the generated object.

6.2 Results
We used the evolutionary optimization to interactively gen-
erate the following results. The various examples differ in
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Fig. 10. Tree sketch. Evaluation of tree sketching from ShapeGenetics
[46]. Target image specifies areas where the tree should grow. We
show a comparison of generated models from our system and models
generated using ShapeGenetics implementation of various algorithms.
We also show that our system achieves higher fitness faster (bottom).
Curves correspond to are average fitness over 10 runs and bands show
the standard deviation.

the types of buildings blocks and the set of constraints used.
The first example in Figure 1 shows an array of gen-

erated 3D chairs. The bottom and back part of the person
are marked and a 3D chair is fully automatically generated
by optimizing for touching the marked areas, stability, and
small mass of the entire structure. We have building blocks
defined from actual chair meshes to make the result visually
plausible.

To evaluate our approach against existing methods, we
chose to recreate the tree grammar from ShapeGenetics (see
Figure 8a in the paper [46]). We used a single type of build-
ing block that generated branch geometry and branched
three-fold, or generated leaf geometry if none of its out-
puts were being used. The constraint in this experiment
was matching a sketch shown in Figure 10, and we used
identical fitness and experiment setup to ShapeGenetics. We

Fig. 11. User generated lamps. We conducted a pilot study where
users were asked to sketch lamps and pick building blocks out of which
the lamps were built. The figure shows a subset of the generated lamps.

ran PICO and the implementation of Genetic Algorithm
(GA) [46], Reversible Jump Monte Carlo Markov Chain
(RJMCMC) [32], Sequential Markov Chain (SMC) [69] and
Stochastically Ordered Markov Chain (SOSMC) [27]. The
result geometry is shown in Figure 10 (top). Figure 10
(bottom) shows the mean fitness and its standard deviation
as a function of time for individual methods. The SMC and
SOSMC methods have issues converging from the start and
are unable to cover the entire space of the sketch. The RJM-
CMC and GA methods converge to satisfactory results. Our
method outperforms them, especially in the first half of the
optimization process. This is likely because our framework
searches the candidate space more efficiently, focusing on
several search directions concurrently using speciation, and
spending less time on sub-optimal search directions thanks
to gene freezing and gene alignment in crossover.

We conducted a small pilot user study with four par-
ticipants who were asked to create a simple model of a
lamp. The users were asked to sketch a desired shape
and pick building blocks for the lamp’s body and shade.
The building blocks were created by segmenting several
ShapeNet [70] lamp models. We also added an objective
minimizing number of generated parts. The participants
filled a small survey on a four point Likert-scale (2-strongly
agree, 1-agree, -1-disagree, -2-strongly disagree). The results
to our questions were: This system is easy to use: 0.75, I can
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Fig. 12. Armadillo supports. PICO can automatically generate organic
supports for 3D printing. We compared our generated supports (b) to
the work of [68] (a). We used the same overhang points and same
dimensions of the print and we achieved a comparable resulting weight
of the used material.

achieve my intent quickly: 1.5, I can control the design easily: 0.5,
The response is fast: -0.25, and I need to understand procedural
modeling: -0.75 indicating that the need to understand proce-
dural rules is not necessary in order to generate models by
using our framework. Moreover, the participants identified
themselves as I have previous experience in procedural modeling:
-0.75, and I have previous experience in computer design: -0.25.
Figure 11 shows examples generated by the users.

An interesting application of PICO is for generating
organic support structures for 3D printing (Figure 12). We
compared our approach to CleverSupport [68], a method
that grows tree-like supports from overhang points. We took
the same model and used the same sampling and generated
the supports using PICO. The building blocks used were
simple cylinders, branching up to four-fold. There were
two hard constraints used: angle with gravity vector had
to be less than 45◦ and all the overhang points had to be
connected to our generated object. The main optimization
goal was minimization of the length of the structure. Note
that we use multiple axiom nodes in this example to grow
multiple tree-like structures at the same time. We printed the
object and compared the resulting weight of used material.
Ours being 85.10g, compared to 86.54g achieved by [68].
There are factors that were not considered, for example,
structural strength, tips for easy removal or optimized pro-
file of the supports. However, we show that we achieve the
same task with a comparable amount of material.

Another example shows an automatically generated
structure that is able to be spun and stay balanced while
spinning (Figure 13); which is an application inspired
by [59]. The main objective of the optimization is to achieve
distribution of mass such that ratio of lateral axes of inertia

to the principal axis is as small as possible. Furthermore, to
control the shape of the spinning top, we sketch a rough
shape from a side view. The center of mass and alignment
of the principal axis of inertia with the spinning axis are
enforced as hard constraints. Note that we intentionally
disabled the hard symmetry constraint and we did not
use symmetrical frames. Nevertheless, the system found
symmetrical models automatically through optimization.

Although there are many methods for procedural terrain
generation and we do not claim a contribution to this field,
we wanted to show the expressiveness of our method by
matching three real terrains taken as a sample of digital
elevation map of Alps (resolution 64 × 64 pixels, 30 meters
per pixel) by the PICO procedural model (Figure 14). The
geometry-generating operations were 2D Gaussians modu-
lated by Perlin noise. The resulting height map is the sum
of the contributions of all the Gaussians primitives. We used
Mean Square Error (MSE) to compare the height maps. The
Gaussians cannot capture all the fine details of the terrain,
especially erosion patterns, but they work for the overall
appearance. The optimization time was about two minutes.
The accompanying video shows the optimization process.

Figure 15 shows an example of interactive design. A
procedural hat hanger is automatically generated and then
expanded each time a new object is added to the scene.

Table 1 shows statistics of generation of the results. The
time to generate the shown examples ranges from seconds to
couple minutes, depending on the complexity of the object
and the type of constraints used. The input includes the
number of different constraints and number of different
building blocks. The optimization consists of the genera-
tion time [ms], evaluation of fitness in [ms], reproduction
time [ms], number of generations in the evolutionary opti-
mization, and the total optimization time in seconds. The
output includes number of generated coordinate frames,
geometric objects (e.g., primitives, meshes, Gaussians) and
the total number of used geometry generating operations.
The most expensive fitness calculation was for the Spinning
objects in Figure 13, which includes calculating the moment
of inertia tensor, and took on average 1,746.3 [ms] for
the entire population. Concerning terrains, the generation
operation takes the most time due to the cost of evaluating
Perlin noise, which is the bottleneck for this application.

7 CONCLUSION

We have introduced PICO that uses PICO-Graph, which is a
novel procedural model that is coupled with an evolution-
ary algorithm. PICO-Graph is a flexible graph representa-
tion that defines procedural generation by connecting sim-
ple geometry-generating operations. Geometric objects, in
our examples coordinate frames and 2D/3D geometry, are
sent from axiom nodes down the graph, triggering further
geometry-generation in other nodes. We couple this repre-
sentation with an evolutionary algorithm and we guide it
using various user-defined hard and soft constraints as a
means of control of the procedural generation. The evolu-
tionary algorithm uses reproduction operators and genome
compatibility defined over the PICO-Graph. Mutations are
implemented as topological or parameter changes of the
graph. We adapted the crossover and speciation for our
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a) b)

Fig. 13. Spinnable objects. Two spinnable objects a) and b), shown from a side and top view, have been generated from Stanford dragon building
blocks. The shape was guided by a sketch constraint from a single view, shown in insets and corresponding to the view on the left. The center of
mass and maximal axis of inertia have been aligned using hard constraints. The system optimized the placement of building blocks to improve the
quality of the spin. No symmetries were enforced but the optimization process discovered a symmetrical geometry nevertheless.

Input Optimization Output
Model Constraints Op. Types Gen. Op. [ms] Fitness eval. [ms] Reproduction [ms] Generations Total [s] Frames Geom. Obj. Geom. Gen. Op.

Chairs (Fig 1) 6 3-5 72.97 27.15 29.08 82.25 24.23 100 22 7
Tree sketch (Fig 10) 1 1 134.75 678.26 138.35 2000 1747 494 495 164

User generated lamps (Fig 11) 2 2-4 4.80 133.81 38.12 183 37.72 13 9 6
Armadillo supports (Fig 12) 4 1 248.03 728.6 195.23 207 224.67 220 429 47

Spinning objects (Fig 13) 2 1 9.74 1746.3 21.51 402 2216.02 533 212 38
Terrains (Fig 14) 1 1 248.3 0.13 14.6 169 111.5 151 86 16
Hanger (Fig 15) 7 1 5.75 27.43 17.67 162 41.17 81 80 14

TABLE 1
Statistics for the generated examples. Input includes number of applied constraints, and number of different types of building blocks. Optimization

shows timing per each part: Gen. Op is the time for executing the PICO-Graph and generating geometry, Fitness evaluation, Reproduction,
number of generations, and average time per iteration. The Output shows the number of coordinate frames passed through the graph, final

geometric objects and the number of used geometry generating operations that represent the final model.

procedural graph representation. The optimization allows
for interactive guidance of the procedural model, but also
for offline generation of complex geometry.

We have shown PICO on a variety of examples including
procedural trees, automatically generated chairs, generation
of supports for 3D printing, spinning objects, and even
terrains. We believe that the flexibility and generality of the
PICO system makes it a very powerful modeling tool for a
wide range of applications. We have also evaluated PICO
by comparing to the state-of-the art algorithms. Contrary to
the existing approaches, PICO can generate existing models
without the need of hand writing the underlying procedural
model that is generated automatically by evolution.

Our work has a number of notable limitations. If the
procedural evolution discovers an interesting pattern, it can
be forgotten in next iterations or modified because of the
mutations. It would be interesting to evaluate the time each
structure stays in the iteration and its effect on the overall
fitness. The objective function includes various criteria that
can compete with each other and this can lead to a poor
convergence rate in specific cases. In most cases however,
PICO finds a solution very quickly that follows the user’s
intuition. Thanks to the interactive generation, PICO can

produce results quickly and does not require any knowledge
of procedural modeling as suggested by our user study.
Although the constraints provide good control over the
generated structure, it is not always entirely clear what
the result will be. This is one of the main problems of
procedural modeling and we bring a partial solution by
using stochastic evolutionary algorithm with high level user
guidance. Exploring finer levels of control would be bene-
ficial. Furthermore, the space of possible solutions is non-
trivially dependent on the geometry generating operations
and the set of constraints. We found that for interactive
generation, there has to be balance between too few and
too many degrees of freedom (e.g., number of node types
and node parameters). If there are too few, the optimization
fails to find a path to an acceptable solution, while too
many cause the optimization to no longer be interactive and
to generate unintended results. Finally, the soft constraints
have to be defined over the entire spatial domain for the
optimization to move toward an optimal solution for every
possible generated geometry.

Future work. In this work we have demonstrated PICO
working with a specific set of constraints and a small set of
building blocks. We think there is a potential in exploring
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Fig. 14. Terrains. PICO matched the real terrain from the left by a set of
Gaussians (right).

this direction further and adapting PICO to even more
domains. It would be interesting to conduct additional
studies with both artists and designers to better understand
workflow patterns that can enable further system refine-
ments. While our current optimization process is efficient,
we believe there still exists opportunity to improve the con-
vergence and responsiveness of our method. This includes
not only the raw performance of our system, but its ability
to find high quality solutions in the large search space.
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