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Fig. 1. Our algorithm analyzes the input image and infers a parametric L-system that represents it (d is the size of the detected structure and R is the
scaling factor). The L-system represents the input and can be also used to produce its variations (right).

We introduce an inverse procedural modeling approach that learns L-
system representations of pixel images with branching structures. Our
fully automatic model generates a compact set of textual rewriting rules
that describe the input. We use deep learning to discover atomic structures
such as line segments or branchings. Orientation and scaling of these struc-
tures are determined and the detected structures are combined into a tree.
The initial representation is analyzed, and repeating parts are encoded into
a small grammar by using greedy optimization while the user can control
the size of the detected rules. The output is an L-system that represents
the input image as a simple text and a set of terminal symbols. We apply
our approach to a variety of examples, demonstrate its robustness against
noise and blur, and we show that it can detect user sketches and complex
input structures.

This work was supported in parts by National Key R&D Program (2018YFB2100602),
NSFC (61861130365, 61761146002, 61802406, 61802362), GD Higher Education
Key Program (2018KZDXMO058), LHTD (20170003), GD Leading Talent Program
(00201509), DFG (422037984), NSF (10001387), FAR (602757), and GD Laboratory of
Artificial Intelligence and Digital Economy (SZ).

Authors’ addresses: J. Guo and X. Zhang, NLPR, Institute of Automation, CAS, Bei-
jing, China; emails: jlanwei.guo@nlpr.ia.ac.cn, Xiaopeng.Zhang@ia.ac.cn; H. Jiang,
UCAS, Beijing, NTU Singapore; email: haiyong.jiang1990@gmail.com; B. Benes, Pur-
due University; email: bbenes@purdue.edu; O. Deussen, SIAT Shenzhen and Uni-
versity Konstanz; email: oliver.deussen@uni-konstanz.de; D. Lischinski, The Hebrew
University of Jerusalem; email: danix3d@gmail.com; H. Huang (corresponding au-
thor), College of Computer Science & Soft-ware Engineering, Shenzhen University;
email: hhzhiyan@gmail.com.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

0730-0301/2020/06-ART155 $15.00

https://doi.org/10.1145/3394105

CCS Concepts: « Computing methodologies — Shape analysis; « The-
ory of computation — Grammars and context-free languages; Rewrite
systems;

Additional Key Words and Phrases: L-systems, grammar induction, proce-
dural generation

ACM Reference format:

Jianwei Guo, Haiyong Jiang, Bedrich Benes, Oliver Deussen, Xiaopeng
Zhang, Dani Lischinski, and Hui Huang. 2020. Inverse Procedural Mod-
eling of Branching Structures by Inferring L-Systems. ACM Trans. Graph.
39, 5, Article 155 (June 2020), 13 pages.

https://doi.org/10.1145/3394105

1 INTRODUCTION

Procedural modeling is one of the most powerful means for the
automatic creation of digital content in computer graphics. A par-
ticular advantage of procedural modeling is in model amplifica-
tion: The procedural rules may consist of only a small number of
symbols and a few parameters, but the generated geometry can be
millions of structures. While the geometry itself is large, its pro-
cedural representation is concise and easy to reuse. Moreover, the
rules allow for generation of many variants of the geometry.
However, achieving a desired user intent, i.e., obtaining a proce-
dural model that would generate a specific geometry, is a difficult
problem. A small change of parameters can exacerbate during the
repeated applications of the procedural rules and quickly diverge
in large modifications of the generated geometry. These intri-
cate changes are difficult to understand and typically leave users
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working in a tedious trial-and-error loop often with parameterized
procedural rules that are difficult to understand and control.

Another way to obtain a procedural model is by reverse engi-
neering an existing geometry; the task is commonly referred to as
inverse procedural modeling (IPM). Such methods would allow a
significant compression of given structures and an easy creation of
variations. Previous approaches to IPM worked with input struc-
tures such as facades [Martinovic and Van Gool 2013], 2D arrange-
ments [Ellis et al. 2018; Stava et al. 2010], biological trees [Stava
et al. 2014], and urban modeling [Nishida et al. 2016]. However,
most of the existing methods work with an existing procedural
model and only adapt its parameters. The generation of a proce-
dural model is an important open problem [Aliaga et al. 2016].

An important class of procedural models is Lindenmayer sys-
tems (L-systems) [Lindenmayer 1968], a mathematical formal-
ism based on parallel string rewriting. L-systems generate linear
branching structures, and they have been used in a wide variety
of applications (Section 2) with the prevailing domain being the
simulation of biological branching structures [Prusinkiewicz and
Lindenmayer 1990]. L-systems, however, share the common prob-
lem of procedural models: It is difficult to create the procedural
rules in a goal-oriented way and to control the expansion process.

We present a novel algorithm that infers an L-system from a
given image of a branching structure. We use a deep neural net-
work to detect basic branching elements and their orientations,
which range from line segments to simple branching patterns. Lo-
cation, scale, and orientation of these atomic structures are used
to infer an initial grammar. Since branching angles and lengths
might vary, we also detect the parameters of the procedural rules
to describe the input. In the initial step of our approach the discov-
ered grammar is a plain, parametric description of the image con-
tent. Higher-level branching rules are then generated by reducing
the initial grammar to a compact representation. This process is
performed by a greedy optimization and can be controlled by the
user who can select between creating rules of larger length or a
higher frequency of repetition. We claim the following main con-
tributions:

e anovel algorithm to generate an L-system from an input im-
age,

e anovel algorithm that uses a deep neural network to locate
and describe branching structures by textual grammars, and

e a grammar compression framework that allows to infer a
compact grammar from the located branching structures.

Figure 1 shows the main steps of our process. An input pixel im-
age is analyzed, atomic structures are detected, and by inference
an initial grammar is generated. This grammar is reduced by opti-
mization and used to create variants of the generated structure.

2 RELATED WORK
2.1 Procedural Modeling, L-systems, and Vegetation

Procedural modeling is an important way to create complex
objects such as trees and landscapes [Deussen and Lintermann
2010], facades [AlHalawani et al. 2013; Bao et al. 2013; Li et al.
2011; Martinovic et al. 2012; Muller et al. 2007; Shen et al. 2011;
Wu et al. 2014; Zhang et al. 2013], buildings [Miller et al. 2006;
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Vanegas et al. 2010; Whiting et al. 2009], or whole cities [Parish
and Miiller 2001]. We refer the readers to a recent survey of pro-
cedural modeling [Smelik et al. 2014] and to a review of inverse
modeling methods [Aliaga et al. 2016] for further information.

Lindenmayer [1968] invented the L-system as a parallel string
rewriting system for describing cellular subdivision. Their theo-
retical properties have been outlined by Rozenberg and Salomaa
[1980] and they were expanded by Prusinkiewicz [1986] by graph-
ical interpretation using a logo-like turtle and a generation of
branching structures. The L-systems is a robust formal framework
for describing vegetation [Prusinkiewicz and Lindenmayer 1990]
that was expanded to allow for continuous growth animation us-
ing parametric differential L-systems [Prusinkiewicz et al. 1993], or
external control of the rewriting by the environment using Open L-
systems [Méch and Prusinkiewicz 1996; Prusinkiewicz et al. 1994].

In recent years a number of publications focused on learning-
based procedural modeling, where different aspects of such sys-
tems are learned. Yumer et al. [2015] use autoencoder networks
to learn representative samples of procedural generation to guide
the user in high-dimensional design spaces. Nishida et al. [2016]
used a deep neural network to train simple 3D procedural param-
eterized volumetric models. During an interactive session, the user
sketches models, the system recognizes them and combines them
into 3D volumetric buildings with detailed facades while keeping
the underlying procedural representation. Huang et al. [2017] use
networks to fit procedural models to user sketches for modeling
buildings.

2.2 Inverse Procedural Modeling

The task of inverse generation of L-systems relates to grammar
inference that is a well-studied problem in computer science
[de la Higuera 2010]. Closely related to our work is McQuillan
et al. [2018] with polynomial algorithms inferring context-free
and context-sensitive grammars from input atoms. However, not
much work addresses inverse procedural modeling of branching
structures.

Stava et al. [2010] present a framework for inverse procedural
modeling of L-systems from vector data. They use a fixed set of
parameters that is matched from 2D models by using symmetry
detection and a voting scheme. The most frequently repeated pat-
terns are encoded into a single rule that is converted into a hier-
archical structure. While the algorithm of Stava et al. [2010] re-
quires a predefined set of rules and only finds the parameters of
these rules, our algorithm is capable of generating new rules and
their parameters. Moreover, their work requires the input to be in
a vectorized form and the terminal symbols are defined a priori.
Our work is more flexible in that it can be trained to detect termi-
nal symbols from pixel images by using deep learning. In short, we
seek to solve a more general problem of inverse procedural mod-
eling in a broader way, while the algorithm in Stava et al. [2010]
detects only the parameters of a given branching model.

Bokeloh et al. [2010] analyze complex 3D shapes and describe
their symmetries by using a novel inverse procedural model that
connects the basic building blocks in a way that allows for quick
variations. Talton et al. [2012, 2011] use a Markov Chain Monte
Carlo (MCMC) optimization to produce a more general rule system
from a specific one that describes given input scenes. Martinovic
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et al. [2013] use Bayesian learning to infer layout rules for creating
certain types of buildings. Ritchie et al. [2015] improve the MCMC
by introducing Sequential Monte Carlo (SMC) optimization, which
allows to get feedback on complete and also partial models.

Inverse procedural modeling of facades has been introduced
in Xiao et al. [2008]. Structure from motion provides a rough shape
that is proceduralized into rectilinear patches that are further or-
ganized into a regular procedural model. In Wu et al. [2014] a split
grammar is generated by using dynamic programming for an input
facade, and in Zhuo et al. [2015] human intuition is used in a semi-
interactive approach for inverse procedural modeling of facades.

Vanegas et al. [2010] use an L-system that incorporates only a
single universal rule for the 3D reconstruction of Manhattan-style
buildings. They match a floor pattern to the input data and repre-
sent the building as a floor-wise stack of procedural rules. Vanegas
et al. [2012] create a procedural model of a city from user-defined
high-level constraints such as the visibility of landmarks by opti-
mizing the city geometry using MCMC. Stava et al. [2014] create
a parameterized procedural tree model including growth simula-
tion. The parameters of the model (not the rules) are estimated by
MCMC and optimized to fit a carefully developed metric that com-
pares two tree models.

Sharma et al. [2018] combine a convolutional neural network
and a recurrent neural network to predict constructive solid
geometry or their operators. Tian et al. [2019] introduce 3D shape
programs to automatically infer 3D programs from given images
or shapes by using a block LSTM and a step LSTM, the former is
used to infer program blocks and the latter to infer the statements
of each program block. Pairwise relations in scenes, e.g., symme-
try and repetitions, are explored with a group representation by
[Liu et al. 2019]. Kalojanov et al. [2019] map shapes to strings
and leverage a variational auto-encoder to learn variations of the
strings rather than of complex 3D shapes. Most of these works
aim to reconstruct programs from an input image or a 3D shape
and do not learn to generalize content. Furthermore, we focus on
recursive structures, which may not be properly handled by these
methods.

2.3 Neural Networks for Object Detection

CNN-based object detection can be mainly split into one-stage and
two-stage detectors. A seminal work about two-stage detectors is
R-CNN [Girshick et al. 2014]; such networks consist of a candi-
date proposal stage and a CNN-based region classification plus re-
finement stage. Later works boost the detection performance by
adopting CNN-based region proposal networks [Ren et al. 2015]
or using a feature pyramid network [Lin et al. 2017]. In general,
two-stage detectors seem to achieve a high detection accuracy at
high computational costs. Thus, one-stage detectors, e.g., OverFeat
[Sermanet et al. 2013] or SSD [Liu et al. 2016], YOLO [Redmon
et al. 2016], have been proposed to speed up detection by directly
classifying and refining bounding boxes of different scales and as-
pect ratios that are generated for tiled regions of the input image.
The above works focus on the detection of axis-aligned bounding
boxes. The work of Ellis et al. [2018] employs a neural network for
detecting objects in a sketch and automatically creates a computer
program that outputs the sketch. While this is not a procedural

description in the classical sense, the approach creates a compact
representation of the input.

In our work, however, we need to detect oriented bounding
boxes to predict transformation parameters of the atomic structure
of our rule-based description by adopting an improved version of
the Faster R-CNN on oriented bounding boxes [Xia et al. 2018].

3 METHODOLOGY OVERVIEW

Before we describe how to infer an L-system that represents a
branching structure from a given image, we briefly explain some
of the main underlying concepts of our approach.

3.1 Lindenmayer Systems

L-systems [Lindenmayer 1968; Prusinkiewicz 1986; Prusinkiewicz
and Lindenmayer 1990] are parallel string rewriting systems. An
L-system £ is a tuple

L = <M,(A),R>’ (1)

where M is the L-system alphabet, w is the axiom, and R is a set
of rewriting or production rules. The alphabet contains parameter-
ized modules M = {A(P), B(P), ...}, where P = p1,p2,...,pn are
module parameters such as translation, rotation, or scaling. The
axiom w € M" is a non-empty sequence of modules, and M* is the
set of all non-empty strings from M. The production rules in R
have the following form:

id1 : A(P) : cond — x,x € M*, (2)

idy : B(P) : cond — x,x € M*, (3)

where M* is the set of all possible strings from M including the
empty string ¢. A rule id; rewrites the left-hand side character from
the alphabet A(P) by the sequence of letters of the right-hand side
iff the cond is true. A module that does not appear on any left-
hand side of a rule is called a terminal symbol; all other modules
are called non-terminals.

While each letter has its production rule, the derivation of a
string of modules is done by a parallel execution of applicable rules
from set R to each letter it contains. We denote the derivation by
a = b, where a € M* and b € M*. The production rules rewrite
the starting symbol by a sequence of modules and continue in suc-
cessive derivations w = mq = my = ..., until either no module
can be rewritten any more (i.e., the string ends with a set of termi-
nal symbols), the string of modules is empty due to the application
of the epsilon rule, or the execution is stopped after a user-specified
number of iterations.

Recursion in L-system occurs if a symbol from a left-hand side
of a rule occurs on the right-hand side of the same rule (even indi-
rectly). Non-determinism allows multiple rules per character of
the alphabet. It requires to additionally specify the probability of
their application.

To create a geometry from a string of modules, each string is
interpreted by a logo-like turtle that produces geometric symbols
such as lines or even 3D geometry [Prusinkiewicz 1986].

In 2D the turtle has its state S(p,0) where p= »p 0
[x,y] is its position and @ is the heading vector that -
identifies the direction of its motion.
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L-system rules

axiom : S
rulesl: Data .
S>F[+SIF[S]F 9eneration

S->F[+F]S[-F]
F(d)->(d*R)

Training stage

CNN

Training

Testing stage

Edit R1:S->F(d)[+S][-S]
R2: F(d)->F(d*R)

Optimization

Grammar generalizaion

R1: S->F(d)[+A][-A]
R2: A->F(d)[+B][-B]
R3: B->F(d)[+F(1)][-F(1)]

Smallest grammar

Inference Detection

Input

Fig. 2. Overview: During training, we generate large sets of data to train a CNN to detect atomic structures in an input image. During the subsequent
inference based on the input data, the CNN detects atomic elements in an image, and their transformations are determined and organized into a tree-like

structure that is then combined into an output grammar using optimization.

The turtle reads the letters of the interpreted string of modules
sequentially from the beginning, and each letter is interpreted as
a command. The letter F(d) is interpreted as “move forward from
p with heading 0 by distance d and draw a line segment between
the old and the new position,” commands +(«) and —(«r) change
the heading of the turtle by turning to the left and right by «, re-
spectively. Moreover, the turtle has a stack, the letter “[“pushes the
state of the turtle to the stack and”]” pops the state back from the
stack. Anything that is between the brackets [M*] is geometrically
interpreted as a branch of the generated structure. Not all symbols
from the alphabet need to have a geometric interpretation and if
they do not, then the turtle ignores them.

3.2 Inferring L-systems

The L-system inference is a three-step process: (1) detection of
atomic structures, (2) inference of an initial, and later compact,
grammar, and (3) grammar generalization (see Figure 2).

We first train a convolutional neural network (R-CNN) to detect
atomic branching structures from 2D images. The training data are
generated from predefined L-systems that produce a large number
of training images. We produce linearly translated, scaled, as well
as rotated branching elements and label them automatically. Once
trained, the R-CNN detects the instances of atomic structures from
the input test images. Along with that, we detect their transforma-
tion parameters such as translation, scaling, and rotation.

In the next step, the detected atomic elements are organized into
a structural pattern with higher complexity, which is encoded by a
small grammar. This starts with constructing a tree-like data struc-
ture from the detected atomic elements by looking for their pair-
wise distances. Each tree node corresponds to an atomic branch,
and each edge encodes the spatial transformation (translation and
rotation) of each node relative to its parent. Our goal is to find an
L-system that has a small number of modules by finding repeti-
tions of identical topological structures within the tree. Moreover,
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Fig. 3. Examples of templates (a) and their instances in input images (b).

we allow the user to modify this objective by specifying a prefer-
ence to create rules of larger length or with a higher frequency of
repetition.

In the last step, we introduce a cost function to merge similar
rules to generalize the obtained L-system with non-deterministic
and recursive rules. The cost function considers both the grammar
length and grammar distance, where the grammar distance is com-
puted by the string editing distance between the right-hand sides
(RHS) of the rules. A greedy strategy is employed to approximately
minimize this cost function.

4 METHOD

Here, we first describe how we detect atomic structures, then we
explain our algorithm to infer the grammar, and finally the method
to generalize it.

4.1 Detection of Atomic Structures

We regard our input images to consist of a collection of different
atomic structures that we call templates (Figure 3(a)). Each tem-
plate occurrence denotes one of its instances (Figure 3(b)), which
may be a result of rotation, scaling, and translation of the template.
A template can be a simple line corresponding to the F symbol (the
basic step of the turtle from Section 3.1) or a higher-level structure,
e.g., a simple branching pattern such as F[+F][—F]. Our aim is to
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F->F[-F] F->F[+F]F

F->F[+F] F->F[-F]F

Fig. 4. Atomic structures: eight pre-defined rules together with their pro-
duced geometry used. The colors of the bounding boxes indicate the labels
of the detected structures.

automatically detect all instances as shown in the second stage of
Figure 2.

Data preparation: Existing object detection solutions require a
large number of labeled examples to train a neural network to
capture variants of an object and its surrounding scenes including
overlaps. It is tedious and expensive to manually annotate such a
large corpus of data. For our problem, we also assume to have no
knowledge about the L-system rules.

We automatically synthesize a training dataset by using pre-
defined templates and L-system rules. The templates include fre-
quently used atomic structures such as line segments of tree im-
ages, curve segments of sketches, or elements of graphical designs,
and can be provided by an artist (see Figure 3(a)). Most instances of
these templates only differ by their transformation parameters, i.e.,
scaling, translations, and rotations, and will have only few changes
in their appearances when approximated by the transformed tem-
plates. Thus, it should be possible to generate similar instances as
those in the test images by randomly transforming our pre-defined
branch templates.

However, spatial relations between instances still may be differ-
ent between the test images and the synthesized training dataset.
Though most spatial relations do not influence on the detection,
overlaps and adjacency of instances do affect its results. Adjacency
can be simulated by using pre-defined rules, while overlaps are
generated randomly during the derivation of the pre-defined rules.
In our algorithm, we use eight pre-defined templates (shown in
Figure 4) that cover different kinds of branching structures. To
decouple the training and test data, we use different sets of pre-
defined rules to generate the synthetic images. We further add ran-
domness by selecting random combinations of the templates. Al-
though the rules used for the training data are different from those
of the test cases, they help to model adjacency as well as over-
laps between instances and therefore reduce data gaps between
the training and test phases.

During data generation, we randomly select a subset of pre-
defined rules and templates from our template basis. Training ex-
amples are generated by creating a branching structure from the
rules at a random position. When we created the RHS of a rule, we
randomly rotated it around its parent node and scaled it with a ran-
dom factor in the range 0.6 — 2.4. A random transformation of the
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terminals produces enough variety for the training instances and
furthermore creates a variety of random overlaps between them.

De-instancing: Next, we train a neural network to detect each
instance and infer its corresponding geometric transformation. In-
spired by Stava et al. [2010], we call this step de-instancing. We
detect oriented bounding boxes that yield the rotation transforma-
tion (Figure 3(b)). The scale is obtained by comparing the detection
results with its template, and the translation is calculated from the
center of the detected bounding box. The transformation is stored
as a 3 X 3 matrix.

The detection of oriented instances is resolved by using a detec-
tion neural network based on Faster R-CNNs. This neural network
is initialized by using the pre-training model ResNet-101 [He et al.
2016]. A Region Proposal Network (RPN) is applied to generate ro-
tational bounding boxes. Then, we use a multi-scale Region of In-
terest (ROI) align layer to extract pooled features, and through two
fully connected layers, we conduct a position prediction and classi-
fication. The final result is obtained by an inclined non-maximum
suppression. The novelty of our approach lies in the data synthesis
and incorporation of a detection algorithm for L-system inference
rather than the design of the detection network. It would be possi-
ble to replace the network with alternatives such as SSD [Liu et al.
2016] or YOLO [Redmon et al. 2016].

4.2 Inferring a Compact Grammar

We define the compact grammar as the L-system of the shortest
grammar length that generates only the given example. The gram-
mar length is defined as the rule length and the number of used
symbols.

The smallest grammar problem is NP-hard [Charikar et al. 2005],
so proper heuristics have to be explored. Contrary to strings, the
instances of a graphical L-system example are potentially scattered
over the 2D space and have to be properly grouped and represented
for inferring a grammar. Moreover, some L-systems may have ran-
dom parameters, e.g., the heading direction 6 in Section 3.1, so at-
tention must be paid to make the process robust against noise. We
developed a greedy optimization algorithm that attempts to always
join nearby instances of the template to a rule.

During the grammar generation step, we first group different
instances as a tree structure by their distance. Then, a compact
grammar is extracted while controlling the rule complexity and
occurrence frequency. Finally, we use the orientation of each tem-
plate and transfer it to the turtle states associated with each RHS
symbol for each rule.

Construction of the n-ary tree: The detected instances (Sec-
tion 4.1) are organized into an n-ary tree that corresponds to the
derivation of a grammar with the starting symbols as root, termi-
nal nodes as leaves, and non-terminals as internal nodes. Contrary
to grammar expansion, we also have to deal with geometric infor-
mation. Using the edges of the tree structure, we represent each
instance in the local coordinate frame of its parent node, which
makes the later extraction of the turtle states S(p, 0) (Section 3.1)
more convenient.

To obtain this n-ary tree, we first assign instances of different
templates to different labels. Next, we construct tree edges by
linking close or adjacent instances, where each node denotes
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Fig. 5. An example of n-ary tree construction. The intersecting bounding
boxes (left) would cause cycles (middle), while our method avoids by dis-
carding close edge connections (right).

one instance. However, there are overlaps between the oriented
bounding boxes even though their instances might not have
a contact (see Figure 5). The overlaps will lead an undirected
graph with cycles, which would hamper the inter-
ference of the grammar. To avoid the generation

of cycles, we define a new pairwise distance to
predict the probability of connecting two bound-
ing boxes in the graph. Since the goal is to gener- 5 /V
ate the structure by using a procedural model, the /
adjacent instances are assumed to be connected ¢
by the turtle movement in a sequential way. Sup-
pose we have two boxes with centers cyx and cy,
heading directions 6 and 6y, and height hy and hy (see inset).
We compute the projection distance of vector cx—cy’ to the head-
ing directions 0y and 6y, which are denoted as d¢ g and dcy A. The
normalized pairwise distance between two bounding boxes is:

~,
<
|
=
<

dch + dcyA - (hx + hy)
0.5(hy + hy)

Ds(x,y) = 4)

This equation considers both the position and orientation (which
indicate the turtle moving direction) of each instance. Usually,
the smaller the value of Ds(x, y), the more likely the two bound-
ing boxes are connected. To avoid manually tuning the threshold
of D¢ (x,y), we use a relatively large value (D (x, y) = 1.2) to filter
out most of the unreasonable edges. Then, we extract a minimum-
weight spanning tree from the remaining edges and this way create
our final n-ary tree.

Finally, we convert the transformation of each node, which
has been estimated in the de-instancing step, to the local frame
of its parent. The transformation is decomposed into the three
components—scaling, rotation, and translation—that are stored as
the rule parameters.

Grammar inference: Next, we infer a compact grammar from the
tree. At this step, we do not consider parameters of the rules, be-
cause they only change tree geometry, e.g., branching angles. The
expanded string corresponds to the same structure topology.

We introduce a user-controlled weighting parameter wy into the
optimization, which controls if rules of small length but with many
repetitions should be preferred or large rules with a small number
of repetitions. Our objective is to find a grammar £* minimizing:

Ci(LY) =
A(P)>M*eL*

wp - IMT| + (1= wp) - N(A(P) - M),
®)
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where | - | computes the number of symbols in a rule, N(-) counts
the repetitions of rule applications in the current example, w; is
the weighting parameter w; € [0.0, 1.0], where w; = 1.0 encodes
the entire string as one rule, w; = 0.0 finds all strings of length one,
and w; = 0.5 detects large substrings that are frequently repeated.

ALGORITHM 1: Grammar inference
Input: An n-ary tree T
Output: A compact grammar £+
1 L* = Lg, Lg is the expanded string directly derived from T;
2 L=0

3 Set the weighting parameter wy;

4 Find the maximal sub-tree structure T’ and its repetition n in T}
5 whilen > 1do

6 Replace all occurrence of T” with a same symbol;

7 Extract rule set R for tree T

8 L=L+R;

9 if C;(£L) >= C;(L") then

10 ‘ break;

1 end

12 T«T, LteL;

13 Find the maximal sub-tree structure T” and its repetition n in T;
14 end

We solve this problem by performing a greedy search for max-
imal sub-trees within our n-ary tree instead of sub-strings of the
example (Algorithm 1, see Section 1 in Supplemental Material for
more details). This avoids the grouping of meaningless sub-strings,
e.g., F[+. Note, we do not consider the n-ary tree itself as a max-
imal sub-tree. Our algorithm stops when the cost in Equation (5)
does not decrease any more. In this work, we prefer to create larger
rules by setting w; = 0.5 for all experiments (exceptions are men-
tioned).

Rule parameter estimation: As mentioned above, the compact
grammar inferred in the previous step does not consider rule pa-
rameters. Each RHS symbol of a rule may have different turtle
states, and even the same symbols in different rules or at different
positions within the same rule may have different states. Thus, we
cluster instances of the same symbol due to its corresponding rule
and position within the rule. The turtle state is then estimated by
averaging the different instances of each cluster to eliminate noise
caused by inaccurate parameter prediction in the de-instancing
step.

4.3 Grammar Generalization

So far, we have extracted a compact grammar of branching pat-
terns from images. However, the inferred grammar has limited ex-
pressiveness, because it can only reproduce the input image. We
further improve the grammar by adding non-deterministic rules
and detecting recursive structures (see Section 3.1).

We extend the extracted grammar with variations by merging
similar rules. Each merging operation takes two rules, collapses
their left-hand side (LHS) to a single symbol, assigns these two
rules an equivalent probability, and replaces all occurrences of the
original LHSs. For example, the rules from Equations (2) and (3)
are merged to:

1,cond

AB(Py) === My, (6)
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2,cond
AB(Pg) =—= Mpx, (7)

where A(P) and B(P) are LHSs and the RHSs are replaced by one
new common module AB(P).

This problem poses two main challenges: first, each merging
operation generalizes the grammar, but it may also initiate pos-
sible invalid variations. Therefore, a proper metric is required to
guide the merging process. Second, a grammar may produce a
large number or even infinite examples with large structural or
geometric variations, so it is both expensive and difficult to deter-
mine the feasibility of a merging operation based on their derived
examples. Previous works [Martinovic and Van Gool 2013; Talton
et al. 2012] examine the merging fitness by using a Bayesian model
from a small number of examples, but this is still quite costly. In-
stead, we examine the merging operations based on the rules them-
selves. We optimize a general grammar L* starting from an ini-
tial smallest grammar £ (Section 4.2) by leveraging the grammar
length L(L*) and the grammar edit distance resulting from a dis-
tance Dy (L", L*) between two rules. We attempt to minimize:

Cg(L", LY) =wo - (L(LT) = L(LT)) + (1= wo) - Dg(L", L"),
®)
where wy is a weight balancing the two metrics. By merging a rule,
the grammar length will become shorter, but the rule edit distance
will get larger. During optimization, the grammar length measures
the number of symbols that represent it:

L(L) = M| + [M*], ©)
A(P)SM*eL

where | - | is the size of a set of symbols.

The grammar edit distance Dy (L*, L*) determines the overall
cost to convert a grammar £ to £* by a set of merging operations
M(LY — L) as follows:

Dg(L*, L") =
(A(P)—> M, B(P)—>Mj,) eM(L*— L*)

Ds (M, M),

(10)
where D5 (M, M) estimates the edit distance [Navarro 2001]. We
use three edit operations: string replacement, insertion, and dele-
tion, where the weights for the edit operations are empirically set
to 1.0, 1.5, and 1.5, respectively. The edit distance can be calculated
by various algorithms [Hirschberg 1975; Schulz and Mihov 2002];
we use dynamic programming.

There is no closed-form solution for Equation (8), because of its
discrete form and usage of edit distance, and the solution space is
of combinational complexity. We employ the greedy algorithm to
seek an approximate solution (Algorithm 2). We first generate all
possible merging rules as candidates. Then, we evaluate the cost of
each merging operation by Equation (8), the two rules with min-
imal cost will be merged. We iterate through this procedure until
the cost does not decrease any more.

5 RESULTS AND EVALUATION

This is the first article dealing with the generation of L-systems
from images. In this section, we show the evaluation of our
algorithm on structures generated by L-systems selected from
Prusinkiewicz and Lindenmayer [1990], on synthetic images,
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axiom : S axiom : S
RL:SSFLSIFLS]S  R1:S->F+SIFLS]S
R2: F->F(*1.68) R2: F->F(*1.72)

axiom : S axiom: S
RL:S>F+SIF[S]S  RL: S>FI+SIFIS]S
R2: F->F(*1.72) R2: F->F(*1.75)

axiom : S axiom : S
R1:S->|

R1: S->F+SIF[-S]S
R2: F->F(*1.73)

F+S]F[-S]S
R2: F->F(*1.76)

Fig. 6. Detection with varying branching angles (left to right: 30°, 40°,
50°, 60°, 70°, 80°).

real-world images, hand drawings, and images created manually
by artists.

ALGORITHM 2: Grammar generalization
Input: A compact grammar £*
Output: A generalized grammar L*

1 Initialize the merging pair p* = 0;
2 L' = L7

s Cgld = Co( L7+ (p"), L7);

4 do

5 Generate all possible merging rule pairs £ in L*;

6 Find a pair p* with the minimal Cy(L* + {p;}, L), Yp; € P;
7 if Cg(L" + {p"}, L7) >=0then

8 ‘ break;

9 end

10 " =Cy(L+{p*). L) - Cgld;

11 Cot = Cy(L +{p*), L)

12 Lr=L"+{p')

13 while ¢* <=0;

All experiments were conducted on a desktop computer
equipped with an Intel i7 Xeon processor @2.1 GHz, 32 GB of RAM,
and an NVIDIA GeForce TITAN X graphics card. We implemented
our detection algorithm in TensorFlow and Python. The grammar
inference was implemented in C++. The detection network started
training with a learning rate of 0.0003 and was decreased by a fac-
tor of 10 every time when the validation loss started to oscillate.
The training process took about 18 hours for 12K epochs, while
the inference process needs 0.12 second per image.

5.1 Robustness of Atomic Structure Detection

We evaluated the robustness of our algorithm on three tasks:
(1) varying branching parameters, (2) blur, and (3) instance
detection.

Robustness w.r.t. different branching parameters: We tested our
method by varying the branching angle and scale. Figure 6 shows
that the same instances can be detected when branching angle
varies within a large range (from 30° to 80°). Moreover (Figure 7),
we randomly changed branching angles and scaling at the same
time (angle: [-20°, 20°], scaling: [0.7, 1.7]). All instances were suc-
cessfully detected, and we achieved an average precision of 87% in
all tests (including 40 test images). Here, “precision” means the in-
stance is assumed to be successfully detected if its detected angle
and scaling parameters are below the angle and scaling thresholds
10° and 0.7, respectively.

Robustness to blur: We generated test images by applying aver-
age blur, Gaussian blur, and downsampling (with scaling factors
0.8 and 0.5). We have 400 test images for each configuration. We

ACM Transactions on Graphics, Vol. 39, No. 5, Article 155. Publication date: June 2020.
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Fig. 7. Detection (bottom) of structures from input images (top) with ran-
dom branching angles and scales.

Table 1. The Detection Performance on Blurred
and Downsampled Images

Blurring Level Recall (%) | Precision (%) | mAP (%)

Averaging blur 80.7 75.4 70.2

Gaussian blur 78.9 73.5 69.3
Downsampling x0.8 81.5 76.3 71.8
Downsampling X0.5 63.9 61.1 56.6

Fig. 8. Comparison of instance detection methods (left-right): input im-
age, detection results for template matching [Brunelli 2009], generalized
Hough transformation [Mata et al. 1999], and our deep learning—based
method.

utilized precision, recall, and detection mean average precision
(mAP) [Girshick et al. 2014] to measure the quality of the detection
algorithm. Table 1 shows results of this experiment. Our detection
model is robust to different filtering approaches: For downsampled
images, we detected the instances even if the images were reduced
by 50%.

Instance detection alternatives: We used a state-of-the-art deep
learning-based method for de-instancing. Traditional methods,
e.g., template matching [Brunelli 2009] and generalized Hough
transformation [Ballard 1981], could be also used, but they rely on
a predefined set of hand-tuned parameters. Figure 8 shows a com-
parison of the deep learning—based method to the two alternatives
implemented in OpenCV [Bradski 2000]. The traditional methods
do not provide comparable results for rotated or scaled objects, and
the presence of noise in the image affects their performance.

ACM Transactions on Graphics, Vol. 39, No. 5, Article 155. Publication date: June 2020.
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axiom : S

R1: S->F[+S][-S]FS
R2: S->S[+S][-S]S
R3: F->F(*1.84)

axiom : S
R1: S->F[+S][-S]FS
R2: F->F(*2.06)

axiom : S
R1: S->F[+S][-S]FS
R2: F->F(*1.0)

Fig.9. Detection and grammar inference results on images generated with
different number of iterations (3-5).

axiom : S

R1: S->F[+A][-F[+A][-A]]
R2: A->F[-A]F[+A]A

R3: F->F(*1.16)

Fig. 10. Our algorithm infers correct grammar from a complex example
(left) and reproduces its structure (right).

5.2 Grammar Inference on Synthetic Images

First, we evaluate the grammar inference by using synthesized
images with ground-truth rules. We show grammar length L(L),
branching angle, and scaling factor of the compact and the gen-
eralized grammar for each example. Moreover, we also show the
string length Ls of the original example, which is the expanded
string only representing the input image itself. Finally, we report
the Hausdorff distances of the shape between the input and the
output structures.

We reproduced branching structures using L-systems from the
book of Prusinkiewicz and Lindenmayer [1990], and we com-
pared the detected L-systems to the originals. Also, we evalu-
ated whether our algorithm was able to infer the same L-system
when we changed parameters of the input L-system. The varying
branching angles mostly lead to the same L-system, as expected
(Figure 6). Also, our algorithm was able to compress the original
examples encoded by 41 characters to a grammar with a length of
18 and 2 rules.

A varying number of produced iterations from a single gram-
mar should, in theory, lead to the discovery of the same grammar.
Three different iterations of the same grammar were generated and
afterwards our detection algorithm was applied (Figure 9). The re-
sult shows that we infer the correct ground truth L-system from all
three images. Note that we obtained an additional rule in the last
iteration, because the increasing number of iterations makes the
line segments or branching structures smaller, which makes them
more difficult to detect.

In Figure 10, we show a more complex example, where the
ground-truth grammar contains three production rules and 36
symbols. The input is produced at the level of four iterations.
Our algorithm output the correct L-system and reproduced its
structure.
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S->F[+S]F[-S]
Fig. 11. Subset of 150 synthesized examples and inferred L-system.

S->F[-S]F[+S]
S->F[+S][-S]
(a) (b)

S->F[+S]S
S->F[-SIS

Fig. 12. Examples of grammar inference (left-right): input, detection re-

sult, and our reproduced results using the inferred L-system.

In addition, we tested our algorithm on a large synthesized
dataset consisting of 150 images. Figure 11 illustrates some exam-
ples of the dataset as well as our inferred L-system. We reported all
results of the test examples in the supplemental material. It demon-
strates that we are able to use only a few rules for representing a
collection of images. Four examples of detection results and repro-
duced images from our inferred L-systems are shown in Figure 12.
Our algorithm correctly reproduced the examples in Figure 12(a—
c). In Figure 12(d), the reproduced result differs a bit from the
original input because of an inaccurate rotation estimation in the
first branch and complex turning commands (see below). Statistics
shown in Table 2 show that our algorithm achieved the same com-
pression rate in three out of four examples and is able to estimate
branching angles with an error within 3° and the scaling factor
of the branches with an error of 0.17. Over the whole synthesized
dataset, our mean angular error is 2.56°, our mean relative scale
error is 0.14, and our mean Hausdorff distance is 8.06. The original
L-system from Figure 12(d) has multiple turning commands in a
single rule (S — F[+F][- —=S] + F — F[+ + + + S] — S), which is
represented as one turning command in our inferred grammar, not
precisely reproducing the input.

Grammar inference alternatives: We implemented two other
heuristic algorithms for grammar inference: simulated annealing
(SA) and genetic algorithm (GA). The input to SA and GA is the
expanded string generated from the geometries of our n-ary tree.
Then, we find all repeated sub-strings and perform the algorithms
to optimize Equation (5). Note, the meaningless sub-strings (e.g.,

Table 2. Grammar Statistics: String Length of Original Input Ly,
Grammar Length of Compact Grammar L(L"), Generalized Grammar
L(L"), and Ground Truth Grammar L( L)

compact generalized ground truth
Figure | Ly | L(L") |L(L)]|0(0)| s |du(%)|[L(L)|0(0)] s
12(a) 41 24 12 77.812.06| 2.98 12 80 [1.95
12(a)-SA | 41 24 12 77.812.06| 2.98 12 80 |1.95
12(a)-GA | 41 24 12 77.812.06| 2.98 12 80 | 1.95
12(b) 87 48 14 27.4(1.34| 3.28 14 25 [1.40
12(b)-SA | 87 52 14 | 29.1|1.28| 3.74 14 25 | 1.40
12(b)-GA| 87 48 14 27.4(1.34| 3.28 14 25 [1.40
12(c) 297 60 18 | 43.1|1.17| 13.7 18 40 [1.20
12(c)-SA | 297 61 29 [41.9(1.28| 15.2 18 40 [1.20
12(c)-GA | 297 60 18 43.11.17| 13.7 18 40 |1.20
12(d) 45 32 23 20.01.71| 5.78 25 8 |1.70
12(d)-SA | 45 40 28 21.411.65| 7.29 25 8 |1.70
12(d)-GA| 45 37 25 18.8 [1.59| 6.34 25 8 [1.70

Branching angles 6 and scaling factors s of the ground truth and inferred grammar.
The Hausdorff distance dp (normalized by dividing its value by the diagonal length
of the input bounding box) between the input and output structures. “SA” and “GA”
represent simulated annealing and genetic algorithm, respectively.

+, +F][—F) are not considered, which greatly reduces the search
space. Inference results on examples of Figure 12 are listed in
Table 2. Although SA and GA are also able to find good approxi-
mate solutions, they usually need a relatively large number of it-
erations. They also tend to produce more compact rules than our
greedy approach. Considering the complex input in Figure 10, our
method outputs three rules using 0.135 second. In comparison,
SA takes 1.652 seconds to generate seven rules, while GA takes
3.749 seconds to generate four rules.

We further compare to a greedy grammar inference algorithm,
called Sequitur algorithm! [Nevill-Manning and Witten 1997],
which infers a hierarchical structure from a sequence of discrete
symbols by replacing repeated phrases. Since this method does not
consider the meaningless sub-strings, it generates more produc-
tion rules for our problem (see Figure 12(b) for example, the num-
ber of generated compact rules by Sequitur is 12 while ours is 4).

5.3 Grammar Inference on Non-synthetic Images

We further evaluated grammar inference by challenging exam-
ples: (1) user sketches, (2) real-world images, (3) images created
by artists.

User Sketches: We tested our method on sketched inputs with
hand-drawn curves and scribbled lines. The steps of our algorithm
and potential variations of the inferred L-system are shown in
Figure 13, and Figure 14 demonstrates our results on two more
challenging hand-drawn examples. Our algorithm detected most
instances and the output grammar generates branching structures
similar to the input, even though the hand-drawings are very
rough and contain disconnected line segments or curves. More re-
sults on user sketches are provided in the supplemental material.

Real-world images: Our method has been applied to real-world
images (Figures 15 to 17). In Figure 15, we automatically extracted
almost one pixel-wide edges by using the Canny edge detector

! An implementation: https://github.com/craignm/sequitur.

ACM Transactions on Graphics, Vol. 39, No. 5, Article 155. Publication date: June 2020.
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\%& %f Iteration 2

Fig. 13. Grammar inference from user sketches (left-right): input, detection result, and our reproduced results with two different iterations. For each
iteration, we automatically select random user-drawn curves to replace straight line segments.

Fig. 14. Other sketch examples. Given an input hand-drawing image (a),
we first use the compact grammar to produce the result (b) similar to the

input. Then, we use our generalized grammar to generate results with two
different derivation iterations in (c) and (d).

Fig. 15. Real-world images (left-right:) input images, edges, detection re-
sults, reconstructed structures, and generated results with pattern varia-
tions and parameter regularizations.

@ .

(a)

Extracted edges

Real images

and morphological operations. Even when the extracted edges are
noisy, our algorithm is able to reconstruct the skeleton and to gen-
erate a number of variations.

Furthermore, we evaluated our method on three irregular net-
works; one generated by the Dendry algorithm [Gaillard et al.
2019] and two by the algorithm of Zhang and Guilbert [2016]
(Figure 16). The input structures incorporated randomness on the
pixel level, which is difficult to reproduce by an L-system. Our al-
gorithm mimicked this by adding Perlin noise [Perlin 2002] to the
detected segments. We also generated variations with segments
differing in width and color based on the Strahler stream order.

ACM Transactions on Graphics, Vol. 39, No. 5, Article 155. Publication date: June 2020.

Fig. 16. Three river network images as input: top [Gaillard et al. 2019],
middle, and bottom [Zhang and Guilbert 2016]. Left-right: input, de-
tected result, reconstructed straight branches, structure with adding Per-
lin noise, and branching with random parameter variations where the seg-
ment width and colors are assigned according to the Strahler stream order.

Fig. 17. Lichtenberg image (top) and a stream network (bottom). Left—
right: input, detected result, reconstructed straight branching pattern, and
branches after adding Perlin noise.

Another example in Figure 17 shows a Lichtenberg image and a
stream network delineation from a digital elevation model of a real
river. These examples were more challenging, because the images
are blurry and have varying branch width and color. Although we
did not have such data available for training, our neural network
detected most of the stream segments, and our grammar inference
captured the branching structure well.

Artistically designed images: By training the detection algorithm
with complex patterns, our algorithm can be applied to extract L-
systems from artistic designs such as the examples in Figure 18.
These L-systems can be then used to synthesize structural varia-
tions of the branching styles.



Inverse Procedural Modeling of Branching Structures by Inferring L-Systems  «

Fig. 18. Left: input artistic images. Middle: derivation results using our
inferred grammar. Right: the reproduced designs by manually positioning
the patterns according to the inferred branching structures (middle).

(a) (b) (©) (d)

Fig. 19. Editing the rule from Figure 12(d): (a) original rule; (b) changed
branch scale; (c) randomly changed branching angle and scale; (d) modi-
fying a subpart of the rule creates a quite different branching structure.

5.4 Applications via Rule Editing

Our algorithm can also aid synthesis of various plants and pat-
terns by rule editing. Given an L-system, we synthesized various
results by adjusting rule parameters such as branching angles or
scaling factors, or modifying a part of a production rule as shown
in Figure 19.

Pattern layout variations: We furthermore synthesized complex
decorative patterns using the detected grammars from some in-
put images (Figure 20). The inputs were analyzed and the rules
were determined, then the grammars were manually edited and
parameters were changed to generate different layouts based on
the inputs.

5.5 Limitations

We use a neural network to detect instances and the generalization
of the detector is limited by the richness of the training dataset.
To detect images with unseen examples, the user needs to provide
a library of possible templates, and re-train the detector. Our
method may fail when there are significant occlusions between
instances or instances become very small after deep recursions.
For example, in Figure 21 it is difficult for the detector to correctly
detect all instances. In addition, our detection system mostly
focuses on curvilinear drawings and is not specifically designed
to infer other semantic indications artists might use such as
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Fig. 20. Synthesis of layout variations: Left: input layouts that are
analyzed and coded as L-systems. Right: generated new layouts via rule
editing.

Fig. 21. Failure examples: our method cannot handle very small instances
(left) and significant occlusion (right).

thickness and colorations of strokes used to delineate parts (e.g.,
trunk vs branches of a tree), or textural cues such as a bumpy
boundary used to indicate a leaf canopy.

Our application to real-world photographs was conducted on
extracted skeletons of these photographs, because training a de-
tection network on such photographs requires thousands of im-
ages with annotations, which is difficult to collect and out of the
scope of this article. Extension to directly handle very complex
real-world images is challenging future work.

Last, the way we build the tree representation of an input
prefers proximity of the objects and ignores global symmetries
and relations. It would be interesting to combine our approach
with approaches that consider global properties [Bokeloh et al.
2010; Guerrero et al. 2016; Stava et al. 2010].

ACM Transactions on Graphics, Vol. 39, No. 5, Article 155. Publication date: June 2020.
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6 CONCLUSION AND FUTURE WORK

We have addressed one of the most important open problems of
procedural modeling, i.e., finding a procedural representation of a
given input image of trees with branching structures. We tackled
this problem by introducing a novel approach that analyzes an in-
put image, detects a set of atomic elements by using deep learning,
and encodes the content into an L-system representation by using
greedy optimization that finds a compact grammar. Combining a
detector and optimization algorithm requires proper handling of
training data, variations, grouping, as well as handling overlaps of
element instances. We have demonstrated our approach on a vari-
ety of examples, including both synthesized and non-synthesized
images. The inferred L-systems can be easily edited and used for
distributing other patterns.

In the future, we will work on the two main limitations of our
approach: extending it to support 3D structures and to allow for
describing closed objects or structures with loops.
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