Automatic Assertion Generation from Natural
Language Specifications Using Subtree Analysis

Junchen Zhao
Department of Computer Science
University of California Irvine
Irvine, CA, USA
junchez3@uci.edu

Abstract—We present an approach to generate assertions from
natural language specifications by performing semantic analysis
of sentences in the specification document. Other techniques
for automatic assertion generation use information found in the
design implementation, either by performing static or dynamic
analysis. Our approach generates assertions directly from the
specification document, so bugs in the implementation will
not be reflected in the assertions. Our approach parses each
sentence and examines the resulting syntactic parse trees to locate
subtrees which are associated with important phrases, such as the
antecedent and consequent of an implication. Formal assertions
are generated using the information inside these subtrees to fill
a set of assertion templates which we present. We evaluate the
effectiveness of our approach using a set of statements taken
from a real specification document.

I. INTRODUCTION

Assertion-based verification (ABV) [4] is a well used hard-
ware verification technique and an important topic of research.
An assertion is a program invariant which is evaluated during
hardware simulation to perform automatic result checking.
The use of assertions normally requires the manual definition
of executable assertions, a process which is time-consuming
and difficult. The work presented in this paper seeks to
alleviate the difficulties of assertion definition by creating
assertions automatically from natural language descriptions.
Natural language is semantically closer to the original intent
of the assertion in the mind of the human designer, so natural
language descriptions are faster to formulate and are less likely
to contain errors than manually-generated formal assertion
descriptions. In this work we specify executable assertions
using the SystemVerilog hardware verification language [15]
because it is widely accepted in practice.

Several previous research efforts have attempted to generate
properties and assertions using different formal languages in-
cluding CTL [8], ACTL[3], SystemVerilog [6], [14], and OCL
[9]. However, each of these approaches imposes limitations on
the generation process in order to make the problem tractable.
Several techniques rely heavily on manual interaction to
convert the original natural language into a form which is
easier to process [14], [9], [3]. Some techniques only process

This work was supported by the National Science Foundation (NSF) under
Award NSF-CNS-1813858.

978-3-9819263-2-3/DATE19/©)2019 EDAA

Ian G. Harris
Department of Computer Science
University of California Irvine
Irvine, CA, USA
harris @ics.uci.edu

a tightly constrained English subset [8], [3]. Previous work [6]
has presented an approach for this problem which depends on
the use of an attribute grammar [11] to define the formal
semantics of a subset of assertion descriptions in English. The
approach is effective but it has the weakness that the attribute
grammar had to be defined by hand, a tedious and time-
consuming task. Research presented in [5] improves on the
initial approach by using a learning technique to automatically
generate the attribute grammar. In this paper we present an
approach to automatically generate SystemVerilog assertions
directly from natural language descriptions in English. The
approach presented in this paper advances previous work by
performing subtree identification to locate key information
inside the parse tree of a sentence.

The many-to-many relationship between natural language
descriptions and formal behavioral descriptions exposes the
problem of linguistic variation which must be addressed.
Linguistic variation in natural languages describes the fact that
a single concept to be expressed by many acceptable natural
language statements. We address linguistic variation in two
ways. Subtree identification is resistant to syntactic variation
because different sentence syntax may change the location of
the subtree, but typically does not alter the subtree itself. So the
subtree can still be located, even in a sentence with different
syntax. We address morphological variation by using synonym
lists and lemmatization to normalize our approach.

II. MAPPING FROM NATURAL LANGUAGE TO
SYSTEMVERILOG

Our approach maps between two domains: natural language
sentences and SystemVerilog assertions. In this section we
characterize the natural language sentences, the SystemVerilog
assertions, and the mapping between the two domains.

A. Characterization of Sentences

We analyze sentences which express a declarative mood,
meaning that the primary function of the sentence is to declare
information. Sentences in English can express other moods
such as an interrogative mood which requests information, and
an imperative mood which issues commands. We assume that
most sentences in a specification will express a declarative
mood. We restrict our analysis to declarative sentences in one

Authorized licensed use limited to: Access paid by The UC Irvine Libranes. Downloaded on June 30,2020 at 17:36:36 UTC from IEEE Xplore. Restrictions apply.

of two categories. We consider either simple statements or
conditional statements.

A simple statement declares relationship between an object
and its legal values using a single predicate. Examples of
simple statements include, “signal X is HIGH”, “Y must be
asserted”, and “Z must be stable”. The common grammatical
structure of a simple statement is a noun phrase (NP) which
contains the name of a specification object, followed by a verb
phrase (VP) containing a verb and a direct object if one is
present. A conditional statement is one which expresses a fact
which is true only if certain conditions are met. Examples
of conditional statements include, “if X is HIGH then Y is
LOW?”, and “A is asserted when B is HIGH”. Each conditional
statement contains two clauses, a main clause which expresses
a fact, and a conditional clause which expresses the conditions
under which the main clause is true. For example, the sentence,
“if X is HIGH then Y is LOW”, contains a main clause, “Y
is LOW™, and a conditional clause, “X is HIGH”.

We assume that the main and conditional clauses are com-
posed of a series of simple statements combined with the
conjunctions “and” or “or”, as in the conditional statement,
“if A is HIGH and B is LOW then C is greater than 2”. In
this sentence, the conditional clause is the conjunction of the
simple statements “A is HIGH” and “B is LOW™. In general,
a main clause or conditional clause may be more complicated
than the conjunction of simple statements, but we do not
address such statements because they are uncommon due to
their relative complexity.

System behavior is described by expressing constraints on
the values of a set of specification objects which represent
required artifacts in the final design. Our research focuses on
the analysis of hardware specification and in that domain, the
specification objects are registers which hold values indefi-
nitely, and signals which hold values as long as they are driven.
As an example, the statement “A is HIGH” constrains the value
of either a register or a signal names “A”.

B. Characterization of Assertions

We define three SystemVerilog templates which capture the
structure of the assertions which we generate. Each template
contains a number of slots which are represented by variables
and must be replaced by valid SystemVerilog code in order
to completely specify the assertion. Figure 1 shows the three
assertion templates we define.

Template 1 vl Zop 2v2
Template 2 2op (2vl)
Template 3 | ?ante |— > ?neg ?cons

Fig. 1. SystemVerilog Assertion Templates

The first two templates in Figure 1 correspond to simple
statements which are independent of any condition. The first
template imposes a constraint on the the value of a sig-
nal/variable using a comparison operator, where ?v1 and 7v2
are two values being related, and 7op is the relation operator.
Examples of SystemVerilog matching the first template include

Design, Automation And Test in Europe (DATE 2019)

“X =17 or “Y > 5”. The second template constrains a
signal/value using a unary function which is part of the
SystemVerilog language, such as “$rise” or “$stable”. An
example of template 2 is “$stable(X)”. The third template is
a conditional relationship between an antecedent 7ante, and
a consequent ?cons. The 7neg slot is a negation operator,
if negation is stated in the natural language sentence. The
third template includes the SystemVerilog implication symbol
“|= >

The three templates can be combined hierarchically in order
to form more complex assertions. For example, the assertion
“(X =35) |- > $stable(Y)” matches template 3 and it contains
an antecedent “X = 5” which matches template 1, and a
consequent “$stable(Y)” which matches template 2.

C. Mapping using Subtrees

Given a SystemVerilog template with a set of slots, the
task of generating an assertion is reduced to filling each
slot of the template based on the natural language sentence.
This requires the identification of phrases inside the natural
language sentence which correspond to each slot. For example,
the sentence “X must be stable.” is mapped to template 2, ?op (
?vl), by mapping the phrase “X” to the slot ?v1, and mapping
the phrase “must be stable” to the slot ?op.

We extract syntactic information about a sentence by gener-
ating a syntactic parse tree using a context-free grammar. The
English language is not context-free [7] but the efficiency of
context-free parsers have led to their acceptance for capturing
English and other natural languages in practice. A context-
free parser recognizes strings in the language and determines
a derivation of the string from the productions of the language,
if one exists. The derivation, in the form of a syntactic parse
tree, represents a hierarchical mapping from between symbols
based on the production rules.

We observe that each slot in a template can be associated
with a matching subtree which is used to identify the
corresponding phrase in natural language sentence. For each
slot, the syntactic parse tree of the sentence is searched to
find the matching subtree. The phrase which corresponds to
the slot is the phrase which is underneath the matching subtree
in the syntactic parse tree of the sentence.

Root

(@) (b) ()

Fig. 2. Matching subtrees for slots in Template 3, (a) ?ante, (b) ?cons, (c)
Tneg

The concept of a matching subtree is more easily understood
by example. Figure 2 shows matching subtrees for the slots in
template 3 which describes conditional assertions. Our claim
is that these subtrees can be found in the syntactic parse trees

599

Authorized licensed use limited to: Access paid by The UC Irvine Libranes. Downloaded on June 30,2020 at 17:36:36 UTC from IEEE Xplore. Restrictions apply.

majority of conditional sentences, and that the subtrees found
underneath each matching subtree describes the phrases for
each slot. We show an example of the subtree identification
process using the following three conditional sentences.
1) “A value of X on WLAST is not permitted when
WVALID is HIGH.”
2) “Asserting AWID is not allowed when TEST is LOW.”
3) “When WVAID is HIGH a value of X on WLAST is
not permitted.”
The first two sentences are taken from the AMBA 3 AXI
Protocol Checker User Guide [2] which contains a set of
assertions for the AMBA 3 AXI bus protocol. The third
sentence is an alternate statement of the first sentence which
we created in order to demonstrate the flexibility of our
approach.

= S
NP B
T
DT MM IN MP :2:-’._»1??
I Al
A wvalue of NP d W s
| \ ///\ \\
HP Illl MNP WRE [NP f \
||| LN\ A
on !',I|P when HT:‘ \«"(|3._'-' AD|JP
WLAST/ WVALID is JJ

> §) L J

~ _

——

Fig. 3. Parse tree for sentence 1

R .
\ Assering AWID / is’_nat /VEN
G T — |

e allowed WHADVP "8

| & ™
MRS / NP VP \
| £)
-».in P sz £D|vP
TEST is RS

' L/
A Loy
\'“\-___/ >

Fig. 4. Parse tree for sentence 2

Figures 3, 4, and 5 show the parse trees of sentences 1, 2,
and 3, respectively. In each parse tree the matching subtrees
for each slot are highlighted, as shown in Figure 2, and the

600

WHADVP NP
| P (N N Il | J |
WRE NP VP DT NN N NP is'. nct/ VBN
Pt oy =
| [| | N |
When NNP VBZ ADJP a value of NP FP permitted
| | VAN
WVALID s 3 NNP IN NP
HIGH | X on NNP
| [
p WLAST/

Fig. 5. Parse tree for sentence 3

subtrees beneath them. The subtree for the ?ante slot is shown
in red, the ?cons slot is shown in blue, and the 7neg slot is
shown in green.

The main observation to make based on Figures 3, 4, and
5 is that the same set of matching subtrees is used to identify
phrases corresponding to each slot, in spite of the apparent
differences in the sentence structures. Sentences 1 and 2 differ
in the way in which signal assertions are referenced, “A value
of X on WLAST” vs. “Asserting AWID”. Sentences 1 and 3
differ in the ordering of the antecedent and the consequent:
consequent first in sentence 1 and antecedent first in sentence
3. The use identification of subtrees allows the extraction of
slots in the presence of significant linguistic variation.

III. ALGORITHM FOR ASSERTION GENERATION

The algorithm used to generate a SystemVerilog assertion
from a natural language sentence is shown in Figures 6 and
7. The main function is the GenerateSV () function shown
in Figure 6. GenerateSV () takes a sentence as an argument
and returns either the equivalent SystemVerilog assertion, or
NULL if the generation process was not successful. The loop
starting at line 2 iterates through each template and attempts
to fill the slots of that template by calling the F'illT'emplate()
function on line 3. If the slots of a template are filled then the
SystemVerilog assertion is returned at line 5. If no template
can be filled then NULL is returned at line 6.

1. GenerateSV(sentence n)

2 foreach template t

3. sv = FillTemplate(t, n)
4. if sv != NULL

5 return(sv)

6 return(NULL)

Fig. 6. Algorithm to Generate SystemVerilog Assertion
The FillTemplate() function shown in Figure 7 takes a

sentence and a template as arguments and returns either the
SystemVerilog assertion produced by filling each template, or

Design, Automation And Test in Europe (DATE 2019)

Authorized licensed use limited to: Access paid by The UC Irvine Libranes. Downloaded on June 30,2020 at 17:36:36 UTC from IEEE Xplore. Restrictions apply.

NULL if one or more slots cannot be filled. The main loop of
the function, starting on line 3, iterates through each slot and
attempts to fill the slot by calling the F'indM atch() function
on line 4. If no matching phrase is found for a slot the NULL is
returned at line 6. If the phrase matches a slot refers to only
terminals (signals, constants, SystemVerilog operators) then
the SystemVerilog is directly generated from each terminal
to produce the assertion, on line 8. If the matching phrase
contains at least one non-terminal sub-phrase, then the function
GenerateSV() is called recursively with the phrase as an
argument to generate its SystemVerilog.

1. FillTemplate(template t, sentence n)

2 filledT = NULL

3 foreach slot s in t

4 matchText = FindMatch(s, t, n)

5. if matchText == NULL

6 return(NULL)

7 if matchText is Terminal

8 matchSV = Terminal(matchText)
else

10. matchSV = GenerateSV(matchText)

11. Substitute(matchSV, filledT)

12. return(filledT)

el

Fig. 7. Algorithm to Fill Slots in a Template

The FindMatch() function identifies the phrase in a sen-
tence which matches a slot in a template. This is performed
by identifying the matching subtrees for the slot, as described
in Section II-C. We use the Stanford Parser [13] to generate
syntactic parse trees for each sentence, and we use the Tregex
tool [12] to locate subtrees within a parse tree.

IV. EXPERIMENTAL RESULTS

To evaluate our approach, we have used our system to
generate SystemVerilog assertions from natural language prop-
erty statements created for the AMBA AXI 3 bus protocol
[1] developed by ARM Inc. Our benchmark set consists of
a set natural language assertion statements taken from the
AMBA Protocol Checker [2] which presents a set of assertions
which can be used to validate an AMBA implementation.
Our current approach comprehends assertion statements which
directly constrain signals and registers defined in the protocol.
For this reason, we evaluate our system with the subset of
81 assertion statements taken from [2] which directly refer
to system signals and registers. Our code is implemented in
Java and all results were executed using a 1.6 GHz Intel i5
processor with 8Gb RAM. We use the Stanford Parser [10] to
generate parse trees and we use the Tregex tool [12] to locate
subtrees within parse trees.

Out of the set of 81 natural language statements, our system
correctly generated SystemVerilog assertions for 71, resulting
in 87.6% correctness. The total CPU time required to process
all 81 assertions is 0.57 seconds.

Design, Automation And Test in Europe (DATE 2019)

V. CONCLUSIONS

We present an approach to generate formal logic assertions
directly from English text found in hardware specifications.
The approach allows designers to describe behavioral con-
straints using the language which they are most comfortable
with, natural language. By raising the abstraction level of the
description, this approach saves designer time in generating
assertions, and designer time in debugging errors in complex
assertions.

We have evaluated the approach with text from a real hard-
ware specification and found that our technique is effective
for a range of English used in specifications. The approach
also has some limitations in terms of the English which it
can process, such as references to abstract objects. We have
identified several of these limitations through testing and we
intend to address them in future work.

REFERENCES

[1] ARM Ltd. AMBA AXI Protocol Specification, v1.0, 2003.

[2] ARM Ltd. AMBA 3 AXI Protocol Checker User Guide, 2009.

[3] A. Fantechi, S. Gnesi, G. Ristori, M. Carenini, M. Vanocchi, and
P. Moreschini. Assisting requirement formalization by means of natural
language translation. Formal Methods in System Design, 4(3), 1994.

[4] Harry Foster. Applied Assertion-Based Verification:An Industry Perspec-
tive. Now Foundations and Trends, 2009.

[5] C. B. Harris and Ian G. Harris. Glast Learning formal grammars to
translate natural language specifications into hardware assertions. In
2016 Design, Automation Test in Europe Conference Exhibition (DATE),
March 2016.

[6] Ian G. Harris. Capturing assertions from natural language descriptions.
In Workshop on Natural Language Analysis in Software Engineering
(NaturaLiSE), May 2013.

[7] James Higginbotham. English is Not a Context-Free Language, pages
335-348. Springer Netherlands, 1987.

[8] Alexander Holt and Ewan Klein. A semantically-derived subset of
english for hardware verification. In Proceedings of the 37th Annual
Meeting of the Association for Computational Linguistics on Computa-
tional Linguistics, 1999.

[9] O. Keszocze, M. Soeken, E. Kuksa, and R. Drechsler. Lips: An IDE
for model driven engineering based on natural language processing. In
Natural Language Analysis in Software Engineering (NaturaLiSE), 2013
15t International Workshop on, May 2013.

[10] Dan Klein and Christopher D. Manning. Accurate unlexicalized pars-
ing. In Proceedings of the 41st Annual Meeting on Association for
Computational Linguistics - Volume 1, 2003.

Donald E. Knuth. Semantics of context-free languages.
Computing Systems, 2(2):127-145, June 1968.

R. Levy and G. Andrew. Tregex and tsurgeon: tools for querying
and manipulating tree data structures. In International Conference on
Language Resources and Evaluation, 2006.

Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel,
Steven J. Bethard, and David McClosky. The Stanford CoreNLP
natural language processing toolkit. In Association for Computational
Linguistics (ACL) System Demonstrations, pages 55-60, 2014.

[14] Wolfgang Mueller, Alexander Bol, Alexander Krupp, and Ola Lundkvist.
Generation of executable testbenches from natural language requirement
specifications for embedded real-time systems. In Mike Hinchey, Bernd
Kleinjohann, Lisa Kleinjohann, Peter A. Lindsay, Franz J. Rammig, Jon
Timmis, and Marilyn Wolf, editors, Distributed, Parallel and Biologi-
cally Inspired Systems, volume 329 of IFIP Advances in Information
and Communication Technology. Springer Berlin Heidelberg, 2010.
Chris Spear and Gref Tumbush. SystemVerilog for Verification. Springer,
2012.

[11]
[12]

Theory of

[13]

[15]

601

Authorized licensed use limited to: Access paid by The UC Irvine Libranes. Downloaded on June 30,2020 at 17:36:36 UTC from IEEE Xplore. Restrictions apply.

