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Abstract—We present an approach to simplify the task of ex-
tracting assertions from specifications given in natural language.
Our goal is to accept and understand a broad range of linguistic
variation, allowing the author of the natural language specifica-
tions to express herself freely. To enable this, we leverage the
Dialogflow framework from Google. Dialogflow is usually used
to build chatbots that understand and respond to conversational
statements. We have trained a Dialogflow model to recognize
a range of different natural language expressions of properties,
and to identify key information inside the expression. The model
responses to each statement with a generated SystemVerilog
assertion whose semantic meaning is equivalent to that of the
English statement.

Index Terms—Assertion-based Verification, Natural Language
Understanding, Automatic Assertion Generation, Assertion Min-
ing

I. INTRODUCTION

Using assertions is a well established hardware verification
technique (assertion-based verification, ABV, see, e.g., [1]
and an important research topic. An assertion describes an
invariant (or property) of the hardware that is evaluated during
hardware simulation in order to perform automated test-based
verification. The use of assertions normally requires the man-
ual definition of executable assertions based on specifications
written in natural language (usually English); a process which
is time-consuming, difficult, and error-prone.

Natural language is semantically closer to the original
intent of the assertion in the mind of the human designer, so
natural language descriptions are easier and faster to formulate,
and are less likely to contain errors than manually-generated
formal assertion descriptions. In this work we generate as-
sertions in the SystemVerilog hardware verification language
(see, e.g., [2]). The choice is taken as SystemVerilog is a
widely-used industry standard. Natural language can contain
ambiguity in the interpretation of words or sentences which
would complicate the generation process (i.e. should “or” be
interpreted as “xor”?). However, we have found that the text
in specifications is written in a consistent way and we have
been able to generate correct assertions as a result.

Several previous research efforts have attempted to generate
properties and assertions using different formal languages

including CTL [3], ACTL [4], SystemVerilog [5, 6], and
OCL [7]. Some of these techniques rely heavily on manual
interaction to convert the original natural language into a form
which is easier to process [6, 7, 4] while other approaches
only allow a restricted version of the English language to be
used [3, 8].

Previous work on natural language processing (NLP) for
extracting formal descriptions/assertions from textual specifi-
cations (see, e.g., [9, 7]) note that the process seems to require
some “conversation” between the presented techniques and
the designer. The work presented in this paper builds upon
this idea by exploiting recent advances in the development of
frameworks the creation of chatbots. These bots are designed
to interact with a human being, trying to understand the prob-
lem of the dialog partner, answering it and, hopefully, solving
it. In the context of this work, the solution provided by the bot
will be a SystemVerilog statement that was created by parsing
and understanding a sentence taken from a specification.

II. BACKGROUND

A. Natural Language Processing

Natural language processing (NLP), coming from the field
of linguistics, traditionally tried to automate the process of
analyzing natural language sentences and creating structured
descriptions of these sentences. For this, usually some kind
of grammar (e.g. constituency grammars [10] or dependency
grammars [11]) to create a graph representing the structure
of the sentence. For the sentence “The server delivers the
website”, the dependency graph would, for example, yield
the link “delivers”

dobj→ “website” indicating that the word
“website” is the direct object for the word “delivers”. Figure 1
shows (a) the phrase structure tree for the sentence and (b) the
full dependency graph; for details, we refer to [12].

A human reader would immediately understand that the
word “server” in the previous example does not refer to a
person working in a restaurant. An automated processing of
the sentence could make use of a dictionary to perform word
sense disambiguation (e.g. using WordNet [13]).

Given the senses of the words and a structural understanding
of the sentence, researchers tried to generate various formal978-1-7281-4113-8/19/$31.00 © 2019 IEEE
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Fig. 1. (a) Phrase structure tree and (b) dependency graph of the sentence
“The server delivers the website”

representations for various applications (see the related work
discussion below). Recently, these techniques above have
been supplemented by methods from statistics and artificial
intelligence. The idea is to take a learning set of annotated
(e.g. with the intent or sentiment) sentences and then train
a classifier on them. Most prominent in this context is deep
learning (see the recently published book [14]). Finding the
intent of a sentences is the basic operation of the chatbot
systems explained below. It should be noted that learning-
based NLP can perform well with respect to finding the intend
of a sentence but usually gives little insight into the linguistic
structure of the sentence.

B. Chatbots

Chatbots (more technically: dialog systems or dialog man-
agers) are pieces of software that are usually used as an
interface between a company and its customers. The tasks
performed by these bots can range from simple technical
support for products (e.g. the classical “Have you tried turning
it off an don again?”) to ordering products offered by the
company.

In recent years, the market for chatbots has grown rapidly.
Many companies offer frameworks with varying features and
pricing models (e.g. Chatfuel, Google Dialogflow, Microsoft
Bot Framework, Twilio, Rasa1). This trend is reflected in
the amount of text books covering chatbot development (see,
e.g., [15, 16, 17]).

The basic idea behind these systems is to accept a chat
message by a user which is analyzed using NLP techniques
discussed above. There are two important tasks which chatbots
must perform and whose solutions we are leveraging to gener-
ate assertions from specifications. The first task is called intent
classification [18] and it is the association of an utterance with
one of a set of expected “intents” which capture the meaning
being conveyed. Based on the intent classification, the chatbot
generates a response which is appropriate. In the case of the
Dialogflow [19] chatbot framework, the chatbot developer has
to provide training sentences for each intent, that are used to
classify the user input. The sentences “I want to order pizza.”

1See https://chatfuel.com/, https://dialogflow.com/, https://dev.
botframework.com/, https://www.twilio.com/, and https://www.rasa.com/
for the respective websites

and “I’ll take pizza”, for example, could be used to train an
intent for ordering pizza.

The second important task is referred to as slot filling [20].
Slot filling is the extraction of text spans from the utterance
which have some meaning with respect to the intent. The
Dialogflow framework refers to these text spans as parameters
and each intent can be associated with a set of parameters
which the chatbot can use to generate the response. In the
previous example, a parameter could be “pizza”, allowing a
chatbot that is designed to deliver a huge variety of orders
to answer with “We will deliver your $product right away”
where “$product” is replaced by “pizza”.

C. Related Work

Automatically processing large text bases for knowledge
extraction is an approach that is wide-spread. It ranges from
collecting information from annotated sources in medicine
where the authors (i.e. doctors and clinical personnel) had
no restrictions when writing (see, e.g., [21]) to understanding
legal documents that need to meet certain criteria with respect
to the chosen words and sentence structure (see, e.g., [22]).

This work presents a method to extract assertions from
natural language texts. The idea of automatically creating
assertions is known as assertion mining and a well-established
technique within the design automation community. Within
this context, often the inputs to be analyzed are traces of
the system under evaluation and the generated assertions are
temporal logic (see,e.g. [23]).

Using UML/OCL [24] as an intermediate language before
code generation is another commonly used approach. In [6],
the authors create executable testbenches for embedded real-
time systems. The approach starts by normalizing unstructured
sentences into a textual normal form that is composed of
unambiguous only. These sentences are then transformed to
UML model from which, in turn, a SystemVerilog testbench is
created. The authors of [7] follow a more interactive approach.
They created an IDE which (semi-)automatically extracts a
model and corresponding OCL constraints (which can be seen
as assertions) of the system specified in the natural language
sentences. For doing so, the tool makes use of the techniques
introduced in Section II-A. The graphs are presented to the
user who then can use it to annotate ambiguous parts of the
sentence to match the intent.

Several recent approaches achieve good results using
context-free grammars (CFGs) to generate a parse tree of
each sentence and analyze its structure [25, 26]. CFG-based
approaches have a long history in the field of NLP research
and are often effective, but they have the disadvantage that
they tend to require a large amount of manual effort to
develop. For example, the approach presented in [25] presents
a semantic grammar developed specifically for their dataset.
The development of a semantic grammar is a completely
manual task which would likely need to be repeated in order to
apply the approach to a new text corpus. The approach in [26]
uses a CFG for English which is generalized for all English
sentences, but the approach relies on the identification of
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subtree patterns in the parse tree. The identification of subtree
patterns is a time-consuming and difficult manual process.

The advantage of the approach which is presented in this
paper over previous CFG-based approaches is the reduces
manual effort required to accommodate a new text corpus.
Our approach relies on the machine learning approaches built
into the Dialogflow tool, so modeling a new text corpus would
only require providing new training examples from the corpus
and performing training again. Dialogflow fully automates the
training process and the number of examples required for
training is very small (less than 30 in total) as described in
our results. Our approach generates results which are of similar
quality to CFG-based approaches [25, 26], but our approach
is much easier to develop and extend to new types of text in
the future.

III. METHODOLOGY

We believe, that an interactive approach, such as in [7], is
the right way of analyzing natural language. Our approach,
though, does also automate the interaction between the NLP
tool (i.e. the Dialogflow agent) and the designer who wants to
create a SystemVerilog assertion by replacing the designer by
a piece of software having a “dialog” with the agent until the
assertion could be created.

Figure 2 shows the structure of the assertion generation
system. The center of the system is the Assertion Generator
which accepts an assertion sentence, written in English, and
produces a SystemVerilog assertion whose function matches
the meaning of the assertion sentence. The Assertion Generator
communicates with the remote Dialogflow servers using the
Dialogflow API. We have developed a chatbot “agent” which
executes on the Dialogflow servers and is used to perform
intent classification and slot filling. The Assertion Generator
sends an English statement to the Dialogflow agent, and the
agent returns the intent of the statement together with the
intent parameters found in the statement. Given the intent
and the parameters, the Assertion Generator constructs the
SystemVerilog assertion.

Fig. 2. Assertion Generation System

The assertion generation process is clarified with the fol-
lowing example, Sentence 1: “SIGNAL1 must be HIGH”. This
sentence is transmitted to the Dialogflow agent which returns
the intent and parameters as shown in Table I. The intent
equality indicates that the SystemVerilog operator, “==”, will
be used to relate two values. The parameters lhs and rhs are

the arguments of the “==” operator on the left-hand-side and
right-hand-side, respectively. The resulting assertion is “assert
property (SIGNAL1 == 1);” which combines the parameters
and the equality operator.

TABLE I
RESULTS FROM DIALOGFLOW FOR SENTENCE 1

Intent: equality

Parameters: lhs = “SIGNAL1”, rhs = “1”

In order to process more complicated assertions, the genera-
tion sends parameters to the Dialogflow agent recursively until
all parameters are either signals or constants which are directly
included in the assertion. An example is the processing of the
following, Sentence 2: “SIGNAL1 is HIGH when SIGNAL2 is
LOW”. The Dialogflow agent returns the intent and parameters
as shown in Table II. The intent “implication” indicates that
the SystemVerilog operator, “|->”, will be used to relate the
antecedent and the consequent. The antecedent “SIGNAL2 is
LOW” and the consequent “SIGNAL1 is HIGH” are not purely
signals or constants, so they are each recursively sent to the
Dialogflow agent for further processing. The final assertion,
“assert property ((SIGNAL2 == 0) |-> (SIGNAL1 == 1));”,
is produced by combining the results of the antecedent and
consequent with the “|->” operator.

TABLE II
RESULTS FROM DIALOGFLOW FOR SENTENCE 2

Intent: implication

Parameters: antecedent = “SIGNAL2 is LOW”,
consequent = “SIGNAL1 is HIGH”

A. Dialogflow Agent

We have opted to chose the Dialogflow framework [19]
in our work. The reason for this choice is that Dialogflow
offers an easy to use web-interface as well as support for
multiple programming languages, a large community, and an
extensive documentation. Unfortunately, it is very difficult
to base the choice of the chatbot on the natural language
parsing accuracy/quality as it is not published on the websites
and furthermore difficult to measure in the first place (see,
e.g., [27] for an introduction), especially as an end-user. Note
that this problem applies to all presented chatbot frameworks.

The Dialogflow agent is used to perform intent classification
and slot filling for each sentence and phrase. Developing the
agent requires two steps which we describe here, (1) defining
the intents and their parameters, and (2) training the agent to
recognize each intent and parameter.

B. Intents and Parameters

We developed an intent for each SystemVerilog operation
which our tool can generate in final assertion. For this reason,
each intent corresponds to an operation string which is the
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string representing the corresponding SystemVerilog opera-
tion. Each intent has a set of parameters which correspond to
the arguments of the SystemVerilog operation. Each parameter
value is a span of text in the original sentence which may be
a simple signal/constant, or may be a more complex phrase.
If the parameter value is a signal name or a constant then it
is used directly in the final assertion. If the parameter value
is more complex then it is recursively sent to the Dialogflow
agent in order to resolve it further.

The following is the list of intents which we have defined.
Note that this set can be expanded to include a wider range
of SystemVerilog operations in the future.

• Implication – This intent corresponds to the use of
the implication operation string “|->” and is typically
recognized by the use of words such as “if”, “then”, and
“when”. This intent has two parameters, antecedent and
consequent.

• Conjunction – This intent corresponds to the use of the
implication operation string “&&” and is recognized by
the use of words such as “and” and “also”. This intent
has two parameters, the argument on the left-hand-side,
lhs, and the right-hand-side, rhs.

• Equality – This intent corresponds to the use of the
equality operation string “==” and is recognized by the
use of words such as “is”, “is the same as”, and “must
be”. This intent has two parameters, the argument on the
left-hand-side, lhs, and the right-hand-side, rhs.

• Inequality – This intent corresponds to the use of the
inequality operation string “!=” and is recognized by the
use of words such as “is not” and “must not be”. This
intent has two parameters, the argument on the left-hand-
side, lhs, and the right-hand-side, rhs.

• Stability – This intent corresponds to the use of the
SystemVerilog stability function “$stable()” and is rec-
ognized by the use of phrases such as “must be stable”.
This intent has one parameter the signal which is required
to be stable, sig.

• Assertion – This intent corresponds to the use of the
equality operation, together with the value 1, “== 1” and
is recognized by the use of phrases such as “must be
asserted” or “is asserted”. This intent has one parameter
the signal which is required to be asserted, sig.

• Until – This intent corresponds to the use of the “until”
operation and is recognized by the use of the word
“until”. This intent has two parameters which correspond
to two peroperties which are related in time. We assume
that the two related properties are non-overlapping in
time.

C. Training

The Dialogflow agent must be trained to recognize sentences
which match each intent, and to identify the values of the
parameters of each intent inside a sentence. When developing
the agent, we provided a set of training sentences for each
intent. Each training sentence for an intent must be manually
labeled in order to identify the parameter values in each

sentence. After the training sentences have been provided,
the Dialogflow system uses machine learning approaches to
generalize the training sentences and recognize the intent of
sentences which are not contained in the training set.

An important feature of the Dialogflow training approach is
that it requires very few training examples in order to provide
good results. For our agent, the number of training examples
which we provided varied between 2 and 6 for each intent.
This is very low compared to traditional supervised learning
approaches. Although the precise nature of the machine learn-
ing approach used by Dialogflow is proprietary, it is reasonable
to assume that the agents are pre-trained using a large, domain
non-specific corpus. The pre-training would enable the agent
to understand the structure of English sentences in general
and only a few additional training sentences are needed to
characterize the specific domain.

The Implication intent, for example, was trained with the
sentences shown in Listing 1. The antecedent and consequent
of the implications are annotated as indicated by the blue italic
and green bold face fonts, respectively. These annotations are
used by the Dialogflow agent in the slot filling step. As can
bee seen, we used linguistic variants of the implication, i.e.
sentences where the antecedent is placed before the conse-
quent and vice versa. This, as well as sentence 4), where
an antecedent consisting of more words than in the other
training sentences, is done to allow the agent to generalize
the sentences.

1) when z is low, q is stable
2) q is stable if z is low
3) z is low when x is high
4) if x is high and y is high then z is low
5) if x is high then y is low
6) if z is stable then a is low

Listing 1. Training sentences for the implication intent

IV. ALGORITHM

Algorithm 1 presents the pseudo-code of our approach to
assertion generation, which we refer to as AG for succinctness.
The function takes a single argument text which is a natural
language statement. The algorithm is recursive, so line 2
checks the end condition of the recursion. If the text is a
terminal (signal name or constant) then the text is returned
directly for inclusion in the final assertion. Line 5 invokes
DialogflowRequest() which submits text to the Dialogflow
agent and returns the response from the agent, including the
results of intent classification and slot filling. The remaining
conditionals, on lines 7–19, check the intent of the text and
return the appropriate SystemVerilog assertion strings. For
example, the condition on line 7 checks whether or not the
text is an implication. If it is, then the AG() function is called
recursively to resolve the antecedent and consequent, and the
final string is generated by combining the antecedent and
consequent with the ‘|->” operator. Similarly, the condition
on line 6 checks for the conjunction intent and generates the
final SystemVerilog assertion using the “&&” operator.
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Algorithm 1: Assertion generation from sentences
Data: user input text
Result: SystemVerilog assertion

1 AG text
2 if isTerminal(text) then
3 return text
4 end
5 res← DialogflowRequest(text);
6 intent← res.intent;
7 if intent =“implication” then
8 return AG(res.antecedent) + “|->” +

AG(res.consequent)
9 else if intent =“conjunction” then

10 return AG(res.lhs) + “&&” + AG(res.rhs)
11 else if intent =“equality” then
12 return AG(res.lhs) + “==” + AG(res.rhs)
13 else if intent =“inequality” then
14 return AG(res.lhs) + “!=” + AG(res.rhs)
15 else if intent =“stability” then
16 return “$stable(” + AG(res.sig) + “)”
17 else if intent =“assertion” then
18 return AG(res.sig) + “ == 1”
19 else if intent =“until” then
20 return AG(res.lhs) + “until” + AG(res.rhs)
21 else
22 return error
23 end
24 end

It should be noted that our approach differs from “tradi-
tional” approaches rooted in linguistics in the sense that we
make no use of linguistic concepts such as phrase structure
trees of dependency graphs (see Section II-A) directly. The act
of NLP is performed by the Dialogflow agent. The Assertion
Generator mainly deals with the correct decomposition of
logic structures.

V. EXPERIMENTAL RESULTS

To evaluate our approach, we applied it to natural language
assertion descriptions presented in the AMBA 3 AXI Protocol
Checker User Guide [28] which describes assertions for the
AMBA 3 AXI bus protocol [29]. We considered the 77 natural
language descriptions which refer only to signals which are
constrained, and constant values used to define the constraints.
Our tool successfully generated SystemVerilog assertions for
62 of the 77 sentences, a total of 81% (see Listing 2 for
two examples for which assertions could be generated). The
correctness of the generated assertions was checked manually.

Our approach failed on 15 of the 77 natural language
descriptions because each required a SystemVerilog operation
which was not supported by our current set of intents. The
cases where assertion generation failed were obvious because
the sentence matched an incorrect intent and the entities of
the intent could not be found. For this reason, whenever
assertion generation failed, the resulting assertion was not

sentence 1
AWID must remain stable when AWVALID is asserted
and AWREADY is LOW

assertion 1
assert property (((AWVALID == 1) &&
(AWREADY == 0)) |-> ($stable(AWID)));

sentence 2
A value of X on AWSIZE is not permitted when AW-
VALID is HIGH

assertion 2
assert property (((AWVALID == 1)) |->
(AWSIZE != X));

Listing 2. Automatically generated assertions and the sentences from which
they were extracted

syntactically correct because operators were missing their
required operands. 13 of the 15 missed assertions were the
timing-related expression ”first cycle after”. Examples of these
descriptions are ”AWVALID is LOW for the first cycle after
ARESETn goes HIGH”. As this timing constraint is supported
by SystemVerilog, it would be possible to extend our tool to
support it.

There are further cases where our approach incapable of
dealing in principle. One of these cases is when the pronoun
“it” is used to refer to some entity in a previous sentence.
Finding this entity is known as pronominal reference reso-
lution and would need to be dealt with explicitly. There are
approaches to this issue (see, e.g., [30]), but they do not fit
into the scope of our approach.

Other problems arise from sentences such as “A value of
X on AWVALID is not permitted when not in reset”. Here
“not in reset” describes an abstract concept that needs to be
understood before being able to create the correct assertion
from this sentence. In general, sentences that are not self-
contained but require further domain knowledge pose problem
to our approach.

VI. CONCLUSION & OUTLOOK

We have presented an approach to automatically generate
SystemVerilog assertions from natural language descriptions.
Our approach leverages the online chatbot framework Di-
alogflow to perform the intent classification and slot filling
tasks required. Using Dialogflow allowed us to benefit from
a strong machine learning approach without dealing with the
complexity of fully defining and training a model. Because the
chatbot framework is pre-trained with a large corpus of natural
language text, few additional training sentences are needed
to adapt to our domain. Our approach shows good results
and the same framework could be extended to accept many
new natural language descriptions which constrain timing and
signal transitions.

While developing our assertion generation tool, we noted
that using an online tool for the automated processing of large
specifications can lead to timeouts due to excessive requests to
the website. An obvious next step is to test tools, such as, for
example, Rasa [31], that allow for a local installation and to
compare its capabilities with our Dialogflow implementation.
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