
QPS-r: A Cost-Effective Iterative Switching Algorithm for
Input-Queued Switches

Long Gong

Georgia Tech

gonglong@gatech.edu

Jun (Jim) Xu

Georgia Tech

jx@cc.gatech.edu

Liang Liu

Georgia Tech

liuliang142857@gatech.edu

Siva Theja Maguluri

Georgia Tech

siva.theja@gatech.edu

ABSTRACT
In an input-queued switch, a crossbar schedule, or a matching

between the input ports and the output ports needs to be computed

for each switching cycle, or time slot. It is a challenging research

problem to design switching algorithms that produce high-quality

matchings yet have a very low computational complexity when the

switch has a large number of ports. Indeed, there appears to be a

fundamental tradeoff between the computational complexity of the

switching algorithm and the quality of the computed matchings.

Parallel maximal matching algorithms (adapted for switching)

appear to be a sweet tradeoff point in this regard. On one hand,

they provide the following performance guarantees: Using maxi-

mal matchings as crossbar schedules results in at least 50% switch

throughput and order-optimal (i.e., independent of the switch size

𝑁) average delay bounds for various traffic arrival processes. On

the other hand, their computational complexities can be as low as

𝑂 (log2 𝑁) per port/processor, which is much lower than those of

the algorithms for finding matchings of higher qualities such as

maximum weighted matching.

In this work, we propose QPS-r, a parallel iterative switching

algorithm that has the lowest possible computational complexity:

𝑂 (1) per port. Yet, the matchings that QPS-r computes have the

same quality as maximal matchings in the following sense: Using

such matchings as crossbar schedules results in exactly the same

aforementioned provable throughput and delay guarantees as using

maximal matchings, as we show using Lyapunov stability analysis.

Although QPS-r builds upon an existing add-on technique called

Queue-Proportional Sampling (QPS), we are the first to discover

and prove this nice property of such matchings. We also demon-

strate that QPS-3 (running 3 iterations) has comparable empirical

throughput and delay performances as iSLIP (running log
2
𝑁 itera-

tions), a refined and optimized representative maximal matching

algorithm adapted for switching.

CCS CONCEPTS
• Mathematics of computing → Markov processes.

ACM Reference Format:
Long Gong, Jun (Jim) Xu, Liang Liu, and Siva Theja Maguluri. 2020. QPS-r: A

Cost-Effective Iterative Switching Algorithm for Input-Queued Switches. In

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

VALUETOOLS ’20, May 18–20, 2020, Tsukuba, Japan
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7646-4/20/05. . . $15.00

https://doi.org/10.1145/3388831.3388836

13th EAI International Conference on Performance Evaluation Methodologies
and Tools (VALUETOOLS ’20), May 18–20, 2020, Tsukuba, Japan. ACM, New

York, NY, USA, 8 pages. https://doi.org/10.1145/3388831.3388836

1 INTRODUCTION
Many present day high-performance switching systems in Internet

routers and data-center switches employ an input-queued crossbar

to interconnect their input ports and output ports. In an 𝑁 × 𝑁

input-queued crossbar switch, each input port can be connected to

only one output port and vice versa in each switching cycle or time

slot. Hence, in every time slot, the switch needs to compute a one-

to-one matching between input and output ports (i.e., the crossbar
schedule). A major research challenge in designing high-link-rate

switches with a large number of ports (called high-radix [2, 3]) is to
develop algorithms that can compute “high quality” matchings – i.e.,
those that result in high switch throughput and low queueing delays

for packets – in a few nanoseconds. Clearly, a suitable switching

algorithm has to have very low computational complexity, yet

output “fairly good” matching decisions most of time.

1.1 The Family of Maximal Matchings
A family of parallel iterative algorithms for computing maximal
matching (one to which no edge can be added for it to remain

a matching, a definition that will be made precise in §2) are ar-

guably the best candidates for switching in high-link-rate high-

radix switches, because they have reasonably low computational

complexities, yet can provide fairly good throughput and delay per-

formance guarantees. More specifically, using maximal matchings

as crossbar schedules results in at least 50% switch throughput in

theory (and usually much higher throughput in practice) [4]. In

addition, it results in low packet delays that also have excellent scal-

ing behaviors such as order-optimal (i.e., independent of switch size

𝑁) under various traffic arriving processes when the offered load is

less than 50% (i.e., within the provable stability region) [17]. In com-

parison, matchings of higher qualities such as maximum matching

(with the largest possible number of edges) and maximumweighted

matching (with the highest total edge weight) are much more ex-

pensive to compute. Hence, it is fair to say that, maximal matching

algorithms overall deliver the biggest “bang” (performance) for the

“buck” (computational complexity).

Unfortunately, parallel maximal matching algorithms are still

not “dirt cheap” computationally. More specifically, all existing

parallel algorithms that compute maximal matchings on general
𝑁 × 𝑁 bipartite graphs require a minimum of 𝑂 (log𝑁) iterations
(rounds of message exchanges). This minimum is attained by the

classical algorithm of Israel and Itai [12]; the PIM algorithm [1]

is a slight adaptation of this classical algorithm to the switching

context, and iSLIP [15] further improves upon PIM by reducing its

https://doi.org/10.1145/3388831.3388836
https://doi.org/10.1145/3388831.3388836

VALUETOOLS ’20, May 18–20, 2020, Tsukuba, Japan Long Gong, Jun (Jim) Xu, Liang Liu, and Siva Theja Maguluri

per-iteration per-port computational complexity to 𝑂 (log𝑁) via
de-randomizing a computationally expensive (𝑂 (𝑁) complexity to

be exact) operation in PIM.

1.2 QPS-r: Bigger Bang for the Buck
In this work, we propose QPS-r, a parallel iterative switching al-

gorithm that has the lowest possible computational complexity:

𝑂 (1) per port. More specifically, QPS-r requires only 𝑟 (a small

constant independent of 𝑁) iterations to compute a matching, and

the computational complexity of each iteration is only 𝑂 (1); here
QPS stands for Queue-Proportional Sampling, an add-on technique

proposed in [8] that we will describe shortly. Yet, even the match-

ings that QPS-1 (running only a single iteration) computes have

the same (reasonably high) quality as maximal matchings in the

following sense: Using such matchings as crossbar schedules results

in exactly the same aforementioned provable throughput and delay

guarantees as using maximal matchings, as we will show using

Lyapunov stability analysis. QPS-r performs as well as maximal

matching algorithms not just in theory:Wewill show in §5 that QPS-

3 (running 3 iterations) has comparable empirical throughput and

delay performances as iSLIP (running log
2
𝑁 iterations), a refined

and optimized representative maximal matching algorithm adapted

for switching, under various workloads. Note that matchings that

QPS-r computes are generally not maximal. QPS-r canmake dowith

less (iterations) because the queue-proportional sampling operation

implicitly makes use of the queue (VOQ) length information, which

maximal matching algorithms do not. One major contribution of

this work is to discover the family of (QPS-r)-generated matchings

that is even more cost-effective.

Although QPS-r builds on the QPS data structure and algorithm

proposed in [8], our work on QPS-r is very different in three im-

portant aspects. First, in [8], QPS was used only as an add-on to

other switching algorithms such as iSLIP [15] and SERENA [6]

by generating a starter matching for other switching algorithms

to further refine, whereas in this work, QPS-r is used only as a

stand-alone algorithm. Second, we are the first to discover and

prove that (QPS-r)-generated matchings and maximal matchings

provide exactly the same aforementioned performance guarantees,

whereas in [8], no such mathematical similarity or connection was

mentioned. Third, the establishment of this mathematical similarity

is an important theoretical contribution in itself, because maximal

matchings have long been established as a cost-effective family

both in switching [1, 15] and in wireless networking [17, 18], and

with this connection we have considerably enlarged this family.

Although we show that QPS-r has exactly the same through-

put and delay bounds as that of maximal matchings established

in [4, 17, 18], our proofs are different for the following reason.

A departure inequality (see Property 1), satisfied by all maximal

matching algorithms was used in the throughput analysis of [4]

and the delay analysis of [17, 18]. This inequality, however, is not

satisfied by QPS-r in general. Instead, QPS-r satisfies this departure

inequality in expectation, which is a much weaker guarantee. A

methodological contribution of this work is to prove two theorems

stating that this much weaker guarantee is sufficient for obtaining

the same throughput and delay bounds respectively.

The rest of this paper is organized as follows. In §2, we provide

some background on the switching problem in input-queued cross-

bar switches. In §3, we first review QPS, and then describe QPS-r.

Then in §4, we derive the throughput and the queue length (and

delay) bounds of QPS-r, followed by the performance evaluation

in §5. In §6, we survey related work before concluding this paper

in §7.

2 BACKGROUND
In this section, we provide a brief introduction to the switching

(crossbar scheduling) problem. Throughout this paper, we adopt the

following standard assumption that all the incoming variable-size

packets are first segmented into fixed-size packets (also referred

to as cells), and then reassembled at their respective output ports

before leaving the switch. In the sequel, we consider the switching

of only fixed-size packets, and each fixed-size cell takes one time

slot to switch. We also assume that all input links/ports and output

links/ports operate at the same normalized line rate of 1, and so do

all wires and crosspoints inside the crossbar.

In an 𝑁 × 𝑁 input-queued crossbar switch, each input port has

𝑁 Virtual Output Queues (VOQs) [20]. The 𝑗𝑡ℎ VOQ at input port 𝑖

serves as a buffer for packets going from input port 𝑖 to output port 𝑗 .

The use of VOQs solves the Head-of-Line (HOL) blocking issue [13],

which severely limits the throughput of the switch system.

An 𝑁 × 𝑁 input-queued crossbar can be modeled as a bipartite

graph, of which the two disjoint vertex sets are the 𝑁 input ports

and the 𝑁 output ports respectively. In this bipartite graph, there

is an edge between input port 𝑖 and output port 𝑗 , if and only if the

𝑗𝑡ℎ VOQ at input port 𝑖 , the corresponding VOQ, is nonempty. A set

of such edges constitutes a valid crossbar schedule, or a matching, if
any two of them do not share a common vertex. A matching 𝑀 is

called a maximal matching, if it is no longer a matching, when any

edge not in𝑀 is added to it.

A matching𝑀 can be represented as an 𝑁 × 𝑁 sub-permutation
matrix (a 0-1 matrix that contains at most one entry of “1” in each

row and in each column) 𝑆 = (𝑠𝑖 𝑗) as follows: 𝑠𝑖 𝑗 = 1 if and only

if the edge between input port 𝑖 and output port 𝑗 is contained in

𝑀 (i.e., input port 𝑖 is matched to output port 𝑗 in 𝑀). To avoid

any confusion, only 𝑆 (not𝑀) is used to denote a matching in the

sequel, and it can be both a set (of edges) and a matrix.

3 THE QPS-𝑟 ALGORITHM
TheQPS-r algorithm simply runs 𝑟 iterations of QPS (Queue-Proportional

Sampling) [8] to arrive at a matching, so its computational com-

plexity per port is exactly 𝑟 times those of QPS. Since 𝑟 is a small

constant, it is 𝑂 (1), same as that of QPS. In the following two sub-

sections, we describe QPS and QPS-r respectively in more details.

3.1 Queue-Proportional Sampling (QPS)
QPS was used in [8] as an “add-on” to augment other switching

algorithms as follows. It generates a starter matching, which is

then populated (i.e., adding more edges to it) and refined, by other

switching algorithms such as iSLIP [15] and SERENA [6], into a

final matching. To generate such a starter matching, QPS needs

to run only one iteration, which consists of two phases, namely, a

QPS-r: A Cost-Effective Iterative Switching Algorithm for Input-Queued Switches VALUETOOLS ’20, May 18–20, 2020, Tsukuba, Japan

proposing phase and an accepting phase. We briefly describe them

in this section for this paper to be self-contained.

3.1.1 The Proposing Phase. In this phase, each input port proposes

to exactly one output port – decided by the QPS strategy – unless it

has no packet to transmit. Here we will only describe the operations

at input port 1; that at any other input port is identical. Like in [8],

we denote by𝑚1,𝑚2, · · · ,𝑚𝑁 the respective queue lengths of the 𝑁

VOQs at input port 1, and by𝑚 their total (i.e.,𝑚≜
∑𝑁
𝑘=1

𝑚𝑘). Input

port 1 simply samples an output port 𝑗 with probability

𝑚 𝑗

𝑚 , i.e.,
proportional to𝑚 𝑗 , the length of the corresponding VOQ (hence

the name QPS); it then proposes to output port 𝑗 , with the value𝑚 𝑗

that will be used in the next phase. The computational complexity

of this QPS operation, carried out using a simple data structure

proposed in [8], is 𝑂 (1) per (input) port.

3.1.2 The Accepting Phase. We describe only the action of output

port 1 in the accepting phase; that of any other output port is identi-

cal. The action of output port 1 depends on the number of proposals

it receives. If it receives exactly one proposal from an input port, it

will accept the proposal and match with the input port. However,

if it receives proposals from multiple input ports, it will accept

the proposal accompanied with the largest VOQ length (called the

“longest VOQ first" accepting strategy), with ties broken uniformly

at random. The computational complexity of this accepting strategy

is𝑂 (1) on average and can be made𝑂 (1) even in the worst case [8].

3.2 The QPS-r Scheme
The QPS-r scheme simply runs 𝑟 QPS iterations. In each iteration,

each input port that is not matched yet, first proposes to an output

port according to the QPS proposing strategy; each output port

that is not matched yet, accepts a proposal (if it has received any)

according the “longest VOQ first” accepting strategy. Hence, if an

input port has to propose multiple times (once in each iteration),

due to all its proposals (except perhaps the last) being rejected, the

identities of the output ports it “samples” (i.e., proposes to) during
these iterations are samples with replacement, whichmore precisely

are i.i.d. random variables with a queue-proportional distribution.

At the first glance, sampling with replacement may appear to be

an obviously suboptimal strategy for the following reason. There

is a nonzero probability for an input port to propose to the same

output port multiple times, but since the first (rejected) proposal

implies this output port has already accepted “someone else” (a

proposal from another input port), all subsequent proposals to

this output port will surely go to waste. For this reason, sampling

without replacement (i.e., avoiding all output ports proposed to

before) may sound like an obviously better strategy. However, it is

really not, since compared to sampling with replacement, it has a

much higher computational complexity of 𝑂 (log𝑁), but improves

the throughput and delay performances only slightly according to

our simulation studies.

4 THROUGHPUT AND DELAY ANALYSIS
In this section, we show that QPS-1 (i.e., running a single QPS

iteration) delivers exactly the same provable throughput and delay

guarantees as maximal matching algorithms. When 𝑟 > 1, QPS-r

clearly should have better throughput and delay performances than

QPS-1, as more input and output ports can be matched up during

subsequent iterations, although we are not able to derive stronger

bounds.

4.1 Preliminaries
In this section, we introduce the notation and assumptions that will

later be used in our derivations. We define three 𝑁 × 𝑁 matrices

𝑄 (𝑡),𝐴(𝑡), and𝐷 (𝑡). Let𝑄 (𝑡) ≜
(
𝑞𝑖 𝑗 (𝑡)

)
be the queue lengthmatrix

where each 𝑞𝑖 𝑗 (𝑡) is the length of the 𝑗𝑡ℎ VOQ at input port 𝑖 during

time slot 𝑡 . With a slight abuse of notation, we refer to this VOQ as

𝑞𝑖 𝑗 (without the 𝑡 term).

We define 𝑄𝑖∗ (𝑡) and 𝑄∗𝑗 (𝑡) as the sum of the 𝑖𝑡ℎ row and the

sum of the 𝑗𝑡ℎ column respectively of 𝑄 (𝑡), i.e., 𝑄𝑖∗ (𝑡) ≜
∑

𝑗 𝑞𝑖 𝑗 (𝑡)
and𝑄∗𝑗 (𝑡) ≜

∑
𝑖 𝑞𝑖 𝑗 (𝑡). With a similar abuse of notation, we define

𝑄𝑖∗ as the VOQ set {𝑞𝑖1, 𝑞𝑖2, · · · , 𝑞𝑖𝑁 } (i.e., those on the 𝑖𝑡ℎ row),

and 𝑄∗𝑗 as {𝑞1𝑗 , 𝑞2𝑗 , · · · , 𝑞𝑁 𝑗 } (i.e., those on the 𝑗𝑡ℎ column).

q11 q12 · · · q1j · · · q1N

q21 q22 · · · q2j · · · q2N

...
...

. . .
...

. . .
...

qi1 qi2 · · · qij · · · qiN

...
...

. . .
...

. . .
...

qN1 qN2 · · · qNj · · · qNN







Figure 1:𝑄†
𝑖 𝑗
: neighborhood

of 𝑞𝑖 𝑗 .

Now we introduce a con-

cept that lies at the heart

of our derivations: neighbor-

hood. For each VOQ 𝑞𝑖 𝑗 , we

define its neighborhood as

𝑄𝑖∗
⋃
𝑄∗𝑗 , the set of VOQs on

the 𝑖𝑡ℎ row or the 𝑗𝑡ℎ column.

We denote this neighborhood

as 𝑄
†
𝑖 𝑗
, since it has the shape

of a cross. Figure 1 illustrates

𝑄
†
𝑖 𝑗
, where the row and col-

umn in the shadow are the

VOQ sets 𝑄𝑖∗ and 𝑄∗𝑗 respec-

tively. 𝑄
†
𝑖 𝑗

can be viewed as

the interference set of VOQs for VOQ 𝑞𝑖 𝑗 [17, 18], as no other VOQ

in 𝑄
†
𝑖 𝑗

can be active (i.e., transmit packets) simultaneously with 𝑞𝑖 𝑗 .

We define 𝑄
†
𝑖 𝑗
(𝑡) as the total length of all VOQs in (the set) 𝑄

†
𝑖 𝑗
at

time slot 𝑡 , that is

𝑄
†
𝑖 𝑗
(𝑡) ≜ 𝑄𝑖∗ (𝑡) − 𝑞𝑖 𝑗 (𝑡) +𝑄∗𝑗 (𝑡) . (1)

Here we need to subtract the term 𝑞𝑖 𝑗 (𝑡) so that it is not double-

counted (in both 𝑄𝑖∗ (𝑡) and 𝑄∗𝑗 (𝑡)).
Let𝐴(𝑡)=

(
𝑎𝑖 𝑗 (𝑡)

)
be the traffic arrival matrix where 𝑎𝑖 𝑗 (𝑡) is the

number of packets arriving at the input port 𝑖 destined for output

port 𝑗 during time slot 𝑡 . For ease of exposition, we assume that, for

each 1≤ 𝑖, 𝑗 ≤𝑁 , {𝑎𝑖 𝑗 (𝑡)}∞𝑡=0 is a sequence of i.i.d. random variables,

the second moment of their common distribution (= E
[
𝑎2
𝑖 𝑗
(0)

]
) is

finite, and this sequence is independent of other sequences (for a

different 𝑖 and/or 𝑗). Our analysis, however, holds for more general

arrival processes (e.g., Markovian arrivals) that were considered

in [17, 18], as we will elaborate shortly. Let 𝐷 (𝑡) =
(
𝑑𝑖 𝑗 (𝑡)

)
be the

departure matrix for time slot 𝑡 output by the switching algorithm.

Similar to 𝑆 , 𝐷 (𝑡) is a 0-1 matrix in which 𝑑𝑖 𝑗 (𝑡)=1 if and only if a

packet departs from 𝑞𝑖 𝑗 during time slot 𝑡 . For any 𝑖, 𝑗 , the queue

length process 𝑞𝑖 𝑗 (𝑡) evolves as follows:
𝑞𝑖 𝑗 (𝑡 + 1) = 𝑞𝑖 𝑗 (𝑡) − 𝑑𝑖 𝑗 (𝑡) + 𝑎𝑖 𝑗 (𝑡) . (2)

Let Λ =
(
𝜆𝑖 𝑗

)
be the (normalized) traffic rate matrix (associated

with 𝐴(𝑡)) where 𝜆𝑖 𝑗 is normalized (to the percentage of the line

VALUETOOLS ’20, May 18–20, 2020, Tsukuba, Japan Long Gong, Jun (Jim) Xu, Liang Liu, and Siva Theja Maguluri

rate of an input/output link) mean arrival rate of packets to VOQ

𝑞𝑖 𝑗 . With 𝑎𝑖 𝑗 (𝑡) being an i.i.d. process, we have 𝜆𝑖 𝑗 = E
[
𝑎𝑖 𝑗 (0)

]
.

We define 𝜌Λ as the maximum load factor imposed on any input or

output port by Λ,

𝜌Λ ≜ max

{
max

1≤𝑖≤𝑁
{
∑
𝑗

𝜆𝑖 𝑗 }, max

1≤ 𝑗≤𝑁
{
∑
𝑖

𝜆𝑖 𝑗 }
}

(3)

A switching algorithm is said to achieve 100% throughput or be

throughput-optimal if the (packet) queues are stable whenever

𝜌Λ < 1.

As mentioned before, we will prove in this section that, same

as the maximal matching algorithms, QPS-1 is stable under any
traffic arrival process 𝐴(𝑡) whose rate matrix Λ satisfies 𝜌Λ < 1/2
(i.e., can provably attain at least 50% throughput, or half of the

maximum). We also derive the average delay bound for QPS-1,

which we show is order-optimal (i.e., independent of switch size

𝑁) when the arrival process 𝐴(𝑡) further satisfies that for any 𝑖, 𝑗 ,
𝑎𝑖 𝑗 (0) has finite variance. In the sequel, we drop the subscript term

from 𝜌Λ and simply denote it as 𝜌 .

Similar to 𝑄
†
𝑖 𝑗
(𝑡), we define 𝐴†

𝑖 𝑗
(𝑡) as the total number of packet

arrivals to all VOQs in the neighborhood set 𝑄
†
𝑖 𝑗
:

𝐴
†
𝑖 𝑗
(𝑡) ≜ 𝐴𝑖∗ (𝑡) − 𝑎𝑖 𝑗 (𝑡) +𝐴∗𝑗 (𝑡), (4)

where 𝐴𝑖∗ (𝑡) and 𝐴∗𝑗 (𝑡) are similarly defined as 𝑄𝑖∗ (𝑡) and 𝑄∗𝑗 (𝑡)
respectively. 𝐷

†
𝑖 𝑗
(𝑡), 𝐷𝑖∗ (𝑡), and 𝐷∗𝑗 (𝑡) are similarly defined, so is

Λ†
𝑖 𝑗
(𝑡). We now state some simple facts concerning 𝐷 (𝑡), 𝐴(𝑡), and

Λ as follows.

Fact 1. Given any switching algorithm, for any 𝑖, 𝑗 , we have,𝐷𝑖∗ (𝑡) ≤
1 (at most one packet can depart from input port 𝑖 during time slot 𝑡),
𝐷∗𝑗 (𝑡) ≤ 1, and 𝐷†

𝑖 𝑗
(𝑡) ≤ 2.

Fact 2. Given any i.i.d. arrival process 𝐴(𝑡) and its rate matrix is Λ
whose maximum load factor is defined in (3), for any 𝑖, 𝑗 , we have
E[𝐴†

𝑖 𝑗
(𝑡)] = Λ†

𝑖 𝑗
≤ 2𝜌 .

The following fact is slightly less obvious.

Fact 3. Given any switching algorithm, for any 𝑖, 𝑗 , we have

𝑑𝑖 𝑗 (𝑡)𝐷†
𝑖 𝑗
(𝑡) = 𝑑𝑖 𝑗 (𝑡) . (5)

Fact 3 holds because, as mentioned earlier, no other VOQ in

𝑄
†
𝑖 𝑗

(see Figure 1) can be active simultaneously with 𝑞𝑖 𝑗 . More

precisely, if 𝑑𝑖 𝑗 (𝑡) = 1 (i.e., VOQ 𝑞𝑖 𝑗 is active during time slot 𝑡)

then 𝐷
†
𝑖 𝑗
(𝑡) ≜ 𝐷𝑖∗ (𝑡) −𝑑𝑖 𝑗 (𝑡) +𝐷∗𝑗 (𝑡) = 1− 1+ 1 = 1; otherwise

𝑑𝑖 𝑗 (𝑡)𝐷†
𝑖 𝑗
(𝑡)=0 · 𝐷†

𝑖 𝑗
(𝑡)=0=𝑑𝑖 𝑗 (𝑡).

4.2 Why QPS-1 Is Just as Good?
The provable throughput and delay bounds of maximal matching

algorithms were derived from a “departure inequality” (to be stated

and proved next) that all maximal matchings satisfy. This inequality,

however, is not in general satisfied by matchings generated by

QPS-1. Rather, QPS-1 satisfies a much weaker form of departure

inequality (Lemma 1). Fortunately, this much weaker condition is

sufficient for proving the same throughput bound and delay bounds,

as will be proved in Theorem 1 and Theorem 2 respectively.

Property 1 (Departure Inequality, stated as Lemma 1 in [17, 18]).
If during a time slot 𝑡 , the crossbar schedule is a maximal matching,
then each departure process 𝐷†

𝑖 𝑗
(𝑡) satisfies the following inequality

𝑞𝑖 𝑗 (𝑡)𝐷†
𝑖 𝑗
(𝑡) ≥𝑞𝑖 𝑗 (𝑡). (6)

Proof. We reproduce the proof of Property 1 with a slightly

different approach for this paper to be self-contained. Suppose the

contrary is true, i.e., 𝑞𝑖 𝑗 (𝑡)𝐷†
𝑖 𝑗
(𝑡) < 𝑞𝑖 𝑗 (𝑡). This can only happen

when 𝑞𝑖 𝑗 (𝑡) > 0 and 𝐷
†
𝑖 𝑗
(𝑡) = 0. However, 𝐷

†
𝑖 𝑗
(𝑡) = 0 implies that

no nonempty VOQ (edge) in the neighborhood 𝑄
†
𝑖 𝑗
(see Figure 1)

is a part of the matching. Then this matching cannot be maximal

(a contradiction) since it can be enlarged by the addition of the

nonempty VOQ (edge) 𝑞𝑖 𝑗 . □

Clearly, the departure inequality (6) above implies the following

much weaker form of it:∑
𝑖, 𝑗

E
[
𝑞𝑖 𝑗 (𝑡)𝐷†

𝑖 𝑗
(𝑡)

]
≥
∑
𝑖, 𝑗

E
[
𝑞𝑖 𝑗 (𝑡)

]
. (7)

In the rest of this section, we prove the following lemma:

Lemma 1. The matching generated by QPS-1, during any time slot
𝑡 , satisfies the much weaker “departure inequality” (7).

Before we prove Lemma 1, we introduce an important definition

and state four facts about QPS-1 that will be used later in the proof.

In the following, we will run into several innocuous possible
0

0

situations that all result from queue-proportional sampling, and we

consider all of them to be 0.

We define 𝛼𝑖 𝑗 (𝑡) as the probability of the event that the proposal
from input port 𝑖 to output port 𝑗 is accepted during the accepting

phase, conditioned upon the event that input port 𝑖 did propose to

output port 𝑗 during the proposing phase. With this definition, we

have the first fact

E
[
𝑑𝑖 𝑗 (𝑡) | 𝑄 (𝑡)

]
=

𝑞𝑖 𝑗 (𝑡)
𝑄𝑖∗ (𝑡)

· 𝛼𝑖 𝑗 (𝑡), (8)

since both sides (note 𝑑𝑖 𝑗 (𝑡) is a 0-1 r.v.) are the probability that

𝑖 proposes to 𝑗 and this proposal is accepted. Summing over 𝑗 on

both sides, we obtain the second fact

E
[
𝐷𝑖∗ (𝑡) | 𝑄 (𝑡)

]
=
∑
𝑗

𝑞𝑖 𝑗 (𝑡)
𝑄𝑖∗ (𝑡)

· 𝛼𝑖 𝑗 (𝑡) . (9)

The third fact is that, for any output port 𝑗 ,

E
[
𝐷∗𝑗 (𝑡) | 𝑄 (𝑡)

]
= 1 −

∏
𝑖

(
1 −

𝑞𝑖 𝑗 (𝑡)
𝑄𝑖∗ (𝑡)

)
. (10)

In this equation, the LHS is the conditional probability (𝐷∗𝑗 (𝑡) is
also a 0-1 r.v.) that at least one proposal is received and accepted

by output port 𝑗 , and the second term on the RHS of (10) is the

probability that no input port proposes to output port 𝑗 (so 𝑗 receives

no proposal). This equation holds since when 𝑗 receives one or more

proposals, it will accept one of them (the one with the longest VOQ).

The fourth fact is that, for any 𝑖, 𝑗 ,

𝛼𝑖 𝑗 (𝑡) ≥
∏
𝑘≠𝑖

(
1 −

𝑞𝑘 𝑗 (𝑡)
𝑄𝑘∗ (𝑡)

)
. (11)

QPS-r: A Cost-Effective Iterative Switching Algorithm for Input-Queued Switches VALUETOOLS ’20, May 18–20, 2020, Tsukuba, Japan

This inequality holds because when input port 𝑖 proposes to output

port 𝑗 , and no other input port does, 𝑗 has no choice but to accept

𝑖 ′𝑠 proposal.

4.3 Proof of Lemma 1
Now we are ready to prove Lemma 1.

It suffices to show that for any 𝑖 and 𝑗 , we have∑
𝑖, 𝑗

E
[
𝑞𝑖 𝑗 (𝑡)𝐷†

𝑖 𝑗
(𝑡) | 𝑄 (𝑡)

]
≥
∑
𝑖, 𝑗

𝑞𝑖 𝑗 (𝑡), (12)

because with (12), we have∑
𝑖, 𝑗

E
[
𝑞𝑖 𝑗 (𝑡)𝐷†

𝑖 𝑗
(𝑡)

]
=E

[
E
[∑
𝑖, 𝑗

𝑞𝑖 𝑗 (𝑡)𝐷†
𝑖 𝑗
(𝑡) | 𝑄 (𝑡)

]]
≥ E

[∑
𝑖, 𝑗

𝑞𝑖 𝑗 (𝑡)
]
=
∑
𝑖, 𝑗

E
[
𝑞𝑖 𝑗 (𝑡)

]
.

By the definition of 𝐷
†
𝑖 𝑗
(𝑡) ≜𝐷𝑖∗ (𝑡)−𝑑𝑖 𝑗 (𝑡)+𝐷∗𝑗 (𝑡), we have,∑

𝑖, 𝑗

E
[
𝑞𝑖 𝑗 (𝑡)𝐷†

𝑖 𝑗
(𝑡) | 𝑄 (𝑡)

]
=
∑
𝑖, 𝑗

𝑞𝑖 𝑗 (𝑡)E
[
𝐷𝑖∗ (𝑡) | 𝑄 (𝑡)

]
−
∑
𝑖, 𝑗

𝑞𝑖 𝑗 (𝑡)E
[
𝑑𝑖 𝑗 (𝑡) | 𝑄 (𝑡)

]
+
∑
𝑖, 𝑗

𝑞𝑖 𝑗 (𝑡)E
[
𝐷∗𝑗 (𝑡) | 𝑄 (𝑡)

]
. (13)

Focusing on the first term on the RHS of (13) and using (9), we

have,∑
𝑖, 𝑗

𝑞𝑖 𝑗 (𝑡)E
[
𝐷𝑖∗ (𝑡) | 𝑄 (𝑡)

]
=

∑
𝑖

𝑄𝑖∗ (𝑡)E
[
𝐷𝑖∗ (𝑡) | 𝑄 (𝑡)

]
=
∑
𝑖

𝑄𝑖∗ (𝑡)
(∑

𝑗

𝑞𝑖 𝑗 (𝑡)
𝑄𝑖∗ (𝑡)

· 𝛼𝑖 𝑗 (𝑡)
)
=
∑
𝑖, 𝑗

𝑞𝑖 𝑗 (𝑡)𝛼𝑖 𝑗 (𝑡). (14)

Focusing the second term on the RHS of (13) and using (8), we

have

−
∑
𝑖, 𝑗

𝑞𝑖 𝑗 (𝑡)E
[
𝑑𝑖 𝑗 (𝑡) | 𝑄 (𝑡)

]
=−

∑
𝑖, 𝑗

𝑞𝑖 𝑗 (𝑡)𝛼𝑖 𝑗 (𝑡)
𝑞𝑖 𝑗 (𝑡)
𝑄𝑖∗ (𝑡)

. (15)

Hence, the sum of the first two terms in (13) is equal to∑
𝑖, 𝑗

𝑞𝑖 𝑗 (𝑡)𝛼𝑖 𝑗 (𝑡)
(
1−

𝑞𝑖 𝑗 (𝑡)
𝑄𝑖∗ (𝑡)

)
≥
∑
𝑖, 𝑗

𝑞𝑖 𝑗 (𝑡)
(∏
𝑘≠𝑖

(
1 −

𝑞𝑘 𝑗 (𝑡)
𝑄𝑘∗ (𝑡)

)) (
1 −

𝑞𝑖 𝑗 (𝑡)
𝑄𝑖∗ (𝑡)

)
(16)

=
∑
𝑖, 𝑗

𝑞𝑖 𝑗 (𝑡)
∏
𝑖

(
1−

𝑞𝑖 𝑗 (𝑡)
𝑄𝑖∗ (𝑡)

)
=
∑
𝑖, 𝑗

𝑞𝑖 𝑗 (𝑡)
(
1 − E

[
𝐷∗𝑗 (𝑡) | 𝑄 (𝑡)

])
. (17)

Note that (16) is due to (11) and (17) is due to (10). We now arrive

at (12), when adding the third and last term in (13) to the RHS

of (17).

4.4 Throughput Analysis
In this section we prove, through Lyapunov stability analysis, the

following theorem (i.e., Theorem 1) which states that any switching

algorithm that satisfies the weaker departure inequality (7), includ-

ing QPS-1 as shown in Lemma 1, can attain at least 50% throughput.

The same throughput bound was proved in [4], through fluid limit

analysis, for maximal matching algorithms using the (stronger)

departure inequality (6) which as stated earlier is not in general

satisfied by matchings generated by QPS-1.

Theorem 1. Let {𝑄 (𝑡)}∞
𝑡=0

be the queueing process of a switching
system that is a Markov chain. Let the departure process of {𝑄 (𝑡)}∞

𝑡=0
satisfy the weaker “departure inequality” (7). Then whenever its max-
imum load factor 𝜌 < 1/2, the queueing process is stable in the
following sense: (I) The Markov chain {𝑄 (𝑡)}∞

𝑡=0
is positive recur-

rent and hence converges to a stationary distribution 𝑄 ; (II) The first
moment of 𝑄 is finite.

Proof. Here we prove only (I), since Theorem 2 that we will

shortly prove implies (II). We define the following Lyapunov func-

tion of 𝑄 (𝑡): 𝐿
(
𝑄 (𝑡)

)
=
∑
𝑖, 𝑗 𝑞𝑖 𝑗 (𝑡)𝑄†

𝑖 𝑗
(𝑡), where 𝑄†

𝑖 𝑗
(𝑡) is defined

earlier in (1). This Lyapunov function was first introduced in [17]

for the delay analysis of maximal matching algorithms for wireless

networking. By the Foster-Lyapunov stability criterion [9, Proposi-

tion 2.1.1], to prove that {𝑄 (𝑡)}∞
𝑡=0

is positive recurrent, it suffices

to show that, there exists a constant 𝐵>0 such that whenever the

total queue (VOQ) length ∥𝑄 (𝑡)∥1 > 𝐵 (because it is not hard to

verify that the complement set of states {𝑄 (𝑡) : ∥𝑄 (𝑡)∥1 ≤ 𝐵} is
finite and the drift is bounded whenever 𝑄 (𝑡) belongs to this set),

we have

E
[
𝐿
(
𝑄 (𝑡 + 1)

)
− 𝐿

(
𝑄 (𝑡)

)
| 𝑄 (𝑡)

]
≤ −𝜖, (18)

where 𝜖 > 0 is a constant. It is not hard to check (for more detailed

derivations, please refer to [17]),

𝐿
(
𝑄 (𝑡 + 1)

)
− 𝐿

(
𝑄 (𝑡)

)
=2

∑
𝑖, 𝑗

𝑞𝑖 𝑗 (𝑡)
(
𝐴
†
𝑖 𝑗
(𝑡) − 𝐷

†
𝑖 𝑗
(𝑡)

)
+
∑
𝑖, 𝑗

(
𝑎𝑖 𝑗 (𝑡) − 𝑑𝑖 𝑗 (𝑡)

) (
𝐴
†
𝑖 𝑗
(𝑡) − 𝐷

†
𝑖 𝑗
(𝑡)

)
. (19)

Hence the drift (LHS of (18)) can be written as

E
[
𝐿
(
𝑄 (𝑡 + 1)

)
− 𝐿

(
𝑄 (𝑡)

)
| 𝑄 (𝑡)

]
=E

[
2

∑
𝑖, 𝑗

𝑞𝑖 𝑗 (𝑡)
(
𝐴
†
𝑖 𝑗
(𝑡) − 𝐷

†
𝑖 𝑗
(𝑡)

)
| 𝑄 (𝑡)

]
+ E

[∑
𝑖, 𝑗

(
𝑎𝑖 𝑗 (𝑡)−𝑑𝑖 𝑗 (𝑡)

) (
𝐴
†
𝑖 𝑗
(𝑡)−𝐷†

𝑖 𝑗
(𝑡)

)
| 𝑄 (𝑡)

]
. (20)

Now we claim the following two inequalities, which we will

prove shortly.

E
[
2

∑
𝑖, 𝑗
𝑞𝑖 𝑗 (𝑡)

(
𝐴
†
𝑖 𝑗
(𝑡)−𝐷†

𝑖 𝑗
(𝑡)

)
| 𝑄 (𝑡)

]
≤ 2(2𝜌−1)∥𝑄 (𝑡)∥1 . (21)

E
[∑
𝑖, 𝑗

(
𝑎𝑖 𝑗 (𝑡)−𝑑𝑖 𝑗 (𝑡)

) (
𝐴
†
𝑖 𝑗
(𝑡)−𝐷†

𝑖 𝑗
(𝑡)

)
| 𝑄 (𝑡)

]
≤𝐶𝑁 2 . (22)

With (21) and (22) substituted into (20), we have

E
[
𝐿
(
𝑄 (𝑡 + 1)

)
− 𝐿

(
𝑄 (𝑡)

)
| 𝑄 (𝑡)

]
≤ 2(2𝜌−1)∥𝑄 (𝑡)∥1 +𝐶𝑁 2 .

VALUETOOLS ’20, May 18–20, 2020, Tsukuba, Japan Long Gong, Jun (Jim) Xu, Liang Liu, and Siva Theja Maguluri

where𝐶 > 0 is a constant. Since 𝜌 <1/2, we have 2𝜌 − 1<0. Hence,

there exist 𝐵, 𝜖 > 0 such that, whenever ∥𝑄 (𝑡)∥1>𝐵,

E
[
𝐿
(
𝑄 (𝑡 + 1)

)
− 𝐿

(
𝑄 (𝑡)

)
| 𝑄 (𝑡)

]
≤ −𝜖.

Now we proceed to prove (21).

E
[
2

∑
𝑖, 𝑗

𝑞𝑖 𝑗 (𝑡)
(
𝐴
†
𝑖 𝑗
(𝑡) − 𝐷

†
𝑖 𝑗
(𝑡)

)
| 𝑄 (𝑡)

]
=2

(∑
𝑖, 𝑗

E
[
𝑞𝑖 𝑗 (𝑡)𝐴†

𝑖 𝑗
(𝑡) | 𝑄 (𝑡)

]
−
∑
𝑖, 𝑗

E
[
𝑞𝑖 𝑗 (𝑡)𝐷†

𝑖 𝑗
(𝑡) | 𝑄 (𝑡)

])
≤2

(
2𝜌

∑
𝑖, 𝑗

E
[
𝑞𝑖 𝑗 (𝑡) | 𝑄 (𝑡)

]
−
∑
𝑖, 𝑗

E[𝑞𝑖 𝑗 (𝑡) | 𝑄 (𝑡)]
)

(23)

=2(2𝜌 − 1)∥𝑄 (𝑡)∥1 . (24)

In the above derivations, inequality (23) holds due to (12), 𝐴(𝑡)
being independent of𝑄 (𝑡) for any 𝑡 , and Fact 2 that E[𝐴†

𝑖 𝑗
(𝑡)] ≤ 2𝜌 .

Now we proceed to prove (22), which upper-bounds the con-

ditional expectation E
[(
𝑎𝑖 𝑗 (𝑡)−𝑑𝑖 𝑗 (𝑡)

) (
𝐴
†
𝑖 𝑗
(𝑡)−𝐷†

𝑖 𝑗
(𝑡)

)
| 𝑄 (𝑡)

]
. It

suffices however to upper-bound the unconditional expectation

E
[(
𝑎𝑖 𝑗 (𝑡) −𝑑𝑖 𝑗 (𝑡)

) (
𝐴
†
𝑖 𝑗
(𝑡) −𝐷†

𝑖 𝑗
(𝑡)

)]
, which we will do in the fol-

lowing, since we can obtain the same upper bounds on E[𝐷†
𝑖 𝑗
(𝑡)]

and E[𝑑𝑖 𝑗 (𝑡)] (2 and 1 respectively) whether the expectations are

conditional (on 𝑄 (𝑡)) or not. Note the other two terms 𝐴
†
𝑖 𝑗
(𝑡) and

𝑎𝑖 𝑗 (𝑡) are independent of (the condition) 𝑄 (𝑡).
As for any 𝑖, 𝑗 , 𝑎𝑖 𝑗 (𝑡) is i.i.d., we have,

E
[(
𝑎𝑖 𝑗 (𝑡) − 𝑑𝑖 𝑗 (𝑡)

) (
𝐴
†
𝑖 𝑗
(𝑡) − 𝐷

†
𝑖 𝑗
(𝑡)

)]
(25)

=E[𝑎𝑖 𝑗 (𝑡)𝐴†
𝑖 𝑗
(𝑡) − 𝑑𝑖 𝑗 (𝑡)𝐴†

𝑖 𝑗
(𝑡) − 𝑎𝑖 𝑗 (𝑡)𝐷†

𝑖 𝑗
(𝑡) + 𝑑𝑖 𝑗 (𝑡)𝐷†

𝑖 𝑗
(𝑡)]

=E[𝑎2𝑖 𝑗 (𝑡)]−𝜆
2

𝑖 𝑗 +𝜆𝑖 𝑗Λ
†
𝑖 𝑗
−E[𝑑𝑖 𝑗 (𝑡)]Λ†

𝑖 𝑗

− 𝜆𝑖 𝑗 (𝑡)E[𝐷†
𝑖 𝑗
(𝑡)]+E[𝑑𝑖 𝑗 (𝑡)𝐷†

𝑖 𝑗
(𝑡)]

=E[𝑎2𝑖 𝑗 (𝑡)]−𝜆
2

𝑖 𝑗 +𝜆𝑖 𝑗Λ
†
𝑖 𝑗
−E[𝑑𝑖 𝑗 (𝑡)]Λ†

𝑖 𝑗

− 𝜆𝑖 𝑗 (𝑡)E[𝐷†
𝑖 𝑗
(𝑡)]+E[𝑑𝑖 𝑗 (𝑡)] . (26)

In arriving at (26), we have used (2). The RHS of (26) can be

bounded by a constant 𝐶 > 0 due to the following assumptions

and facts: E[𝑎2
𝑖 𝑗
(𝑡)]=E[𝑎2

𝑖 𝑗
(0)] <∞ for any 𝑡 , 𝑑𝑖 𝑗 (𝑡) ≤ 1, 𝐷

†
𝑖 𝑗
(𝑡) ≤ 2,

𝜆𝑖 𝑗 ≤ 𝜌 < 1/2, and Λ†
𝑖 𝑗
≤ 2𝜌 < 1. Therefore, we have (by applying∑

𝑖, 𝑗 to both (25) and the RHS of (26))∑
𝑖, 𝑗

E
[(
𝑎𝑖 𝑗 (𝑡)−𝑑𝑖 𝑗 (𝑡)

) (
𝐴
†
𝑖 𝑗
(𝑡)−𝐷†

𝑖 𝑗
(𝑡)

)]
≤𝐶𝑁 2 .

□

Remarks. Now that we have proved that {𝑄 (𝑡)}∞
𝑡=0

is positive

recurrent. Therefore, for any 𝑖, 𝑗 , the long term departure rate

lim𝑇→∞
1

𝑇

∑𝑇−1
𝑡=0 E[𝑑𝑖 𝑗 (𝑡)]=𝜆𝑖 𝑗 . Hence, we have,

lim

𝑇→∞
1

𝑇

𝑇−1∑
𝑡=0

E
[(
𝑎𝑖 𝑗 (𝑡)−𝑑𝑖 𝑗 (𝑡)

) (
𝐴
†
𝑖 𝑗
(𝑡)−𝐷†

𝑖 𝑗
(𝑡)

)]
=𝜎2𝑖 𝑗−𝜆𝑖 𝑗Λ

†
𝑖 𝑗
+𝜆𝑖 𝑗 . (27)

where 𝜎2
𝑖 𝑗
= E[𝑎2

𝑖 𝑗
(𝑡)] −𝜆2

𝑖 𝑗
is the variance of 𝑎𝑖 𝑗 (𝑡), because LHS

of (27) is the long term average of (25), and the long term average

of (26) can be simplified as the RHS of (27).

Now, we prove the following corollary of Theorem 1 which, in

combination with Lemma 1, shows that QPS-1 can attain at least

50% throughput.

Corollary 1. Under an i.i.d. arrival process, whenever the maximum
load factor 𝜌 <1/2, QPS-1 is stable in the following sense: The resulting
queueing process {𝑄 (𝑡)}∞

𝑡=0
is a positive recurrent Markov chain and

its stationary distribution 𝑄 has finite first moment.

Proof. {𝑄 (𝑡)}∞
𝑡=0

is clearly a Markov chain, since in (2), the

term 𝑑𝑖 𝑗 (𝑡) is a function of 𝑄 (𝑡) and 𝑎𝑖 𝑗 (𝑡) is a random variable

independent of𝑄 (𝑡). The rest follows from Lemma 1 and Theorem 1.

□

4.5 Delay Analysis
In this section, we derive the bound on the expected total queue

length E[∥𝑄 ∥1] (readily convertible to the corresponding delay

bound using Little’s Law) for QPS-1 under i.i.d. traffic arrivals using

the following moment bound lemma (i.e., Lemma 2) [9, Proposi-

tion 2.1.4]. This bound, shown in (29), is identical to that derived

in [17, 18, Section III.B] for maximal matchings under i.i.d. traffic

arrivals. Note this equivalence is not limited to i.i.d. traffic arrivals:

It can be shown that the delay analysis results for general Markov-

ian arrivals derived in [17, 18] for maximal matchings (using the

stronger “departure inequality” (6)) hold also for QPS-1.

Lemma 2. Suppose that {𝑌𝑡 }∞𝑡=0 is a positive recurrent Markov chain
with countable state space Y. Suppose 𝑉 , 𝑓 , and 𝑔 are non-negative
functions on Y such that,

𝑉 (𝑌𝑡+1) −𝑉 (𝑌𝑡) ≤ −𝑓 (𝑌𝑡) + 𝑔(𝑌𝑡), for all 𝑌𝑡 ∈ Y . (28)

Then E[𝑓 (𝑌)] ≤ E[𝑔(𝑌)], where 𝑌 is a random variable with the
stationary distribution of the Markov chain {𝑌𝑡 }∞𝑡=0.

Nowwe derive the following bound onE[∥𝑄 ∥1], which is stronger
than the part (II) of Theorem 1.

Theorem 2. Under the same assumptions and definitions as in The-
orem 1, we have

E[∥𝑄 ∥1] ≤
1

2(1 − 2𝜌)
∑
𝑖, 𝑗

(
𝜎2𝑖 𝑗 −𝜆𝑖 𝑗Λ

†
𝑖 𝑗
+𝜆𝑖 𝑗

)
. (29)

Proof. We define 𝑉 , 𝑌𝑡 , 𝑓 , and 𝑔 terms in Lemma 2 in such a

way that the LHS and the RHS of (28) become the LHS and the

RHS of (19) respectively (e.g., define 𝑉 as 𝐿, 𝑌𝑡 as 𝑄 (𝑡), and 𝑓 (𝑌𝑡)
as −2∑𝑖, 𝑗 𝑞𝑖 𝑗 (𝑡)

(
𝐴
†
𝑖 𝑗
(𝑡) − 𝐷

†
𝑖 𝑗
(𝑡)

)
). Then, we have,

− 2(2𝜌 − 1)E[∥𝑄 ∥1]
≤E[𝑓 (𝑌)] (30)

≤E[𝑔(𝑌)] (31)

=
∑
𝑖, 𝑗

(
𝜎2𝑖 𝑗 −𝜆𝑖 𝑗Λ

†
𝑖 𝑗
+ 𝜆𝑖 𝑗

)
. (32)

In the above derivation, inequality (30) is due to (21) (whose LHS is

−𝑓 (𝑌𝑡)), inequality (31) is due to Lemma 2, and equality (32) is due

to (27).

Therefore, we have, in steady state,

E[∥𝑄 ∥1] ≤
1

2(1 − 2𝜌)
∑
𝑖, 𝑗

(
𝜎2𝑖 𝑗 −𝜆𝑖 𝑗Λ

†
𝑖 𝑗
+𝜆𝑖 𝑗

)
.

QPS-r: A Cost-Effective Iterative Switching Algorithm for Input-Queued Switches VALUETOOLS ’20, May 18–20, 2020, Tsukuba, Japan

□

Since, as explained in the proof of Corollary 1, {𝑄 (𝑡)}∞
𝑡=0

is a

Markov chain under i.i.d. arrivals, Theorem 2 applies to QPS-1.

Hence we obtain,

Corollary 2. The bound on E[∥𝑄 ∥1] as stated in (29) holds under
QPS-1 scheduling, whenever the arrival process is i.i.d. and the maxi-
mum load factor 𝜌 < 1/2.

It is not hard to check (by applying Little’s Law) that the average

delay (experienced by packets) is bounded by a constant indepen-

dent of 𝑁 (i.e., order-optimal) for a given maximum load factor

𝜌 < 1/2, if the variance 𝜎2
𝑖 𝑗
for any 𝑖, 𝑗 is assumed to be finite. For

the special case of Bernoulli i.i.d. arrival (when 𝜎2
𝑖 𝑗

= 𝜆𝑖 𝑗 − 𝜆2
𝑖 𝑗
), this

bound (the RHS) can be further tightened to

∑
𝑖,𝑗 𝜆𝑖 𝑗
1−2𝜌 . This implies,

by Little’s Law, the following “clean” bound: 𝜔̄ ≤ 1

1−2𝜌 where 𝜔̄ is

the expected delay averaged over all packets transmitting through

the switch.

5 EVALUATION
In this section, we evaluate, through simulations, the performance

of QPS-r under various load conditions and traffic patterns. The

main purpose of this section to show that QPS-r performs as well as

maximal matching algorithms empirically no just in theory. Hence,

we do not compare QPS-r with the two recent iterative algorithms in

switching
1
: RR/LQF (Round Robin combined with Longest Queue

First) [11] and HRF (Highest Rank First) [10]. Instead, we compare

its performance with that of iSLIP [15], a refined and optimized

representative parallel maximal matching algorithm (adapted for

switching). The performance of the MWM (Maximum Weighted

Matching) is also included in the comparison as a benchmark. Our

simulations show conclusively that QPS-1 (running 1 iteration) per-

forms very well inside the provable stability region (more precisely,

with no more than 50% offered load), and that QPS-3 (running 3

iterations) has comparable throughput and delay performances as

iSLIP (running log
2
𝑁 iterations), which has a much higher per-port

computational complexity of 𝑂 (log2 𝑁).

5.1 Simulation Setup
In our simulations, we fix the number of input/output ports, 𝑁 to 64.

To measure throughput and delay accurately, we assume each VOQ

has an infinite buffer size and hence there is no packet drop at any

input port. Each simulation run is guided by the following stopping

rule [5, 7]: The number of time slots simulated is the larger between

500𝑁 2
and that is needed for the difference between the estimated

and the actual average delays to be within 0.01 with probability at

least 0.98.

We assume in our simulations that each traffic arrival matrix

𝐴(𝑡) is Bernoulli i.i.d.with its traffic rate matrixΛ being equal to the

product of the offered load 𝜌 and a traffic pattern matrix (defined

next). Similar Bernoulli arrivals were studied in [6, 8, 15]. Note that

only synthetic traffic (instead of that derived from packet traces) is

1
Note that they are shown to have reasonably good empirical throughput and delay

performance over round-robin-friendly workloads such as uniform and hot-spot traffic

when running 1 or 2 iterations. However, as described in §6, they need to run up to 𝑁

iterations to provably attain at least 50% throughput.

used in our simulations because, to the best of our knowledge, there

is no meaningful way to combine packet traces into switch-wide

traffic workloads. The following four standard types of normalized

(with each row or column sum equal to 1) traffic patterns are used:

(I)Uniform: packets arriving at any input port go to each output port

with probability
1

𝑁
. (II) Quasi-diagonal: packets arriving at input

port 𝑖 go to output port 𝑗 =𝑖 with probability
1

2
and go to any other

output port with probability
1

2(𝑁−1) . (III) Log-diagonal: packets
arriving at input port 𝑖 go to output port 𝑗 = 𝑖 with probability

2
(𝑁−1)

2
𝑁 −1 and go to any other output port 𝑗 with probability equal

1

2
of

the probability of output port 𝑗−1 (note: output port 0 equals output
port 𝑁). (IV) Diagonal: packets arriving at input port 𝑖 go to output
port 𝑗 = 𝑖 with probability

2

3
, or go to output port (𝑖mod𝑁) + 1

with probability
1

3
. These traffic patterns are listed in order of how

skewed the volumes of traffic arrivals to different output ports are:

from uniform being the least skewed, to diagonal being the most

skewed.

5.2 Throughput and Delay Performances
We first compare the throughput and delay performances of QPS-1

(1 iteration), QPS-3 (3 iterations), iSLIP (log
2
64 = 6 iterations), and

MWM (length of VOQ as the weight measure). Figure 2 shows their

mean delays (in number of time slots) under the aforementioned

four traffic patterns respectively. Each subfigure shows how the

mean delay (on a log scale along the y-axis) varies with the offered

load 𝜌 (along the x-axis). We make three observations from Figure 2.

First, Figure 2 clearly shows that, when the offered load is no larger

than 0.5, QPS-1 has low average delays (i.e., more than just being

stable) that are close to those of iSLIP and MWM, under all four

traffic patterns. Second, the maximum sustainable throughputs

(where the delays start to “go through the roof” in the subfigures) of

QPS-1 are roughly 0.634, 0.645, 0.681, and 0.751 respectively, under

the four traffic patterns respectively; they are all comfortably larger

than the 50% provable lower bound. Third, the throughput and

delay performances of QPS-3 and iSLIP are comparable: The former

has slightly better delay performances than the latter under all four

traffic patterns except the uniform.

6 RELATEDWORK
Scheduling in crossbar switches is a well-studied problem with a

large amount of literature. So, in this section, we provide only a

brief survey of prior work that is directly related to ours, focusing

on those we have not described earlier.

Iterative algorithms that compute maximal matchings. As
mentioned earlier, maximal matchings have long been recognized

as a cost-effective family in switching. Among various types of

algorithms that compute maximal matchings, the family of parallel

iterative algorithms [10, 11, 14, 16, 19, 23] is widely adopted. Parallel

iterative algorithms compute a maximal matching via multiple

iterations of message exchanges between the input and output

ports. Generally, each iteration contains three stages: request, grant,

and accept. In the request stage, each input port sends requests to

output ports. In the grant stage, each output port, upon receiving

requests from multiple input ports, grants to one. Finally, in the

accept stage, each input port, upon receiving grants from multiple

VALUETOOLS ’20, May 18–20, 2020, Tsukuba, Japan Long Gong, Jun (Jim) Xu, Liang Liu, and Siva Theja Maguluri

0 0.2 0.4 0.6 0.8 1
Normalized Load

10-2

10-1

100

101

102

M
ea

n
D

el
ay

Uniform
QPS-1 QPS-3 iSLIP MWM

0 0.2 0.4 0.6 0.8 1
Normalized Load

10-2

10-1

100

101

102
Quasi-diagonal

0 0.2 0.4 0.6 0.8 1
Normalized Load

10-2

10-1

100

101

102
Log-diagonal

0 0.2 0.4 0.6 0.8 1
Normalized Load

10-2

10-1

100

101

102
Diagonal

Figure 2: Mean delays of QPS-1, QPS-3, iSLIP, and MWM under the 4 traffic load patterns.

output ports, accepts one. Unfortunately, all these parallel iterative

algorithms in switching require up to 𝑁 iterations to guarantee that

the resulting matching is a maximal matching. In other words, they

need up to 𝑁 iterations to achieve the same provable throughput

and delay performance guarantees as QPS-1 (running 1 iteration).

Other algorithms that have performance guarantees. Several
serial randomized algorithms, starting with TASS [21] and cul-

minating in SERENA [6], have been proposed that have a total

computational complexity of only 𝑂 (𝑁) yet can provably attain

100% throughput; SERENA, the best among them, also delivers a

good empirical delay performance. However, this𝑂 (𝑁) complexity

is still too high for scheduling high-line-rate high-radix switches,

and none of them has been successfully parallelized (i.e., converted
to a parallel iterative algorithm) yet.

In [22], a crossbar scheduling algorithm specialized for switching

variable-size packets was proposed, that has 𝑂 (1) total computa-

tional complexity. Although this algorithm can provably attain 100%

throughput, its delay performance is poor. For example, as shown

in [8], its average delays, under the aforementioned four standard

traffic matrices, are roughly 3 orders of magnitudes higher than

those of SERENA [6] even under a moderate offered load of 0.6.

7 CONCLUSION
In this work, we propose QPS-r, a parallel iterative switching algo-

rithm with 𝑂 (1) computational complexity per port. We prove,

through Lyapunov stability analysis, that it achieves the same

throughput and delay performance guarantees in theory, and demon-

strate through simulations that it has comparable performances in

practice as the family of maximal matching algorithms (adapted

for switching); maximal matching algorithms are much more ex-

pensive computationally (at least 𝑂 (log𝑁) iterations and a total

of 𝑂 (log2 𝑁) per-port computational complexity). These salient

properties make QPS-r an excellent candidate algorithm that is fast

enough computationally and can deliver acceptable throughput and

delay performances for high-link-rate high-radix switches.

Acknowledgments. This work is supported in part by US NSF

through award CNS 1909048 and CCF 1850439.

REFERENCES
[1] Thomas E. Anderson, Susan S. Owicki, James B. Saxe, and Charles P. Thacker.

1993. High-speed Switch Scheduling for Local-area Networks. ACM Trans.

Comput. Syst. 11, 4 (Nov. 1993), 319–352.
[2] Cagla Cakir, Ron Ho, Jon Lexau, and KenMai. 2015. Modeling and Design of High-

Radix On-Chip Crossbar Switches. In Proc. of the ACM/IEEE NoCS. Vancouver,
BC, Canada, Article 20, 8 pages.

[3] Cagla Cakir, Ron Ho, Jon Lexau, and Ken Mai. 2016. Scalable High-Radix Modular

Crossbar Switches. In Proceedings of the HOTI. Santa Clara, CA, USA, 37–44.
[4] Jim Dai and Balaji Prabhakar. 2000. The Throughput of Data Switches with and

without Speedup. In Proceedings of the IEEE INFOCOM. Tel Aviv, Israel, 556–564.

[5] James M Flegal, Galin L Jones, et al. 2010. Batch means and spectral variance

estimators in Markov chain Monte Carlo. Ann. Stat. 38, 2 (2010), 1034–1070.
[6] Paolo Giaccone, Balaji Prabhakar, and Devavrat Shah. 2003. Randomized Sched-

uling Algorithms for High-Aggregate Bandwidth Switches. IEEE J. Sel. Areas
Commun. 21, 4 (May 2003), 546–559.

[7] Peter W Glynn, Ward Whitt, et al. 1992. The Asymptotic Validity of Sequential

Stopping Rules for Stochastic Simulations. Ann. Appl. Probab. 2, 1 (1992), 180–198.
[8] Long Gong, Paul Tune, Liang Liu, Sen Yang, and Jun (Jim) Xu. 2017. Queue-

Proportional Sampling: A Better Approach to Crossbar Scheduling for Input-

Queued Switches. Proceedings of the ACM SIGMETRICS 1, 1 (June 2017), 3:1–3:33.
[9] Bruce Hajek. 2006. Notes for ECE 467 Communication Network Analysis. http:

//www.ifp.illinois.edu/~hajek/Papers/networkanalysisDec06.pdf.

[10] B. Hu, F. Fan, K. L. Yeung, and S. Jamin. 2018. Highest Rank First: A New Class of

Single-Iteration Scheduling Algorithms for Input-Queued Switches. IEEE Access
6 (2018), 11046–11062.

[11] B. Hu, K. L. Yeung, Q. Zhou, and C. He. 2016. On Iterative Scheduling for Input-

Queued Switches With a Speedup of 2 − 1/𝑁 . IEEE/ACM Trans. Netw. 24, 6
(December 2016), 3565–3577.

[12] Amos Israel and A. Itai. 1986. A Fast and Simple Randomized Parallel Algorithm

for Maximal Matching. Inf. Process. Lett. 22, 2 (Feb. 1986), 77–80.
[13] M. Karol, M. Hluchyj, and S. Morgan. 1987. Input Versus Output Queueing on

a Space-Division Packet Switch. IEEE Trans. Commun. 35, 12 (December 1987),

1347–1356.

[14] D. Lin, Y. Jiang, and M. Hamdi. 2011. Selective-Request Round-Robin Scheduling

for VOQ Packet Switch Architecture. In Proceedings of the IEEE ICC. 1–5.
[15] NickMcKeown. 1999. The iSLIP Scheduling Algorithm for Input-queued Switches.

IEEE/ACM Trans. Netw. 7, 2 (Apr. 1999), 188–201.
[16] Nicholas William McKeown. 1995. Scheduling Algorithms for Input-queued Cell

Switches. Ph.D. Dissertation. Berkeley, CA, USA. UMI Order No. GAX96-02658.

[17] M. J. Neely. 2008. Delay Analysis for Maximal Scheduling in Wireless Networks

with Bursty Traffic. In Proceedings of the IEEE INFOCOM.

[18] M. J. Neely. 2009. Delay Analysis for Maximal Scheduling With Flow Control in

Wireless Networks With Bursty Traffic. IEEE/ACM Trans. Netw. 17, 4 (Aug 2009),

1146–1159.

[19] A. Scicchitano, A. Bianco, P. Giaccone, E. Leonardi, and E. Schiattarella. 2007.

Distributed Scheduling in Input Queued Switches. In Proceedings of the IEEE ICC.
6330–6335.

[20] Y. Tamir and G. L. Frazier. 1988. High-performance Multi-queue Buffers for VLSI

Communications Switches. SIGARCH Comput. Archit. News 16, 2 (May 1988),

343–354.

[21] Leandros Tassiulas. 1998. Linear Complexity Algorithms for Maximum Through-

put in Radio Networks and Input Queued Switches. In Proceedings of the IEEE
INFOCOM. San Francisco, CA, USA, 533–539.

[22] Shunyuan Ye, Tanming Shen, and Shivendra Panwar. 2010. An𝑂 (1) Scheduling
Algorithm for Variable-Size Packet Switching Systems. In Proceedings of the 48th
Annual Allerton Conference. 1683–1690.

[23] Yihan Li, S. Panwar, and H. J. Chao. 2001. On The Performance of A Dual

Round-Robin Switch. In Proceedings of the IEEE INFOCOM. Anchorage, AK, USA,

1688–1697 vol. 3.

http://www.ifp.illinois.edu/~hajek/Papers/networkanalysisDec06.pdf
http://www.ifp.illinois.edu/~hajek/Papers/networkanalysisDec06.pdf

	Abstract
	1 Introduction
	1.1 The Family of Maximal Matchings
	1.2 QPS-r: Bigger Bang for the Buck

	2 Background
	3 The QPS-r Algorithm
	3.1 Queue-Proportional Sampling (QPS)
	3.2 The QPS-r Scheme

	4 Throughput and Delay Analysis
	4.1 Preliminaries
	4.2 Why QPS-1 Is Just as Good?
	4.3 Proof of Lemma 1
	4.4 Throughput Analysis
	4.5 Delay Analysis

	5 Evaluation
	5.1 Simulation Setup
	5.2 Throughput and Delay Performances

	6 Related Work
	7 Conclusion
	References

