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Abstract We address the problem of animated character motion representation
and approximation by introducing a novel form of motion expression in a function
space. For a given set of motions, our method extracts a set of orthonormal basis
(ONB) functions. Each motion is then expressed as a vector in the ONB space
or approximated by a subset of the ONB functions. Inspired by the static PCA,
our approach works with the time-varying functions. The set of ONB functions is
extracted from the input motions by using functional principal component anal-
ysis (FPCA) and it has an optimal coverage of the input motions for the given
input set. We show the applications of the novel compact representation by pro-
viding a motion distance metric, motion synthesis algorithm, and a motion level
of detail. Not only we can represent a motion by using the ONB; a new motion
can be synthesized by optimizing connectivity of reconstructed motion functions,
or by interpolating motion vectors. The quality of the approximation of the re-
constructed motion can be set by defining a number of ONB functions, and this
property is also used to level of detail. Our representation provides compression
of the motion. Although we need to store the generated ONB that are unique for
each set of input motions, we show that the compression factor of our representa-
tion is higher than for commonly used analytic function methods. Moreover, our
approach also provides lower distortion rate.

Keywords Character Motion - Functional Principal Component Analysis -
Orthonormal Basis Functions

1 Introduction

Articulated character motion editing, capturing, searching, and synthesizing present
important challenges in computer animation. On one hand, the amount of pro-
duced motion data grows rapidly which further exacerbates these challenges. On
the other hand, despite the enormous progress in this field, the existing algorithms
and methods still have some limitations. Among them the compact motion repre-
sentation is one underlying common problem. The motion data is usually stored in
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Fig. 1 A set of raw motion data (left) is used to find orthonormal basis functions by functional
principal component analysis (FPCA). Each input motion is encoded as a motion vector in
the function space (center). While the novel representation provides compression of the input
data, the motion vectors synthesize new motions by interpolating their coordinates (right).

its raw form as rotations and positions of the joints (or velocities and accelerations)
that is space consuming and difficult to process. One of the promising approaches
is encoding the motion data by using analytic basis functions (e.g., Fourier, Leg-
endre polynomials, or spherical harmonics). These representations compress the
input data, but they may introduce unwanted artifacts such as oscillations, and
may require high number of basis functions to capture all details. Moreover, syn-
thesizing new motions from those representations may be difficult.

A body of previous work addresses the problem of motion synthesis. One class
of methods uses motion graphs for representing motion connectivity and synthe-
sizing new motions (Kovar et al., 2002a; Safonova and Hodgins, 2007; Lee et al.,
2010; Min and Chai, 2012). Functional analysis has also been applied for encoding
and searching motions (Unuma et al., 1995; Ormoneit et al., 2005; Chao et al.,
2012). Statistical approaches extract probabilities from motion data with the aim
of low dimensional expression, predicting smoothly connected motions (Ikemoto
et al., 2009; Lau et al., 2009; Wei et al., 2011; Levine et al., 2012), and using
physics-based representations to generate new motions by simulation (Mordatch
et al., 2010; Wei et al., 2011). Although these methods are well-suited for their
particular area, they usually require either a large amount of data to represent the
motion, or substantial effort for new motion synthesis.

Our work is motivated by recent advances in functional data analysis and
modeling in mathematics and statistics (Ramsay and Silverman, 2006; Yao et al.,
2005; Coffey et al., 2011; Du et al., 2016). The key observation of our work is that
for a given set of input motions, we can extract an optimal set of orthonormal basis
functions. While analytic basis functions have been used for encoding motions,
ours extracted ONB functions are tailored for the given set of input motions and
they are optimal in the sense that they provide the best coverage for the range
of the provided input motions. Each input motion is then simply represented by
its coordinates as a motion vector in the ONB function inner-product space or
approximated by using a subset of ONB functions.

The input to our framework is a set of unlabeled raw motion data of articulated
characters, from motion capturing databases, hand-made animation, or results of
physics-based simulation. In the first step we extract the ONB functions for the
input set by using functional principal component analysis (FPCA) and represent
each input motion as a motion vector in the ONB space just by its coordinates.
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This compresses the input data and converts it into a compact representation. The
vector representation of motions allows for continuous (linear, or higher order)
interpolation in the inner-product space formed by the ONB functions. We can
synthesize a new motion simply by selecting two points in the ONB space, and by
interpolating between a successions of the closest points between the two motions.
However, for some motions a simple interpolation might not be suitable because
they are dissimilar or far from each other. For this case, we have adopted the
connectivity optimization from (Kovar et al., 2002a) to work for motion vectors
in the ONB. In addition, this representation allows for the measure of distance
between motions and it provides a compression of motion data. Although we need
to store the generated ONB that are unique for input motions, the compression
factor is higher than the commonly used analytic function methods. We claim the
following contributions:
1. a novel representation of motions by extracting optimal orthonormal basis
functions,
2. compact representation of motions by encoding motions as motion vectors into
function space,
3. scalable motion reconstruction so that can be used for level-of-detail (LOD),
and
4. motion synthesis via interpolation and partial connectivity optimization in
function domain.

2 Previous Work

Here we discuss the literature related to motion analysis, synthesis, clustering, and
dimensionality reduction.

Function Analysis of Motion The idea of representing motion in some
other domain is rather old. For example, the Fourier transform has been used
frequently in signal processing. Unuma et al. (1995) apply the Fourier transform
to analyze, extract, and synthesize motions by comparing existing motion data.
Ormoneit et al. (2005) detect cyclic behavior of human motions using function
analysis and extract functional principal components in the Fourier domain to
remove high frequency components. Similarly, Chao et al. (2012) use spherical
harmonic (SH) basis for compressing and encoding motion trajectories. They also
retrieved similar motions by encoding and comparing user’s trajectory sketches.
Coffey et al. (2011) used PCA to analyze human motion data, but they did not
provide a way of synthesizing new ones. Just recently, Du et al. (2016) used scaled
FPCA to adapt different types of motion for character animation in gaming.

Our method does not use analytic orthonormal basis (ONB) functions, but
we extract ad hoc ONB functions from existing motion data. Our extracted ONB
functions are guaranteed to be optimal in a sense that we can determine the error
threshold and minimize the error based on the number of ONB functions.

Motion Graphs Kovar et al. (2002a) provide a new distance metric of keyframes
and introduce a graph structure, called motion graphs, for motion keyframes’ con-
nectivity. Synthesizing a new motion can be done by following a path in the graphs.
Their work extends in many directions. Lai et al (2005) use motion graphs for
small crowds by simulation and constraints. Heck and Gleicher (2007) find suit-
able transitions of their parameterized motion space using sampling methods. Re-
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itsma and Pollard (2007) provide a task-based quality measure, such as different
types of motions, navigation ability, and embedding additional data. Searching
optimal interpolation path of motion graphs is researched in Safonova and Hod-
gins (2007). Beaudoin et al. (2008) provide grouping of similar motions and con-
struct a motif graph that allows searching and constructing new motions. Zhao
and Safonova (2009) improve the connectivity by constructing well-connected mo-
tion graphs using interpolated keyframes. Lee et al. (2010) show a novel method,
called motion fields, for interactively controlling locomotion by introducing a new
distance measure of motions, which is combined with keyframe similarity and ve-
locity. Recently, Min and Chai (2012) combined semantic information with motion
graphs to synthesize a new motion from simple sentences.

Compared to motion graphs, our method represents motions as motion vectors
in an ONB function space. Our method allows for compact motion representation
and provides a distance metric preservation. Also, an interpolation between any
two motions can be done by a simple vector interpolation. We also generalize the
optimization from motion graphs for the ONB space.

Motion Clustering Alon et al. (2003) use multiple Hidden Markov Mod-
els (HMMs) combined with probability, and Kovar et al. (2002a) generate graph
structures of motion data by calculating geometric distances of motion keyframes.
The motion graphs were later extended in many ways, such as by using differ-
ent parametrization Kovar and Gleicher (2004); Heck and Gleicher (2007), they
were combined with clustering Beaudoin et al. (2008), their connectivity was im-
proved Zhao and Safonova (2009), optimal search was suggested Safonova and Hod-
gins (2007), and their evaluations was introduced in Reitsma and Pollard (2007).
Keogh et al. (2004) solved an important drawback of Dynamic Time Warping
(DTW) by allowing users to search similar motions without global and uniform
scaling. Barbi¢ et al. (2004) show three different approaches based on PCA and
Gaussian Mixture Model (GMM) for automatic segmentation of motion captured
data. Forbes and Fiume (2005) introduce a pose distance metric and a search al-
gorithm using weighted PCA. Zhou et al. (2013) applied an unsupervised learning
method for clustering temporal human motion data, and create a partition of seg-
ments. Temporal segmentation of human motion is studied by Vogele et al. (2014).
However, our method provides naturally defined distance metric in function space
that allows for an easy calculation of similarity of motions and clustering.

Motion Dimensionality Reduction and Search Gall et al. (2010) combine
global optimization using Gaussian Process (GP), filtering, and local optimization
to reconstruct 3D human motion. Mordatch et al. (2010) developed a method that
can perform user-specified tasks by using GP and learning motions in reduced
low-dimensional space. Zhou and De la Torre (2012) extend the DTW method by
introducing Generalized Time Warping (GTW) that overcomes DTW drawbacks
for human motion data. Lau et al. (2009) analyze and learn from motion data using
Dynamic Bayesian Network (DBN) and synthesized new variations of motions.
Tkemoto et al. (2009) exploit generalizations of GP for motion data so that it allows
users to edit motion easily. Arikan suggested a motion compression method that
is based on clustered principal component analysis (CPCA) in Arikan (2006). Liu
and McMillan (2006) applied segmentation and PCA for motion, and compressed
the motion data. In addition, Tournier et al. (2009) provided a novel principal
geodesic analysis (PGA), and achieved high compression ratio. A method that
uses templates to annotate mocap data has been introduced by Miiller and Réder
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(2006) and a direct mocap data annotation has been developed by Miiller et al.
(2009). Additionally, motion factorization that also allows completion of missing
data or noise reduction has been presented by Akhter et al. (2012). Recently,
Hou et al. (2014) proposed a tailored transform coding for compression of motion
capture data.

Shin and Lee (2006) introduced a system that allows for low-dimensional rep-
resentation and extraction of human motion, its interactive editing, and mapping
back to the character. Similarly, Yoo et al. (2015) used bilateral surfaces as a
representation for lower-dimensional character retiming.

Several works attempt to search directly in mocap data, for example the Motion
Explorer system of Bernard et al. (2013) or the GPU-based approach of Yoo et al.
(2014) that also allows for quick editing and composition of character motion.

Although the PCA-based method or dimensionality reduction methods studied
in many directions, there are several differences between our method and the pre-
vious approaches. First, our method does not provide mocap data search. Further,
our method provides several additional properties such as motion distance metric,
level-of-detail, and fast reconstruction. Moreover, we interpret motions as a set of
continuous functions so that it provides mathematically well-defined distance in
function space. Also, our method does not perform dimensionality reduction and it
allows for an easy motion synthesis by motion vector interpolation or optimization.

3 Overview

Function Motion Space Construction Motion Synthesis

Orthonormal Basis ot
Dynamic Functional Principal Functions {5t
Time Warping }E>{ Component Analysis. = Vectors D)

Time Foot-skating Synthesized
= > e Joo e
Motion Vectors Selecion

Fig. 2 An input set of motions is analyzed and an orthonormal basis is found by using
functional principal component analysis. The input motions are then encoded as a set of
motion vectors in the ONB forming a function motion space. Novel motion can be synthesized
by interpolating through existing motion vectors or by optimization directly in the ONB.

Figure 2 shows an overview of our method that consists of two parts: 1) function
motion space construction and 1) motion synthesis. The input is a set of input
motions. During the first step, we extract orthonormal basis functions (ONB) and
represent (approximate if we do not use all ONB) each input motion as a motion
vector that form a function motion space. In the second phase, the motion vectors
are used to synthesize new motions.

The input character motion data stores positions and rotations of joints and
the data can originate from motion capturing, physics-based animation, manual
creation, or similar. In the first step we generate the ONB by using functional
principal component analysis (FPCA) for all motions. Then, we obtain the coor-
dinates of each input motion in the ONB space. We call the ONB encoded motions
motion vectors, because they are represented only by their coordinates in the cor-
responding ONB, and we call the set of encoded motions in the ONB the function
motion space. The resulting ONB and motion vectors are smaller than the input
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data providing a compressed and compact representation of the motions. More-
over, the ONB representation allows for an easy motion synthesis for each pair of
vectors by simply interpolating their coordinates. It is important to note that the
ONB form a space with a distance metric. We can therefore measure the distance
of two motions.

During the motion synthesis, the user defines the start and the end of the
motion by selecting two points in the function motion space. The new motion can
be generated by interpolation, a process that is suitable for two closely positioned
motions. If the points are far from each other, we automatically traverse the space
and find the shortest path between the closest motion vectors, effectively combining
the animations together from the closest possible candidates. Using a subset of the
OBN or points that are too far can result in the combination of two motions that is
not visually plausible and introduce e.g., foot skating. In this case we apply motion
optimization from (Kovar et al., 2002a) that has been modified and adapted to
work directly in the ONB.

4 Orthonormal Basis Functions and Motion Vectors Extraction

The key idea of our approach is that an animated character motion m(t) (see
Section 5.3) can be represented as a vector with an optimal number of orthonormal
basis function. Although, the idea of representing motion data by using basis
function has been already used in computer graphics, previous approaches use
given fized (analytic) basis functions such as Fourier (e.g., Unuma et al. (1995))
or Spherical Harmonics (e.g., Chao et al. (2012)). Those functions attempt to
cover all possible motions by a set of a priori given analytic basis functions. Not
only this representation is not optimal for a given input set, but also the analytic
basis functions may need a large number of coefficients to reduce oscillation of
reconstructed curves or to capture fine details.

We use basis functions that are extracted from (a group of) input motions.
We use functional principal component analysis (FPCA) to extract our basis that
covers the important motions in decreasing order. It also provides the best coverage
of the space by the set of functions (see (Ramsay and Silverman, 2006; Yao et al.,
2005) for details of FPCA). In this section we introduce the orthonormal function
basis extraction and show how it is applied to motion encoding.

The function representation f(t) is an approximation of a function f(¢) and is
expressed as

n
F&) = p(t) + ) cibi(t), (1)
i=0
where p(t) is the mean function representing the average of the analyzed functions,
B = {bo(t),b1(t),...,bn(t)} is the ONB, and (co,ci1,...,cn) are the coordinates
of f(t) in the inner-product function space.
The error E(t) of the approximation is

B =177 = (| " 1) - f<s>|2ds)1/2. 2)

a

Distance of two vectors in ONB space: Let’s assume that two functions, fi(t)
and fa2(t), are approximated by orthonormal basis functions, b1(t), b2(t), ..., bn (1),
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so that the coefficients are c11,c12,...,cin for ]?1(25) and co1, c22, ..., can for fg(t)
The mean function of the two functions are p(t), so that the approximated func-

tions, ﬁ(t) = p(t) + D" c1sbi(t) and J}v2(t) = p(t) + 227, c2ibi(t).
The squared distance between the two functions is

D(f1(t), f2(t))* =

ty - ty, M
/ (fi(s) = fa(s)) ds = / (3 (eri — c20)bi(s))ds
ta ta =1
Since b1 (t),b2(t),...,bn(t) are orthonormal basis functions, any two basis func-

tions, b;(t) and b;(¢t) satisfies (bs, bj) = dij, where d;; is kronecker delta function.
Thus,

/tb ((c11 — c21)ba(s) + -+ + (c1n — czn)bn(s))ng =

a

ty tp
/ (c11 — c21)*b1(s)?ds + - -- +/ (cin — c2n)?bn(s)*ds =
ta ta

n ty n ty
Z/ (61,‘ — 621)2bi(8)2d8 = Z(Cu — Czi)Q/ bi(s)st =
i=1"ta i=1 t

a

n

Z(Cu — 2:)?(bi, bi) = Z(Cli —2:)?
i=1

i=1

The distance between two approximated functions is just distance of their coeffi-
cients. In particular, having two ONB functions (motion vectors)

Fi(t) = p(t) + ) cribi(t) Fa(t) = p(t) + Z c2ibi(t),

=1

the distance D(f1(t), f2(t)) between them in the ONB is calculated as the distance
between two functions in the given inner-product space:

D 0. 2ot = [ (o) - JQ(s))?ds)” :_

- (Z(cu - CQi)2<bi,bi>)l/2 = (i(cu - ch)2>1/2~ (3)

i=1

4.1 Orthonormal basis extraction using FPCA

The input to the ONB extraction is a set of K input functions f(¢),k =1,2,..., K.
The fi(t) are time-aligned components of the motion (for example the y-coordinate
of the quaternion of rotation). We discretize functions, f;(t;) to Yi; with equally
spaced time steps

Yij = filts) + e, (4)
where €;; is the measurement error per data point (e.g., the error caused by motion
capture).
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The output of the ONB extraction is the set of ONB functions b;(t) and the
mean component

K
:%ka(t)a p’tlﬂ KZY;J (5)
k=1

One of the important methods to extract orthonormal basis in spatial domain
is principal component analysis (PCA) which maximizes space coverage for a
given number of basis function. Similarly, functional principal component analysis
(FPCA) (Ramsay and Silverman, 2006) extracts ONB functions that approximate
the given set of functions. The FPCA extract eigenfunctions that have maximal
coverage of fi(t) and they are orthonormal to other eigenfunctions in decreasing
order of importance.
The FPCA uses the covariance function v(s,t)

-1 j{: (s)f(t)

To find the basis b;(t), we find Fredholm function eigenequation that satisfies

3

/v(s,t)bi(t)dt = pbi(s) (6)
subject to (b;, b;) = 5,

where J;; is the Kronecker delta, p is an eigenvalue of the principal component,
the orthonormal basis b;(t) is an eigenfunction, and the function inner-product
(f, g) of two functions f(t) and g(t) is

"ty
)= [ B ™)
ta
where tg < t, < tp < ty. The raw covariances are calculated as

viltij, ta) = (Yij — i(tiz)) (Yig — fta)), i # j

and the estimation v(s,t) is

Zvl(s t) = Z Ay (5)b (1) (8)

Ap>0

where ) is the estimated eigenvector, and bAk is the estimated eigenfunction. Since
E(ei;) = 0 and the variance of error is

Var(e) = o1,
the approximation of o2 can be estimated by
2 2 - -
6 == [ (V(t) —o(t,t))dt, (9)

T

where V(t) is smoothed diagonal elements of ¢;. The eigenfunctions by can be
obtained by o
b, = )\kbkzil(yi — 1),
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where Xy, = & + 6°1.

Each eigenfunction b;(¢) provides some coverage of the input and the algorithm
is executed until the the average length of the residuals of the input is under
user-defined percentage. This indirectly controls the actual number of the ONB
functions.

4.2 Coordinates in the ONB function space

Having extracted the ONB b;(t) from fi(t), we can represent each input function
fr(t) in this space as fi(t) with its coordinates (co,c1,...,cn) (see Eqn (1)). The
coordinates (co,c1,...,cn) are found by

¢ = (fiby) = / " i(s)by(s)ds, (10)

where b1 (t), b2(t), ..., bn(t) are the ONB functions. The coordinates (co, c1, . .., cn)
are the coefficients that are the best approximation in the space formed by the
given ONB functions.

The ONB functions form a Hilbert space that has vector space characteristics
such as distance measure and triangle inequality. A motion can be represented as
a linear combination of coefficients (coordinates) with ONB functions. Transition
between two motions is achieved by interpolating two motion vectors and recon-
structing the result back to the original motion space. In addition, because of the
nature of principal component analysis, the order of orthonormal basis is also the
order of importance of the orthonormal axis.

5 Character Motion Represented as Orthonormal Basis Functions

We have shown how a function can be represented by its coordinates in a function
ONB space Eqn (1). Moreover, we assumed there is a set of input functions fi ().
From this input we extracted the ONB b;(t) and each motion fx(t) is then repre-
sented (approximated) as fx(t) by its coordinates ¢;. In this section we show how
a character motion can be represented by using ONB function representation.

my(£) = { ve(6), vy (£, v, (£), wo (£), X0 (), Yo (£), 29 (£), w1 (£), X1.(6), Y1 (0, 21, (), -+, Wi (), X (), 7 (), 20 () }
my (£) = { vx(8), vy (), v, (£), wo (), %o (), Yo (£), 20 (), w1 (£), %1 (), y1. (), 21 (), -+, Wi (), X5 (8), Y (£), 2 (8) }

my () = { v (), vy (), v, (), wo (£), X (£), yo (£), 20 (), w1 (), %1 (£, y1 (£, 21 (), -+, W (£), % (£), Y (), 2 () }

¥

Re-ordering & FPCA J

¥ ¥

Eigenfunctions (ONB functions) J [ Motion Vectors W

Fig. 3 Per component ONB is extracted for different components of the input motion data.
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5.1 Skeleton and motion representation

The input of our framework is an animated character and we use notation from
Lee and Shin (1999). The articulated character is a skeleton hierarchy structure
(Figure 4) represented as a directed graph X = (J, E), where J = {jo,j1,...,7/}
are the joints (we use 31 joints in our experiments) and E = {eo,e1,...,eg|} is
a set of joint-index pairs. The root node of the hierarchy is denoted by jo and
corresponds to the pelvis of the character.

root motion tion is represented as a set of

translations of the root jo and

4 (0) the rotations of each joint over
21 ti to,t1,...,1 h,

Left hand joint rotation !me span to, 1, »bm WHOLE

\ m + 1 is the number of the in-

J p(t) The articulated character mo-

j28

Right hand
put motion poses. Although the
input is a set of discrete poses,
we consider it a continuous func-
tion. The velocity of the root is
denoted by @(t) and the rota-
tion of each joint is g;(¢). The
rotations of the joints are quater-
Jo nions. The character motion is
Right foot a set

m(t) = {V(t),a1(t),....an(t)},

(11)
Fig. 4 Skeleton and joint curves labeling. where ¥/ is the velocity vector
of root position (without initial yaw rotation) and q;(t) is the rotation of joint j
at the time ¢ in the local coordinate system of the skeleton. The world coordinates
of the joint are calculated by recursively traversing the skeleton from the root jo
and concatenating the corresponding rotations and translations.

Ja
Left foot

5.2 Dynamic Time Warping

Although two input motions are similar, they may have different speed (time-
scale). To solve the issue, we first calculate dynamic time warping (DTW) input
motions before extracting motion vectors and ONB functions. We adopt the dis-
tance function between two keyframes by following (Lee et al., 2010)

Broot||Vroot — Vrootl|®  +
Bollao(@) — qo(@)[|*  +
i1 Billpi (@) — pi(a)]?
i Bill(api) (@) — (@iph) @)%

d(m,m’) = (12)

where p is a positional unit quaternion, g is a unit quaternion of a joint’s velocity,
v is velocity vector (see Eqn 13), §; is a weight of a joint, and p(@) and ¢(@) mean
rotation of arbitrary vector, 4. We use the same weights for 8; as in (Lee et al.,
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2010). In particular, we set the weight of the hip So = 0.5 and others 5;,i = 1,...,k
are set to the length of the corresponding bone lengths. The hip joint is the root
of skeleton hierarchy and it is important for overall movement of the skeleton, so
it has higher weight.

The velocity v of a pose can be calculated as

v=a or = (Uroot,qo,qla .. ~aqn)
/ S S | ;) —1 (13)
= (xroot — Zroot,PoPo sP1P1 -3 PnPn )

Based on the above keyframe distance, a DTW texture is calculated for each pair
of motions by accumulating minimum distance as shown in Figure 6. The time
warping (time pairs from one to another) follows the minimum distances in the
given DTW texture. The DTW improve the quality of FPCA and reduce the
number of basis functions at the same time (see Table 1).

Table 1 Error and Variance of FPCA result before and after dynamic time warping (DTW)
(with precision of 0.9999). The DTW reduces the error and the number of basis functions.

Avg Error Var. # of Basis Func
Before
DTW 0.003176 0.000079 10
After
DTW 0.002338 0.000088 6

5.3 Motion as ONB

Let’s recall that the motion Eqn (11) has velocity of the root ¥(t) and mo-
tion of each joint g;(¢). The components of ¥(t) = (Z(t),y(t), Z(t)) and g¢;(t) =
(wj(t),x;(t),y;(t), z;(t)) are used in the function analysis (Section 4) as 1D func-
tions. Let’s denote f(t) and g(¢) as 1D functions corresponding to any pair of the
above-described components of motion. In the following text we will not use the
parameter t whenever it is clear from the context.

The ONB extraction needs a set of input functions. We can construct the ONB
for all motions by taking all components and running the algorithm from Section 4.
Let’s recall that the ONB generation is executed until 0.999999 of variance is
covered that also defines the number of basis functions. Without loss of generality
we group motions as shown in Figure 3. For example, all components of root
velocity 9, and joints’ quaternions ¢;, are merged and then ONB functions are
extracted.

To calculate the distance between two motion vectors, we account for the im-
portance of joints in motion distance calculation by associated weights of each joint
and we use the approach of Tang et al. (2008) who defined the joint weights. Let’s
have two motion vectors v1 = {c11, ¢12,...,c1m} and va = {ca1,¢22,...,c2m }. We
use a modified distance equation that accounts for the above-mentioned weighting:

S _ n 1/2
B W), Falt)) ~ (Zw;"(ch _ )) 7 14
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a)

Fig. 5 Closely matched motions that were calculated by our approximated motion distance
(Egn 14): a) two soccer kicking motions (0.022) and b) different walking motions (0.007).

where w; is the weights of joints. Fig 5 shows examples of closely matched two
motion sequences.

Table 2 Average error, variance, and the required number of basis functions for different
configuration. Comparison of three different ways of FPCA processing: 1) per component
(velocities z, y, z and quaternion w, z, y, z), 2) per joint and per component (velocity z, y, z,
and per joint quaternion w, z, y, z), and 3) all together.

Avg Error | Variance | # of Basis
Per
Component 0.002525 0.000093 114
Per Joint
Component 0.002140 0.000051 2032
All Together 0.002255 0.000084 23

We experimented with three different ways of combining functions for process-
ing FPCA: a) per component, b) per joint and per component, and c) all functions
together. As intuitively expected, collecting functions per joint and per component
provides best quality (i.e., lowest error and lowest variance). However, the overall
number of basis functions was too high and it will lower the compression ratio. As
a result, we combine all functions together and run FPCA to extract ONB func-
tions. It provides comparable error, but much smaller number of basis functions
as can be seen in Table 2.

We measured different sizes of ONBs in various configurations. Our experi-
mentations show that there is no significant difference if the motions are clustered
together in different ways, although a better insight could be obtained by a careful
evaluation.
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6 Motion Synthesis using ONB

One advantage of the ONB representation is the intrinsic compression. Another
advantage is the ease of novel motion synthesis.

a)

Fig. 6 A keyframe distance table is calculated by using Eqn 12. Then, minimum cost connec-
tivity (time pairs) is calculated by finding local minimum lines from the DTW texture.

6.1 Motion interpolation

Simple motion synthesis can be achieved by interpolating two or more motion
vectors, and then reconstructing their spatial functions by using Eqn (1). This
corresponds exactly to a time step interpolation of the original motions in the
time domain, but it is achieved in a very compact way simply as an interpolation
of the coordinates of motion vectors.

Let’s recall that the distance of motion vectors is calculated by using Eqn (3).
When n motions are close enough, the interpolation and reconstruction create
smooth motion transition between them. In order to provide smooth interpolation
of input motions, we calculate k nearest neighbors for each motion, and then
provide the option to interpolate them. If the points are close enough so that
they belong to k nearest neighbors, we apply Bézier interpolation that is suitable
for short motion clip. In order to create longer sequences of motion, we need to
connect the motions by finding a partial connectivity of motion clips. An example
in Fig. 7 shows the interpolation of one component of the motion vector.

6.2 Partial similarity by optimization

Some vectors can be too far to create a perceptually good result. We compensate
for this problem by optimization between the time sliding. We optimize the ob-
jective function Eqn (15) that attempts to find scaling and sliding of time » and v



14 Yoo et al.

0.035

0.025

0.015 /

Rotation Z

0.005

Time
-0.005

—Start curve End curve Interpolated curve

Fig. 7 Interpolation of one component of the motion vector.

from given interval [t.,tq4] of two motions

N ta "
argr}}ingf/ (f1(us +v) — fg(s))st =
) =1 te

N . ) (15)
argr;l’iglz:w?/t (M(s)—l—A(s)) ds,

j=1 c

where N is the number of functions, M(s) = u(us + v) — pu(s), and A(s) =
>y cribi(us + v) — caibi(s). The resulting parameters u and v are the scaling
and sliding of time between two motions. This connectivity is similar to motion
graphs (Kovar et al., 2002a). However, our approach is finding similar connectivity
in inner-product space, not keyframe distance in spatial domain.

6.3 Foot-skating cleanup

The synthesized motions may contain foot-skating artifacts. We resolve this prob-
lem by detecting the footplants and then smoothly adjusting the nearby root and
knee joint positions on their adjacent keyframes, similar to (Ikemoto et al., 2006)
and (Kovar et al., 2002b).

The footplants are automatically detected from the trained keyframes (Ikemoto
et al., 2006). In the training process, the motion that contains the keyframe with
the farthest distance to the labeled keyframes is selected for manual footplants
marking. This iterative process terminates when the satisfied results are achieved.
In the detecting process, we calculate the footplant values for each keyframe by
averaging the values of its k nearest neighbors in the trained database.

Once the footplants are detected, we set the positions of the consecutive foot-
plants as their average values, and then smoothly relocate the root positions of
every keyframe in the sequence, such that their legs are reachable to the posi-
tions. To avoid the pop-up problems that may raise on the boundary of footplant
sequences, we linearly interpolate the root and foot positions of the keyframes lay-
ing between the footplants sequences. Additionally, the height of the root for each
keyframe is adjusted smoothly to make sure its feet do not penetrate the ground.
Finally, we apply the inverse kinematics on all the keyframes in the synthesized
motion.



Character Motion in Function Space 15

S SY

Fig. 8 The partial keyframe sequences before a) and after foot-skating cleanup b). The adja-
cent keyframes containing no footplants are also smoothly adjusted to avoid pop-up problems.

7 Implementation and Results

Our system is implemented in C++ and uses OpenGL and GLSL to visualize re-
sults. All results were generated on an Intel® Xeon® E5-1650 CPU, running at
3.20 GHz with 16 GB of memory, and rendered with an NVidia 970GTX GPU.
All analysis and synthesis computations were performed on a single CPU thread.
Initially, we used a FPCA library (PACE package) that is implemented in Matlab.
However, it requires five hours to analyze 41 motions. To improve the performance,
we re-implement FPCA code in C++4 and by using CUDA. Our new implemen-
tation provides significantly faster performance than Matlab PACE package, the
achieved speedup is 10x for 210 curves and 225x for 6,510 curves. Once the ONB
has been generated, the motion synthesis and decoding are interactive.

7.1 FPCA CUDA implementation

We use Eigen math library to represent matrices and vectors, ALGLIB for spline
smoothing, Armadillo for fast singular value decomposition (SVD), and fast Moore-
Penrose pseudoinverse is implemented by following Courrieu’s method (Courrieu,
2008).

While the Matlab implementation is general, we did not require all the func-
tionality in our code. We only consider special case which sampling points are
regular. In addition, we speed up FPCA processing by applying CUDA for large-
scale vector dot product in Local Weighted Least Square (LWLS) estimation, and
removing cross-validation of residuals. Table 5 shows the comparisons of Matlab
PACE package and our implementation. The CUDA implementation will be avail-
able on our web site.

7.2 Evaluation

We compare our method against two other approaches that use analytic basis
functions: Fourier series and Legendre polynomials. The advantage of the two
approaches is that they do not need to store their analytic basis functions because
they are expressed as equations. However, they generally need more coefficients to
represent the function with the similar error and the reconstruction artifacts are
usually high frequency oscillations that are unwanted in motion data. Our method
is less sensitive to these errors.
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Table 3 Average Error

Test Case
) Implementation | 210 curves | 6510 curves
a PACE | 0.00326511 | 0.00145804

Ours | 0.00326484 | 0.00146001

Table 4 Max Error

Test Case
Implementation | 210 curves | 6510 curves
PACE | 0.06804195 | 0.20938692
Ours | 0.06802791 | 0.20937758

b)

Table 5 Processing Time (sec)

Test Case
) Implementation | 210 curves | 6510 curves
¢ PACE | 24.2851400 | 784.976200

Ours | 2.27931000 | 3.47349000

Comparison of FPCA implementations. Average error a), maximum error b), and processing
time c).

Reconstruction comparison. We have used 41 motions and, in the first
step, we have generated the ONB representation covering 0.999 of the variance
and measured the error of the approximation. In the next step we encoded the
same motion set by using Fourier series and Legendre polynomials while enforcing
the same error as for the ONB. The results are displayed in Figure 9 where the
Fourier series is in green, Legendre polynomials blue, original motion curve black,
and our method in red. The approximation by using analytic functions introduces
unwanted oscillations as can be seen in the inset showing a detailed span of 30-
120 frames in Figure 9 d) and in the accompanying video. This is due to the fact
that the high order basis functions have high frequencies that would require more
coefficients to capture. In contrast, our basis functions adapt to the data and the
resulting reconstructed curve is smoother. At the same time, while Fourier repre-
sentation needed 476 basis function and Legendre polynomials 293, our method
needed only 96 basis functions to approximate the motion with the same error (see
Table 6).

Another advantage of our method is the control over the error of the approxi-
mation. In our approach we do not need to specify the absolute error values. We
specify how much of the original information should be preserved in the recon-
structed curves and run the corresponding ONB basis extraction. In all experi-
ments we set the error value to 0.1% (99.9% quality).

Dimensions Comparison. We compared the space needed for an accurate
representation of all motion curves per each component. We encoded all component
curves by using as few basis functions as possible while making sure that 90th
percentile error is below a given error value. The comparison of the generated
number of basis vectors for our method, Fourier, and Legendre is shown in Table 6.
Overall our method outperforms the other methods (96 : 476 with Fourier and 96
: 293 to Legendre).

Compression. Our ONB function space representation of the character mo-
tion provides compression of the input data. Although the basis functions are
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Fig. 9 Comparison of the original motion to our method a), Fourier b), and Legendre c).
Detail of 30-110 seconds shows the analytic basis functions have higher oscillations b) when
encoded with the same error as our method.

Table 6 Comparison of the required number of basis functions

[ 90th percentile | Number of basis functions ]
Comps. Our method | Fourier | Legendre
Total 96 476 293

Number of basis function for a given error.

generated for each set of motions and they need to be stored in order to recon-
struct the motion, they outperformed Fourier and Legendre approximation in our
experiments as shown in Table 6.

We have encoded 321 different motions (2,605 short sequences, each of 0.8-1.2
seconds length at 120 Hz) that represented a skeleton with 31 joints. The size of
the raw input data is 227 MB. The compression ratios depends on the number
of basis functions. In motion vectors, we do not store the vector elements with
the absolute values less than le-7. For the first 5 basis functions (mean function
and the basis functions), the compression ratios were 50x (see Figure 10), for
Fourier 9%, and for Legendre polynomials 10x. The effect of the size of the ONB
will further diminish if more motions would be encoded and more motion vectors
would be present.

Our method cannot be directly compared to other methods, such as (Arikan,
2006; Liu and McMillan, 2006; Tournier et al., 2009), since our method is not used
only for motion compressing, but it shares ONB functions for further processing. In



18 Yoo et al.

450 0.016
400 0.014
° 350 0.012
300 -
o . . 001 9
c Compression Ratio s
o 250 L
@ Error 0.008 &
@ 200 ©
= 0.006 S
g 150 <
o 0.004

100

0.002

0 IIIIIIIIII.....IIIIIIIIIo

1 3 5 7 9 11 13 15 17 19 21 23 25
Number of Used ONB Functions

Fig. 10 The compression factor depends on the number of basis functions. We removed motion
vector elements with the absolute values smaller than le-7 and calculated the compression
factors.

addition, the compression ratio of our method can vary depending on the number
of used basis functions as shown in Fig 10.

Table 8 provides comparison of compression ratio and distortion rate (%) based
on the provided result from Liu and McMillan (2006) and Tournier et al. (2009).
The same motion clips were used for the comparison. The distortion rate is cal-
culated by Eqn (16) which was defined by Karni and Gotsman in (Karni and
Gotsman, 2004).
1A - Al

d=100—1=—" 21
A= EA)|

(16)
where A and A are the 3m x n matrices that consist of absolute markers’ position
of original motion and the decompressed motion respectively, m is the number of
markers, n is the number of keyframes, and E(A) is the mean of marker positions
with respect to time. For reconstructing a frame, our method only requires a few
calculations by following Eqn (1) so that it can reconstruct frames on the fly.

8 Conclusion

We have introduced a novel compact representation of motion for character an-
imation. Our method is inspired by analytic basis methods, such as Fourier and
Legendre polynomials, but instead of using analytic representation the orthonor-
mal basis (ONB) is extracted automatically by using functional principal analysis
(FPCA) for each input set of motions. The ONB is unique for each input set and
because of the FPCA the basis are ordered by their importance it provides optimal
coverage of the input space. Our method not only provides better compression of
the raw input data than the analytic basis approximations, it also allows for an
easy motion synthesis. Each motion from the input set is represented as a motion
vector and motion is performed by simply interpolating motion vector coordinates
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Table 7 Compression Ratio

Method\Motion | 09706 | 13/20 | 15/04 | 17/08 | 17/10 | 85/12 | 86/02 | 86,08
Liu and McMillan (2006) | N/A 1:55 N/A N/A N/A 1:18 1:53 1:56
Tournier et al. (2009) 1:18 N/A 1:69 1:182 1:61 1:97 N/A N/A
Ours (motion vector only) | 1:19 1:33 1:63 1:34 1:33 1:34 1:34 1:29
Table 8 Distortion Rate (%)
b)
Method\Motion | 09/06 | 13/29 | 15/04 | 17/08 | 17/10 | 85/12 | 86/02 | 86/08
Liu and McMillan (2006) | N/A 5.1 N/A N/A N/A 7.1 5.1 5.4
Tournier et al. (2009) 0.36 N/A 1.55 0.049 0.49 0.56 N/A N/A
Ours 1.11 0.30 0.21 0.39 0.23 0.34 0.38 0.40

The comparison between our method and other approaches. Note that we only used vector
size for calculating compression ratio, because our method the ONB functions are shared for
all motions. In this table, lower than le-5 values are not saved, and 6 basis functions were
used.

and connecting partially similar motions. We also provide optimization in the ONB
for more complex motions.

There are several limitations and avenues for future work. One limitation is
that the FPCA processes only 1D functions. Theoretically, it would be possible
to apply the FPCA directly to n-dimensional character animation and the per
component optimizations would not be necessary. Moreover, FPCA assumes that
the input functions are smooth, and also internally smooth the resulting ONB
functions. As a side effect, this could hide oscillations. Another limitation is that
the FPCA is always lossy due to numerical errors in the computation.

This paper is an invited extended version of a conference paper Yoo et al.
(2019). Since this paper has been submitted a number of new papers addressing
related issues has been published. In particular, there is a body of new work deal-
ing with deep learning that has been, for example, used to learn and extend human
motion synthesis Lee et al. (2018), deep learning has been combined with adver-
sarial networks to generate and control human motion by Wang et al. (2019b), and
related work has addressed generation of motion signatures for character motion
(e.g., Aristidou et al. (2018); Wang et al. (2019a)). An important body of work
also deals with learning for efficient motion control, see for example Peng et al.
(2017, 2018). This opens a potential for future work, in which the FPCA could
be learned directly from motion data or used to generate motions by adversarial
networks.
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