
4 5 5 6 I E E E   T R A N S A C TI O N S   O N  SI G N A L  P R O C E S SI N G,   V O L.  6 7,   N O. 1 7,  S E P T E M B E R 1, 2 0 1 9

S k et c h e d   Cl ust eri n g vi a   H y bri d
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A bstr a ct —I n s k et c h e d cl ust e ri n g,  a  d at as et  of T s a m pl es is  fi rst
s k et c h e d  d o w n  t o  a  v e ct o r  of   m o d est  si z e,  f r o m   w hi c h  t h e  c e n-
t r oi ds  a r e  s u bs e q u e ntl y  e xt r a ct e d.  Its  a d v a nt a g es  i n cl u d e  1)  r e-
d u c e d st o r a g e c o m pl e xit y a n d 2) c e nt r oi d e xt r a cti o n c o m pl e xit y i n-
d e p e n d e nt of T .   F o r t h e s k et c hi n g   m et h o d ol o g y r e c e ntl y  p r o p os e d
b y   K e ri v e n et al. ,   w hi c h c a n b e i nt e r p r et e d as a r a n d o m s a m pli n g of
t h e e m pi ri c al c h a r a ct e risti c f u n cti o n,   w e  p r o p os e  a s k et c h e d cl us-
t e ri n g  al g o rit h m  b as e d  o n  a p p r o xi m at e   m ess a g e  p assi n g.   N u m e r-
i c al  e x p e ri m e nts s u g g est t h at  o u r  a p p r o a c h is   m o r e  ef fi ci e nt t h a n
t h e st at e- of-t h e- a rt s k et c h e d cl ust e ri n g al g o rit h m “ C L- O M P R ” (i n
b ot h c o m p ut ati o n al a n d s a m pl e c o m pl e xit y) a n d   m o r e ef fi ci e nt t h a n
k- m e a ns + +   w h e n T is l a r g e.

I n d e x   Ter ms — Cl ust e ri n g  al g o rit h ms,  d at a  c o m p r essi o n,  c o m-
p r ess e d s e nsi n g, s u p e r- r es ol uti o n, a p p r o xi m at e   m ess a g e  p assi n g.

I.  IN T R O D U C TI O N

G I V E N  a  d at as et X [x 1 , . . . , x T ] ∈ R N × T c o m prisi n g
T s a m pl es of di m e nsi o n N , t h e st a n d ar d cl ust eri n g pr o b-

l e m is t o fi n d K c e ntr oi ds C [c 1 , . . . , c K ] ∈ R N × K t h at   mi n-
i mi z e t h e s u m of s q u ar e d err ors ( S S E)

S S E (X , C )
1

T

T

t = 1

mi n
k

x t − c k
2
2 . ( 1)

Fi n di n g t h e  o pti m al C is a n   N P- h ar d  pr o bl e m [ 1].   T h us,   m a n y
h e uristi c  a p pr o a c h es  h a v e  b e e n  pr o p os e d, s u c h  as t h e k- m e a ns
al g orit h m [ 2], [ 3].   B e c a us e k- m e a ns c a n g et tr a p p e d i n b a d l o c al
mi ni m a, r o b ust v ari a nts h a v e b e e n pr o p os e d, s u c h as k- m e a ns + +
[ 4],   w hi c h us es a c ar ef ul r a n d o m i niti ali z ati o n pr o c e d ur e t o yi el d
s ol uti o ns   wit h  S S E t h at  h a v e  o n  a v er a g e ≤ 8(l n K + 2) ti m es
t h e   mi ni m al  S S E.   T h e c o m p ut ati o n al c o m pl e xit y of k- m e a ns + +

M a n us cri pt r e c ei v e d J a n u ar y  4,  2 0 1 9; r e vis e d   M a y  1 8,  2 0 1 9;  a c c e pt e d J u n e
1 0,  2 0 1 9.   D at e  of  p u bli c ati o n  J u n e  2 4,  2 0 1 9;  d at e  of  c urr e nt  v ersi o n   A u g ust
8,  2 0 1 9.   T h e  ass o ci at e  e dit or  c o or di n ati n g t h e  r e vi e w  of t his   m a n us cri pt  a n d
a p pr o vi n g it f or  p u bli c ati o n   w as  Pr of.   Vi n c e nt   Y.  F.   Ta n.   T h e   w or k  of   E.   B yr n e
a n d P. S c h nit er   w as s u p p ort e d i n p art b y t h e   N ati o n al S ci e n c e F o u n d ati o n u n d er
Gr a nt 1 7 1 6 3 8 8 a n d i n p art b y   MI T   Li n c ol n   L a b or at or y.   T h e   w or k of   A.   C h at ali c
w as s u p p ort e d i n  p art  b y a tr a v el  gr a nt fr o m t h e  Fr e n c h r es e ar c h  n et w or k   G d R
MI A t o visit   T h e   O hi o  St at e   U ni v ersit y.   T his p a p er   w as pr es e nt e d i n p art at t h e
Asil o m ar   C o nf er e n c e  of  Si g n als,  S yst e ms, a n d   C o m p ut ers,  P a ci fi c   Gr o v e,   C A,
U S A,   O ct o b er – N o v e m b er 2 0 1 7. ( C orr es p o n di n g a ut h or:   P hili p S c h nit er.)

E.   B yr n e a n d P. S c h nit er ar e   wit h t h e   D e p art m e nt of   El e ctri c al a n d   C o m p ut er
E n gi n e eri n g,   T h e   O hi o  St at e   U ni v ersit y,   C ol u m b us,   O H  4 3 2 1 0   U S A ( e- m ail:
b yr n e. 1 3 3 @ os u. e d u; s c h nit er. 1 @ os u. e d u).

A.   C h at ali c  a n d   R.   Gri b o n v al  ar e   wit h  t h e   U ni v ersit y  of   R e n n es,  I nri a,
C N R S, I RI S A,   R e n n es  3 5 0 4 2,  Fr a n c e ( e- m ail:  a nt oi n e. c h at ali c @iris a.fr; r e mi.
gri b o n v al @i nri a.fr).

Di git al   O bj e ct I d e nti fi er 1 0. 1 1 0 9/ T S P. 2 0 1 9. 2 9 2 4 5 8 5

s c al es as O (T K N I ),   wit h I t h e  n u m b er  of it er ati o ns,   w hi c h is
i m pr a cti c al   w h e n T is l ar g e.

A.  S k et c h e d   Cl ust eri n g

I n s k et c h e d cl ust eri n g [ 5] –[ 7], t h e d at as et X is  first s k et c h e d
d o w n t o a v e ct or y wit h M = O (K N ) c o m p o n e nts, fr o m   w hi c h
t h e  c e ntr oi ds C ar e s u bs e q u e ntl y  e xtr a ct e d. I n t h e t y pi c al  c as e
t h at K T ,  t h e  s k et c h  c o ns u m es   m u c h  l ess   m e m or y  t h a n
t h e  ori gi n al  d at as et. If t h e s k et c h  c a n  b e  p erf or m e d  ef fi ci e ntl y,
t h e n —si n c e t h e  c o m pl e xit y  of  c e ntr oi d- e xtr a cti o n is i n v ari a nt
t o T —s k et c h e d  cl ust eri n g   m a y  b e   m or e  ef fi ci e nt  t h a n  dir e ct
cl ust eri n g   m et h o ds   w h e n T is  l ar g e.   N ot e,  f or  e x a m pl e,  t h at
k- m e a ns + +  pr o c ess es t h e T d at a  s a m pl es i n X at  e v er y it er a-
ti o n,   w h er e as s k et c h e d cl ust eri n g  pr o c ess es t h e T d at a s a m pl es
i n X o nl y o n c e, d uri n g t h e s k et c hi n g st e p.

I n t his   w or k,   w e f o c us  o n  s k et c h es  of t h e t y p e  pr o p os e d  b y
K eri v e n et al. i n [ 5], [ 6],   w hi c h us e y = [ y 1 , . . . , yM ]T wit h

y m =
1

T

T

t = 1

e x p jw T
m x t ( 2)

a n d  r a n d o ml y 1 g e n er at e d W [w 1 , . . . , w M ]T ∈ R M × N .
N ot e t h at y m i n ( 2) c a n b e i nt er pr et e d as a s a m pl e of t h e e m piri c al
c h ar a ct eristi c f u n cti o n [ 8], i. e.,

φ (w m ) =
R N

p (x ) e x p jw T
m x d x ( 3)

u n d er  t h e  e m piri c al  distri b uti o n p (x ) = 1
T

T
t = 1 δ (x − x t ) ,

wit h   Dir a c δ (·).   H er e,  e a c h w m c a n  b e i nt er pr et e d  as  a   m ul-
ti di m e nsi o n al  fr e q u e n c y  s a m pl e.   T h e  pr o c ess  of  s k et c hi n g X
d o w n  t o y vi a  ( 2)  c osts O (T M N ) o p er ati o ns,  b ut  it  c a n  b e
p erf or m e d ef fi ci e ntl y i n a n o nli n e a n d/ or  distri b ut e d   m a n n er.

T o r e c o v er t h e c e ntr oi ds C fr o m y , t h e st at e- of-t h e- art al g o-
rit h m is c o m pr ess e d l e ar ni n g  vi a  ort h o g o n al   m at c hi n g  p urs uit
wit h r e pl a c e m e nt ( C L- O M P R) [ 5], [ 6]. It ai ms t o s ol v e

ar g   mi n
C

mi n
α :1 T α = 1

M

m = 1

y m −

K

k = 1

α k e x p jw T
m c k

2

( 4)

usi n g  a  gr e e d y  h e uristi c i ns pir e d  b y t h e ort h o g o n al   m at c hi n g
p urs uit ( O M P)  al g orit h m  [ 9]  p o p ul ar  i n  c o m pr ess e d  s e nsi n g.
Wit h  s k et c h  l e n gt h M ≥ 1 0 K N ,   C L- O M P R  t y pi c all y  r e c o v-
ers  c e ntr oi ds  of si mil ar  or  b ett er  q u alit y t o t h os e  att ai n e d   wit h

1 I n  [ 5]  it   w as  pr o p os e d  t o  g e n er at e { w m } as  i n d e p e n d e nt  dr a ws  fr o m  a
distri b uti o n f or   w hi c h w m / w m is  u nif or ml y  distri b ut e d  o n t h e  u nit s p h er e
b ut w m h as a pr es cri b e d d e nsit y.   M or e d et ails ar e gi v e n i n  S e cti o n II- A.
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k- m e a ns + +.   O n e   m a y   w o n d er,  h o w e v er,   w h et h er it is  p ossi bl e
t o r e c o v er  a c c ur at e  c e ntr oi ds   wit h  s k et c h l e n gt hs  cl os er t o t h e
c o u nti n g  b o u n d M = 1

2 K N .   Als o, si n c e   C L- O M P R’s  c o m p u-
t ati o n al  c o m pl e xit y is O (M N K 2 ) ,  o n e   m a y   w o n d er   w h et h er
it is  p ossi bl e t o r e c o v er  a c c ur at e  c e ntr oi ds   wit h  c o m p ut ati o n al
c o m pl e xit y O (M N K ).

B.   C o ntri b uti o ns

T o  r e c o v er t h e  c e ntr oi ds C fr o m  a  s k et c h y of t h e  f or m i n
( 2),   w e pr o p os e t h e c o m pr essi v e l e ar ni n g vi a a p pr o xi m at e   m es-
s a g e  p assi n g ( C L- A M P)  al g orit h m,   wit h  c o m p ut ati o n al  c o m-
pl e xit y O (M N K ).   N u m eri c al  e x p eri m e nts s h o w t h at, i n   m ost
c as es,   C L- A M P a c c ur at el y r e c o v ers c e ntr oi ds fr o m s k et c h es  of
l e n gt h M ≥ 2 K N .   T his  is  a n  i m pr o v e m e nt  o v er   C L- O M P R,
w hi c h t y pi c all y r e q uir es M ≥ 1 0 K N .   O ur  e x p eri m e nts  est a b-
lis h  t h es e  b e h a vi ors  o v er   m a n y  c o m bi n ati o ns  of K ∈ [ 5, 5 0] ,
N ∈ [ 1 0, 3 0 0] ,  a n d  s a m pl e  n u m b ers T ∈ [ 1 05 , 1 0 8 ].   E x p eri-
m e nts  als o  s h o w  t h at   C L- A M P  r e c o v ers  c e ntr oi ds  f ast er  a n d
m or e a c c ur at el y t h a n k- m e a ns + +   w h e n T is l ar g e, e. g., T ≥ 1 0 7

i n o ur n u m eri c al e x p eri m e nts.
We pr o p os e d a si m pl e i n c ar n ati o n of t h e   C L- A M P al g orit h m

i n t h e c o nf er e n c e p a p er [ 1 0],   wit h d eri v ati o n d et ails o mitt e d d u e
t o s p a c e li mit ati o ns. I n t his p a p er,   w e pr es e nt t h e f ull d eri v ati o n
of   C L- A M P   wit h a n i m pr o v e d i niti ali z ati o n a n d h y p er p ar a m et er
t u ni n g s c h e m e, a n d a   m u c h   m or e c o m pr e h e nsi v e s et of n u m eri c al
e x p eri m e nts.

T h e  r e m ai n d er  of  t h e  p a p er  is  or g a ni z e d  as  f oll o ws.  I n
S e cti o n  II,   w e  d eri v e   C L- A M P  aft er  r e vi e wi n g  r el e v a nt  b a c k-
gr o u n d  o n a p pr o xi m at e   m ess a g e  p assi n g ( A M P) al g orit h ms. I n
S e cti o n III,   w e  pr es e nt  n u m eri c al  e x p eri m e nts  usi n g  s y nt h eti c
a n d   M NI S T  d at a,  a n d   w e  a p pl y   C L- A M P t o   m ulti di m e nsi o n al
fr e q u e n c y esti m ati o n. I n  S e cti o n I V,   w e c o n cl u d e.

II.   CO M P R E S SI V E L E A R NI N G   VI A A M P

A.   Hi g h- Di m e nsi o n al I nf er e n c e   Fr a m e w or k

C L- A M P tr e ats c e ntr oi d r e c o v er y as a hi g h- di m e nsi o n al i nf er-
e n c e pr o bl e m r at h er t h a n a n o pti mi z ati o n pr o bl e m li k e   mi ni mi z-
i n g ( 1)  or ( 4). I n  p arti c ul ar, it   m o d els t h e  d at a  usi n g a   G a ussi a n
mi xt ur e   m o d el ( G M M)

x t ∼

K

k = 1

α k N (c k , Φ k ) , ( 5)

w h er e t h e  c e ntr oi ds c k a ct  as t h e   G M M   m e a ns,  a n d t h e   G M M
w ei g hts α k a n d  c o v ari a n c e   m atri c es Φ k ar e  tr e at e d  as  u n-
k n o w n  p ar a m et ers.   T h at is, { x t }

T
t = 1 ar e ass u m e d t o b e dr a w n

i.i. d. fr o m t h e   G M M  distri b uti o n ( 5).   T o r e c o v er t h e  c e ntr oi ds
C [c 1 , . . . , c K ] fr o m y ,   C L- A M P  c o m p ut es  a n  a p pr o xi m a-
ti o n t o t h e   M M S E esti m at e

C = E { C | y } , ( 6)

w h er e t h e e x p e ct ati o n is t a k e n o v er t h e p ost eri or d e nsit y

p (C |y ) ∝ p (y |C )p (C ). ( 7)

I n ( 7), p (y |C ) is t h e li k eli h o o d f u n cti o n  of C , a n d p (C ) is t h e
pri or  d e nsit y  o n C .   T h e  d e p e n d e n c e  of p (y |C ) o n { α k } a n d
{ Φ k } will b e d et ail e d i n t h e s e q u el.

As   w e  n o w  est a blis h, t h e  f or m  of t h e  s k et c h i n  ( 2) i m pli es
t h at, c o n diti o n e d o n t h e c e ntr oi ds C a n d t h e fr e q u e n ci es W , t h e
el e m e nts  of y c a n  b e tr e at e d as i.i. d. I n  ot h er   w or ds, t h e s k et c h
y f oll o ws a  g e n er ali z e d li n e ar   m o d el ( G L M) [ 1 1].   T o est a blis h
t his r es ult, l et us  first d e fi n e t h e n or m ali z e d fr e q u e n c y  v e ct ors

a m w m / g m wit h g m w m ( 8)

a n d t h e ( n or m ali z e d) tr a nsf or m o ut p uts

z T
m a T

m C ∈ R K . ( 9)

T h e n p (y |C ) t a k es t h e f or m of a   G L M, i. e.,

p (y |C ) =

M

m = 1

p y |z y m a T
m C , ( 1 0)

f or a c o n diti o n al  p df p y |z t h at   will b e d et ail e d i n t h e s e q u el.
Fr o m ( 2) a n d t h e d e fi niti o ns  of a m a n d g m i n ( 8),   w e h a v e

y m =
1

T

T

t = 1

e x p jw T
m x t ( 1 1)

≈ E e x p jw T
m x t w m ( 1 2)

=
K

k = 1

α k e x p jg m a T
m c k

z m k

−
g 2

m

2
a T

m Φ k a m

τ m k

, ( 1 3)

w h er e ( 1 2) h ol ds u n d er l ar g e T a n d ( 1 3) f oll o ws fr o m t h e f a ct

w T
m x t w m ∼

K

k = 1

α k N (g m z m k , g2m τ m k ) ( 1 4)

u n d er ( 5), a n d t h e f oll o wi n g   w ell- k n o w n r es ult [ 1 2, p. 1 5 3]:

E { e jx } = e x p jμ − σ 2 / 2 w h e n x ∼ N (μ, σ 2 ) . ( 1 5)

F or a m distri b ut e d  u nif or ml y  o n  t h e  s p h er e,  t h e  el e m e nts
{ τ m k } M

m = 1 i n ( 1 3) c o n c e ntr at e as N → ∞ [ 1 3], i n t h at

τ m k
p

− → E { τ m k } = tr( Φ k ) / N τ k , ( 1 6)

as l o n g  as t h e  p e a k-t o- a v er a g e  ei g e n v al u e r ati o  of Φ k r e m ai ns
b o u n d e d.   T h us, f or l ar g e T a n d N , ( 1 3) a n d ( 1 6) i m pl y t h at

y m =

K

k = 1

α k e x p jg m z m k −
g 2

m τ k

2
, ( 1 7)

w hi c h  i m pli es  t h at  t h e  i nf er e n c e  pr o bl e m  d e p e n ds  o n  t h e  c o-
v ari a n c e   m atri c es { Φ k } o nl y t hr o u g h t h e h y p er p ar a m et ers { τ k } .
E q u ati o n ( 1 7) c a n t h e n b e r e p hr as e d as

p y |z ( y m |z m ; α , τ )

= δ y m −
K

k = 1

α k e x p jg m z m k −
g 2

m τ k

2
, ( 1 8)

w h er e τ [τ 1 , . . . , τK ]T a n d α [α 1 , . . . , αK ]T ar e  h y p er p a-
r a m et ers of t h e   G L M t h at   will b e esti m at e d fr o m y .
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F or t h e   C L- A M P fr a m e w or k, a n y pri or of t h e f or m

p (C ) =

N

n = 1

p c c T
n ( 1 9)

is  a d missi bl e,   w h er e ( wit h s o m e  a b us e  of  n ot ati o n) c T
n d e n ot es

t h e n t h r o w  of C .  F or  all  e x p eri m e nts i n  S e cti o n III,   w e  us e d
t h e tri vi al pri or p (C ) ∝ 1 .

I n  s u m m ar y,   C L- A M P  ai ms  t o  c o m p ut e  t h e   M M S E  es-
ti m at e  of C ∈ R N × K fr o m  t h e  s k et c h y ∈ C M u n d er  t h e
pri or C ∼ N

n = 1 p c ( c n ) fr o m  ( 1 9)  a n d  t h e  li k eli h o o d y ∼
M
m = 1 p y |z ( y m |z m ; α , τ ) fr o m ( 1 8),   w h er e z T

m i s t h e m t h r o w
of Z = A C ∈ R M × K a n d A ∈ R M × N i s a l ar g e r a n d o m   m a-
tri x   wit h r o ws { a T

m } distri b ut e d  u nif or ml y  o n t h e  u nit  s p h er e.
C L- A M P esti m at es t h e v al u es of α a n d τ fr o m t h e s k et c h pri or
t o esti m ati n g C , as d et ail e d i n t h e s e q u el.

As pr o p os e d i n [ 5], t h e r o w- n or ms { g m } fr o m ( 8)   w er e dr a w n
i.i. d. fr o m t h e distri b uti o n

p (g ; σ 2 ) ∝ 1 [ 0,∞ ) ( g ) g 2 σ 2 +
g 4 σ 4

4
e x p −

1

2
g 2 σ 2 ( 2 0)

wit h s h a p e p ar a m et er σ 2 .   T h e a ut h ors i n [ 5] s u g g est usi n g σ 2 =
1

N K
K
k = 1 t r ( Φ k ) a n d  pr o p os e  a   m et h o d t o  esti m at e σ 2 fr o m

y .   H o w e v er, o ur n u m eri c al e x p eri m e nts s u g g est t h at t h e si m pl er
assi g n m e nt

σ 2 =
E { x 2

2 }

N
≈

X 2
F

N T
( 2 1)

pr o vi d es si g ni fi c a ntl y i m pr o v e d p erf or m a n c e.   N ot e t h at t h e ri g ht
si d e  of ( 2 1)  c a n  b e  c o m p ut e d i n  a n  o nli n e   m a n n er,  or  a p pr o xi-
m at e d usi n g a s u bs et of t h e d at a.

B.   A p pr o xi m at e   M ess a g e   P assi n g

E x a ctl y  c o m p uti n g t h e   M M S E  esti m at e  of C fr o m y is i m-
pr a cti c al  d u e t o t h e  f or m  of p y |z .  I nst e a d,  o n e   mi g ht  c o nsi d er
a p pr o xi m at e  i nf er e n c e  vi a  t h e  s u m- pr o d u ct  al g orit h m  ( S P A),
b ut e v e n t h e S P A is i ntr a ct a bl e d u e t o t h e f or m of p y |z . Gi v e n t h e
pr es e n c e  of  a l ar g e r a n d o m   m atri x A i n t h e  pr o bl e m f or m ul a-
ti o n,   w e i nst e a d l e v er a g e a p pr o xi m at e   m ess a g e  p assi n g ( A M P)
m et h o ds. I n p arti c ul ar,   w e pr o p os e t o a p pl y t h e si m pli fi e d h y bri d
g e n er aliz e d   A M P ( S H y G A M P)   m et h o d ol o g y fr o m [ 1 4],   w hil e
si m ult a n e o usl y  esti m ati n g α a n d τ t hr o u g h  e x p e ct ati o n   m a xi-
mi z ati o n ( E M).   A bri ef b a c k gr o u n d o n   A M P   m et h o ds   will n o w
b e pr o vi d e d t o j ustif y o ur a p pr o a c h.

T h e  ori gi n al   A M P  al g orit h m  of   D o n o h o,   M al e ki,  a n d   M o n-
t a n ari  [ 1 5]   w as  d esi g n e d  t o  esti m at e  i.i. d. c u n d er  t h e  st a n-
d ar d li n e ar   m o d el (i. e., y = A c + n wit h  k n o w n A ∈ R M × N

a n d  a d diti v e   w hit e   G a ussi a n  n ois e n ).   T h e  g e n er ali z e d   A M P
( G A M P)  al g orit h m  of   R a n g a n [ 1 6]  e xt e n d e d   A M P t o t h e  g e n-
er ali z e d li n e ar   m o d el (i. e., y ∼ p (y |z ) f or z = A c a n d s e p ar a-

bl e p (y |z ) = M
m = 1 p (y m |z m ) ).   B ot h   A M P  a n d   G A M P  gi v e

a c c ur at e  a p pr o xi m ati o ns  of  t h e  S P A  u n d er  l ar g e  i.i. d.  s u b-
G a ussi a n A ,   w hil e   m ai nt ai ni n g a c o m p ut ati o n al c o m pl e xit y  of
o nl y O (M N ). F urt h er m or e, b ot h c a n b e ri g or o usl y a n al y z e d vi a
t h e st at e- e v ol uti o n fr a m e w or k,   w hi c h pr o v es t h at t h e y c o m p ut e
M M S E o pti m al esti m at es of c i n c ert ai n r e gi m es [ 1 7].

Al g o rit h m 1: S H y G A M P.

R e q ui r e: M e as ur e m e nts y ∈ C M , m atri x A ∈ R M × N wit h
A 2

F = M , p dfs p c |r ( ·|·) a n d p z |y ,p ( ·|·, ·; α , τ ) fr o m

( 2 2) a n d ( 2 4), i niti al C 0 ∈ R N × K a n d q p = q p
0 ∈ R K

+ .

1: S ← 0 , C ← C 0 .
2: r e p e at
3: P ← A C − S Di a g ( q p )
4: q z

m ← di a g ( C o v { z m | y m , p m ; Di a g (q p ) , α , τ } ),
m = 1 ... M

5: z m ← E { z m | y m , p m ; Di a g (q p ) , α , τ } ,
m = 1 ... M

6: q s ← 1 q p − ( 1
M

M
m = 1 q z

m ) (q p q p )

7: S ← (Z − P ) Di a g ( q p ) − 1

8: q r ← N
M 1 q s

9: R ← C + A T S Di a g ( q r )
1 0: q c

n ← di a g ( C o v { c n | r n ; Di a g (q r ) } ), n = 1 ... N
1 1: c n ← E { c n | r n ; Di a g (q r ) } , n = 1 ... N

1 2: q p ← 1
N

N
n = 1 q c

n

1 3: u ntil c o n v er g e n c e
1 4: r et u r n C

A li mit ati o n  of   A M P [ 1 5]  a n d   G A M P [ 1 6] is t h at t h e y tr e at
o nl y  pr o bl e ms   wit h i.i. d.  esti m a n d c a n d  s e p ar a bl e li k eli h o o d
p (y |z ) = M

m = 1 p (y m |z m ) .   T h us, H y bri d   G A M P ( H y G A M P)
[ 1 8]   w as  d e v el o p e d t o t a c kl e  pr o bl e ms   wit h  a  str u ct ur e d  pri or
a n d/ or li k eli h o o d.   H y G A M P  c o ul d  b e  a p pli e d t o t h e  c o m pr es-
si v e l e ar ni n g pr o bl e m d es cri b e d i n S e cti o n II- A, b ut it   w o ul d r e-
q uir e c o m p uti n g a n d i n v erti n g O (N + M ) c o v ari a n c e   m atri c es
of di m e nsi o n K at e a c h it er ati o n. F or t his r e as o n,   w e i nst e a d a p-
pl y t h e si m pli fi e d   H y G A M P ( S H y G A M P) al g orit h m fr o m [ 1 4],
w hi c h us es di a g o n al c o v ari a n c e   m atri c es i n   H y G A M P t o r e d u c e
its c o m p ut ati o n al c o m pl e xit y.   As d es cri b e d i n [ 1 4], S H y G A M P
c a n  b e  r e a dil y  c o m bi n e d   wit h  t h e   E M  al g orit h m  t o  l e ar n  t h e
h y p er p ar a m et ers α a n d τ .

C.  S H y G A M P

T h e S H y G A M P al g orit h m   w as pr o p os e d a n d d es cri b e d i n d e-
t ail i n [ 1 4];   w e  pr o vi d e  o nl y  a  bri ef r e vi e w  h er e.   Al g orit h m  1
s u m m ari z es  t h e  S H y G A M P  al g orit h m  usi n g  t h e  l a n g u a g e  of
S e cti o n II- A. I n li n es  1 0- 1 1,   wit h  s o m e  a b us e  of  n ot ati o n,   w e
us e c T

n t o  d e n ot e t h e n t h r o w  of t h e  c e ntr oi d   m atri x C ( w h er e
i n ( 5)   w e  us e d c k t o  d e n ot e t h e k t h c ol u m n  of C ).   We als o  us e
P [p 1 , . . . , p M ]T , Z [z 1 , . . . , z M ]T , R [r 1 , . . . , r N ]T ,

f or c o m p o n e nt wis e di visi o n, a n d f or c o m p o n e nt wis e   m ul-
ti pli c ati o n.  I n t h e  s e q u el,  c o v ari a n c e   m atri c es   will  b e  d e n ot e d
b y (s u p ers cri pt e d) Q a n d v e ct ors of t h eir di a g o n al el e m e nts d e-
n ot e d b y (s u p ers cri pt e d) q .   A bri ef i nt er pr et ati o n of S H y G A M P
is n o w pr o vi d e d.

At e a c h it er ati o n, li n es  4- 5  of   Al g orit h m  1  g e n er at e t h e  p os-
t eri or   m e a n  a n d  c o v ari a n c e  of t h e tr a nsf or m  o ut p uts z m fr o m
( 9)  u n d er  a  li k eli h o o d p y |z li k e  ( 1 8)  a n d  t h e  “ ps e u d o ”  pri or
z m ∼ N (p m , Q p ) ,   w h er e p m a n d Q p = Di a g ( q p ) ar e u p d at e d
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at e a c h  S H y G A M P it er ati o n.   T h us, t h e  p df  us e d f or t h e c o v ari-
a n c e a n d e x p e ct ati o n i n li n es 4- 5 is

p z |y ,p ( z m |y m , p m ; Q p , α , τ )

=
p y |z ( y m |z m ; α , τ )N (z m ; p m , Q p )

p y |z ( y m |z m ; α , τ )N (z m ; p m , Q p ) dz m

. ( 2 2)

Si mil arl y, li n es  1 0- 1 1  c o m p ut e t h e  p ost eri or   m e a n  a n d  c o v ari-
a n c e of c n u n d er a pri or p c of t h e f or m ( 1 9) a n d “ ps e u d o ”   m e a-
s ur e m e nts r n t h at f oll o w t h e st atisti c al   m o d el

r n = c n + v n , v n ∼ N (0 , Q r ) , ( 2 3)

w h er e r n a n d Q r = Di a g ( q r ) ar e  u p d at e d  at  e a c h  S H y G A M P
it er ati o n.   T h us, t h e  p df  us e d f or t h e c o v ari a n c e a n d e x p e ct ati o n
i n li n es 1 0- 1 1 is

p c |r ( c n |r n ; Q r ) =
p c ( c n ) N (c n ; r n , Q r )

p c ( c n ) N (c n ; r n , Q r ) dc n

. ( 2 4)

As  t h e  S H y G A M P  it er ati o ns  pr o gr ess,  t h e  o ut p ut [c 1 , . . . ,
c N ]T of li n e  1 1  c o n v er g es t o  a n  a p pr o xi m ati o n  of t h e   M M S E
esti m at e E { C |y } ,  a n d t h e  o ut p ut [z 1 , . . . , z M ]T of li n e  5  c o n-
v er g es  t o  a n  a p pr o xi m ati o n  of  t h e   M M S E  esti m at e E { Z |y } .
Ess e nti all y, t h e S H y G A M P al g orit h m br e a ks a n i nf er e n c e pr o b-
l e m  of  di m e nsi o n N K i nt o O (M + N ) i nf er e n c e  pr o bl e ms  of
di m e nsi o n K (i. e., li n es  4- 5  a n d  1 0- 1 1  of   Al g orit h m  1),  e a c h
i n v ol vi n g  a n  i n d e p e n d e nt- G a ussi a n  ps e u d o- pri or  or  ps e u d o-
li k eli h o o d, e v al u at e d it er ati v el y.   T h e c o m p ut ati o n al c o m pl e xit y
of  S H y G A M P is O (M N K ).

D.   Fr o m S H y G A M P t o   C L- A M P

T h e  S H y G A M P  al g orit h m  c a n  b e  a p pli e d  t o   m a n y  diff er-
e nt  pr o bl e ms  vi a  a p pr o pri at e  c h oi c e  of p y |z a n d p c .   T o  a p pl y
S H y G A M P t o s k et c h e d cl ust eri n g,   w e c h o os e p y |z a n d p c a s d e-
s cri b e d i n  S e cti o n II- A.   As   w e   will  s e e, t h e   m ai n  c h all e n g e is
e v al u ati n g li n es 4- 5 of   Al g orit h m 1 f or t h e p y |z i n ( 1 8).

1)  I nf er e n c e of z m : F or li n es 4- 5 of   Al g orit h m 1,   w e   w o ul d
li k e t o c o m p ut e t h e   m e a n a n d v ari a n c e

z m k = R K z m k p y |z ( y m |z m ) N z m ; p m , Q p d z m

C m
( 2 5)

q z
m k = R K ( z m k − z m k ) 2 p y |z ( y m |z m ) N z m ; p m , Q p d z m

C m
,

( 2 6)

w h er e q z
m k i s t h e k t h el e m e nt of q z

m a n d

C m =
R K

p y |z ( y m |z m ) N z m ; p m , Q p d z m . ( 2 7)

H o w e v er, d u e t o t h e f or m of p y |z i n ( 1 8),   w e ar e n ot a bl e t o  fi n d
cl os e d-f or m  e x pr essi o ns f or z m k or q z

m k .   T h us,   w e  pr o p os e t o
a p pr o xi m at e z m k a n d q z

m k b y   writi n g ( 1 7) as

y m = α k e x p( − g 2
m τ k / 2) e x p jg m z m k

+
l= k

α l e x p( − g 2
m τ l / 2) e x p (j g m ( z ml ) ) ( 2 8)

a n d tr e ati n g t h e s u m o v er l as c o m pl e x   G a ussi a n. F or t h e r e m ai n-
d er of t his s e cti o n,   w e s u p pr ess t h e s u bs cri pts “ m ” a n d “ y |z ” t o
si m plif y t h e n ot ati o n.

We  n o w  gi v e a  bri ef s k et c h  of t h e  d eri v ati o n.  First,   w e   writ e
( 2 8) as

y = α k e x p( − g 2 τ k / 2)

β k

e x p j g (z k + n k )

θ k

+
l= k

α l e x p( − g 2 τ l / 2)

= β l

e x p jg (z l + n l )

v l

. ( 2 9)

H er e   w e i ntr o d u c e i.i. d. n k ∼ N ( 0, qn ) ,   w hi c h   will all o w  us t o
l e v er a g e t h e   G a ussi a n   m ulti pli c ati o n r ul e (s e e f o ot n ot e 2) t o b y-
p ass t e di o us li n e ar al g e br a.   E v e nt u all y   w e   will t a k e q n → 0 , s o
t h at ( 2 9)   m at c h es ( 2 8).   N e xt   w e d eri v e e x pr essi o ns ( 4 2) a n d ( 4 8),
w hi c h st at e z k a n d q z

k i n t er ms  of t h e  p ost eri or   m e a n  a n d  v ari-
a n c e  o n t h e 2 π - p eri o di c  q u a ntit y θ k i n ( 2 9).   B y a p pr o xi m ati n g
t h e s e c o n d t er m i n ( 2 9) as   G a ussi a n, t h e p ost eri or of θ k t a k es t h e
f or m of a g e n er ali z e d v o n   Mis es distri b uti o n, as s u m m ari z e d i n
( 6 8).   B e c a us e t h e p ost eri or   m e a n a n d v ari a n c e of θ k ar e n ot c o m-
p ut a bl e i n  cl os e d-f or m,   w e  a p pr o xi m at e t h e m  usi n g  n u m eri c al
i nt e gr ati o n.  Fi n all y,   w e r el at e t h e  p ost eri or   m e a n  a n d  v ari a n c e
of θ k b a c k t o z k a n d q z

k .
We  n o w  b e gi n t h e  d eri v ati o n.  First,   w e  d eri v e  a n  e x pr essi o n

f or t h e   m ar gi n al  p ost eri or p (z k |y ) u n d er t h e  ps e u d o- pri or z k ∼
N (p k , qpk ) ∀ k . T o st art,

p (z k |y ) =
R K

p (z , θk |y ) dθ k d z \ k ( 3 0)

=
1

p (y ) R K

p (y |z , θk ) p (θ k |z )p (z ) dθ k d z \ k ( 3 1)

=
1

p (y ) R K

p (y |z \ k , θk ) N (θ k ; g z k , g2 q n )

×
K

l= 1

N (z l ; p l , q
p
l ) dθ k d z \ k , ( 3 2)

w h er e z \ k [z 1 , . . . , zk − 1 , zk + 1 , . . . , zK ]T .   A  c h a n g e- of-

v ari a bl es fr o m z l t o z l z l − p l f or all l = k gi v es

p (z k |y ) =
N (z k ; p k , qpk )

p (y ) R

N (θ k ; g z k , g2 q n )

×

⎡

⎣
R K − 1

p (y |z \ k , θk )
l= k

N (z l ; 0, q
p
l ) dz \ k

⎤

⎦ d θ k ,

( 3 3)

w h er e p (y |z \ k , θk ) is ass o ci at e d   wit h t h e g e n er ati v e   m o d el

y = β k e x p(j θ k ) +
l= k

β l e x p (j g (p l + z l + n l )) ( 3 4)

wit h  i.i. d. n l ∼ N ( 0, qn ) .   N o w,  b e c a us e z l a n d n l ar e  ( a pri-
ori)   m ut u all y  i n d e p e n d e nt  z er o- m e a n   G a ussi a n  v ari a bl es,   w e
c a n   w or k  dir e ctl y   wit h t h e s u m n l z l + n l ∼ N ( 0, qpl + q n )
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a n d t h us b y p ass t h e i n n er i nt e gr al i n ( 3 3).  T his all o ws us t o   writ e

p (z k |y ) =
N (z k ; p k , qpk )

p (y ) R

N (θ k ; g z k , g2 q n ) p (y |θ k ) dθ k ,

( 3 5)

w h er e p (y |θ k ) is ass o ci at e d   wit h t h e g e n er ati v e   m o d el

y = β k e x p(j θ k ) +
l= k

β l e x p(j g (p l + n l ))

= v l

( 3 6)

wit h  i.i. d. n l ∼ N ( 0, qpl + q n ) .   R e c alli n g  t h at y ∈ C , it will
s o m eti m es b e us ef ul t o   writ e ( 3 6) as

R e { y }

I m{ y }
∼ N

⎛

⎝ β k

c o s( θ k )

si n( θ k )
+

l= k

β l E
R e { v l }

I m{ v l }
,

l= k

β 2
l C o v

R e { v l }

I m{ v l }

⎞

⎠ . ( 3 7)

T o c o m p ut e t h e p ost eri or   m e a n  of z k , ( 3 5) i m pli es

z k E { z k |y } =
R

z k p (z k |y ) dz k ( 3 8)

=
1

p (y ) R R

z k N (g z k ; θ k , g2 q n ) N (z k ; p k , qpk ) dz k

× p (y |θ k ) dθ k ( 3 9)

=
R

⎡

⎣
R

z k N

⎛

⎝ z k ;

θ k / g
q n + p k

q p
k

1
q n + 1

q p
k

,
1

1
q n + 1

q p
k

⎞

⎠ d z k

⎤

⎦

×
N θ k ; g p k , g2 ( q n + q p

k ) p (y |θ k )

p (y )

= p (θ k |y )

d θ k ( 4 0)

=
R

θ k / g
q n + p k

q p
k

1
q n + 1

q p
k

p (θ k |y ) dθ k ( 4 1)

=
p k

q p
k / q n + 1

+
θ k / g

1 + q n / q p
k

f or θ k
R

θ k p (θ k |y ) dθ k ,

( 4 2)

w h er e t h e   G a ussi a n  p df   m ulti pli c ati o n  r ul e 2 w as  us e d i n  ( 4 0)

a n d   w h er e θ k d e n ot es t h e p ost eri or   m e a n  of θ k .
F or t h e p ost eri or v ari a n c e  of z k , a si mil ar a p pr o a c h  gi v es

q z
k v a r { z k |y } =

R

z k − z k
2

p (z k |y ) dz k ( 4 3)

=
1

p (y ) R R

( z k − z k ) 2 N (g z k ; θ k , g2 q n )

× N (z k ; p k , qpk ) dz k p (y |θ k ) dθ k ( 4 4)

2 A c c or di n g  t o  t h e   G a ussi a n   m ulti pli c ati o n  r ul e,   w e  h a v e N ( x ; a , A ) N

( x ; b , B ) = N ( 0 ; a − b , A + B ) N ( x ; (A − 1 + B − 1 ) − 1 ( A − 1 a + B − 1 b ) ,

( A − 1 + B − 1 ) − 1 ) .

=
R

⎡

⎣
R

( z k − z k ) 2 N

⎛

⎝ z k ;

θ k / g
q n + p k

q p
k

1
q n + 1

q p
k

,
1

1
q n + 1

q p
k

⎞

⎠ d z k

⎤

⎦

× p (θ k |y ) dθ k . ( 4 5)

Usi n g a c h a n g e- of- v ari a bl es fr o m z k t o z k z k − z k ,   w e g et

q z
k =

R

⎡

⎣
R

z 2
k N

⎛

⎝ z k ;

θ k / g
q n − θ k / g

q n

1
q n + 1

q p
k

,
1

1
q n + 1

q p
k

⎞

⎠ d z k

⎤

⎦

× p (θ k |y ) dθ k ( 4 6)

=
R

⎡

⎣ (θ k − θ k ) / g

1 + q n / q p
k

2

+
q n

1 + q n / q p
k

⎤

⎦ p (θ k |y ) dθ k

( 4 7)

=
q n

1 + q n / q p
k

+
1

g 2

1

1 + q n / q p
k

2

×
R

( θ k − θ k ) 2 p (θ k |y ) dθ k

q θ
k = v ar { θ k |y }

. ( 4 8)

T h e c o m p ut ati o n of z k a n d q z
k i s still c o m pli c at e d b y t h e f or m

of  t h e  p ost eri or p (θ k |y ) i m pli e d  b y  ( 3 6).   T o  cir c u m v e nt  t his
pr o bl e m,   w e  pr o p os e t o a p pl y a   G a ussi a n a p pr o xi m ati o n t o t h e
s u m i n  ( 3 6).   B e c a us e { n l } ∀ l= k ar e   m ut u all y i n d e p e n d e nt, t h e
m e a n  a n d  c o v ari a n c e  of t h e s u m i n ( 3 6)  ar e si m pl y t h e s u m  of
t h e   m e a ns  a n d  c o v ari a n c es  (r es p e cti v el y)  of  t h e K − 1 t er ms
m a ki n g u p t h e s u m.   R e c alli n g ( 3 7), t his i m pli es t h at

p
R e { y }

I m{ y }
θ k ≈ N

R e { y }

I m{ y }
; β k

c o s( θ k )

si n( θ k )
+ μ k , Σ k

( 4 9)

wit h

μ k =
l= k

α l e
− g 2 ( τ l + q p

l ) / 2 c o s( g p l )

si n( g p l )
( 5 0)

Σ k =
1

2
l= k

β 2
l 1 − e − g 2 q p

l

× I − e − g 2 q p
l

c o s( 2 g p l ) si n( 2 g p l )

si n( 2 g p l ) − c o s( 2 g p l )
. ( 5 1)

We n ot e t h at ( 5 0) a n d ( 5 1)   w er e o bt ai n e d  usi n g

E R e { v l } = e x p − g 2 q p
l / 2 c o s( g p l ) ( 5 2)

E I m{ v l } = e x p − g 2 q p
l / 2 si n( g p l ) ( 5 3)

2 E R e { v l }
2 = 1 + e x p − g 2 q p

l c o s( 2 g p l ) ( 5 4)

2 E I m{ v l }
2 = 1 − e x p − g 2 q p

l c o s( 2 g p l ) ( 5 5)

2 E R e { v l } I m{ v l } = e x p − g 2 q p
l si n( 2 g p l ) , ( 5 6)
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w hi c h us e t h e f a ct t h at, aft er l etti n g q n → 0 ,

E { v l } =
R

N (z l ; p l , q
p
l ) e x p(j g z l ) dz l ( 5 7)

= e x p jg p l − g 2 q p
l / 2 . ( 5 8)

R e writi n g ( 4 9) as

p β − 1
k

R e { y }

I m{ y }
θ k

≈ N
c o s( θ k )

si n( θ k )
; β − 1

k

R e { y }

I m{ y }
− β − 1

k μ k , β− 2
k Σ k ,

( 5 9)

t h e ri g ht  si d e  of ( 5 9)  c a n  b e r e c o g ni z e d  as  b ei n g  pr o p orti o n al
t o t h e  g e n er ali z e d  v o n   Mis es ( G v M)  d e nsit y  o v er θ k ∈ [ 0, 2 π )
fr o m [ 1 9].   U n d er t his   G v M a p pr o xi m ati o n,   w e h a v e [ 1 9] t h at

p (y |θ k ) ∝ e x p κ k c o s( θ k − ζ k ) + κ k c o s[ 2( θ k − ζ k )] ( 6 0)

f or  p ar a m et ers κ k , κ k > 0 a n d ζ k , ζ k ∈ [ 0, 2 π ) d e fi n e d  fr o m
β − 1

k y , β − 1
k μ k , a n d β − 2

k Σ k . I n p arti c ul ar,

κ k c o s( ζ k ) = −
1

1 − ρ 2
k

ρ k ν k

σ k σ k
−

ν k

σ 2
k

( 6 1)

κ k si n( ζ k ) = −
1

1 − ρ 2
k

ρ k ν k

σ k σ k
−

ν k

σ 2
k

( 6 2)

κ k c o s( 2 ζ k ) = −
1

4( 1 − ρ 2
k )

1

σ 2
k

−
1

σ 2
k

( 6 3)

κ k si n( 2 ζ k ) =
ρ k

2( 1 − ρ 2
k ) σ k σ k

, ( 6 4)

w h er e

ν k

ν k

β − 1
k

R e { y }

I m{ y }
− μ k ( 6 5)

σ 2
k ρ k σ k σ k

ρ k σ k σ k σ 2
k

β − 2
k Σ k . ( 6 6)

Fr o m  ( 6 0)  a n d  t h e  S H y G A M P  ps e u d o- pri or z k ∼ N (p k , qpk ) ,
w e s e e t h at t h e p ost eri or o n θ k t a k es t h e f or m

p (θ k |y ) ∝ N θ k ; g p k , g2 q p
k p (y |θ k ) ( 6 7)

∝ e x p κ k c o s( θ k − ζ k ) + κ k c o s[ 2( θ k − ζ k )]

−
(θ k − g p k ) 2

2 g 2 q p
k

. ( 6 8)

We  n o w f a c e t h e t as k  of c o m p uti n g θ k = E { θ k |y } a n d q θ
k =

v ar { θ k |y } u n d er ( 6 8).  Si n c e t h es e  q u a ntiti es  d o  n ot  a p p e ar t o
b e  c o m p ut a bl e i n  cl os e d f or m,   w e s ettl e f or  a n  a p pr o xi m ati o n,
s u c h  as  t h at  b as e d  o n  t h e   L a pl a c e  a p pr o xi m ati o n  [ 2 0]  or  n u-
m eri c al i nt e gr ati o n.  F or t h e   L a pl a c e  a p pr o xi m ati o n,   w e   w o ul d

first c o m p ut e θ k, M A P a r g   m a x θ k
l n p (θ k |y ) a n d t h e n a p pr o x-

i m at e θ k ≈ θ k, M A P a n d q θ
k ≈ − d 2

d θ k
2 l n p (θ k |y )|θ k = θ k , M A P

. H o w-

e v er, si n c e c o m p uti n g ar g   m a x θ k
l n p (θ k |y ) is c o m pli c at e d d u e

t o  t h e  pr es e n c e  of   m ulti pl e  l o c al   m a xi m a,   w e  i nst e a d  us e
n u m eri c al i nt e gr ati o n. F or t his,   w e s u g g est a gri d of N pts N p er + 1
u nif or ml y-s p a c e d  p oi nts  c e nt er e d  at g p k wit h   wi dt h 2 π N p er ,

w h er e N p er = N st d

π g 2 q p
k .   T his  c h oi c e  of  gri d  e ns ur es t h at

t h e  s a m pli n g  p oi nts  c o v er  at l e ast N st d st a n d ar d  d e vi ati o ns  of
t h e pri or o n θ k . We us e d N st d = 4 a n d N pts = 7 i n t h e n u m eri c al
e x p eri m e nts i n  S e cti o n III.

Fi n all y, aft er a p pr o xi m ati n g θ k a n d q θ
k vi a n u m eri c al i nt e gr a-

ti o n,   w e s et z k = θ k / g a n d q z
k = q θ

k / g 2 .
2)  I nf er e n c e  of c n : R e c all t h at li n es  1 0- 1 1  of   Al g orit h m  1

s u p p ort a n ar bitr ar y pri or p c o n c n .  F or t h e e x p eri m e nts i n  S e c-
ti o n III,   w e  us e d t h e tri vi al  n o n-i nf or m ati v e  pri or p c ( c n ) ∝ 1 ,
aft er   w hi c h li n es 1 0- 1 1 r e d u c e t o

q c
n = q r ∀ n a n d c n = r n ∀ n. ( 6 9)

E.  I niti aliz ati o n

We r e c o m m e n d i niti ali zi n g  C L- A M P   wit h C = C 0 a n d q p =
q p

0 ,   w h er e C 0 i s dr a w n i.i. d. N ( 0, σ2 ) a n d   w h er e q p
0 = σ 2 1 ,   wit h

σ 2 fr o m ( 2 1) ( as d es cri b e d i n  S e cti o n II- A).
I n s o m e  c as es, r u n ni n g   C L- A M P fr o m R > 1 diff er e nt r a n-

d o m i niti ali z ati o ns  c a n  h el p t o  a v oi d  s p uri o us  s ol uti o ns.   H er e,
C L- A M P is r u n fr o m a diff er e nt r a n d o m i niti ali z ati o n C 0 , r , f or

r = 1 , . . . , R, a n d t h e n t h e q u alit y of t h e r e c o v er e d s ol uti o n C r

i s e v al u at e d  b y c o nstr u cti n g t h e “ esti m at e d s k et c h ” y r vi a

y m r =

K

k = 1

α k e x p( − g 2
m τ k ) e x p(j g m a T

m c k r ) ( 7 0)

r e c alli n g ( 9) a n d ( 1 7), a n d t h e n   m e as uri n g its dist a n c e t o t h e tr u e
s k et c h y .   T h e i niti ali z ati o n i n d e x is t h e n s el e ct e d as

r ∗ = ar g mi n
r

y − y r , ( 7 1)

a n d  t h e  c e ntr oi ds  s a v e d  as C = C r ∗
.  I n  S e cti o n  III,   w e  us e d

R = 2 f or all e x p eri m e nts.

F.   H y p er p ar a m et er  T u ni n g

T h e li k eli h o o d   m o d el p y |z i n ( 1 8) d e p e n ds o n t h e u n k n o w n h y-
p er p ar a m et ers α a n d τ .   We pr o p os e t o esti m at e t h es e h y p er p a-
r a m et ers usi n g a c o m bi n ati o n of e x p e ct ati o n   m a xi miz ati o n ( E M)
a n d S H y G A M P, as s u g g est e d i n [ 1 4] a n d d et ail e d —f or t h e si m-
pl er c as e of   G A M P —i n [ 2 1].  T h e i d e a is t o r u n S H y G A M P usi n g
a n  esti m at e  of α a n d τ ,  u p d at e α a n d τ fr o m t h e  S H y G A M P
o ut p uts, a n d r e p e at u ntil c o n v er g e n c e.  F or t h e  first esti m at e,   w e
s u g g est t o us e α k = 1

K a n d τ k = 0 ∀ k .
E xtr a p ol ati n g [ 2 1,  e q. ( 2 3)] t o t h e  S H y G A M P  c as e, t h e   E M

u p d at e  of (α , τ ) t a k es t h e f or m

(α , τ )   =  ar g   m a x
α ≥ 0 ,α T 1 = 1 ,τ > 0

M

m = 1 R K

N (z m ; z m , Q z
m )

× l n p y |z ( y m |z m ; α , τ ) dz m , ( 7 2)

w h er e z m a n d Q z
m = Di a g { q z

m } ar e  o bt ai n e d  b y  r u n ni n g
S H y G A M P t o c o n v er g e n c e u n d er (α , τ ).  T o pr o c e e d,   w e   m o d el
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t h e   Dir a c  d elt a i n ( 1 8)  usi n g  a  cir c ul ar   G a ussi a n  p df   wit h  v a n-
is hi n gl y s m all v ari a n c e > 0 , i n   w hi c h c as e

l n p y |z ( y m |z m ; α , τ )

= −
1

y m −

K

k = 1

α k e x p jg m z m k −
g 2

m τ k

2

2

+ c o nst .

( 7 3)

Pl u g gi n g ( 7 3)  b a c k i nt o ( 7 2),   w e  s e e t h at t h e  c o nst a nt  a n d t h e
1 / -s c ali n g pl a y n o r ol e i n t h e o pti mi z ati o n, a n d s o   w e c a n dis-
c ar d t h e m t o o bt ai n

(α , τ ) =   ar g mi n
α ≥ 0 ,α T 1 = 1 ,τ > 0

M

m = 1 R K

N (z m ; z m , Q z
m )

× y m −

K

k = 1

α k e x p jg m z m k −
g 2

m τ k

2

2

d z m .

( 7 4)

A  cl os e d-f or m  s ol uti o n t o t h e  o pti mi z ati o n  pr o bl e m i n ( 7 4)
s e e ms o ut of r e a c h.   Als o, t h e o pti mi z ati o n o bj e cti v e is c o n v e x i n
α f or fi x e d τ , a n d c o n v e x i n τ f or fi x e d α , b ut n ot j oi ntl y c o n v e x
i n [α T , τ T ].   Alt h o u g h t h e o pti mi z ati o n pr o bl e m ( 7 4) is dif fi c ult
t o s ol v e, t h e s ol uti o ns o bt ai n e d b y gr a di e nt pr oj e cti o n ( G P) [ 2 2]
s e e m t o   w or k   w ell i n  pr a cti c e.   Als o,   G P is   m a d e  pr a cti c al  b y
cl os e d-f or m gr a di e nt e x pr essi o ns. I n p arti c ul ar, l et

q m k e x p −
g 2

m τ k

2
( 7 5)

ρ m k e x p jg m z m k −
q z

m k g 2
m

2
, ( 7 6)

a n d r e c all t h at v m k = e x p(j g m z m k ) fr o m ( 2 9) ( alt h o u g h t h er e
t h e m s u bs cri pt   w as s u p pr ess e d).   T h e n t h e m t h t er m of t h e s u m
i n t h e o bj e cti v e i n ( 7 4) b e c o m es

R K

N (z m ; z m , Q z
m ) y m −

K

k = 1

α k q m k v m k

2

d z m

= |y m |2 − 2

K

k = 1

α k q m k R e y ∗
m ρ m k

+

K

k = 1

α k q m k ρ ∗
m k

K

l= k

α l q ml ρ ml +

K

k = 1

α 2
k q 2

m k , ( 7 7)

w h er e   w e us e d t h e f a ct t h at R N (z m k ; z m k , qzm k ) v m k d z m k =
ρ m k .   Aft er r e a p pl yi n g t h e s u m o v er m ,   w e g et

∂

∂ α k

M

m = 1 R K

N (z m ; z m , Q z
m ) y m −

K

k = 1

α k q m k v m k

2

d z m

= − 2

M

m = 1

q m k γ m k ( 7 8)

∂

∂ τ k

M

m = 1 R K

N (z m ; z m , Q z
m ) y m −

K

k = 1

α k q m k v m k

2

d z m

= α k

M

m = 1

g 2
m q m k γ m k ( 7 9)

Al g o rit h m  2: C L- A M P   wit h  h y p er p ar a m et er  t u ni n g  a n d
m ulti pl e r a n d o m i niti ali z ati o ns.

R e q ui r e: M e as ur e m e nts y ∈ C M , g ai ns { g m } M
m = 1 , n u m b er

of i niti ali z ati o ns R ≥ 1 , i niti ali z ati o ns { C 0 , r }
R
r = 1 , q p

0 ,
α 0 , τ 0 .

1: i = 0
2: r e p e at
3: if i = 0 t h e n
4: f o r r = 1 : R d o
5:   R u n   C L- A M P   wit h  fi x e d (α 0 , τ 0 ) fr o m

i niti ali z ati o n (C 0 , r , q
p
0 ) , yi el di n g  o ut p ut C 1 , r ,

Z r , a n d { q z
m r } M

m = 1 .
6: e n d f o r
7:   C o m p ut e y m r

K
k = 1 α 0 k e x p( − g 2

m τ 0 k )
e x p(j g m z m k r ) ∀ m r

8:  Fi n d r ∗ = ar g mi n r y − y r .

9:  S et C 1 = C 1 , r∗ , Z = Z r ∗
a n d { q z

m } M
m = 1

= { q z
m r ∗

} M
m = 1 .

1 0: els e
1 1:   R u n   C L- A M P   wit h  fi x e d (α i , τ i ) fr o m

i niti ali z ati o n (C i , q
p
0 ) , yi el di n g  o ut p ut C i + 1 ,

Z , a n d { q z
m } M

m = 1 .
1 2: e n d if
1 3:   C o m p ut e (α i + 1 , τ i + 1 ) vi a ( 7 4) usi n g Z a n d

{ q z
m } M

m = 1 .
1 4: i ← i + 1 .
1 5: u ntil c o n v er g e n c e

f or

γ m k R e y ∗
m ρ m k − α k q m k −

K

l= k

α l q ml R e ρ ∗
m k ρ ml .

( 8 0)

We f o u n d t h at  c o m pl e xit y  of  h y p er p ar a m et er t u ni n g  c a n  b e
s u bst a nti all y r e d u c e d,   wit h o ut   m u c h l oss i n a c c ur a c y,  b y  usi n g
o nl y a s u bs et of t h e t er ms i n t h e s u m i n ( 7 4), as   w ell as i n t h e c or-
r es p o n di n g gr a di e nt e x pr essi o ns ( 7 8) –( 7 9). F or t h e e x p eri m e nts
i n  S e cti o n III,   w e us e d a  fi x e d r a n d o m s u bs et of mi n( M, 2 0 K )
t er ms.

G.   Al g orit h m S u m m ar y

Al g orit h m 2 s u m m ari z es t h e   C L- A M P al g orit h m   wit h R r a n-
d o m i niti ali z ati o ns  a n d t u ni n g  of t h e  h y p er p ar a m et ers (α , τ ).

N ot e t h at t h e  r a n d o m i niti ali z ati o ns { C 0 , r } ar e  us e d  o nl y  f or
t h e first   E M it er ati o n, i. e., i = 0 . S u bs e q u e nt   E M it er ati o ns (i. e.,
i ≥ 1 )  ar e i niti ali z e d  usi n g t h e  o ut p ut C i of t h e  pr e vi o us   E M
it er ati o n.

III.   NU M E RI C A L E X P E RI M E N T S

I n  t his  s e cti o n,   w e  pr es e nt  t h e  r es ults  of  s e v er al  e x p er-
i m e nts  us e d  t o  t est  t h e  p erf or m a n c e  of  t h e   C L- A M P,   C L-
O M P R, a n d k- m e a ns + + al g orit h ms. F or k- m e a ns + +,   w e us e d t h e
i m pl e m e nt ati o n  pr o vi d e d  b y   M A T L A B  a n d,  f or   C L- O M P R,
w e  d o w nl o a d e d t h e   M A T L A B i m pl e m e nt ati o n fr o m [ 2 3].   C L-
O M P R a n d   C L- A M P us e d t h e s a m e s k et c h y ,   w h os e fr e q u e n c y
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v e ct ors W w er e dr a w n usi n g t h e   m et h o d d es cri b e d i n S e cti o n II-
A,   wit h t h e  s c ali n g  p ar a m et er σ 2 s et  vi a ( 2 1).  F or   C L- O M P R
a n d   C L- A M P, t h e r e p ort e d r u nti m es i n cl u d e t h e ti m e  of  c o m-
p uti n g t h e s k et c h, u nl ess ot h er wis e n ot e d.   All e x p eri m e nts   w er e
r u n  o n  a   D ell  P o w er E d g e   C 6 3 2 0 t w o-s o c k et  s er v er   wit h  I nt el
X e o n   E 5- 2 6 8 0  v 4  pr o c ess ors ( 1 4  c or es,  2. 4 0 G H z)  a n d  1 2 8 G B
R A M.

A.   E x p eri m e nts   Wit h S y nt h eti c   D at a

1)   Perf or m a n c e vs. S k et c h L e n gt h M : I n t h e first e x p eri m e nt,
w e  t est  e a c h  al g orit h m’s  a bilit y  t o   mi ni mi z e  S S E  o n  a  s et  of
tr ai ni n g  d at a, i. e., t o s ol v e t h e  pr o bl e m ( 1). I n a d diti o n,   w e t est
h o w   w ell  t h e  r e c o v er e d  c e ntr oi ds   w or k  i n   mi ni m u m- dist a n c e
cl assi fi c ati o n.

T h e e x p eri m e nt   w as c o n d u ct e d as f oll o ws. Fi xi n g t h e n u m b er
of  cl ass es  at K = 1 0 a n d t h e  d at a  di m e nsi o n  at N =  1 0 0 , t e n
M o nt e   C arl o tri als   w er e  p erf or m e d. I n  e a c h tri al, t h e tr u e  c e n-
tr oi ds   w er e  r a n d o ml y  dr a w n3 a s c k ∼ N (0 N , 1 .5 2 K 2 / N I N ) .
T h e n,  usi n g  t h es e  c e ntr oi ds,  a  tr ai ni n g  d at as et { x t }

T
t = 1 wit h

T = 1 0 7 s a m pl es   w as  dr a w n fr o m t h e   G M M ( 5)   wit h   w ei g hts
α k = 1 / K a n d  c o v ari a n c es Φ k = I N ∀ k .   A d diti o n all y,  a  t est
d at as et { x t } of 1 0 6 s a m pl es   w as i n d e p e n d e ntl y  g e n er at e d.

F or  c e ntr oi d r e c o v er y,  k- m e a ns + +   w as i n v o k e d  o n t h e tr ai n-
i n g  d at as et,  a n d  b ot h   C L- A M P  a n d   C L- O M P R   w er e  i n v o k e d
aft er  s k et c hi n g  t h e  tr ai ni n g  d at a   wit h M s a m pl es  as  i n  ( 2).
S k et c h l e n gt hs M / K N ∈ { 1 , 2 , 3 , 5 , 1 0 , 2 0 } w er e i n v esti g at e d.
C L- A M P us e d t w o r a n d o m i niti ali z ati o ns, i. e., R = 2 as d e fi n e d
i n   Al g orit h m 2.

F or  e a c h  al g orit h m,  t h e  S S E  of  its  esti m at e d  c e ntr oi ds
{ c k } K

k = 1 w as  c al c ul at e d  usi n g  t h e  tr ai ni n g  d at a { x t }
T
t = 1 vi a

( 1).   A d diti o n all y,  t h e  p erf or m a n c e  of  t h e  esti m at e d  c e ntr oi ds
i n   mi ni m u m- dist a n c e  cl assi fi c ati o n   w as  e v al u at e d  as  f oll o ws.
First, l a b els { j k } K

k = 1 w er e  assi g n e d t o t h e  esti m at e d  c e ntr oi ds
b y s ol vi n g t h e li n e ar assi g n m e nt pr o bl e m [ 2 4]   wit h o ut r e pl a c e-
m e nt, gi v e n  b y

ar g   mi n
{ j 1 ,..., jK } = { 1 ,..., K }

K

k = 1

c k − c j k

2
2 . ( 8 1)

N e xt,  e a c h  t est  s a m pl e x t w as  cl assi fi e d  usi n g   mi ni m u m-
dist a n c e cl assi fi c ati o n, pr o d u ci n g t h e esti m at e d l a b el

k t = ar g mi n
k ∈ { 1 ,..., K }

x t − c j k
. ( 8 2)

T h e  cl assi fi c ati o n  err or r at e ( C E R)   w as t h e n  c al c ul at e d  as t h e
pr o p orti o n of esti m at e d l a b els k t t h at d o n ot e q u al t h e tr u e l a b el
k t fr o m   w hi c h t h e t est s a m pl e x t w as g e n er at e d. 4

Fi g ur es  1 a,  1 b, a n d  1 c s h o w t h e   m e di a n  S S E,   C E R, a n d r u n-
ti m e (i n cl u di n g s k et c hi n g), r es p e cti v el y, f or   C L- A M P a n d   C L-

3 T his  d at a- g e n er ati o n   m o d el   w as  c h os e n t o   m at c h t h at fr o m [ 5],  a n d is i n-
t e n d e d t o  h a v e  a r el ati v el y  c o nst a nt   B a y es  err or r at e   w.r.t. N a n d K . F or t h e
c h os e n p ar a m et ers, t h e   B a y es err or r at e is e xtr e m el y s m all: 1 0 − 2 4 .   T h us,   w h e n
t h e  c e ntr oi ds  ar e  a c c ur at el y  r e c o v er e d, t h e  cl assi fi c ati o n  err or  r at e  s h o ul d  b e
ess e nti all y z er o.

4 N ot e t h at t h e tr u e l a b el k t w as assi g n e d   w h e n t h e t est s a m pl e x t w as g e n er-
at e d.   T h e tr u e l a b el k t d o es n ot n e c ess aril y i n di c at e   w hi c h of t h e tr u e c e ntr oi ds
{ c k } is cl os est t o x t .

Fi g.  1.  P erf or m a n c e  vs.  s k et c h  l e n gt h M f or K = 1 0 cl ust ers,  di m e nsi o n
N =  1 0 0 , a n d T = 1 0 7 tr ai ni n g s a m pl es.

O M P R  v ers us M / K N .   Als o s h o w n is t h e   m e di a n  S S E,   C E R,
a n d r u nti m e of k- m e a ns + +, as a b as eli n e,   w h er e k- m e a ns + + h as
n o  d e p e n d e n c e  o n M .   B e c a us e a l o w r u nti m e is   m e a ni n gl ess if
t h e c orr es p o n di n g  S S E is v er y hi g h, t h e r u nti m e   w as n ot s h o w n
f or   C L- A M P  a n d   C L- O M P R   w h e n e v er its  S S E   w as   m or e t h a n
1. 5 ti m es t h at  of  k- m e a ns + +.   T h e  err or  b ars s h o w t h e st a n d ar d
d e vi ati o n  of t h e esti m at es.
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Fi g ur e  1 a  s h o ws t h at,  a m o n g t h e   m et h o ds t est e d,   C L- A M P
a c hi e v e d t h e l o w est S S E   w h e n M ≥ 2 K N .   Als o,   C L- A M P s u p-
p ort e d t h e  us e  of  s m all er  s k et c h  si z es M t h a n   C L- O M P R.  I n
p arti c ul ar,   C L- A M P r e q uir e d M ≥ 2 K N t o  yi el d  a l o w  S S E,
w hil e   C L- O M P R r e q uir e d M ≥ 1 0 K N .   T his  b e h a vi or   mirr ors
t h e b e h a vi or of   A M P a n d   O M P i n t h e cl assi c al c o m pr essi v e s e ns-
i n g  c o nt e xt,   w h er e   A M P  us u all y r e q uir es f e w er   m e as ur e m e nts
t o  a c c ur at el y r e c o v er si g n als  of  a  gi v e n s p arsit y (s e e,  e. g., [ 2 1,
Fi gs. 8 – 1 0]).   Als o,   wit h s uf fi ci e ntl y l ar g e M , t h e  S S E a c hi e v e d
b y   C L- A M P  a n d   C L- O M P R   w as l o w er t h a n t h at  a c hi e v e d  b y
k- m e a ns + +.

Fi g. 1 b s h o ws t h at   C L- A M P a c hi e v e d a l o w   C E R   wit h s k et c h
si z e M ≥ K N ,   w hil e a g ai n   C L- O M P R r e q uir e d M ≥ 1 0 K N .
Als o,   wit h  s uf fi ci e ntl y  l ar g e M ,   C L- A M P  a n d   C L- O M P R
a c hi e v e d  n e ar- z er o   C E R,   w h er e as  k- m e a ns + +  a c hi e v e d  a n  er-
r or r at e of ≈ 0 .2 .

Fi n all y,  Fi g.  1 c  s h o ws  t h at,  f or M / K N ∈ { 1 0 , 2 0 } , k-
m e a ns + +  r a n  sli g htl y  f ast er  t h a n   C L- A M P,   w hi c h  r a n
sli g htl y  f ast er  t h a n   C L- O M P R.   H o w e v er,  f or M / K N ∈
{ 1 , 2 , 3 , 5 } ,   C L- A M P r a n  si g ni fi c a ntl y f ast er t h a n  k- m e a ns + +.
F or M / K N ∈ { 1 , 2 , 3 , 5 } , t h e r u nti m e  of   C L- O M P R   w as  n ot
s h o w n b e c a us e it g e n er at e d c e ntr oi ds of si g ni fi c a ntl y   w ors e S S E
t h a n t h os e of k- m e a ns + +.

2)   Perf or m a n c e  vs.   N u m b er  of   Cl ass es K : I n  a  s e c o n d  e x-
p eri m e nt,   w e e v al u at e d e a c h al g orit h m’s p erf or m a n c e v ers us t h e
n u m b er of cl ass es K ∈ { 5 , 1 0 , 1 5 , 2 0 , 2 5 , 3 0 , 4 0 , 5 0 } a n d s k et c h
si z es M / K N ∈ { 2 , 5 , 1 0 } f or  fi x e d  d at a  di m e nsi o n N = 5 0 .
T h e d at a   w as g e n er at e d i n e x a ctl y t h e s a m e   w a y as t h e pr e vi o us
e x p eri m e nt, a n d t h e s a m e  p erf or m a n c e   m etri cs   w er e e v al u at e d.
Fi gs  2 a,  2 b,  a n d  2 c  s h o w t h e   m e di a n  S S E,   C E R,  a n d r u nti m e
(i n cl u di n g s k et c hi n g)  v ers us K , f or   C L- A M P,   C L- O M P R,  a n d
k- m e a ns + +.

Fi g ur e 2 a s h o ws t h at, as K i n cr e as es, t h e  S S E of k- m e a ns + +
r e m ai n e d  r o u g hl y  c o nst a nt,  as  e x p e ct e d  b as e d  o n  t h e  g e n er a-
ti o n  of t h e tr u e  c e nt ers c k . F or K ≤ 2 0 ,   C L- A M P  yi el d e d t h e
b est  S S E  f or  all  t est e d  v al u es  of M . F or K > 2 0 ,   C L- A M P
yi el d e d t h e  b est  S S E   wit h  s k et c h  si z es M ∈ { 5 K N, 1 0 K N } ,
b ut p erf or m e d p o orl y   wit h M = 2 K N .   M e a n w hil e,   C L- O M P R
p erf or m e d  r e as o n a bl y   w ell   wit h  s k et c h  si z e M = 1 0 K N , b ut
p o orl y   wit h M ∈ { 2 K N, 5 K N } .

Fi g ur e  2 b  s h o ws  si mil ar  tr e n ds.   Wit h  s k et c h  si z e M ∈
{ 5 K N, 1 0 K N } ,   C L- A M P  h a d  t h e  l o w est   C E R  of  a n y  al g o-
rit h m f or all t est e d v al u es of K .   Wit h s k et c h si z e M = 1 0 K N ,
C L- O M P R  g a v e   C E R  b ett er t h a n  k- m e a ns + + f or  all t est e d K ,
b ut   wit h M ∈ { 2 K N, 5 K N } C L- O M P R g a v e   C E R   w ors e t h a n
k- m e a ns + + f or all t est e d K .

Fi n all y,  Fi g.  2 c  s h o ws  t h at   C L- A M P  r a n  f ast er  t h a n   C L-
O M P R  at  all t est e d K d u e t o its  a bilit y t o   w or k   wit h  a s m all er
s k et c h  si z e M . F or l ar g e K ,  Fi g.  2 c  s u g g ests t h at t h e r u nti m e
of  b ot h   C L- A M P a n d   C L- O M P R  gr o w as O (K 2 ) . T h e O (K 2 )
c o m pl e xit y s c ali n g is e x p e ct e d f or   C L- A M P, si n c e its c o m pl e x-
it y is O (M N K ) a n d   w e s et M = O (K ). B ut t h e O (K 2 ) c o m-
pl e xit y  s c ali n g  is  s o m e w h at  s ur prisi n g  f or   C L- O M P R,  si n c e
its  c o m pl e xit y is O (M N K 2 ) a n d   w e  s et M = 1 0 N K . Als o,
Fi g. 2 c s h o ws t h at   C L- A M P r a n f ast er t h a n k- m e a ns + + f or   m ost
v al u es  of K ; f or t h e  s m all est t est e d  v al u e  of K (i. e., K = 5 ),
t h e   m e di a n  r u nti m e  of  k- m e a ns + +   w as  l o w er  t h a n   C L- A M P
( b ut t h e  err or- b ar s u g g ests t h at t h e r u nti m e  of  k- m e a ns + +   w as

Fi g. 2.  P erf or m a n c e vs. n u m b er of cl ust ers K f or di m e nsi o n N = 5 0 , s k et c h
si z e M ∈ { 2 , 5 , 1 0 } × K N , a n d T = 1 0 7 tr ai ni n g s a m pl es.

hi g hl y  v ari a bl e at t his K ).  F or t h e l ar g est t est e d  v al u e  of K , k-
m e a ns + +   w as  a g ai n f ast er t h a n   C L- A M P,  b e c a us e t h e r u nti m e
of k- m e a ns + + is e x p e ct e d t o gr o w li n e arl y   wit h K ,   w h er e as t h at
of   C L- A M P  is  e x p e ct e d  t o  gr o w  q u a dr ati c all y   wit h K w h e n
M / K N is  fi x e d.

3)   Perf or m a n c e vs.   Di m e nsi o n N : I n a t hir d e x p eri m e nt,   w e
e v al u at e d e a c h al g orit h m’s p erf or m a n c e v ers us t h e di m e nsi o n N
(l o g arit h mi c all y s p a c e d b et w e e n 1 0 a n d 3 1 6) f or K = 1 0 cl ass es
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Fi g. 3.  P erf or m a n c e vs. di m e nsi o n N f or K = 1 0 cl ass es, T = 1 0 7 s a m pl es,
a n d s k et c h si z e M ∈ { 2 , 5 , 1 0 } × K N .

a n d s k et c h si z e M ∈ { 2 , 5 , 1 0 } × K N .   T h e d at a   w as g e n er at e d
i n e x a ctl y t h e s a m e   w a y as t h e pr e vi o us t w o e x p eri m e nts, a n d t h e
s a m e  p erf or m a n c e   m etri cs   w er e  e v al u at e d.  Fi gs  3 a,  3 b,  a n d  3 c
s h o w t h e   m e di a n  S S E/ N , t h e   C E R, a n d t h e r u nti m e (i n cl u di n g
s k et c hi n g) v ers us N , f or   C L- A M P,   C L- O M P R, a n d k- m e a ns + +.

Fi g.  3 a  s h o ws  t h at,  a m o n g  all  al g orit h ms,   C L- A M P
a c hi e v e d  t h e  l o w est  S S E  f or  all  t est e d  v al u es  of N a n d M .
M e a n w hil e, b ot h  C L- O M P R u n d er s k et c h si z e M = 1 0 K N a n d
k- m e a ns + + a c hi e v e d r e as o n a bl y  g o o d  S S E,  b ut   C L- O M P R  u n-
d er s m all er s k et c h es  g a v e   m u c h  hi g h er  S S E.

Fi g. 3 b s h o ws t h at, a m o n g all al g orit h ms,   C L- A M P a c hi e v e d
t h e l o w est   C E R f or  all t est e d  v al u es  of N a n d M .   M e a n w hil e,
C L- O M P R u n d er s k et c h si z e M = 1 0 K N g a v e si mil ar   C E R t o
C L- A M P f or   m ost N , k- m e a ns + + g a v e si g ni fi c a ntl y   w ors e   C E R
c o m p ar e d t o   C L- A M P f or  all N ,  a n d   C L- O M P R  u n d er s k et c h
si z e M = 5 K N or 2 K N g a v e e v e n   w ors e   C E R f or all N .

Fi n all y,  Fi g.  3 c s h o ws t h at,  a m o n g  all  al g orit h ms,   C L- A M P
wit h s k et c h si z e M = 2 K N r a n t h e f ast est f or all t est e d v al u es
of N .   M e a n w hil e,   C L- O M P R   wit h s k et c h si z e M = 1 0 K N r a n
at  a  si mil ar  s p e e d t o   C L- A M P   wit h  s k et c h  si z e M = 1 0 K N ,
f or  all N .   T h e  r u nti m es  f or   C L- O M P R   wit h  s m all er  s k et c h es
ar e n ot s h o w n b e c a us e it a c hi e v e d si g ni fi c a ntl y   w ors e  S S E t h a n
k- m e a ns + +. Fi g. 3 c s u g g ests t h at, if N is i n cr e as e d b e y o n d 3 1 6,
t h e n  e v e nt u all y  k- m e a ns + +   will  b e f ast er t h a n   C L- A M P  u n d er
fi x e d M / K N .

4)   Perf or m a n c e vs. Tr ai ni n g Siz e T : I n a fi n al s y nt h eti c- d at a
e x p eri m e nt,   w e e v al u at e d e a c h al g orit h m’s  p erf or m a n c e  v ers us
t h e  n u m b er  of tr ai ni n g  s a m pl es T (l o g arit h mi c all y  s p a c e d  b e-
t w e e n 1 0 5 a n d 1 0 8 ) f or K = 1 0 cl ass es,  di m e nsi o n N = 5 0 ,
a n d s k et c h si z e M ∈ { 2 , 5 , 1 0 } K N .   T h e d at a   w as g e n er at e d i n
e x a ctl y t h e s a m e   w a y as t h e pr e vi o us t hr e e e x p eri m e nts, a n d t h e
s a m e p erf or m a n c e   m etri cs   w er e e v al u at e d.

Fi g ur es  4 a  a n d  4 b  s h o w  t h e   m e di a n  S S E  a n d   C E R  v er-
s us T ,  f or   C L- A M P,   C L- O M P R,  a n d  k- m e a ns + +.  Fr o m t h es e
fi g ur es,   w e  o bs er v e  t h at  t h e  S S E  a n d   C E R  f or  e a c h  al g o-
rit h m  ( a n d  s k et c h l e n gt h M )   w er e  a p pr o xi m at el y i n v ari a nt t o
T .   C L- A M P  ( u n d er  a n y  t est e d M )  yi el d e d  t h e  l o w est  v al u es
of  S S E  a n d   C E R.   B ot h   C L- O M P R  u n d er  s k et c h  si z e M =
1 0 K N a n d  k- m e a ns + +  g a v e  r e as o n a bl y  g o o d  S S E  a n d   C E R,
b ut   C L- O M P R  u n d er  s m all er  s k et c h es  g a v e   w ors e  S S E  a n d
C E R.

Fi gs  4 c  a n d  4 d  s h o w t h e   m e di a n  r u nti m e   wit h  a n d   wit h o ut
s k et c hi n g,  r es p e cti v el y,  f or  t h e  al g orit h ms  u n d er  t est.  Fi g.  4 c
s h o ws  t h at,  if  s k et c hi n g  ti m e  is  i n cl u d e d  i n  r u nti m e,  t h e n  all
r u nti m es i n cr e as e d li n e arl y   wit h tr ai ni n g  si z e T .   H o w e v er, f or
l ar g e T ,   C L- A M P  r a n  f ast er t h a n  k- m e a ns + +  a n d   C L- O M P R
( w hil e als o a c hi e vi n g l o w er S S E a n d   C E R).   M e a n w hil e, Fi g. 4 d
s h o ws t h at, if  s k et c hi n g ti m e is  n ot i n cl u d e d i n  r u nti m e, t h e n
t h e r u nti m es  of  b ot h   C L- A M P  a n d   C L- O M P R   w er e r el ati v el y
i n v ari a nt  t o T .   Als o,  Fi gs  4 c  a n d  4 d  t o g et h er  s h o w  t h at,  f or
T > 1 0 6 ,  t h e  s k et c hi n g  ti m e   w as  t h e  d o mi n a nt  c o ntri b ut er  t o
t h e o v er all r u nti m e.

B.  S p e ctr al   Cl ust eri n g of   M NI S T

N e xt   w e e v al u at e d t h e al g orit h ms o n t h e t as k of s p e ctr al cl us-
t eri n g  [ 2 5]  of  t h e   M NI S T  d at as et.   T his  t as k   w as  pr e vi o usl y
i n v esti g at e d f or   C L- O M P R a n d k- m e a ns + + i n [ 6], a n d   w e us e d
t h e s a m e d at a pr e pr o c essi n g st e ps: e xtr a ct SI F T d es cri pt ors [ 2 6]
of e a c h i m a g e, c o m p ut e t h e K - n e ar est- n ei g h b ors a dj a c e n c y   m a-
tri x  (f or K = 1 0 )  usi n g  F L A N N  [ 2 7],  a n d  c o m p ut e  t h e  1 0
pri n ci p al  ei g e n v e ct ors  of t h e  ass o ci at e d  n or m ali z e d   L a pl a ci a n
m atri x  (si n c e   w e  k n o w K = 1 0 ),  yi el di n g  f e at ur es  of  di m e n-
si o n N = 1 0 .   We  a p pli e d t his  pr o c ess t o t h e  ori gi n al   M NI S T
d at as et,   w hi c h i n cl u d es T = 7 × 1 0 4 s a m pl es, as   w ell as a n a u g-
m e nt e d o n e   wit h T = 3 × 1 0 5 s a m pl es c o nstr u ct e d as d es cri b e d
i n [ 6].

T h e e x p eri m e nt   w as c o n d u ct e d as f oll o ws. I n e a c h  of  1 0 tri-
als,   w e r a n d o ml y p artiti o n e d e a c h s u b- d at as et i nt o e q u all y-si z e d
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Fi g. 4.  P erf or m a n c e vs. tr ai ni n g si z e T f or K = 1 0 cl ass es,  di m e nsi o n N = 5 0 , a n d s k et c h si z e M ∈ { 2 , 5 , 1 0 } × K N .

tr ai ni n g  a n d t esti n g  p orti o ns.   T h e n,   w e i n v o k e d   C L- A M P,   C L-
O M P R,  a n d  k- m e a ns + +  o n t h e tr ai ni n g  p orti o n  of t h e  d at as et,
usi n g s k et c h si z es M ∈ { 1 , 2 , 3 , 5 , 1 0 } × K N f or   C L- A M P a n d
C L- O M P R.   T h e al g orit h m p ar a m et ers   w er e t h e s a m e as i n  S e c-
ti o n  III- A.  Fi n all y,  t h e  esti m at e d  c e ntr oi ds  pr o d u c e d  b y  e a c h
al g orit h m   w er e e v al u at e d usi n g t h e s a m e t w o   m etri cs as i n  S e c-
ti o n III- A: S S E o n t h e tr ai ni n g d at a, a n d cl assi fi c ati o n err or r at e
( C E R)   w h e n t h e c e ntr oi ds   w er e us e d f or   mi ni m u m- dist a n c e cl as-
si fi c ati o n of t h e t est d at a s a m pl es.

T h e   m e di a n S S E,   C E R, a n d r u nti m e, v ers us s k et c h l e n gt h M ,
ar e  s h o w n f or   C L- A M P  a n d   C L- O M P R i n  Fi g.  5 f or t h e T =
7 × 1 0 4 - s a m pl e   M NI S T  s u b- d at as et.   As  b ef or e,  k- m e a ns + + is
s h o w n, as a b as eli n e, alt h o u g h it d o es n ot us e t h e s k et c h a n d t h us
is  p erf or m a n c e is i n v ari a nt t o M .  Fr o m t his  fi g ur e,   w e  o bs er v e
t h at   C L- A M P a n d   C L- O M P R g a v e r es p e ct a bl e r es ults f or s k et c h
l e n gt hs M ≥ 2 K N ,  a n d  S S E  n e arl y  i d e nti c al  t o  k m e a ns + +
f or M ≥ 5 K N . F or M ≥ 2 K N ,  h o w e v er,   C L- A M P  yi el d e d
si g ni fi c a ntl y l o w er   C E R t h a n  b ot h   C L- O M P R a n d  k- m e a ns + +,
at t h e c ost  of a sl o w er r u nti m e.   We attri b ut e   C L- A M P’s sl o w er
r u nti m e t o its us e of   m a n y it er ati o ns i i n   Al g orit h m 2 f or h y p er-
p ar a m et er t u ni n g.

C.   E x a mi n ati o n  of   C o m p ut ati o n al   C o m pl e xit y

T o b ett er u n d erst a n d t h e c o m p ut ati o n al b ottl e n e c ks of t h e pr o-
p os e d a p pr o a c h, Fi g. 6 s h o ws —f or s e v er al pr o bl e m di m e nsi o ns

a n d  d at a t y p es —t h e r u nti m e  c o ntri b uti o ns  of t h e  “s k et c h,” i. e.,
e q u ati o n ( 2); t h e “t u ni n g ” st e ps, i. e., li n e  2  of   Al g orit h m  2; t h e
“ esti m ati o n ” st e ps, i. e., li n es  4- 5  of   Al g orit h m  1;  a n d  all  ot h er
li n es fr o m   Al g orit h m 1,   w hi c h   w e r ef er t o as t h e “li n e ar ” st e ps,
si n c e t h eir  c o m pl e xit y is  d o mi n at e d  b y t h e   m atri x   m ulti pli c a-
ti o ns i n li n es 3 a n d  9 of   Al g orit h m 1.

Fi g.  6  s u g g ests t h at   C L- A M P’s  esti m ati o n  st e ps r e q uir e t h e
m ost  c o m p ut ati o n, f oll o w e d  b y its t u ni n g  st e ps,  a n d  fi n all y its
li n e ar  st e ps.   T h es e  r es ults   m oti v at e  a d diti o n al   w or k t o  r e d u c e
t h e  c o m p ut ati o n al  c o m pl e xit y  of   C L- A M P’s  esti m ati o n  st e ps.
T h e  c ost  of s k et c hi n g its elf  d e p e n ds  o n t h e  n u m b er  of tr ai ni n g
s a m pl es, T ,  a n d  t h e  d e gr e e  t o   w hi c h  t h e  s k et c hi n g  o p er ati o n
is  distri b ut e d  o v er   m ulti pl e  pr o c ess ors.   W h e n T b e c o m es l ar g e
e n o u g h t h at t h e  s k et c hi n g ti m e  b e c o m es  c o m p ut ati o n all y  si g-
ni fi c a nt ( as i n  Fi g. 6 b), t h e si m pl est r e m e d y is t o p ar all eli z e t h e
s k et c h.

D.   Fr e q u e n c y   Esti m ati o n

O ur  fi n al  e x p eri m e nt  c o n c er ns   m ulti- di m e nsi o n al fr e q u e n c y
esti m ati o n.   C o nsi d er a s u m- of-si n us oi ds si g n al of t h e f or m

y (t ) =

K

k = 1

α k e x p(j t T c k ) , ( 8 3)
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Fi g.  5.  P erf or m a n c e  vs. M f or  t h e T =  7 0 0 0 0 -s a m pl e  s p e ctr al   M NI S T
d at as et,   wit h K = 1 0 cl ust ers a n d di m e nsi o n N = 1 0 .

w h er e c k ∈ R N i s t h e  fr e q u e n c y  of t h e k t h  si n us oi d, α k > 0
is t h e a m plit u d e  of t h e k t h si n us oi d, a n d t ∈ R N d e n ot es ti m e.
Gi v e n   m e as ur e m e nts of t h e si g n al y (t ) at a c oll e cti o n of r a n d o m
ti m es t ∈ { t m } M

m = 1 , i. e.,

y m = y (t m ) f or m = 1 , . . . , M, ( 8 4)

Fi g.  6.  Pr o p orti o n  of t ot al r u nti m e  of t h e  diff er e nt  s e cti o ns  of t h e   C L- A M P
al g orit h m a p pli e d t o diff er e nt d at as ets.

w e s e e k t o r e c o v er t h e fr e q u e n ci es { c k } K
k = 1 .   We ar e p arti c ul arl y

i nt er est e d i n t h e  c as e   w h er e  t h e  fr e q u e n ci es { c k } ar e  cl os el y
s p a c e d, i. e., t h e “s u p er-r es ol uti o n ”  pr o bl e m.

N ot e t h at t h e   m o d el i n ( 8 3)   m at c h es t h at i n ( 1 3)   wit h g m a m =
t m ∀ m a n d Φ k = 0 ∀ k ,  s o t h at   w e  c a n  a p pl y   C L- A M P t o t his
fr e q u e n c y esti m ati o n  pr o bl e m.   T h e   m o d el i n ( 8 3) als o   m at c h es
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Fi g.  7.  Fr e q u e n c y esti m ati o n f or K = 4 a n d N = 2 wit h r a n d o m ti m e s a m-
pl es.

( 4)   wit h w m = t m ∀ m ,  a n d  s o   w e  c a n  als o  a p pl y   C L- O M P R.
B ut   w e c a n n ot a p pl y k- m e a ns + +.

F or  fr e q u e n c y  p airs { c 1 , c 2 } wit h c 1 − c 2 2 ≥ ,  [ 2 8]
cl ai ms  t h at,   wit h { w m } dr a w n  r a n d o ml y  fr o m  a n  a p pr o pri-
at e  distri b uti o n,  o n e  c a n  r es ol v e  t h e  fr e q u e n ci es   wit h M ≥
O (l n( 1/ )) m e as ur e m e nts.   H o w e v er,  c h o osi n g w m u nif or ml y
s p a c e d  o n  a  gri d   w o ul d  r e q uir e M ≥ O ( 1/ ) m e as ur e m e nts.
T h us, f or a  fi n al e x p eri m e nt, si mil ar t o t h os e p erf or m e d i n [ 2 8],
w e  di d t h e  f oll o wi n g.  F or  a  p arti c ul ar N a n d K ( w h er e K is
e v e n  f or  si m pli cit y),   w e  g e n er at e d K / 2 p airs  of  fr e q u e n ci es
{ c 2 k − 1 , c 2 k } ,   w h er e c 2 k − 1 − c 2 k 2 = f or k = 1 , . . . , K /2 .
T h e n,  f or  a  p arti c ul ar  r e ali z ati o n  of { c k } K

k = 1 a n d { w m } M
m = 1 ,

C L- A M P  a n d   C L- O M P R   w er e  i n v o k e d  t o  esti m at e { c k } K
k = 1 .

R e c o v er y   w as d e cl ar e d s u c c essf ul if

m a x
k

c j k
− c k 2 < / 2 , ( 8 5)

w h er e { j k } K
k = 1 s ol v es t h e li n e ar assi g n m e nt pr o bl e m ( 8 1).

F or o ur e x p eri m e nt,   w e t est e d K = 4 fr e q u e n c y c o m p o n e nts
of di m e nsi o n N = 2 a n d v ari e d M fr o m 3 K N t o 1 0 0 K N w hil e
als o v ar yi n g fr o m 1 0 − 1 t o 1 0 − 3 . F or e a c h c o m bi n ati o n, 1 0 tri als

Fi g.  8.  Fr e q u e n c y  esti m ati o n f or K = 4 a n d N = 2 wit h  u nif or ml y s p a c e d
ti m e s a m pl es.

w er e p erf or m e d.   T h e e m piri c al pr o b a bilit y of s u c c essf ul r e c o v-
er y is s h o w n i n Fi gs 7 – 8. I n Fi g. 7, a m w er e dr a w n u nif or ml y o n
t h e  u nit  s p h er e  a n d g m = |g m | wit h g m ∼ N ( 0, 4 2 l o g21 0 ( )),
w hil e i n  Fi g.  8, w m ar e  u nif or ml y s p a c e d  o n a N - di m e nsi o n al
h y p er- gri d   wit h  p er- di m e nsi o n s p a ci n g π / 2 .  S u p eri m p os e d  o n
t h e fi g ur es ar e c ur v es s h o wi n g M / K N = 0 .1 / a n d M / K N =
l n( 1/ ).  Fr o m t h e  fi g ur es,   w e  s e e t h at   C L- A M P  h a d  a  hi g h er
e m piri c al  pr o b a bilit y  of  r e c o v er y  t h a n   C L- O M P R,  es p e ci all y
f or  s m all .   We  als o  s e e t h at t h e  e m piri c al  p h as e tr a nsiti o n  of
C L- A M P is  cl os e t o t h e l n( 1/ ) c ur v e   wit h r a n d o m fr e q u e n c y
s a m pl es  (i. e.,  Fi g.  7 a)  a n d  t h e 0 .1 / c ur v e   wit h  u nif or m  fr e-
q u e n c y s a m pl es (i. e.,  Fi g. 8 a).

I V.   CO N C L U SI O N

I n s k et c h e d  cl ust eri n g, t h e  ori gi n al  d at as et is s k et c h e d  d o w n
t o  a  r el ati v el y  s h ort  v e ct or,  fr o m   w hi c h  t h e  c e ntr oi ds  ar e
e xtr a ct e d.  F or  t h e  s k et c h  pr o p os e d  b y  [ 5],  [ 6],   w e  pr o p os e d
t h e   C L- A M P c e ntr oi d- e xtr a cti o n   m et h o d.   O ur   m et h o d ass u m es
t h at t h e ori gi n al d at a f oll o ws a   G M M, a n d e x pl oits t h e r e c e ntl y
pr o p os e d  si m pli fi e d  h y bri d  g e n er ali z e d  a p pr o xi m at e   m ess a g e
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p assi n g  ( S H y G A M P)  al g orit h m  [ 1 4].   N u m eri c al  e x p eri m e nts
s u g g est t h at   C L- A M P  e x hi bits  b ett er  s a m pl e  c o m pl e xit y  (i. e.,
e xtr a cts a c c ur at e cl ust ers   wit h f e w er c o m pr ess e d s a m pl es) t h a n
t h e  st at e- of-t h e- art  s k et c h e d- cl ust eri n g  al g orit h m,   C L- O M P R,
fr o m  [ 5],  [ 6].  I n   m a n y  c as es,   C L- A M P  als o  e x hi bits  b ett er
c o m p ut ati o n al  c o m pl e xit y  t h a n   C L- O M P R.  F urt h er m or e,
f or  d at as ets   wit h   m a n y  s a m pl es,   C L- A M P  e x hi bits  l o w er
c o m p ut ati o n al  c o m pl e xit y  t h a n  t h e   wi d el y  us e d  k- m e a ns + +
al g orit h m.   As f ut ur e   w or k, it   w o ul d b e   w ort h w hil e t o i n v esti g at e
w a ys  t o  r e d u c e  t h e  c o m p ut ati o n al  c o m pl e xit y  of   C L- A M P’s
esti m ati o n  st e ps,  a n d  t o  a n al y z e  t h e  t h e or eti c al  b e h a vi or  of
C L- A M P  usi n g  a  st at e- e v ol uti o n  a p pr o a c h.  Fi n all y,  as  n e w
v ari ati o ns  of  t h e  s k et c h  ( 2)  ar e  pr o p os e d  ( e. g.,  [ 2 9],  [ 3 0])  it
w o ul d b e i nt er esti n g t o   m o dif y   C L- A M P a c c or di n gl y.
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2 0 1 2, 2 0 1 5, a n d 2 0 1 9, r es p e cti v el y.   His r es e ar c h i nt er ests i n cl u d e st atisti c al si g-
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