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Sketched Clustering via Hybrid
Approximate Message Passing

Evan Byrne, Antoine Chatalic, Rémi Gribonval

Abstract—In sketched clustering, a dataset of T samples is first
sketched down to a vector of modest size, from which the cen-
troids are subsequently extracted. Its advantages include 1) re-
duced storage complexity and 2) centroid extraction complexity in-
dependent of T, For the sketching methodology vecently proposed
by Keriven et al., which can be interpreted as a random sampling of
the empirical characteristic function, we propose a sketched clus-
tering algorithm based on approximate message passing. Numer-
ical experiments suggrest that our approach is more efficient than
the state-of-the-art sketched clustering algorithm “CL-OMPR™ (in
both computational and sample complexity ) and more efficient than
k-means++ when T is large.

Index Tersns—Clustering algorvithms, data compression, com-
pressed sensing, super-resolution, approximate message passing.

I. INTRODUCTION

IVEN a dataset X = [zy,...,27] € BY*T comprising
T samples of dimension N, the standard clustering prob-
lem is to find K centroids C' £ [eq, . . ., ex] &€ BV *¥ that min-

imize the sum of squared errors (S5E)

T
1
SSE(X,C) £ = > min ||, — ex13. (n
=1

Finding the optimal ' is an NP-hard problem [1]. Thus, many
heuristic approaches have been proposed, such as the k-means
algorithm [2], [3]. Because k-means can get trapped in bad local
minima, robust variants have been proposed, such as k-means++
[4], which uses a careful random initialization procedure to yield
solutions with SSE that have on average < 8(ln K + 2) times
the minimal S5E. The computational complexity of k-means++
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scales as (T K NT), with T the number of iterations, which is
impractical when 1" is large.

A. Skefched Clustering

In sketched clustering [5]-17]. the dataset X is first sketched
down to a vector y with M = O K N') components, from which
the centroids C' are subsequently extracted. In the typical case
that K <= T, the sketch consumes much less memory than
the original dataset. If the sketch can be performed efficiently,
then—since the complexity of centroid-extraction is invariant
to T'—sketched clustering may be more efficient than direct
clustering methods when T' is large. Note, for example, that
k-means++ processes the T' data samples in X at every itera-
tion, whereas sketched clustering processes the T" data samples
in X only once, during the sketching step.

In this work, we focus on skeiches of the type proposed by
Keriven et al. in [5], [6], which use y = [y1, ..., yas|T with

1em o
Ym = szcp (jwme) ()

=1
and randomly' generated W £ [wy,..., wy]"T € BM=N,
Note that 1, in (2) can be interpreted as a sample of the empirical
characteristic function [8], i.e..
dlw,,) = ]l; . plx)exp (jw],x) do (3)
under the empirical distribution p(x) = ]}_E;‘; dlr — @),
with Dirac 4(-). Here, each w,, can be interpreted as a mul-
tidimensional frequency sample. The process of sketching X
down to i via (2) costs O(TMN) operations, but it can be
performed efficiently in an online and/or distributed manner.
To recover the centroids € from w, the state-of-the-art algo-

rithm is compressed learning via orthogonal matching pursuit
with replacement (CL-OMPR,) [5]. [6]. It aims to solve

M
arg min u;rin
L&) ol =1 me1

K 2
ym — 3 o exp (juwy, ck) (4)
k=1

using a greedy heuristic inspired by the orthogonal matching
pursuil (OMP) algorithm [9] popular in compressed sensing.
With sketch length M = 10K N, CL-OMPR. typically recov-
ers centroids of similar or better quality to those attained with

Un [5] it was proposed to generate {wyy ) as independent draws from s
distribution for which wy, /||ty || is uniformly distributed on the unit sphere
bt || m || has a prescribed density. More details are given in Section [1-A.
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k-means++. One may wonder, however, whether it is possible
to recover accurate centroids with sketch lengths closer to the
counting bound M = 1K N. Also, since CL-OMPR’s compu-
tational complexity is O(M NK?), one may wonder whether
it is possible to recover accurale centroids with computational
complexity O{M N K).

B. Contributions

To recover the centroids € from a sketch g of the form in
(2), we propose the compressive learning via approximarte mes-
sage passing (CL-AMP) algorithm, with computational com-
plexity O{M N K}, Numerical experiments show that, in most
cases, CL-AMP accurately recovers centroids from sketches of
length M = 2K N. This is an improvement over CL-OMPR,
which typically requires M > 10K N. Our experiments estab-
lish these behaviors over many combinations of K < [5, 50],
N € [10,300], and sample numbers T £ [10°,10%]. Experi-
ments also show that CL-AMP recovers centroids faster and
more accurately than k-means++ when T is large, e.g., T = 107
in our numerical experiments.

We proposed a simple incarnation of the CL-AMP algorithm
in the conference paper [ 10], with derivation details omitted due
to space limitations. In this paper, we present the full derivation
of CL-AMP with an improved initialization and hyperparameter
tuning scheme, and a much more comprehensive set of numerical
experiments.

The remainder of the paper is organized as follows. In
Section II, we derive CL-AMP after reviewing relevant back-
ground on approximate message passing {AMP) algorithms. In
Section 1T, we present numerical experiments using synthetic
and MNIST data, and we apply CL-AMP to multidimensional
trequency estimation. In Section [V, we conclude.

II. COMPRESSIVE LEARNING via AMP
A. High-Dimensional Inference Framework

CL-AMP treats centroid recovery as a high-dimensional infer-
ence problem rather than an optimization problem like minimiz-
ing (1) or (4). In particular, it models the data using a Gaussian
mixture model {GMM)

K
T; el Z Qh«"'"r{fk-. "I'ﬁ_-}._

k=1

(5)

where the centroids o act as the GMM means, and the GMM
weights vy, and covariance matrices ¥, are treated as un-
known parameters. That is. {a, }]_, are assumed to be drawn
i.d.d. from the GMM distribution (5). To recover the centroids
C £ ey, ..., ex| from y, CL-AMP compultes an approxima-
tion to the MMSE estimate

C =E{C |y}, (6)

where the expectation is taken over the posterior density

p(Cly) o p(y|C)p(C). (7
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In (7}, p{y|C') is the likelihood function of C', and p(C") is the
prior density on €. The dependence of p{y|C) on {ag} and
{#.} will be detailed in the sequel.

As we now establish, the form of the skeitch in (2) implies
that, conditioned on the centroids € and the frequencies W, the
elements of ¢ can be treated as i.i.d. In other words, the sketch
y follows a generalized linear model (GLM) [11]. To establish
this result, let us first define the normalized frequency vectors

i £ W [ gm With gm 2 ”'mm I (8)
and the (normalized) transform outputs
zI 2al C e RK, (9)
Then p(y|C) takes the form of a GLM, i.e.,
M
p(y|C) = [ pyz (ym | al,C), (10)
m=1

for a conditional pdf pyz that will be detailed in the sequel.
From (2) and the definitions of a.; and g, in (8), we have

T
1 T
Ym = = ;mﬂp (iwmx:) (11)
ﬁﬁlE{mcp{ij;m] | wm} (12)
® 2
=3 arexp (j.‘?m alce — 2 ol Bran ) Sz
Pt S e’ 2 e, et
= Zmk 2 Tmk
where (12) holds under large T" and (13) follows from the fact
K
WLI!, | Wy ™~ Z ﬂ’h-'l"lr[gmzmk, Q'En'rmk]' (14}
k=1
under (5}, and the following well-known result [12, p.153]:
E{e!*} = exp (in — 0%/2) when & ~ N(p,0%).  (15)

For ., distributed uniformly on the sphere, the elements
{Tme Y| in (13) concentrate as N — oc [13], in that
Tenke £ [E{ka} = tr{@k”N £ Ths (16)

as long as the peak-to-average eigenvalue ratio of €, remains
bounded. Thus, for large T and N, (13) and (16) imply that

X 9 TE
Um = ;ax exp (jgmzmir - "% ) .

(17)

which implies that the inference problem depends on the co-
variance matrices | ® } only through the hyperparameters {7 }.
Equation (17) can then be rephrased as

Pyzltim|zmi o, T)

K 2
=4 (ym — > apexp (jgmzm - g’";’ )) ., (18)

k=1

where 7 £ [ry, ..., 7k |Tand ex £ [y, ..., ag|T are hyperpa-
rameters of the GLM that will be estimated from .
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For the CL-AMP framework, any prior of the form

N
= [ re(en) (19)
n=1
is admissible, where (with some abuse of notation) cl denotes
the nth row of €. For all experiments in Section 1M1, we used
the trivial prior p(C) o 1.

In summary, CL-AMP aims to compute the MMSE es-
timate of C ¢ RV*K from the sketch y € C™ under the
prior € ~ ]_[;:‘r:] pelen) from (19) and the likelihood g ~
]_[f::] Pyjz|Ym|2m; o, T) from (18), where z:rn is the mth row
of Z=AC € RM"K and A € RM*V is a large random ma-
trix with rows {a] } distributed uniformly on the unit sphere.
CL-AMP estimates the values of ce and T from the sketch prior
to estimating ', as detailed in the sequel.

As proposed in [5], the row-norms { g,,, } from (&) were drawn

i.i.d. from the distribution
14
g _l v J
1 cxp( Eqa) 200

wnh shapc parameter o2 The authors in [5] suggest using o =

= E %1 tr(®y) and propose a method to estimate o from
1. However, our numerical experiments suggest that the simpler
assignment

plg;0%) o< 1jg oy (a)1] 9207 +

o2 _ Ell=lz}  IXIE
N NT
provides significantly improved performance. Note that the right
side of (21) can be computed in an online manner, or approxi-
mated using a subset of the data.

@1

B. Approximate Message Passing

Exactly computing the MMSE estimate of C' from y is im-
practical due to the form of pyg. Instead, one might consider
approximate inference via the sum-product algorithm (SPA),
but even the SPA is intractable due to the form of py;. Given the
presence of a large random matrix A in the problem formula-
tion, we instead leverage approximate message passing (AMP)
methods. In particular, we propose to apply the simplified hvbrid
generalized AMP (SHyGAMP) methodology from [14], while
simultaneously estimating «r and 7 through expectation maxi-
mization (EM). A brief background on AMP methods will now
be provided to justity our approach.

The original AMP algorithm of Donoho, Maleki, and Mon-
tanari [15] was designed to estimate iid. ¢ under the stan-
dard linear model (i.e., ¥ = Ac + n with known A ¢ RM*/
and additive white Gaussian noise n). The generalized AMP
(GAMP) algorithm of Rangan [16] extended AMP to the gen-
eralized linear model (ie., y ~ p(y|z) for = Ac and separa-
ble ply|z) = ]‘[ﬁ:=1p{ym|zm}}. Both AMP and GAMP give
accurate approximations of the SPA under large i.i.d. sub-
Gaussian A, while maintaining a computational complexity of
only O{ M N'). Furthermore, both can be rigorously analyzed via
the state-evolution framework, which proves that they compute
MMSE optimal estimates of ¢ in certain regimes [17].
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Algorithm 1: SHyGAMP.

Require: Measurements i € C, matrix A € B *" with
|| A1 = M, pdfs Peirl-|-) and pgy (|-, -5 e, T) from
(22) and (24), initial Cy € RY*F and P = ¢ff e RY.

I: 80,0« C,y.
2 repeat
3 P+« AC — SDiag(qP)
4: qr, « diag(Cov{zm | Ym, Pm; Diag(q®), o, 7}),
m=1.M
5: ’z‘m — E{zm | ym. P,,: Diag(qP), o, T},
=1.M
fi: q e]@qp—{ﬁz L) @ (gP @ qP)
7 S |[Z P]Dmgl[q"] 1
R q = T1aq®
9 R « C + A"S Diag(q")
10 qt — diag(Cov{e, | Fo; Diag(g")}), n =1..N
11: En — E{cy | T Ding(g")}, n=1..N
122 P £ a8

13:  until convergence
14:  return O

A limitation of AMP [15] and GAMP [16] is thal they (reat
only pmh]ems with i.i.d. estimand ¢ and separable likelihood

olu|z) = ]._.[m.—l P tm|2m ). Thus, Hybrid GAMP (HyGAMP)

[18] was developed to tackle problems with a structured prior
andfor likelihood. HyGAMP could be applied to the compres-
sive learning problem described in Section [I-A, but it would re-
quire computing and inverting C{ N + M ) covariance matrices
of dimension A at each iteration. For this reason, we instead ap-
ply the simplified HyGAMP (SHyGAMP) algorithm from [14],
which uses diagonal covariance matrices in HyGAMP to reduce
its computational complexity. As described in [14], SHyGAMP
can be readily combined with the EM algorithm to learn the

hyperparameters o and T.

C. SHyGAMP

The SHYGAMP algorithm was proposed and described in de-
tail in [14]; we provide only a brief review here. Algorithm 1
summarizes the SHyGAMP algorithm using the language of
Scclmn IT-A. Tn lines 10-11, with some abuse of notation, we
use r‘ to denote the nth row of the centroid matrix C' (where
in {5} we used ¢y, to denote the kth column of C). We also use
Pepy,....on), Z25),....2u]", RE2[F1,....7x]T,
@ for componentwise division, and & for componentwise mul-
tiplication. In the sequel, covariance matrices will be denoted
by (superscripted) €2 and vectors of their diagonal elements de-
noted by (superscripted) g. A brief interpretation of SHyGAMP
is now provided.

At each iteration, lines 4-5 of Algorithm 1 generate the pos-
terior mean and covariance of the transform outputs z,, from
(9) under a likelihood py, like (18) and the “pseudo™ prior
Zm ~ NPy, QP), where B, and QP = Diag(qP) are updated



BYENE et al.: SKETCHED CLUSTERING via HYBRID APPROXIMATE MESSAGE PASSING

at each SHyGAMP iteration. Thus, the pdf used for the covari-
ance and expectation in lines 4-5 is

Pi}r.p{zm [Yms P Qp1 o, T)
_ Pyalym|zmi 0 TIN (2m; P, QF)
fﬁ:{ﬂmlzin; o, T]M{z:n;ﬁm1 Qp} dz:'u L

Similarly, lines 10-11 compute the posterior mean and covari-
ance of ¢, under a prior p of the form (19) and “psendo™ mea-
surements ¥, that follow the statistical model

n ~N(0,Q), (23)

where 7, and )" = Diag(q") are updated at each SHyGAMP
iteration. Thus, the pdf used for the covariance and expectation
in lines 10-11 is

(22)

T = Cp + Uy,

ry PelCn)N (CniTn, Q")
[ peleg N (€7, Q1) deg,

As the SHYGAMP iterations progress, the output [¢q, ...,
éx|T of line 11 converges to an approximation of the MMSE
estimate E{C|y}, and the output [Z,,...,Z,,]" of line 5 con-
verges to an approximation of the MMSE estimate E{Z|y].
Essentially, the SHyGAMP algorithm breaks an inference prob-
lem of dimension VK into O(M + V) inference problems of
dimension A (i.e., lines 4-5 and 10-11 of Algorithm 1), each
involving an independent-Gaussian pseudo-prior or pseudo-
likelihood, evaluated iteratively. The computational complexity
of SHYyGAMP is O(MN K.

Pe r(ﬂnlﬂ:ﬁ? (24)

D. From SHyGAMP to CL-AMP

The SHyGAMP algorithm can be applied to many differ-
ent problems via appropriate choice of py; and pe. To apply
SHyGAMP Lo skelched clustering, we choose py, and pg as de-
scribed in Section 11-A. As we will see, the main challenge is
evaluating lines 4-5 of Algorithm 1 for the py;z in (18).

1) Inference of z,,: For lines 4-5 of Algorithm 1, we would
like to compute the mean and variance

-~ fk” zmkpnx{ymlzm}a"uf{zm;fiwqp} dz,,
e Cm {25}
o=  Jwrc (Zmie = Zke ) Py (W |2 0 )N (Z s Pros Q) dzm
ik Cm
(26)
where g7, is the kth element of g7, and
Cm = ]l;-‘f Pyiz(¥m|2m )N (2m; By QF) d2m (27)

However, due to the form of pyz in (18), we are not able to find
closed-form expressions for Z,, or g2 .. Thus, we propose to
approximate zm; and g7, by writing (17) as

Um = o eXp(— 95Tk /2) xp (19m 2mk )

+ Z rH Eﬂtp( _gfl'tﬂfrz} EXp Ugm{ziriln
ik

28)
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and treating the sum over I as complex Gaussian. For the remain-
der of this section, we suppress the subscripts “m™ and “y|z" to
simplify the notation.

We now give a brief sketch of the derivation. First, we write
(28) as

y = ax exp(—g%me/2) exp (j glax + ) )

S e
Foy Y
= oy = fh,

+ ) oexp(—g°n/2) exp {Jq ze +m)).
7 =4

Here we introduce ii.d. ng ~ A0, q"). which will allow us to
leverage the Gaussian multiplication rule (see footnote 2) (o by-
pass tedious linear algebra. Eventually we will take ¢" — 0, so
that (29) matches (28). Next we derive expressions (42) and (48),
which state 2 and g in terms of the posterior mean and vari-
ance on the 2w-periodic quantity f in (29). By approximating
the second term in (29) as Gaussian, the posterior of . takes the
form of a generalized von Mises distribution, as summarized in
(68). Because the posterior mean and variance of fy, are not com-
putable in closed-form, we approximate them using numerical
integration. Finally, we relate the posterior mean and variance
of fy back to Zj and qf.

We now begin the derivation. First, we derive an expression
for the marginal posterior p( = |y) under the pseudo-prior =5 ~
N (P, ) 7k. To start,

(29)

pzkly) = j];x plz, Oly) dy dz, (30)

1
—— [ Plol=00)p(0nl2)p(=) a0 dz BD)

ply)
= ﬂf pylz e, 0 )N (Ox; g2k, °0")
K
]‘[N{zl,ph ¢ ) by dzy, (32)
=1
where z-iké[zh.,.,zk 1+ Zktp1se--2K)T. A change-of-

variables from z; 10 % 2 2 — f; for all | # k gives

N
Plzely) = &f N (Bi; 925, a°q")

e

where p(y|Zx, f) is associated with the generative model

plylZve. 0) [J N (z:0.6F) 2y | i,
#Fk
(33)

y=Brexp(its) + ¥ frexp(ig(fi+ 5 +m)) (34

£k
with i.id. n; ~ N[0, ¢"). Now, because z;, and n; are (apri-
ori) mutually independent zero-mean Gaussian variables, we
can work directly with the sum 7, £ 3 +n; ~ N[0, q] + g")



and thus bypass the inner integral in (33). This allows us to write

Nz B, s - n
plzkly) = Nesibe ) f N (B3 92x, 9" 0" )p(y]0) dBe,
plu) E
(35)
where p(y|f; ) is associated with the generative model
y=Beexp(ife) + Y Arexpliglii +m))  (36)
——

1k —

with iid. 7 ~N(0,qf + g"). Recalling that y € C, it will

sometimes be useful to write (36) as
Re{wv}
2+ o] |

Re{y} cos( )
[M{y}] N (ﬂ"l i) | 2
}) . (37)

Re{n
Z 3 Cov (o
Im{w}
To compute the posterior mean of zg, (35) implies

£k
I = E{zkly} = j;zkﬂzﬂﬂ} dz

(38)

1
- ﬁ_/; U;l 2 N (925 O, 0" IN (25 Py f) dzk]
* py|f) dfx 39)
Bufa , B
Zf fzk.z"ur Zic;q: 1"&1]1] do
s rtad #td
N (Bri g, 6 (0" +qb)) ply|6r) » o
§ »(y) )
= plB|v)
=_[—1ﬂ—P Ok |y) By @n

P /g o af
= + for 8. = | fepl@ dif.,
qu’q“+l 1+q"qu ke RH?( kly] k
42)

where the Gaussian pdf multiplication rule? was used in (40)

and where 5& denotes the posterior mean of 8.
For the posterior variance of z, a similar approach gives

q;, £ var{z|y} = j; (zk —Ek:}zP(zkly} dz (43)
1
=ﬁ,/|; [j;[z.t—zx} Nigze; 0k, a°q")
% N (z; Dies G) dzk]P{HWk] dif (44)

?according to the Gaussian multiplication rule, we have A(x;a, AN
(m b, B)=N{0;a—b, A+ BNz (A~} + B~ A a + B b,
(A-l+ B0,
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_ 2+ 1
Ao o Fi )
x plBy|y) dbly. (45)

Using a change-of-variables from z. to 3 L 2 — 5, we get

=2 =, q q"

QE':«[ fsz ki 1 1 1
®R|J/R Er.“l'-r
L T

w p{fyy) dd

I = 2
= (B — Bi)/a "
- }'; ( 1+q"/a} ) ’ l+q"fﬁr§] p(fxly) iy

1+?;:;’qp 1 (1+;“H’)2

. ﬁ (6 — B)? plbely) 6. 48)

£ gf = var{f |y}

The computation of =}, and gf is still complicated by the form
of the posterior p(f;|y) implied by (36). To circumvent this
problem, we propose to apply a Gaussian approximation to the
sum in (36). Because {7 by, are mutually independent, the
mean and covariance of the sum in (36) are simply the sum of
the means and covariances (respectively) of the K — 1 terms
making up the sum. Recalling (37), this implies that

{u} Re{y} cos(fx)
([ )= (o ] )

sin(ﬁf;gj
with
pi= Y oqed ka2 l@tgﬁ}] (50)
P sin(gpr )
Z ;31 e q:
iahk
} ( R |a_astimjn sin(205) D . 6D
sin(2gi) — cos(2gp)
We note that (30) and (51) were oblained using
E{Re{u}} = exp (— o*df/2) cos(aii)  (52)
E{Im{u}} = exp (- g°qf/2) sin(gpr)  (53)
2E { Re{ur}*} =1+ exp ( — g°q}) cos(2gp1) (54)
2E{ Im{n}*} =1—exp (— ¢°af) cos(2ain) (55)
2E{ Re{uv}Im{w}} = exp ( — g°qf ) sin(2g5), (56)
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which use the fact that, after letting g" — 0,

E{u} = jl; Nei: i ) expliga) dmt (5T)

= exp (igpi — a°qf /2). (58)

Rewriting (49) as
ek)

1 | Re{u}
y (‘9’“ m{y)
s(f Re
N ([:ﬂiﬁiﬂ ;ﬁk] [I;_E:i J:ii-"fm B 22&) 3
(39)

the right side of (59) can be recognized as being proportional
to the generalized von Mises (GvM) density over th = [Il_ 27
from [19]. Under this GvM approximation, we have [19] that

plulfy) o exp (kg cos(By — (i) + Ty cos[2(0 — Ci)]) (60)

for parameters rg, Ry > 0 and (g, (g € [0,27) defined from
'Hk ]ys 'Sk ]”ki and ,Bkzzk- In pﬂﬂ.ll:lljﬂ.f,

o PEVE Vg
s oe{ch) = —p;( _5) e

. -
kg sin((x) = _mm,- (i::; - %) (62)
oo 11
R eos(2e) = ~ 37 (FE EE) @
Rpsin(20,) = ﬁ%m (64)
where
v | s o Ref{u} B
H o ([Im{y}l ‘) “
2 —
[ crk- Pki.:ﬂ'k] éﬂgzﬂk. (66)
PROET k T

From (60) and the SHYGAMP pseudo-prior zy, ~ N{(B, qf ).
we see that the posterior on 1, takes the form

plOkly) o< N (0x; gB. a° ;) oyl ) (67)

o exp |:me cos(f — (k) + T cos[2(0x — To )]
(B — abi J“]

_—— 68

2074, ©®

We now face the task of computing 6 — E{f |y} and g —

var{fy|y} under (68). Since these quantities do not appear to

be computable in closed form, we settle for an approximation,

such as that based on the Laplace approximation [20] or nu-
merical integration. For the Laplace approximation, we would

first compuie ak.lMP L arg maxy, Inp{f|y) and then approx-
. = = 3

imate 0y == O map and gb = —ﬁg Inp(Be|y)lg, 5, yun- HOW-
ever, since computing arg max,, In p(fx|y) is complicated due

4561

to the presence of multiple local maxima, we instead use
numerical integration. For this, we suggest a grid of N Nper + 1
uniformly-spaced points centered at gp, with width 2w Np,
Nay
m

where Nper = 24% |. This choice of grid ensures that

the sampling points cover at least Ny standard deviations of
the prior on 8. We used N,y = 4 and N, = 7 in the numerical
experiments in Section 1L

Finally, alter approximating By and qp via numerical integra-
tion, we set 7, = fx/g and ¢% = ¢f /g°.

2) Inference of cn,; Recall that lines 10-11 of Algorithm 1
support an arbitrary prior pe on ¢, . For the experiments in Sec-
tion III, we used the trivial non-informative prior pe(ecy) oc 1,
after which lines 10-11 reduce to

qc = q"¥n and &, = 7, ¥n. (69)
E. Initialization

We recommend initializing CL-AMP with C = CpandgP =

qn,wherecnjsdrawm i.d. N(0, o%) and where g, = o1, with
o2 from (21) (as described in Section TT-A).

In some cases, running CL-AMP from R > 1 different ran-
dom initializations can help to avoid spurious solutions. Hf:ref
CL-AMP is run from a different random initialization 7y -,
r=1,... R, and then the quality of the recovered solution C
is evaluated by constructing the “estimated sketch™ j,. via

K

Umr = 3 _ oo exp(—gp, Tk ) exp(igm iy, Cr )
k=1

(70)

recalling (9) and (17), and then measuring its distance to the true
sketch y. The initialization index is then selected as

r..:a.rgminll'y—ﬁ,,ll, ':?]}
T

and the centroids saved as C' = f),_. In Section I, we used

R = 2 for all experiments.

F Hyperparameter Tuning

The likelihood model pyz in (18) depends on the unknown hy-
perparameters cv and 7. We propose to estimate these hyperpa-
rameters using a combination of expectation maximization (EM)
and SHyGAMP, as suggested in [ 14] and detailed—Tfor the sim-
pler case of GAMP—in [21]. The ideais to run SHyGAMP using
an estimate of o and T, update ov and T from the SHyGAMP
outputs, and repeat until convergence. For the first estimate, we
suggest touse oy = 4 and 7, = 0% k.

Extrapolating [21, eq. (23)] to the SHyGAMP case, the EM
update of (o, T) takes the form

(@, T)=  argmax

azlall=17r>0

f N(zmiZm, QF)

% Inpyg(ym|2m; o, T) dzm, (72)

where Z,, and Q% = Diag{qg?,} are obtained by running
SHyGAMP to convergence under (ev, 7). To proceed, we model



the Dirac delta in (18) using a circular Gaussian pdf with van-
ishingly small variance ¢ = (, in which case

In pyiz(m |2 m: a, T)

- I Tk
— > ogexp (jﬂ'm:-’mk - )

k=1

2
1

€

+ const.

(73)

Plugging (73) back into (72), we see that the constant and the
1/e-scaling play no role in the optimization, and so we can dis-

card them to obtain
(fix, T) = arg min f N(zm;Zm, Q)
ozl 1=1,750

X |¥m dzm.

2
Z . Si'gafk
- g eXp | Jdmamk — 2

k=1

(74)

A closed-form solution to the optimization problem in (74)
seems out of reach. Also, the optimization objective is convex in
o for fixed 7, and convex in 7 for fixed o, but not jointly convex
in [a", 77]. Although the optimization problem (74) is difficult
to solve, the solutions obtained by gradient projection (GP) [22]
seem to work well in practice. Also, GP is made practical by
closed-form gradient expressions. ln particular, let

2 Tj
G 2 exp (——g"é ")

z 2
Pmk 2 exp (jgmfmk - @) B

(73)

(76)

and recall that vy, = expligm Zme ) from (29) (although there
the m subscript was suppressed). Then the mith term of the sum
in the objective in (74) becomes

2

K
f Nizm: Zm, Q) |lym — Zufkqmwmk dzm
R k=1
K
= |I|"1'r1:|Er - Ezﬂ’k%k Re {y;-;.lﬂ'mk}
k=1
+ Z ﬂkEIm.kPmk Z )l Pl T Z ﬂkqu1 (77)
ik
where we used the fact that |5 N (zme; Zme, gl )vme deme =
P After reapplying the sum over m, we get
W 2
e Z f N(Zmi Zma QF) [tm — 3 Oktmictme| A2
k=1
——2 Z Gk Yk (78)
m=1
o M ’
= z -N'{.zm; Zm; le} Hm — z O Gk Umk| dZm
Oy, = Jrx
M
= g Z Gk Yk (79)

m=1
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Algorithm 2: CL-AMP with hyperparameter tuning and
multiple random initializations.

Require: Measurements i cM, gains { _grm —1. number
of inilializations 7 = 1, initializations {C"u ,.}1._1_, af.

g Tip-
I: i=0
2:  repeatl
3 if i = 0 then
4 forr=1:RHdo
5: Run CL-AMP with fixed (e, Tg) from
initialization (Cly ., g, yielding output €'y .,
Zp, and { @y b1
6 end for
T Compute Umr £ Ef:l gy EJFP{—anTDH
expligm Tmkr ) ¥mr
8 Find r. = argmin, lv — .-
9 SL[C] C]r,z 3 EI'II:I {rf
= {q-izrw.]m=l
10: else

11: Run CL-AMP with fixed { e, 7;) from
initialization (C';, gf ). yielding output C'; 4,
z* and {qfﬂ g:l

12: end if N

13: Compute (041, Ti1) via (74) using 2 and
{gh -

14 i+—it+1

15:  until convergence

for
K
Yk = Re {5 prak } — 0 — Z ctmt Be { prag ot }-
Ik

(80)

We found that complexity of hyperparameter tuning can be
substantially reduced, without much loss in accuracy, by using
only a subset of the terms in the sum in (74), as well as in the cor-
responding gradient expressions (78)—(79). For the experiments
in Section I1, we used a fixed random subset of min( M, 20 K)
terms.

G, Algorithm Summary

Algorithm 2 summarizes the CL-AMP algorithm with A ran-
dom inilializations and tuning of the hyperparameters (o, 7).
Note that the random initializations {C'y .} are used only for
the first EM iteration, i.e., 1 = 0. Subsequent EM iterations (i.e.,
i > 1) are initialized using the output C'; of the previous EM
ileration.

I, NUMERICAL EXPERIMENTS

In this section, we present the results of several exper-
iments used to test the performance of the CL-AMP, CL-
OMPR, and k-means++ algorithms. For k-means++, we used the
implementation provided by MATLAB and, for CL-OMPR,
we downloaded the MATLAB implementation trom [23]. CL-
OMPR and CL-AMP used the same sketch y, whose frequency
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vectors W were drawn using the method described in Section 11-
A, with the scaling parameter o* set via (21). For CL-OMPR
and CL-AMP, the reported runtimes include the time of com-
puting the sketch, unless otherwise noted. All experiments were
run on a Dell PowerEdge C6320 two-socket server with Intel
Xeon E5-2680 v4 processors (14 cores, 2.40GHz) and 1258GB
RAM.

A, Experiments With Synthetic Data

1) Performance vs. Sketch Length M+ Inthe first experiment,
we test each algorithm’s ability to minimize SSE on a set of
training data, i.e., to solve the problem (1). In addition, we test
how well the recovered centroids work in minimum-distance
classification.

The experiment was conducted as follows. Fixing the number
of classes at K = 10 and the data dimension at N = 100, ten
Monte Carlo trials were performed. In each trial, the true cen-
troids were randomly drawn® as ¢ ~ N0y, 1L5* K%V Iy ).
Then, using these centroids, a training dataset {x,}. , with
T = 107 samples was drawn from the GMM (5) with weights
oy = 1/K and covariances &, = I'y¥E. Additionally, a test
dataset {T;} of 10¥ samples was independently generated.

For centroid recovery, k-means++ was invoked on the train-
ing dataset, and both CL-AMP and CL-OMPR were invoked
after sketching the training data with M samples as in (2).
Sketch lengths M /KN € {1,2,3,5,10, 20} were investigated.
CL-AMP used two random initializations, i.e.. B = 2 as defined
in Algorithm 2.

For each algorithm, the SSE of its estimated centroids
{Ex ¢ | was calculated using the training data {z,} ; via
(1), Additionally, the performance of the estimated centroids
in minimume-distance classification was evaluated as follows.
First, labels {jx }X , were assigned to the estimated centroids
by solving the linear assignment problem [24] without replace-
ment, given by

K
arg min llex — &, 13-
{f.=...=m={1=...m§ '

(81)

Next, each test sample T, was classified using minimum-

distance classification, producing the estimated label
ke = argmin [T — &,]|. (82)
kell,.. K}

The classification error rate (CER) was then calculated as the
proportion of estimated labels Jk, that do not equal the true label
k; from which the test sample F; was generated.*

Figures 1a, 1b, and 1c show the median SSE, CER, and min-
time (including sketching), respectively, for CL-AMP and CL-

IThis data-generation model was chosen (o0 match that from (5], and is in-
tended to have a relatively constant Bayes error rate wrt, & and K, For the
chosen parameters, the Bayes error rte is extremely small: 10724 Thus, when
the centroids are sccurately recovered, the classification emor rate should be
essentially zero.

*Mote that the true label ky was assigned when the test sample T, was gener-
ated. The true lebel & does not necessarily indicate which of the true centroids
{eie } is closest 1o,
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Fig. 1. Performance ws. sketch length M for K = 10 clusters, dimension
N =100, and T = 107 training samples.

OMPR versus M /K N. Also shown is the median SSE, CER,
and runtime of k-means++, as a baseline, where k-means++ has
no dependence on M. Because a low runtime is meaningless if
the corresponding SSE is very high, the runtime was not shown
for CL-AMP and CL-OMPR whenever its S5E was more than
1.5 times that of k-means++. The error bars show the standard
deviation of the estimates.



Figure la shows that, among the methods tested, CL-AMP
achieved the lowest SSEwhen M = 2K N . Also, CL-AMP sup-
ported the use of smaller sketch sizes M than CL-OMPR. In
particular, CL-AMP required M = 2KN to yield a low SSE,
while CL-OMPR required M = 10K V. This behavior mirrors
the behavior of AMP and OMP in the classical compressive sens-
ing context, where AMP usually requires fewer measurements
to accurately recover signals of a given sparsity (see, e.g., [21,
Figs. 8-10]). Also, with sufficiently large M, the SSE achieved
by CL-AMP and CL-OMPR was lower than that achieved by
k-means++.

Fig. 1b shows that CL-AMP achieved a low CER with sketch
size M = KN, while again CL-OMPR required M > 10K N,
Also, with sufficiently large M, CL-AMP and CL-OMPR
achieved near-zero CER, whereas k-means++ achieved an er-
ror rate of == 0.2,

Finally, Fig. lc shows that, for M/KN = {10,20}, k-
means++ ran  slightly faster than CL-AMP. which ran
slightly faster than CL-OMPR. However, for M/KN ¢
{1,2,3,5}, CL-AMP ran significantly faster than k-means++.
For M/KN < {1,2,3,5}. the runtime of CL-OMPR was not
shown because it generated centroids of significantly worse SSE
than those of k-means++,

2) Performance vs. Number of Classes K: In a second ex-
periment, we evaluated each algorithm’s performance versus the
number of classes ] < {5, 10, 15, 20, 25, 30, 40, 50} and sketch
sizes M/KN € {2,5,10} for fixed data dimension N = 50,
The data was generated in exactly the same way as the previous
experiment, and the same performance metrics were evaluated.
Figs 2a, 2b, and 2c show the median SSE, CER, and runtime
(including sketching) versus K, for CL-AMP, CL-OMPR, and
k-means++.

Figure 2a shows that, as K increases, the S5E of k-means++
remained roughly constant, as expected based on the genera-
tion of the true centers eg. For K < 20, CL-AMP yielded the
best SSE for all tested values of M. For K > 20, CL-AMP
yielded the best SSE with sketch sizes M < {EK N, 10K N},
but performed poorly with M = 2K N, Meanwhile, CL-OMPR
performed reasonably well with sketch size M = 10K N, but
poorly with M & {2KN,5KN}.

Figure 2b shows similar trends. With sketch size M €
{6K N, 10K N}, CL-AMP had the lowest CER of any algo-
rithm for all tested values of K. With sketch size M = 10K N,
CL-OMPR gave CER better than k-means++ for all tested i,
but with M = {2KN, 5K N'} CL-OMPR gave CER worse than
k-means++ for all tesied K.

Finally, Fig. 2c shows that CL-AMP ran faster than CL-
OMPR at all tested K due to its ability to work with a smaller
sketch size M. For large K, Fig. 2c suggests that the runtime
of both CL-AMP and CL-OMPR grow as O(K?). The O(K?)
complexity scaling is expected for CL-AMP, since its complex-
ity is O( MNK') and we set M = O(K). But the O(K?) com-
plexity scaling is somewhat surprising for CL-OMPR, since
its complexity is (M NK?) and we set M = 10N K. Also,
Fig. 2c shows that CL-AMP ran faster than k-means-++ for most
values of K'; for the smallest tested value of K (ie, K = §),
the median mntime of k-means++ was lower than CL-AMP
ibut the error-bar suggests that the runtime of k-means++ was
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Fig. 2. Performance vs, number of clusters & for dimension & = 50, sketch
sizea M £ {2,5,10} = KN, and T = 107 training samples.

highly variable at this K'). For the largest tested value of K, k-
means++ was again faster than CL-AMP, because the runtime
of k-means++ is expected to grow linearly with K, whereas that
of CL-AMP is expected to grow quadratically with & when
M/KN is fixed.

3) Performance vs. Dimension N In a third experiment, we
evaluated each algorithm's performance versus the dimension N
(logarithmically spaced between 10 and 316) for K = 10 classes
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Fig. 3. Performance vs. dimension N for K = 10 classes, T = 107 samples,
and sketch size M € {2, 5,10} =« KN.

and skeich size M = {2, 5 10} » KN The data was generated
in exactly the same way as the previous two experiments, and the
same performance metrics were evaluated. Figs 3a, 3b, and 3c
show the median SSE/N, the CER, and the runtime (including
sketching) versus IV, for CL-AMP, CL-OMPR, and k-means++.

Fig. 3a shows that, among all algorithms, CL-AMP
achieved the lowest SSE for all tested values of N and M.
Meanwhile, both CL-OMPR under sketch size M = 10K N and
k-means++ achieved reasonably good S5E, but CL-OMPR un-
der smaller sketches gave much higher S5E.
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Fig. 3b shows that, among all algorithms, CL-AMP achieved
the lowest CER for all tested values of V and M. Meanwhile,
CL-OMPR under sketch size M = 10K N gave similar CER to
CL-AMP for most N, k-means++ gave significantly worse CER
compared to CL-AMP for all N, and CL-OMPR under skeich
size M = 5K N or 2K N gave even worse CER for all V.

Finally, Fig. 3c shows that, among all algorithms, CL-AMP
with sketch size M = 2K N ran the fastest for all tested values
of N. Meanwhile, CL-OMPR with sketch size M = 10KV ran
at a similar speed to CL-AMP with sketch size M = 10K N,
for all N. The runtimes for CL-OMPR with smaller skeiches
are not shown because it achieved significantly worse S5E than
k-means++. Fig. 3¢ suggests that, if N is increased beyond 316,
then eventually kK-means++ will be faster than CL-AMP under
fixed M/KN.

4) Performance vs. Training Size T In a final synthetic-data
experiment, we evalualed each algorithm’s performance versus
the number of training samples T (logarithmically spaced be-
tween 10° and 10%) for K = 10 classes. dimension N = 50,
and sketch size M = {2, 5, 10} K'N. The data was generated in
exactly the same way as the previous three experiments, and the
same performance metrics were evaluated.

Figures 4a and 4b show the median S55E and CER wver-
sus T, for CL-AMP, CL-OMPR, and k-means++. From these
figures, we observe that the SS5E and CER for each algo-
rithm {and sketch length M) were approximately invariant to
T. CL-AMP (under any tested M) yielded the lowest values
of S5E and CER. Both CL-OMPR under skeich size M =
10K N and k-means++ gave reasonably good SSE and CER,
but CL-OMPR under smaller sketches gave worse S5E and
CER.

Figs 4c and 4d show the median runtime with and without
sketching, respectively, for the algorithms under test. Fig. 4¢
shows that, if sketching time is included in runtime, then all
runtimes increased linearly with training size 7. However, for
large T, CL-AMP ran faster than k-means++ and CL-OMPR
{while also achieving lower S5E and CER). Meanwhile, Fig. 4d
shows that, if sketching time is not included in runtime, then
the runtimes of both CL-AMP and CL-OMPR were relatively
invariant to T". Also, Figs 4c and 4d together show that, for
T = 10%, the sketching time was the dominant contributer to
the overall runtime.

B. Spectral Clustering of MNIST

MNext we evaluated the algorithms on the task of spectral clus-
tering [25] of the MNIST dataset. This task was previously
investigated for CL-OMPR and k-means++ in [6], and we used
the same data preprocessing steps: extract SIFT descriptors [26]
of each image, compute the K -nearest-neighbors adjacency ma-
trix (for K = 10) using FLANN [27], and compute the 10
principal eigenvectors of the associated normalized Laplacian
malrix (since we know K = 10), yielding features of dimen-
sion IV = 10. We applied this process to the original MNIST
dataset, which includes T = 7 = 10* samples, as well as an aug-
mented one with T = 3 x 10° samples constructed as described
in [6].

The experiment was conducted as follows. In each of 10 tri-
als, we randomly partitioned each sub-dataset into equally-sized
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training and testing portions. Then, we invoked CL-AMP, CL-
OMPR, and k-means++ on the training portion of the dataset,
using sketch sizes M = {1,2,3, 5,10} = KN for CL-AMP and
CL-OMPE. The algorithm parameters were the same as in Sec-
tion ITI-A. Finally, the estimated centroids produced by each
algorithm were evaluated using the same two metrics as in Sec-
tion 11-A: S5E on the training data, and classification error rate
(CER) when the centroids were used for minimum-distance clas-
sification of the test data samples.

The median SSE, CER, and runtime, versus sketch length M,
are shown for CL-AMP and CL-OMPR in Fig. 5 for the T" =
7 x 10*-sample MNIST sub-dataset. As before, k-means++ is
shown, as a baseline, although it does not use the sketch and thus
is performance is invariant to M. From this figure, we observe
that CL-AMP and CL-OMPR gave respectable results for sketch
lengths M = 2K N, and SSE nearly identical to kmeans++
for M = 5K N. For M = 2K N, however, CL-AMP yielded
significantly lower CER than both CL-OMPR. and k-means++,
at the cost of a slower runtime. We attribute CL-AMP's slower
runtime to its use of many iterations ¢ in Algorithm 2 for hyper-
parameter tuning.

C. Examination of Computational Complexity

To betterunderstand the computational bottlenecks of the pro-
posed approach, Fig. 6 shows—Tfor several problem dimensions
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and data types—the runtime contributions of the “sketch,” i.e.,
equation (2); the “tuning™ steps, i.e., line 2 of Algorithm 2; the
“eslimation”™ steps, i.e., lines 4-3 of Algorithm 1 and all other
lines from Algorithm 1, which we refer to as the “linear” steps,
since their complexity is dominated by the matrix multiplica-
tions in lines 3 and 9 of Algorithm 1.

Fig. 6 suggests that CL-AMP’s estimation steps require the
most computation, followed by its tuning steps, and finally its
linear steps. These results motivate additional work to reduce
the computational complexity of CL-AMP’s estimation steps.
The cost of sketching itself depends on the number of training
samples, T', and the degree to which the sketching operation
is distributed over multiple processors. When T becomes large
enough that the sketching time becomes computationally sig-
nificant {as in Fig. 6b), the simplest remedy is to parallelize the
sketch.

0. Frequency Estimation

Owr final experiment concerns multi-dimensional frequency
estimation. Consider a sum-of-sinusoids signal of the form

K
y(t) = axexp(jtTex), (83)

k=1
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Fig, 5. Performance vs. M for the T = T0000-sample spectral MNIST
dataset, with K = 10 clusters and dimension & = 10,

where ¢ = BY is the frequency of the kth sinusoid, o > 0
is the amplitude of the kth sinusoid, and ¢ £ BV denotes time.
Given measurements of the signal () at a collection of random
timest € {t,,}2_,.i.e.,

ym = yltm) form=1,..., M, (84)

4567

Shpich, Ty, e T

(a) Synthetic: W = 100, K = 10, M = 2K N, and
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(b} Synthetic: N =100, K =10, M = 2K N, and
T=10"

Lirmar, B0

Esim. 67 3%

(c) Synthetic: N =100, K =10, M = 10K N, and
T=10°

Saich 13% Linaar, L6%

Tuine, 4.5%

(d) MNIST: ¥ = 10, K = 10, M = 5K N, and
T=35% 10!

Fig. 6. Proportion of total motime of the different sections of the CL-AMP
algorithm applied to different datasets.

we seek (o recover the frequencies { e, H | . We are particularly
interested in the case where the frequencies {eg} are closely
spaced, i.e., the “super-resolution” problem.

Note that the model in (83) matches that in (13) with g @ =
tm ¥m and &, = 0%k, so that we can apply CL-AMP (o this
frequency estimation problem. The model in (83) also matches
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Frequency estimation for K = 4 and N = 2 with random time sam-

(4) with wm = ty Ym, and so we can also apply CL-OMPR.
But we cannot apply k-means++.

For frequency pairs {c1.e2] with ||e; —ez)lz =« [28]
claims that, with {1,,} drawn randomly from an appropri-
ate distribution, one can resolve the frequencies with M =
(In(1/¢)) measurements. However, choosing 1wy, uniformly
spaced on a grid would require M > O(1/¢) measurements.
Thus, for a final experiment, similar to those performed in [28],
we did the following. For a particular N and K (where K is
even for simplicity), we generated K/2 pairs of frequencies
{eag 1, e95}F, where ||eop 1 —eopfla=cefork=1,... K/2
Then, for a particular realization of {cg}h | and {w, }M_,,
CL-AMP and CL-OMPR were invoked to estimate {;};,.

Recovery was declared successful if

J.I.Ifxl ey, — Crllz < €/2, (85)
where {j; 1<, solves the linear assignment problem (81).

For our experiment, we tested K = 4 frequency components
of dimension N = 2 and varied M from 3K N to 100K N while
also varying  from 10 to 10~ . For each combination, 10 trials
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M{KN

{a) CL-AMP

M{KN

(h) CL-OMPR

Fig. 8. Frequency estimation for K = 4 and N = 2 with uniformly spaced
time samples.

were performed. The empirical probability of successful recov-
ery is shown in Figs 7-8. In Fig. 7, a,;, were drawn unitformly on
the unit sphere and g,, = |g,| with g}, ~ N (0,4e logis(€)),
while in Fig. B, wy, are uniformly spaced on a N-dimensional
hyper-grid with per-dimension spacing /2. Superimposed on
the figures are curves showing M/KN = 0.1/cand M/KN =
In(1/€). From the figures, we see that CL-AMP had a higher
empirical probability of recovery than CL-OMPR, especially
for small e. We also see that the empirical phase transition of
CL-AMP is close to the In(1/¢) curve with random frequency
samples (i.e.. Fig. 7a) and the 0.1/e curve with uniform fre-
quency samples (i.e., Fig. 8a).

IV, CoMCLUSION

In sketched clustering, the original dataset is sketched down
to a relatively short vector, from which the centroids are
extracted. For the sketch proposed by [5], [6], we proposed
the CL-AMP centroid-extraction method. Our method assumes
that the original data follows a GMM, and exploits the recently
proposed simplified hybrid generalized approximate message
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passing (SHyGAMP) algorithm [14]. Numerical experiments
suggest that CL-AMP exhibits better sample complexity (ie.,
extracts accurate clusters with fewer compressed samples) than
the state-of-the-art sketched-clustering algorithm, CL-OMPR,
from [5], [6]. In many cases, CL-AMP also exhibils better
computational complexity than CL-OMPR. Furthermore,
for datasets with many samples, CL-AMP exhibits lower
computational complexity than the widely used K-means++
algorithm. As future work, it would be worthwhile to investigate
ways (0 reduce the computational complexity of CL-AMP's
estimation steps, and to analyze the theoretical behavior of
CL-AMP using a state-evolution approach. Finally, as new
variations of the sketch (2) are proposed (e.g., [29], [307) it
would be interesting to modify CL-AMP accordingly.
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