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Abstract— Approximate message passing (AMP) methods and
their variants have attracted considerable recent attention for
the problem of estimating a random vector x observed through
a linear transform A. In the case of large i.i.d. zero-mean
Gaussian A, the methods exhibit fast convergence with precise
analytic characterizations on the algorithm behavior. However,
the convergence of AMP under general transforms A is not
fully understood. In this paper, we provide sufficient conditions
for the convergence of a damped version of the generalized
AMP (GAMP) algorithm in the case of quadratic cost functions
(i.e., Gaussian likelihood and prior). It is shown that, with
sufficient damping, the algorithm is guaranteed to converge,
although the amount of damping grows with peak-to-average
ratio of the squared singular values of the transforms A. This
result explains the good performance of AMP on i.i.d. Gaussian
transforms A, but also their difficulties with ill-conditioned or
non-zero-mean transforms A. A related sufficient condition is
then derived for the local stability of the damped GAMP method
under general cost functions, assuming certain strict convexity
conditions.

Index Terms— Approximate message passing, loopy belief
propagation, Gaussian belief propagation, primal-dual
algorithms.

I. INTRODUCTION

ONSIDER estimating a random vector x € R” with

independent components x; ~ P(x;) from observations

y € R™ that are conditionally independent given the transform
outputs

z = Ax, (1)

i.e., P(ylz) = []; P(yilzi). Here, we assume knowledge of the
matrix A € R">" in (1) and the densities P (x;) and P (y;|z;).
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Often, the goal is to compute either the minimum mean-
squared error (MMSE) estimate Xymse = [paX P(x]y) dx =
E(x|y) or the maximum a posteriori (MAP) estimate Xyap =
arg max,.g» P (X|y), where in either case P(x|y) denotes the
posterior distribution. Using F(z) := — In P(y|z) and G(x) :=
—1In P(x) and Bayes rule, P(x|y) « P(y|x)P(x), it becomes
evident that MAP estimation is equivalent to the optimization
problem

Xvap = arg min F(Ax) + G(x) 2)

xeR”

for separable F(z) = >, Fi(z;) and G(x) = >_; G (x;). Such
problems arise in a range of applications including statistical
regression, inverse problems, and compressed sensing.

Most current numerical methods for solving the constrained
optimization problem (2) attempt to exploit the separable
structure of the objective function (2) using approaches like
iterative shrinkage and thresholding (ISTA) [2]-[7], the alter-
nating direction method of multipliers (ADMM) [8]-[11],
or primal-dual approaches [9]-[12].

In recent years, however, there has also been considerable
interest in approximate message passing (AMP) methods that
apply Gaussian and quadratic approximations to loopy belief
propagation (BP) in graphical models [13]-[15]. AMP applied
to max-sum loopy BP produces a sequence of estimates that
approximate Xyap, while AMP applied to sum-product loopy
BP produces a sequence of estimates that approximate Xpvse-
For zero-mean i.i.d. sub-Gaussian A in the large-system limit
(i.e., m,n — oo with fixed m/n), AMP methods are charac-
terized by a state evolution whose fixed points, when unique,
coincide with Xpap or Xymse [16]1-[18]. In addition, for
large but finite-sized i.i.d. Gaussian matrices, recent work [19]
shows that AMP is close to Bayes-optimal.

Unfortunately, a rigorous characterization of AMP for
generic A remains lacking. The recent papers [20], [21] studied
the fixed-points of the generalized AMP (GAMP) algorithm
from [15] for generic A. In [20], it was established that the
fixed points of max-sum GAMP coincide with the critical
points of the optimization objective in (2). Similarly, [20], [21]
established that the fixed points of sum-product GAMP are
critical points of a large-system version of the Bethe free
energy from [22]. However, the papers [20], [21] did not
discuss the convergence of the algorithm to those fixed
points. Indeed, similar to other loopy BP algorithms, GAMP
may diverge, as demonstrated for mildly ill-conditioned A
in [23]. Likewise, [24] showed that AMP can diverge with
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non-zero-mean i.i.d. Gaussian A and the divergence can,
in fact, be predicted via a state-evolution analysis.

For general loopy BP, a variety of methods have been pro-
posed to improve convergence, including coordinate descent,
tree re-weighting, and double loop methods [25]-[29]. In this
paper, we propose and analyze a “damped” modification of
GAMP that is similar to the technique used in Gaussian
belief propagation [30], [31]—a closely related algorithm.
We also point out connections between damped GAMP and
the primal-dual hybrid-gradient (PDHG) algorithm [9]-[12]
popular in convex optimization. This connection enhances the
interpretability of AMP methods, especially for those who are
less familiar with belief propagation.

Our first main result establishes a necessary and sufficient
condition on the global convergence of damped GAMP for
arbitrary A in the special case of Gaussian P(x;) and P (y;|z;)
(i.e., quadratic F and G) and fixed scalar stepsizes. This
condition (see Theorem 2 below) shows that, with sufficient
damping, the Gaussian GAMP algorithm can be guaranteed
to converge. However, the amount of damping grows with the
peak-to-average ratio of the squared singular values of A. This
result explains why Gaussian GAMP converges (with high
probability) for large i.i.d. Gaussian A, but it also explains
why it needs to be damped significantly for non-zero-mean,
low-rank, or otherwise ill-conditioned A.

Our second result establishes the local convergence of
GAMP for strictly convex F and G and arbitrary, but fixed,
vector-valued stepsizes. This sufficient condition is similar
to the Gaussian case, but involves a certain row-column
normalized version of A. (See Theorem 3 below.)

Finally, we present numerical experiments that verify the
tightness of the sufficient conditions from Theorems 2 and 3.

Notation: We use capital boldface letters like A for matrices,
small boldface letters like a for vectors, ()T for transposition,
(-)H for Hermitian (i.e., conjugate transposition), and a; = [a];
to denote the ith element of a. Also, we use ||A|» for the
spectral norm of A, ||A|r for the Frobenius norm of A,
and Diag(a) for the diagonal matrix created from vector a.
In addition, we use 0 for the all-zeros vector, 1 for the all-
ones vector, and Iy for the N x N identity matrix. Although
it is somewhat non-standard, we use A.B for component-
wise multiplication, A./B for component-wise division of the
matrices A and B, and |A| for component-wise magnitude
of A. Similarly, we use a > 0 to denote component-wise
inequality (i.e., @; > 0 fori = 1, .., n). For a random vector X,
we denote its probability density function (pdf) by P(x), and
its expectation by E[x]. Similarly, we use P(x|y) and E[x|y]
for the conditional pdf and expectation, respectively. We refer
to the pdf of a Gaussian random vector x € R" with mean a
and covariance R using NV'(x; a, R) = exp(—(x—a) TR~ (x —
a)/2)/v/(27)N|R|. Finally, P(x) o« Q(x) says that functions

P(:) and Q(-) are equal up to a scaling that is invariant to X.

II. DAMPED GAMP

A. Review of GAMP

The GAMP algorithm was introduced in [15] and rigor-
ously analyzed in [17]. The procedure (see Algorithm 1)
produces a sequence of estimates X',z = 1,2,..., that,
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Algorithm 1 GAMP With Vector Stepsizes and Damping

Require: Matrix A, scalar estimation functions g, and gg, and
damping constants 65, 0, € (0, 1].

: S = A.A (component-wise magnitude squared)

t=0

: Initialize 7} > 0, X’

s =0

: repeat

1./v}, =St}

p' =s + v AX

vt = v).glo. )

s'=(1— es)st_l +6sg5(p’, v;)

D AN A i e

. t QT yt
10 1./7/ =S"p
1: rf =x' — ¢/ Al
122 T =1lgl (!, 1]
13 x = (1= 0)x + 0,8, (', 7!

14 t<t+1
15: until Terminated

in max-sum mode, approximate Xyap and, in sum-product
mode, approximate Xymse. The two modes differ only in the
definition of the scalar estimation functions g; and g, used in
lines 8, 9, 12, and 13 of Algorithm 1:

o In max-sum mode,

[gx(r, Tr)]j = prOXer G; (rj) 3)
Lgs (@, vp)l; = Pi = vp; Proxg, s, (pi/vp)  (4)
using 7, = [tr, ..., 7,11, Vp = [Vp;, ..., Vp, 1", and
proxf(r) := argmin f(x) + %lx —r 5)
X

Note (3) implements scalar MAP denoising under prior
P(xj)ocexp(—G(x;)) and variance-z,; Gaussian noise.
o In sum-product mode,
Jxi PN (xjirj, 7)) dx; ©
JPGHN(xjirj, ;) dx;
Jzi P(Gilz)N (zis £5, %p,) dz;

i
l)p[

—, |
PPN i 2, U—;)dz,-

Vp;:

[gx(r, Tr)]j =

Lgs(p, vp)],‘ = Di

5

and so (6) is the scalar MMSE denoiser under P (x;)
exp(—G(x;)) and variance-7,, Gaussian noise.
Note that, in Algorithm 1 and the sequel, a.b and a./b
denote component-wise multiplication and division, respec-
tively, between vectors a and b.

Algorithm 1 reveals the computational efficiency of GAMP:
the vector-valued MAP and MMSE estimation problems are
reduced to a sequence of scalar estimation problems in
Gaussian noise. Specifically, each iteration involves multiplica-
tions by S, ST, A and AH along with simple scalar estimations
on the components x; and z;; there are no vector-valued
estimations or matrix inverses.

We note that Algorithm 1 writes GAMP in a “symmetrized”
form, where the steps in lines 6-9 mirror those in lines 10-13.
This differs from the way that GAMP is presented in most
other publications, such as [15], which is obtained by replacing
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Algorithm 2 GAMP With Scalar Stepsizes and Damping
Require: Matrix A, scalar estimation functions g, and gg, and
damping constants 65, 6, € (0, 1].
t=0
- Initialize 7! > 0, x’
sT1=0
: repeat
1/U = (1/m)||A|F!
p =s1 + v Ax'
— !, /m) 1Tl (p' 1)

s'=(1 _0 )™ ! +0sgs(p > p)
1/1 = (1/n)||A|I
r' =x' — ¢/ AHs’

ot = (r'/n)lT L, 7h)

H_l = (1 —00x +9xgx(rt, 7}
13: t<«t+1
14: until Terminated

R A A o e

_ = =
M =2

the variables s, v,, and p in Algorithm 1 by —s, 1./1),
and p.t,, respectively. Note that, thoughout this paper, we use
7 for variance quantities and v for precision (i.e., inverse
variance) quantities.

B. Damped GAMP

Algorithm 1 includes a small but important modification to
the original GAMP from [15]: lines 9 and 13 perform damping
using constants 0y, 0, € (0, 1] that slow the updates of s’, x’
when 6, 0, < 1, respectively. The original GAMP implicitly
uses Oy = 1 = 6. In the sequel, we establish—analytically—
that damping facilitates the convergence of GAMP for gen-
eral A, a fact that has been empirically observed in past works
(e.g., [23], [24], [32)).

C. GAMP With Scalar Stepsizes

The computational complexity of Algorithm 1 is dominated
by the matrix-vector multiplications involving A, AM, S,
and ST. In [33], a scalar-stepsize simplification of GAMP
was proposed to avoid the multiplications by S and ST,
roughly halving the per-iteration complexity. The meaning of
“stepsize” will become clear in the sequel. Algorithm 2 shows
the scalar-stepsize version of Algorithm 1.

For use in the sequel, we now show that scalar-stepsize
GAMP is equivalent to vector-stepsize GAMP under a differ-
ent choice of S. While Algorithm 1 uses S = A.A, Algorithm 2
effectively uses

)

i.e., a constant matrix having the same average value as A.A.
Thus, the two algorithms coincide when |A;;| is invariant to
i and j. To see the equivalence, we first note that, under S
from (7), line 6 in Algorithm 1 would produce a version of

1/ v; containing identical elements 1/ v;, where
2 2
1 Al IAlE 70 IIAIIFTI
vl mn m

p
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forzl = (1/ n)1Tz,. Similarly, line 10 would produce a vector

1/7! with identical elements 1/7/, where
1 ANE T JANE
t! mn S n %

1
= (1/m)1"v!. Furthermore, v, = v,1 and line 8
! /m)1Tgy(p', v!), while 7/ = 7/1 and
line 12 imply that r’+1 (z!/m)1T g (r', ). Applying these
modifications to Algonthm 1, we arrive at Algorithm 2.

for v!
imply that v! =

D. Relation to Primal-Dual Hybrid Gradient Algorithms

An important case of (2) is when F and G are closed proper
convex functionals and the solution Xyap exists. Recently,
there has been great interest in solving this problem from the
primal-dual perspective [9], [12], which can be described as
follows. Consider F*, the convex conjugate of F, as given by
the Legendre-Fenchel transform

F*(s) := sup s'z — F(z). )
zeR™
For closed proper convex F, we have F** = F, and so
F(AX) = sup s'Ax — F*(s), ©)

seRm

which gives the equivalent saddle-point formulation of (2),

min sup s'Ax — F*(s) + G(x). (10)

xeR” sclRm

The so-called primal-dual hybrid-gradient (PDHG) algorithm
recently studied in [9]-[12] is defined by the iteration

s' < prox, ps (s"! +vpAX') (11)
M« prox, ¢ (8 — 7,AMs") (12)
X gt %), (13)

where § € [—1, 1] is a relaxation parameter. Line (11) can be
recognized as proximal gradient ascent in the dual variable s
using stepsize v, while line (12) is proximal gradient descent
in the primal variable x using stepsize z,.

PDHG can be related to damped scalar-stepsize GAMP as
follows. Since F' is proper, closed, and convex, we can apply
the Moreau identity [34]

P = prox,, +(p) + vp proxg,, (p/vp) (14)

to (4), after which the assumed separability of F implies that

[gs(pa vp)]i = proxup[ Fi* (pl) (15)

Thus, under 8y = 1, scalar GAMP’s update of s (in line 8 of
Algorithm 2) matches PDHG’s in (11). Similarly, noting the
connection between (3) and (12), it follows that, under 8, = 1,
scalar GAMP’s update of x (in line 12 of Algorithm 2))
matches the PDHG update (13) under 8 = 0.

In summary, PDHG under § = 0 (the Arrow-Hurwicz [35]
case) would be equivalent to non-damped scalar GAMP if the
stepsizes v; and rr’ were fixed over the iterations. GAMP,
however, adapts these stepsizes. In fact, under the existence
of the second derivative f”, it can be shown that

[1 4 " (prox,(m)] ", (16)

proxs (r) =
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implying that, for smooth F and G, GAMP updates t!
according to the average local curvature of G at the point
X = prox,;G(r’ ) and updates v} according to the average local
curvature of F* at the point s = ProX,: (p"). A different
form of PDHG stepsize adaptation has been recently consid-
ered in [36], one that is not curvature based.

Meanwhile, PDHG under 6 # 0 is similar to fixed-stepsize
damped scalar GAMP with ; = 1 and 8, = 1 + 6, although
not the same. Note that PDHG uses the damped version of x
only in the dual update (11) whereas GAMP uses the damped
version of x in both primal and dual updates. Also, PDHG
relaxes only the primal variable x, whereas damped GAMP
relaxes (or damps) both primal and dual variables.

III. DAMPED GAUSSIAN GAMP

A. Gaussian GAMP

Although Algorithms 1 and 2 apply to generic distributions
P(x;) and P(y;|z;), we find it useful to at first consider the
simple case of Gaussian distributions, and in particular

P(xj) = N(xj; x0;,70,),  P(ilzi) = Nt yin vy,

where 1 ; are variances and v,, are precisions (i.e., inverse
variances). In this case, the scalar estimation functions used
in max-sum mode are identical to those in sum-product mode,
and are linear [33]:

(17a)
(17b)

gs(p, vp) = V. (P + vw-Y)~/(vp + V) — vy
gx(r, ) = 10.(r — x0)./(70 + 7,) + Xo.

Henceforth, we use “Gaussian GAMP” (GGAMP) when refer-
ring to GAMP under the estimation functions (17).

B. Convergence of GGAMP Stepsizes

We first establish the convergence of the GGAMP stepsizes
in the case of an arbitrary matrix A. For the vector-stepsize
case in Algorithm 1, lines 8 and 12 become

vp = v,.gc(p', v)) = v,/ (v, + V) (18a)
o =1l g (¢, ) = tl.70./(x] + 10), (18b)
and, combining these with lines 6 and 10, we get
1/vl =St/ +1./v, (19a)
L/ = ST +1./10, (19b)

which are invariant to 6, 0y, s’, and x’. The scalar-stepsize
case in Algorithm 2 is similar, and in either case, the following
theorem shows that the GGAMP stepsizes always converge.

Theorem 1: Consider Algorithms 1 or 2) with Gaussian
estimation functions (17) defined for any vectors v, and
79 > 0. Then, as t — oo, the stepsizes v;, vl, !, T} (or their
scalar versions) converge to unique fixed points that are
invariant to & and 6,.

Proof: See Appendix A. [ ]
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IV. SCALAR-STEPSIZE GGAMP CONVERGENCE

A. Scalar-Stepsize GGAMP

An important special case that we now consider is scalar-
stepsize GGAMP from Algorithm 2 under identical variances,
i.e.,
(20)

vy =vul, 10 =101,

for some v,, and 79 > 0. In this case, lines 7 and 11 give

vl = llT(v’ (' v)) = VpV (21a)
m prosiEe TP vl + vy
t

d”=%Wﬁ¢an=ﬁf%, (21b)

and, combining these with lines 5 and 9, we get

(S T T B
v_§ = g-FE:;”A”FTX‘FE (22a)

I T S T

T;ﬁ = T—rt-i-_[—o:;”A”FVS‘f‘T—O. (22b)

B. Convergence

We now investigate the convergence of the primal and
dual variables x’ and s’ for scalar GGAMP. Since, for this
algorithm, the previous section established that, as t — oo,
the stepsizes vj, and ¢, converge independently of 6, 0y, s',
and X', we henceforth consider GGAMP with fixed stepsizes
vl =v, and 1} = 7,, where v, and 7, are the fixed points
of (22) for Algorithm 2. (A generalization to arbitrary fixed
stepsizes will be given in Section V.)

Theorem 2: Define

2[(2 = b5)m + bsn]

0.0 ifm>n
L sOrmn
[0-00 = a1 —omrom @
m < n.
0,6,mn -

Under Gaussian priors (i.e., (17)) with identical variances (20),
scalar-stepsize GAMP from Algorithm 2 converges for any vy,
and 79 > 0 when

L (s, 6:) > IAl3/1Al7- (24)

Conversely, it diverges for large enough zgv,, when
T(6s,6x) < |AI3/IAlF- (25)
Proof: See Appendix C. |

Theorem 2 provides a simple necessary and sufficient
condition on the convergence of scalar GGAMP. To better
interpret this condition, recall that |A|%? is the maximum
squared singular value of A and that ||A||%F is the sum of the
squared singular values of A (i.e., 1A% = Z?;l?{m’"} aiz(A)).
Thus

IAII3
K(A) :

= (26)
A%/ min{m, n}

is the peak-to-average ratio of the squared singular values of A.
Convergence condition (24) can then be rewritten as

k(A) < kmax (05, 0y) := min{m, n}I' (0, 0,), 27
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meaning that, for GGAMP convergence, it is necessary and
sufficient to choose xmax(fs,0x) above the peak-to-average
ratio of the squared singular values.

When there is no damping (i.e., fs = 1 = 6,), the definitions
in (23) and (27) can be combined to yield

2 min{m, n}(m 4+ n)

Kmax (1, 1) = € (2,4]. (28)

mn
More generally, for 65, 6y € (0, 1], it can be shown that
2 4
<K Os,0¢) < —,
HSGX max( s X) - esex
so that the necessary and sufficient GGAMP convergence
condition (27) can be rewritten as

(29)

050, < for some C € (2,4], (30)

C
k(A)
which implies that, by choosing sufficiently small damping
constants #; and 6, scalar-stepsize GGAMP can always be
made to converge.

Condition (30) also helps to understand the effect of x(A)
on the GGAMP convergence rate. For example, if we equate
6y = 0, = @ for simplicity, then (30) implies that

0 < J/C/k(A).

Thus, if GGAMP converges at rate 8, then after 0 is adjusted
to ensure convergence, GGAMP will converge at a rate below
/C/x(A). So larger peak-to-average ratios x (A) will result in
slower convergence.

€19

C. Examples of Matrices
To illustrate how the level of damping is affected by the
nature of the matrix A, we consider several examples.

a) Large i.i.d. matrices: Suppose that A € R™*" has
ii.d. components with zero mean and unit variance. For
these matrices, we know from the rigorous state evolution
analysis [16]-[18] that, in the large-system limit (i.e., m,n —
oo with fixed m/n), scalar-stepsize GGAMP will converge
without any damping. We can reproduce this result using our
analysis as follows: By the Marcenko-Pastur Theorem [37],
it can be easily shown that

min{m, n} m 2
K(A) ~ T’ |:1 + \/;i|

- 2 min{m, n}(m + n)

< , (32)

mn
with equality when m = n, and where the approxima-
tion becomes exact in the large-system limit. Because this
Marcenko-Pastur bound coincides with the 8, = 1 = 6,

case (28) of the convergence condition (27), our analysis
implies that, for large i.i.d. matrices, scalar stepsize GGAMP
will converge without damping, thereby confirming the state
evolution analysis. Note that we require that the asymptotic
value of m/n # 1 so that the inequality in (32) is strict;
when m = n, (32) becomes an equality and we obtain a
condition T'(6s,6x) = [Alj3/|All% right on the boundary
between convergence and divergence, where Theorem 2 does
not make any statements.
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b) Subsampled unitary matrices: Suppose that A is con-
structed by removing either columns or rows, but not both,
from a unitary matrix. Then, x(A) = 1, so, from (29),
k(A) < Kmax(0s,0y) for any 65,60, € (0, 1]. Hence, scalar
GGAMP will converge with or without damping.

¢) Linear filtering: Suppose that A € R"*" is circulant
with first column h, so that (Ax); = (h * x);, where %
denotes circular convolution. (Linear convolution could be
implemented via zero padding.) Then, it can be shown that

..... n-t [H(e/27Hm)?
i ko [H (e2rk/m)P
where H (e/®) is the DTFT of h. Equation (33) implies that
more damping is needed as the filter becomes more narrow-
band. For example, if H (¢/“) has a normalized bandwidth of
B € (0, 1], then x(A) ~ 1/B and, relative to an allpass filter,
GGAMP will need to slow by a factor of O(+/B).

d) Low-rank matrices: Suppose that A € R”*" has only
r non-zero singular values, all of equal size. Then

k(A) = ) (33)

K(A) = min{:un}’

which, from (31), implies the need to choose a damping
constant < +/Cr/min{m, n}, slowing the algorithm by a
factor of «/min{m, n}/r relative to a full-rank matrix. Hence,
more damping is needed as the relative rank decreases.

e) Walk-summable matrices: Closely related to Gaussian
GAMP is Gaussian belief propagation [30], [38], [39], which
performs a similar iterative algorithm to minimize a general
quadratic function of the form f(x) = xHJx + Real{cx}
for some positive definite matrix J. Sufficient conditions for
the convergence of Gaussian belief propagation were first
shown in [39], [40], but those conditions are difficult to verify.
In a now classic result, [38] showed that Gaussian belief
propagation will converge when

dmax (I—=J)) < 1, and J;; = 1 for all i, (34)

where |I—J| is the component-wise magnitude. The condition
(34) is called walk summability, with the constraints J;; = 1
being for normalization.

A quadratic function f is said to be convex decompos-
able if it can be written in the form f(x) = >, fi(x;) +
Zi, j fij(xi, x;) where {f;} are strictly convex quadratic
functions and {f;;} are convex quadratic functions. Moallemi
and Van Roy [41] showed that if a quadratic objective func-
tion is convex decomposable then min-sum message passing
converges to the global minimum. In [38], it was shown that
a function is convex decomposable if and only if it is walk-
summable (i.e., the two properties are equivalent).

To compare walk summability with GGAMP, first observe
that, in the identical-variance case (20), GGAMP performs the
same quadratic minimization with a particular ¢ and with

J=1A"A +0; L

Now, consider the high-SNR case, where 7p = 1 and v;l ~ 0,
so that J ~ AHA. Then the walk-summability condition (34)
reduces to

Jmax (11— AMA]) < 1, (35)
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where the normalizations J;; = 1 imply that the columns of Then (38)-(39), together with lines 8 and 10 of Algorithm 1,

A have unit norm, i.e., that ||A||% = n. Note that, if (35) is
satisfied, then

= Jmax(AHA) < 1411 — Zmax (AHA))|

= 1+ |lmax ATA = D)| < 1+ Amax (|A"A — 1))

= 1+ Amax (I — AFA|) < 2.

NE:

Applying these results to the x(A) definition (26), we find

AR
IAI%/ min{m, n} n

2min{m, n}

K(A)

< Kmax (1, 1),

(36)

where the latter inequality follows from inspection of (28).
We conclude that, in the high-SNR regime, walk summability
is sufficient for GGAMP to converge with or without damping.

V. LOCAL STABILITY FOR STRICTLY
CONVEX FUNCTIONS

We next consider the convergence with a more general class
of scalar estimation functions g; and g: those that are twice
continuously differentiable with first derivatives bounded as

[g;(p’ vp)]i € (09 1)9 [g)/( (I', Tr)]j € (09 1)9 (37)

for all p, r, v, and 7,. This condition arises in the important
case of minimizing strictly convex functions. Specifically,
if GAMP is used in max-sum mode so that the scalar estima-
tion functions are given by (3) and (4) with strictly convex,
twice differentiable functions G; and Fj, then (3), (4), and
(16) show that the conditions in (37) will be satisfied.

Definition 1: Let x't! = f,(x!) for t = 0,1,2,--- be a
dynamical system with a fixed point x* (i.e., f; (x*) = x* V1).
We say that the system is locally stable at x* if 30 > 0 such
that, if ||x° — x*| < 6, then lim,_, o0 X’ = Xx*.

Outside of the Gaussian scenario, we have not yet estab-
lished conditions on the global convergence of GAMP for
general scalar estimation functions.! Instead, we now establish
conditions on local stability, as defined in [43]. To simplify
the analysis, we will assume that the GAMP algorithm uses
arbitrary but fixed stepsize vectors v, and ;.

Under these assumptions, consider any fixed point (p, r) of
the GAMP method, and define the matrices

(38a)
(38b)

Q; := Diag(qy), q,:= g;(p, vp),
Q. := Diag(qy), qx:= g)/c(ra ),

evaluated at that fixed point. Note that, under assumption (37),
the components of g5 and q, lie in (0, 1). Define the matrix

A := Diag "/%(v,,.q5)A Diag /% (z,.q,). (39)

IInterestingly, it was shown by Moallemi and Van Roy [42] that, for a certain
class of convex optimization problems characterized by “scaled diagonal
dominance”, max-sum BP converges. As future work, it would be interesting
to study whether max-sum GAMP also converges for this class of problems.

imply

m m
DA = et D vpds Ay (40)
i=1

i=1
m
= qqT; D Sijvpds =qy; < 1. (41)
i=1
Hence, the column norms of A in (39) are less than one.
Similar arguments can be use to establish that, for any i,

n

D AP =gy <1,

J=1

(42)

$0 that A also has row norms less than one. We will thus call
A the row-column normalized matrix.

Theorem 3: Consider any fixed point (s, x) of GAMP Algo-
rithm 1 or Algorithm 2 with fixed vector or scalar stepsizes
v, and 7, respectively, and scalar estimation functions gy and
g satisfying the above conditions. Then, the fixed point is

locally stable if

050 IAII3 < 1, (43)

for A defined in (39). For the Gaussian GAMP algorithm,
the same condition implies the algorithm is globally stable.
Proof: See Appendix D. |

To relate this condition to Theorem 2, consider the case
when v and 7, are fixed points of (19) with S = A.A, i.e., the
component-wise magnitude square of A. From (41) and (42),
we have that

IAl% = mg, = ng, < min{m,n}max{q,,q,},

where

1 < l <
ﬁs:;ZEQSi; %ZEZ;%,.
i= j=

Thus, the peak-to-average ratio of A as defined in (26) is
bounded below as

IA]3
max{q, q,}

Hence, a sufficient condition to satisfy (43) is given by

k(A) >

k(A) < (44)

0x0s max{q,, q,} .
In comparison, (27) and (29) show that a Gaussian GAMP
with scalar step sizes converges is «(A) < C/(656,). We con-
clude that the sufficient condition for the vector-stepsize
GAMP algorithm to converge is similar to the scalar-stepsize
GAMP algorithm, but where the peak-to-average ratio is
measured on a certain normalized matrix.

VI. NUMERICAL RESULTS

In this section, we present some numerical simulations to
verify Theorems 2 and 3. This section is divided into two parts:
the first part is on the global convergence of damped GGAMP
(Theorem 2) and the second part is on the local stability of
damped GAMP (Theorem 3).
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Fig. 1.  The excess MSE of GGAMP vs xmax(bs,0x) for x(A) = 4.

Each point represents one realization, and excess MSE values were clipped
at 100 dB. To the right of the red dashed line, the condition xmax (65, Ox) >
x(A) is satisfied, in which case GGAMP converges to the MMSE solution,
as predicted by Theorem 2.

For both experiments, we first generated a matrix R € R"™*"
with elements drawn i.i.d. A'(0, 1) and computed its SVD to
get orthogonal matrices U, V such that R = UAVT. Then
we set A = UTVT for ¥ = Diag{o1, ..., 0}, where r =
min{m,n}, o1 = 1, and o;/0;—1 = p Vi. The value of p
was chosen to achieve a desired value of the peak-to-average
ratio of the squared singular values of A, i.e., x(A) in (26).
Finally, the measurements y were generated according to y =
Ax 4+ w for the AWGN case, or y = sign(Ax + w) for the
binary case, where in either case w was a realization of white
Gaussian noise. The variance of w was chosen to achieve an
SNR of 50 dB, where SNR := E{||Ax|*}/E{||w|?}.

A. Global Convergence of Damped GGAMP

In this experiment, the elements of x were drawn i.i.d.
N(0,1) and the measurements were generated using the
AWGN model as discussed above. For each choice of damping
factor 6y = 6,, scalar stepsize GGAMP was run from the
fixed initialization {x =0, s™! =0, 7, = 1} and the MSE
after 5000 iterations was recorded. This experiment was then
repeated for 100 realizations of {A, x, w}. The damping factors
0y = 0, were varied from 0.7 to 1 in steps of 0.005. To test
the validity of Theorem 2, we present the results in term of
the “excess MSE,” defined as the ratio of the MSE achieved
by GAMP to the MMSE, which was computed in closed form.
To enhance the readability of the plots, the excess MSE was
clipped at 100 dB.

Figures 1 and 2 show the excess MSE versus xmax (65, 6y),
which—according to Theorem 2—is the maximum allowed
value of x(A) under which GGAMP will converge with
damping factors (05, 0y), as defined in (27). In both figures,
the dimensions of A were 200 x 100, and the excess MSE from
each realization is plotted as a dot. The figures show that the
excess MSE was zero dB whenever xpax (65, 6y) > x(A), and
conversely the excess MSE was greater than zero dB whenever
Kmax (fs, Ox) < k(A), which verifies the claim of Theorem 2.
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Fig. 2. The excess MSE of GGAMP vs rmax (b5, 6x) for x(A) = 10.

Each point represents one realization, and excess MSE values were clipped
at 100 dB. To the right of the red dashed line, the condition xmax (s, 6x) >
x(A) is satisfied, in which case GGAMP converges to the MMSE solution,
as predicted by Theorem 2.
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Fig. 3. Excess MSE (dB) vs 050, [|A[3 for BG prior and AWGN likelihood
and x(A) = 4. Excess MSE values were clipped at_100 dB. To the left
of the red dashed line, the sufficient condition HS(JXHAH% < 1 is satisfied,
in which case damped GAMP locally converges to a fixed point, as predicted
by Theorem 3.

B. Local Convergence of GAMP

To test the local stability of damped GAMP, we used
the following procedure. For each realization of {A,x,y},
the parameters {v,, 7,, 0y, 6} were chosen and vector-stepsize
GAMP was run from the initialization {XO =0,s! =0,
7, = 1} with the stepsizes fixed at the chosen {v,, 7,}. The
values of {v,, 7, 05, 0} were chosen so that GAMP converged
to some fixed point {x,s, p,r}; more details are provided
below. Next, GAMP was initialized near to the fixed point and
tested for local convergence (under the same fixed stepsizes
{vp, 7/}.) In particular, it was initialized at x% = x + x,,
s = s}, where the elements of x, were drawn i.i.d. A'(0, 1),
with x, subsequently normalized such that the initial MSE was
15 dB above the MSE at the fixed point. This test was repeated
20 times for each fixed point. If 6,6, ||A||% < 1 then, according
to Theorem 3, GAMP should converge to the fixed point. Each
dot in Figures 3-6 represents the excess MSE, now defined
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Fig. 4. Excess MSE (dB) vs 050 ||A||3 for BG prior and AWGN likelihood
and x(A) = 10. Excess MSE values were clipped at_ 100 dB. To the left
of the red dashed line, the sufficient condition 60y ||AH2 < 1 is satisfied,
in which case damped GAMP locally converges to a fixed point, as predicted
by Theorem 3.
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Fig. 5. Excess MSE (dB) vs 656y HKH% for BG prior and Probit likelihood and
x(A) = 4. Excess MSE values were clipped at 100 dB. To the left of the red
dashed line, the sufficient condition 650y ||A\|% < 1 is satisfied, in which case
damped GAMP locally converges to a fixed point, as predicted by Theorem 3.

as the ratio of the maximum MSE among all local runs of
GAMP to the MSE at the fixed point. The above procedure
was repeated for a range of §; = 6, and many realizations of
{A, x,y}, as detailed below. As before, the excess MSE values
were clipped at 100 dB before plotting. B

Figures 3 and 4 show the excess MSE versus 059x||A||%
for Bernoulli-Gaussian x with sparsity rate 0.1 and AWGN
measurements. Figure 3 investigates the case where x(A) = 4
and Figure 4 investigates the case where x(A) = 10. For each
plot, the dimensions of A were 200 x 100, the stepsizes were
Vp, = (Z?Zl Al.zj)_1 Vi, the damping factors ; = 6, were
varied from 0.45 to 0.95 in steps of 0.05, and 50 realizations
of {A, x, y} were tested. Also rr, >= A ~!in Figure 3
and 7,, = (10>, A in Figure 4, for all j. This
particular ch01ce of 1, was used to ensure that the fixed-
stepsized GAMP converged to a fixed point for the chosen
range of 6, 6.
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Fig. 6. Excess MSE (dB) vs 050y H/le2 for BG prior and Probit likelihood

and x(A) = 10. Excess MSE values were clipped at_ 100 dB. To the left
of the red dashed line, the sufficient condition HS(JXHAH2 < 1 is satisfied,
in which case damped GAMP locally converges to a fixed point, as predicted
by Theorem 3.

Figure 5 and 6 show the excess MSE versus 956x||g||%
for Bernoulli-Gaussian x with sparsity rate 0.1 and binary
measurements. Figure 5 investigates the case where x(A) = 4
and Figure 6 investigates the case where x(A) = 10. For each
plot, the dimensions of A were 400 x 100, the stepsizes were
vp, = 10 Vi and 7,, = 1V, the damping factors 65 = 0y were
varied from 0.45 to 0.95 in steps of 0.05, and 50 realizations
of {A, x,y} were tested.

Figures 3-6 show an excess MSE of ~
959x||1§||% < 1, hence verifying Theorem 3.

0 dB whenever

VII. CONCLUSIONS

A key outstanding issue for the adoption of AMP-related
methods is their convergence for generic finite-dimensional
linear transforms. Similar to other loopy BP-based methods,
standard forms of AMP may diverge. In this paper, we pre-
sented a damped version of the generalized AMP algorithm
that, when used with fixed stepsizes, can guarantee global con-
vergence for Gaussian distributions and local convergence for
the minimization of strictly convex functions (i.e., strictly con-
cave log-priors). The required amount of damping is related
to the peak-to-average ratio of the squared singular values of
the transform matrix. However, much remains unanswered:
Most importantly, we have yet to derive a condition for global
convergence even in the case of strictly convex functions. Sec-
ondly, our analysis assumes the use of fixed stepsizes. Third,
short of computing the peak-to-average singular-value ratio,
we proposed no method to compute the damping constants.
Hence, an adaptive method may be useful in practice. One
such method, [23], has been proposed, but it comes without
convergence guarantees. Thus, future work might aim to
analyze the convergence of such methods. Also, a more recent
algorithm, Vector AMP (VAMP) [44], [45], has improved
convergence on larger classes of random matrices. Another
line of future work could seek conditions for convergence of
VAMP on deterministic matrices.
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APPENDIX A
PROOF OF THEOREM 1

The variance updates of both Algorithms 1 and 2 are both
of the form (19) with different choices of S. So, the theorem
will be proven by showing that the updates (19) converge
for any non-negative matrix S > 0. To this end, we use the
results in [46]. Specifically, for any v,, and 7o > 0, define the
functions

D () := [STy + 1./vw]*1

D, (vy) = [sTvS + 1./:0]71
so that the updates (19) can be written as

vl = dy(zl), M=o, 0.

It is easy to check that, for any S > 0,

(i) Ps(zx) > 0,

(i) Ty > T)/C = O(1y) < O (T;)» and

(iii) For all a > 1, O4(aty) > (1/a)Ds(Ty).
with the analogous properties being satisfied by @, (v;). Now
let ® := @, o g be the composition of the two functions so
that T/t! = ®(z!). Then, @ satisfies the three properties:

1) D(ry) >0,

(i) 7 > 1. = O(14) > O(7)), and

(iii) For all a > 1, ®(aty) < a®(ty).
Also, for any vy > 0, we have @, (vy;) < 70 and therefore,
®d(1y) < 719 for all 7, > 0. Hence, taking any , > 10,
we obtain:

Ty = (D(Tx)-

Using Theorem 2 in [46], it can be shown that the updates
7l = ®(z!) converge to a unique fixed point. A similar
argument shows that v! also converges to a unique fixed point.

APPENDIX B
LINEAR SYSTEM STABILITY CONDITION

The proofs of both Theorems 2 and 3 are based on analyzing
the GAMP algorithm via an equivalent linear system and then
applying results from linear stability theory. For both results
we will show that the condition of the theorem is equivalent
to an eigenvalue test on a certain matrix.

First consider the Gaussian GAMP algorithm with fixed
vector stepsizes. With fixed stepsizes and Gaussian estimation
functions (17), Algorithm 1 reduces to a linear system:

s’ = (1 —05)s™ +6,Q,(s" + v,.Ax")

— Osvy.y (452)
Xt = (1 = 0)x" 4 0,Q, (x' — 7..AHs" — x)
+ 0,0, (45b)
where
Q, = Diag(qs), qs = vu./(v +v)p), (46a)
Q. = Diag(q+), qx = 70./(T0 + 7). (46b)

Note that the components of ¢ and gy are in (0, 1). We can
write the system (45) in matrix form as

SI Sl—l
[£)-o[]

(47)
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for an appropriate matrix G and vector b. The matrix G is
given by

G = I 0 D, 0, Diag(vy)A
"~ | =6, Diag(x) A" D, [| 0 I ’
(48)
where
Dy = (1 — 09I+ 6,Q; (492)
D, = (1 - gx)I + 0xQx~ (49b)
Here we have used that
qs-Vp = Vs, (x.Tp = Ty. (50)

Note that both D, and Dy are diagonal matrices with entries
in the interval (0, 1).

Now, consider the case of the more general scalar estimation
functions satisfying (37) and other assumptions in Section V.
Due to the differentiability assumptions, to prove the local
stability, we only have to look at the linearization of the
system around the fixed points [43]. With fixed stepsizes, the
linearization of the updates in Algorithm 1 around any fixed
point is given by

s' = (1 -0, +6,Qs(s +v,.Ax")
Xt = (1 = 0)x" + 0,Q, (x' — 7,.AMs")

(51a)
(51b)

where the matrices Qg and Q, in (46) are replaced by the
derivatives (38). This linear system is also of the form (47)
with the same matrix (48). Also, under the assumptions of the
theorem, q; and q, are vectors with components in (0, 1).

Hence, we conclude that to prove the global stability of
Gaussian GAMP, or the local stability of GAMP under the
assumptions of Theorem 3, it suffices to show that the linear
system (47) with a matrix G of the form (48) is stable. The
matrices Dy and D, are given in (49) where Q; and Q, are
diagonal matrices with elements in (0, 1).

To evaluate this condition, first recall that the linear system
(47) is stable when the eigenvalues of G are in the unit circle.
However, if we define

Diag~'/2(6,vy) 0
T= o—1/2
0 Diag (Ox ) |

the eigenvalues of G are identical to those of H given by

I 0 D, F]
- -1 _ N
H :=TGT _[—FH DX:|[O 1) (52)
where
F = /0,0, Diag(v,’*)A Diag(z.’?). (53)
Expanding the matrix product in (52), we get
D, F
"= |:—FHDS D, — FHF} ' )

Now, for any A € C, define the matrix

A1 — Dy
FHD,

—F

Hw:il—H:[ A—D. + FHF

i| . (55)
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For stability, we need to show that for any [1] > 1, H; is
invertible. We simplify this condition as follows: Consider any
A with |A] > 1. Now, Dy in (49b) is a diagonal matrix with
entries in [0, 1). Hence AI — Dy is invertible since |A| > 1.
Therefore, taking a Schur complement, we see that H; is
invertible if and only if the matrix

J; = A1—Dy + F'F + F'D, (1 - D,)"'F
— JI—-D, +FQI-D,)"'F

is invertible. We can summarize the result as follows.

Lemma 1: Consider the GAMP Algorithm 1 for any scalar
estimation functions satisfying the conditions in Section V
including (37). The GAMP algorithm is locally stable around
a fixed point if and only if J, is invertible for all |A] > 1,
where

J, =21 —D, + AF' (I - Dy)"'F, (56)

and F is given in (53). In the special case of Gaussian
estimation functions (17), the above condition implies the
GAMP Algorithm 1, will be globally stable.

A similar calculation can be performed for the GAMP algo-
rithm with scalar stepsizes. In this case, the vector stepsizes
such as 7, and v, are replaced with the scalar quantities 7,
and v,. For the case of Gaussian estimation functions (17) and
identical variances (20) we obtain the following:

Lemma 2: Consider the GAMP Algorithm 2 with scalar
stepsizes, Gaussian scalar estimation functions (17) and iden-
tical variances (20). Then, the algorithm is globally stable if
and only if J; is invertible for all |A| > 1, where

L= (A —dy)l FHF 57
JA ( X) + j.—ds ) ( )
where
F = ,0,0,vs1, A, (58)
and
Vw
dy = (1 —05) +b6sqs, q5 = s (59a)
Vp + vy
70
de = (1 =0y)+0:qy, gx= . (59b)
70 + 7
APPENDIX C

PROOF OF THEOREM 2

Our first step in the proof is to simplify the condition in
Lemma 2.

Lemma 3: Consider the GAMP algorithm with scalar step-
sizes, Algorithm 2, with the Gaussian scalar estimation func-
tions (17) and fixed stepsizes. Then the system is stable if and
only if

T (A) < AlIF7, (60)
where : 5 p 5 p
y:=27[———x“———5] (61)
”A”F(gsex Tx 70 Vs Vw

Proof: From Lemma 2, we know that the system is
stable if and only if J; in (57) is invertible for all |A] > 1.
To evaluate this condition, suppose that J; is not invertible for
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some |A| > 1. Then, there exists an v % 0 such that J,v =0,
which implies that
(dx — (A —dy)
- "
Using the expression for F in (58), this is equivalent to
(= DG —dy)

005t V5 A ’

FiFy =

AHAy =

Thus, v is an eigenvector of AHA. But, ¢2 is an eigenvalue
of AHA if and only if o is a singular value of A. Hence,
we conclude that J; is non-invertible if and only if there exists
a singular value o of A such that

6200, 1054 = (dy — N)(A — dy).

Equivalently, we have shown that the system is stable if and
only if the the second-order polynomial

p(4) = /12 + (Uzexesfxvs —dy — dg) A + dsd,

has stable roots for all singular values of A, ¢. Now recall that
dg and dy € (0, 1). By the Jury stability condition, the p(4)
has stable roots if and only p(1) > 0 and p(—1) > 0. Now,
the first condition is always satisfied since

p(1) = 620,60, 1,v5 + (1 — dy)(1 — dy) > 0.
So, the polynomial is stable if and only if
0 < p(=1) = —020:0.7.v5 + (1 +ds)(1 + dy),
or equivalently,
0200, 1cvs < (1 +dy)(1 +dy).
For this to be true for all singular values of A, we need

62 (A)0xO,7cvs < (14 ds)(1 + dy).

max

Thus, the system is stable if and only if (60) is satisfied with

(I +d)( +dy)

T 00wt AlE

So, we simply need to prove that (62) matches the definition
in (61). To this end, first note that

Lhdi w20 Gw2 b

Ty Ty 7y Ty 10

(62)

where (a) follows from the definition g, = 7,/7- in (49a)
and (b) follows from the fixed-point equation (22b). Similarly
using (49b) and (22a), we obtain that

1+dS:2—6s H_SZE_H_S (64)
Vg Vg vp Vs Vu
Substituting (63) and (64) into (62), we obtain (61) and the
lemma is proven. u
Let
[ := inf y, (65)
vy >0

where y is defined in (61) and the minimization is over vy,
with the other parameters, ||A||%, 70, m and n, being fixed.
It follows that if

o*(A) < T||A|I%
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then the system is stable for all v,,. Conversely, if
a*(A) > T||Al;

then there exists at least one v, such that the system is
unstable. So, the theorem will be proven if we can show that
I' defined in (65) matches the expression in (23).

To calculate the minima in (65), it is useful to write a scaled
version of the updates. Let

m 70
§ =, = — (66a)
IAlI7vs70 Tx
m m
ui=—-", = — (66b)
IAIF v 0 n
Then, the fixed points of (22) are given by
1 s
s=—4u, x=—+1. (67)
X s
Also, y in (61) is given by,
1
y = 2x — 6,)(2s — Osu). (68)
mby0,
Moreover, the minimization in (65) is equivalent to
I' = inf y, (69)
u>0

since minimizing over v,, is equivalent to minimizing over u
in the scaled system. To evaluate the minima (69), we first
prove the following.

Lemma 4: The minimization in (69) is given by

I'=limy. (70)
u—0
That is, the minima is achieved as u — 0.
Proof: From (67),
%:s—quﬁ—l. (71)
s

Substituting (67) into (68) and applying (71), we obtain

1 (28
y—mesex (T+2—(9X)(2S—(95u)
1 2
_ Pﬁ—@—@wﬂ+2@—@n— ﬁ“}
mbg0, S
= A B 2
00 [A(s,u) + B], (72)
where
A(s,u) =22 — 6y —605)s + 0,.05u (73)

B:=4p—20,(8 — 1)

Now let s’, x" and A’(s, u) denote the derivatives with respect
to u. From (67) we have

x' Bs’
/_ /_
N ——E—Fl, X ——s—z, (74)
and therefore,
§2x2
/
S=Ea g (75)

Now from (67), we have

sx > 1 and sx > f.
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Therefore, (sx)> > f# and hence, from (75), s’ > 0. It follows
that
A'(s,u) =22 — 0, — 0,)s" + 6.0, > 0,

since both 2 — 8, — 6 > 0 and 0,6, > 0. Hence, from (72),

we have
oy _ Al(s,u)

= > 0,
ou mby0,

and it follows that the y is minimized by taking u as small as

possible. Therefore,

F=hy =m
|
We conclude by evaluating the limit in (70). The following
lemma shows that value of the minimization agrees with (23),
and hence completes the proof of the theorem.
Lemma 5: For any damping constants 6, 6, the limit in
(70) is given by (23).
Proof: First consider the case when £ > 1 (i.e. m > n).
In this case, as © — 0 the solutions to the fixed points (67)
will satisfy s — 0 and x — oo. Hence, the limit of A(s, u)
in (73) is
lim A(s, u) = 0.
u—0

Therefore,
B 45 —20,(f — 1
I = limy < ®) 4f = 26,6 — 1)
u—0 mbg0, m0Os0y
© 212 = 6,)m + O,n]
o 0,6,mn

where (a) used (72); (b) used (73) and (c) used the fact that
S = m/n. This proves the m > n case of (23).

For the case when f < 1 (ie. m < n) and u = 0,
the solutions to fixed point in (67) are
1 1
= ), = — = l —_ .
by .y s T S

Substituting s = 1 — # and u = 0 into (72),

y = 22 = 0x — O:)(1 — B) + 48 — 20,(8 — 1)]
mbg0,
_ 2[2—60)n +0,m]

60,0, mn

where again we have used the fact that f = m/n. Therefore,

. 2[(2 = O)n + Oxm]
I'=Ilimy =

u—0 0,6,mn
and this proves the m < n case of (23). |
APPENDIX D

PROOF OF THEOREM 3
We begin with a technical lemma.
Lemma 6: Let A € C, dg max,dx, o € [0,1) with [4] > 1.
Define the set,

a2l
Pi={)—d +——
I X+z—4

Then O & conv(P), the convex hull of P.

dg € [0, dy,max] ] . (76)
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Proof: Write 4 in polar coordinates, 4 = re'?. We first
consider the case where 6 € (0, 7). Under this assumption,
we claim for all z € P,

Imag((1 — dy)z) < O. (77)

Since P is compact, this would imply that (77) holds for all
z € conv(P). In particular, O ¢ conv(P). So, we need to show
that (77) holds for all z € P.

To this end, let z € P so that,

a2
=A—dy +——— 78
Z X + i _ ds 5 ( )
for some d; € [0, ds,max]. Then,
Imag((4 — dx)z)
62(A —dy))
0'2 - -
2
__ 09 27 2
= mlmag [r A— (d_y +dx)|/’{| +d5dxllj|
2
o . .
= m [—r3 sin @ + rdyd, sin 9]
rsinfa? 2

Now, since 6 € (0, x), sinf > 0. Also, since |1| > 1, r > 1.
Therefore, r2 > d,d, since dy, d, < 1. Hence, (79) shows that
(77) holds for all z € P.

Similarly, for the case when @ € (—x, 0), (79) shows that

Imag((1 — dy)z) > 0, (80)

for all z € P. The same argument then shows that 0 ¢
conv(P).
It remains to consider the cases when § = 0 or § = . For
6 =0, 1=r and any z € P is of the form,
2

Ur() d@O
r—dy

z=r —dy+
r—
where (a) follows from the fact that » > d; and (b) follows
from the fact that » > d,. So, for all z € P, z is real and
positive. Hence, 0 ¢ conv(P). Similarly, when 8 =z, A = —r
and
2

or 2 (@) 2 (B)

z=—-r—dy+ <—r—dy+o°- < -r+0° <0,
r

+ dS
where (a) follows since d, > 0 and (b) follows since r > 1
and 62 < 1. Therefore, for all z € P, 7 is real and negative.
Hence, 0 ¢ conv(P). We have thus shown that 0 & conv(P)
for all values of 4. [ |

We can now prove the main result. Suppose that (43) is
satisfied. By the definition of F in (53) and A in (39), we have
that

(F) < 1. 81)

max

Now, from Lemma 1 we need to show that the matrix J, in
(56) is invertible for all 2 € C with [A| > 1. We prove this by
contradiction.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 9, SEPTEMBER 2019

Suppose that J,; in (56) is not invertible for some A with
|4] > 1. Then, there exists an x with ||x|> = 1 such that
x"J ;X = 0. Therefore, if we define y = Fx, the definition of
J, in (56) shows that

NI =D)x + Ay7 I =Dy)"ly =0
Since D, and D; are diagonal, we have

Z@ dx,>|x,|2+2 yil> =0.
A ds,

i=1

(82)

Since ||x||2 =
(F) <1,

1, we have Zj |)cj|2 = 1. Also, since ||F||% =

max

2 2 252
> yil* = IFx|)* = o?||x||* =
i

for some o2 < 1. Therefore, (82) shows that

0 € conv(P), (83)
where P is the set (76) where
n
dx = dej |Xj|2, ds,max = m;leSj- (84)

Now, from (38) and the contractivity assumption (37), the
elements of the diagonal matrices Q, and Qg must be in
the interval (0, 1). Hence, from (49), the elements d, ; and
ds; € (0, 1). Therefore, dy, ds,max in (84) are in (0, 1). From
Lemma 6, 0 ¢ conv(P;) which is a contradiction of (83).
Hence, the assumption that J, is not invertible must be false,
and the theorem is proven.

REFERENCES

[1]1 S. Rangan, P. Schniter, and A. K. Fletcher, “On the convergence of
approximate message passing with arbitrary matrices,” in Proc. IEEE
ISIT, Jun./Jul. 2014, pp. 236-240.

[2] A. Chambolle, R. A. De Vore, N.-Y. Lee, and B. J. Lucier, “Nonlinear
wavelet image processing: Variational problems, compression, and noise
removal through wavelet shrinkage,” IEEE Trans. Image Process., vol. 7,
no. 3, pp. 319-335, Mar. 1998.

[3] 1. Daubechies, M. Defrise, and C. De Mol, “An iterative threshold-
ing algorithm for linear inverse problems with a sparsity constraint,”
Commun. Pure Appl. Math., vol. 57, no. 11, pp. 1413-1457, Nov. 2004.

[4] S.J. Wright, R. D. Nowak, and M. A. T. Figueiredo, “Sparse reconstruc-
tion by separable approximation,” IEEE Trans. Signal Process., vol. 57,
no. 7, pp. 2479-2493, Jul. 2009.

[5]1 A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding
algorithm for linear inverse problem,” SIAM J. Imag. Sci., vol. 2, no. 1,
pp. 183-202, 2009.

[6] Y. E. Nesterov, “Gradient methods for minimizing composite objective
function,” Center Oper. Res. Econometrics, Catholic Univ. Louvain,
Louvain-la-Neuve, Belgium, CORE Discuss. Paper 2007/76, 2007.

[7]1 J. M. Bioucas-Dias and M. A. T. Figueiredo, “A new TwIST: Two-step
iterative shrinkage/thresholding algorithms for image restoration,” I[EEE
Trans. Image Process., vol. 16, no. 12, pp. 2992-3004, Dec. 2007.

[8] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1-122,
Jan. 2011.

[9] E. Esser, X. Zhang, and T. F. Chan, “A general framework for a class
of first order primal-dual algorithms for convex optimization in imaging
science,” SIAM J. Imag. Sci., vol. 3, no. 4, pp. 1015-1046, 2010.

[10] A. Chambolle and T. Pock, “A first-order primal-dual algorithm for
convex problems with applications to imaging,” J. Math. Imag. Vis.,
vol. 40, no. 1, pp. 120-145, 2011.



RANGAN et al.: ON THE CONVERGENCE OF AMP WITH ARBITRARY MATRICES

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

B. He and X. Yuan, “Convergence analysis of primal-dual algorithms for
a saddle-point problem: From contraction perspective,” SIAM J. Imag.
Sci., vol. 5, no. 1, pp. 119-149, 2012.

N. Komodakis and J.-C. Pesquet, “Playing with duality: An overview
of recent primal-dual approaches for solving large-scale optimization
problems,” [EEE Signal Process. Mag., vol. 32, no. 6, pp. 31-54,
Nov. 2015.

D. L. Donoho, A. Maleki, and A. Montanari, “Message-passing algo-
rithms for compressed sensing,” Proc. Nat. Acad. Sci. USA, vol. 106,
no. 45, pp. 18914-18919, Nov. 2009.

D. L. Donoho, A. Maleki, and A. Montanari, “Message passing algo-
rithms for compressed sensing: I. Motivation and construction,” in Proc.
Info. Theory Workshop, Jan. 2010, pp. 1-5.

S. Rangan, “Generalized approximate message passing for estimation
with random linear mixing,” in Proc. IEEE ISIT, Jul./Aug. 2011,
pp. 2174-2178.

M. Bayati and A. Montanari, “The dynamics of message passing on
dense graphs, with applications to compressed sensing,” IEEE Trans.
Inf. Theory, vol. 57, no. 2, pp. 764-785, Feb. 2011.

A. Javanmard and A. Montanari, “State evolution for general approxi-
mate message passing algorithms, with applications to spatial coupling,”
Inf. Inference, vol. 2, no. 2, pp. 115-144, 2013.

M. Bayati, M. Lelarge, and A. Montanari, “Universality in polytope
phase transitions and message passing algorithms,” Ann. Appl. Probab.,
vol. 25, no. 2, pp. 753-822, 2015.

C. Rush and R. Venkataramanan, “Finite-sample analysis of approximate
message passing,” in Proc. IEEE ISIT, Jul. 2016, pp. 755-759.

S. Rangan, P. Schniter, E. Riegler, A. K. Fletcher, and V. Cevher,
“Fixed points of generalized approximate message passing with arbitrary
matrices,” in Proc. IEEE ISIT, Jul. 2013, pp. 664—668.

F. Krzakala, A. Manoel, E. W. Tramel, and L. Zdeborova, “Vari-
ational free energies for compressed sensing,” in Proc. IEEE ISIT,
Jun./Jul. 2014, pp. 1499-1503.

J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Understanding belief
propagation and its generalizations,” in Exploring Artificial Intelligence
in the New Millennium. San Francisco, CA, USA: Morgan Kaufmann,
2003, pp. 239-269.

J. Vila, P. Schniter, S. Rangan, F. Krzakala, and L. Zdeborova, “Adaptive
damping and mean removal for the generalized approximate message
passing algorithm,” in Proc. IEEE ICASSP, Apr. 2015, pp. 2021-2025.
F. Caltagirone, L. Zdeborovd, and F. Krzakala, “On convergence of
approximate message passing,” in Proc. IEEE ISIT, Jun./Jul. 2014,
pp. 1812-1816.

M. Pretti, “A message-passing algorithm with damping,” J. Stat. Mech.,
Theory Exp., vol. 2005, no. 11, 2005, Art. no. P11008.

V. Kolmogorov, “Convergent tree-reweighted message passing for
energy minimization,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 28,
no. 10, pp. 1568-1583, Oct. 2006.

A. Globerson and T. S. Jaakkola, “Fixing max-product: Convergent
message passing algorithms for MAP LP-relaxations,” in Proc. NIPS,
2007, pp. 553-560.

A. Manoel, F. Krzakala, E. W. Tramel, and L. Zdeborova, “Swept
approximate message passing for sparse estimation,” in Proc. ICML,
2015, pp. 1123-1132.

S. Rangan, A. K. Fletcher, P. Schniter, and U. S. Kamilov, “Inference
for generalized linear models via alternating directions and Bethe free
energy minimization,” in Proc. IEEE ISIT, Jun. 2015, pp. 1640-1644.
D. Bickson. (2008). “Gaussian belief propagation: Theory and aplica-
tion.” [Online]. Available: https://arxiv.org/abs/0811.2518

D. Dolev, D. Bickson, and J. K. Johnson, “Fixing convergence of
Gaussian belief propagation,” in Proc. IEEE ISIT, Jun./Jul. 2009,
pp. 1674-1678.

P. Schniter and S. Rangan, “Compressive phase retrieval via generalized
approximate message passing,” IEEE Trans. Signal Process., vol. 63,
no. 4, pp. 1043-1055, 2015.

S. Rangan. (Oct. 2010). “Generalized approximate message pass-
ing for estimation with random linear mixing.” [Online]. Available:
https://arxiv.org/abs/1010.5141

P. L. Combettes and V. R. Wajs, “Signal recovery by proximal
forward-backward splitting,” Multiscale Model. Simul., vol. 4, no. 4,
pp. 1168-1200, 2005.

5351

[35] K. J. Arrow, L. Hurwicz, and H. Uzawa, Studies In Linear And Non-
Linear Programming. Palo Alto, CA, USA: Stanford Univ. Press, 1958.
T. Goldstein, M. Li, X. Yuan, E. Esser, and R. Baraniuk. (2013). “Adap-
tive primal-dual hybrid gradient methods for saddle-point problems.”
[Online]. Available: https://arxiv.org/abs/1305.0546

V. A. Mar¢enko and L. A. Pastur, “Distribution of eigenvalues for
some sets of random matrices,” Math. USSR-Sbornik, vol. 1, no. 4,
pp. 457483, 1967.

D. M. Malioutov, J. K. Johnson, and A. S. Willsky, “Walk-sums and
belief propagation in Gaussian graphical models,” J. Mach. Learn. Res.,
vol. 7, no. 1, pp. 2031-2064, Oct. 2006.

Y. Weiss and W. T. Freeman, “Correctness of belief propagation in
Gaussian graphical models of arbitrary topology,” in Proc. Adv. Neural
Inf. Process. Syst., 2000, pp. 673-679.

P. Rusmevichientong and B. V. Roy, “An analysis of belief propagation
on the turbo decoding graph with Gaussian densities,” IEEE Trans. Inf.
Theory, vol. 47, no. 2, pp. 745-765, Feb. 2001.

C. C. Moallemi and B. V. Roy, “Convergence of min-sum message
passing for quadratic optimization,” IEEE Trans. Inf. Theory, vol. 55,
no. 5, pp. 2413-2423, May 2009.

C. C. Moallemi and B. Van Roy, “Convergence of min-sum message-
passing for convex optimization,” IEEE Trans. Inf. Theory, vol. 56, no. 4,
pp. 2041-2050, Apr. 2010.

M. Vidyasagar, Nonlinear Systems Analysis. Englewood Cliffs, NJ, USA:
Prentice-Hall, 1978.

S. Rangan, P. Schniter, and A. K. Fletcher, “Vector approximate message
passing,” in Proc. IEEE ISIT, Jun. 2017, pp. 1588-1592.

A. K. Fletcher and P. Schniter, “Learning and free energies for vector
approximate message passing,” in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process. (ICASSP), Mar. 2017, pp. 4247-4251.

R. D. Yates, “A framework for uplink power control in cellular radio
systems,” IEEE J. Sel. Areas Commun., vol. 13, no. 7, pp. 1341-1347,
Sep. 1995.

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]
[44]

[45]

[40]

Sundeep Rangan (S’94-M’98-SM’13-F’16) received the B.A.Sc. degree
from the University of Waterloo, Waterloo, ON, Canada, and the M.Sc.
and Ph.D. degrees from the University of California, Berkeley, CA, USA,
all in electrical engineering. Since 2010, he has been on the faculty of
the Department of Electronics and Communication Engineering, New York
University Polytechnic School of Engineering.

Philip Schniter (S’92-M’93-SM’05-F’14) received the B.S. and M.S.
degrees in electrical engineering from the University of Illinois at
Urbana-Champaign, Champaign, IL, USA, and the Ph.D. degree in electrical
engineering from Cornell University, Ithaca, NY, USA. Since 2000, he has
been on the faculty of the Department of Electrical and Computer Engineering
at The Ohio State University, Columbus, OH, USA.

Alyson K. Fletcher (S’03-M’04) received the B.S. degree in mathematics
from the University of Iowa, Iowa City, IA, USA, and the M.S. degree in
mathematics and electrical engineering (EE) and the Ph.D. degree in EE, both
from the University of California at Berkeley, Berkeley, CA, USA. Since 2016,
she has been on the faculty of the Departments of Statistics, Mathematics, EE,
and Computer Science at the University of California, Los Angeles.

Subrata Sarkar (S’12) received the B.Tech. degree in electrical engineering
from Indian Institute of Technology, Guwahati, in 2014. In 2016, he received
the M.S. degree in electrical engineering from The Ohio State University,
Columbus, OH, USA, where he is currently pursuing a Ph.D. degree.



