
LESS: A Matrix Split and Balance Algorithm for Parallel Circuit
(Optical) or Hybrid Data Center Switching and More

Liang Liu
Georgia Institute of Technology

lliu315@gatech.edu

Jun (Jim) Xu
Georgia Institute of Technology

jx@cc.gatech.edu

Mohit Singh
Georgia Institute of Technology
mohit.singh@isye.gatech.edu

ABSTRACT
The research problem of how to use a high-speed circuit switch,
typically an optical switch, to most effectively boost the switching
capacity of a datacenter network, has been extensively studied.
In this work, we focus on a different but related research prob-
lem that arises when multiple (say s) parallel circuit switches are
used: How to best split a switching workload D into sub-workloads
D1,D2, ...,Ds , and give them to the s switches as their respective
workloads, so that the overall makespan of the parallel switching
system is minimized? Computing such an optimal split is unfortu-
nately NP-hard, since the circuit/optical switch incurs a nontrivial
reconfiguration delay when the switch configuration has to change.

In this work, we formulate a weaker form of this problem: How
to minimize the total number of nonzero entries in D1,D2, ...,Ds
(so that the overall reconfiguration cost can be kept low), under
the constraint that every row or column sum of D (which corre-
sponds to the workload imposed on a sending or receiving rack
respectively) is evenly split? Although this weaker problem is still
NP-hard, we are able to design LESS, an approximation algorithm
that has a low approximation ratio of only 1 + ϵ in practice and a
low computational complexity of only O(m2), wherem = ∥D∥0 is
the number of nonzero entries in D. Our simulation studies show
that LESS results in excellent overall makespan performances under
realistic datacenter traffic workloads and parameter settings.

CCS CONCEPTS
• Networks → Network resources allocation; Network performance
analysis; Data center networks.

KEYWORDS
Optical (Hybrid) Switching in Data Center Networks, Parallel Opti-
cal Switching, Matrix Split and Balance

ACM Reference Format:
Liang Liu, Jun (Jim) Xu, and Mohit Singh. 2019. LESS: A Matrix Split and
Balance Algorithm for Parallel Circuit (Optical) or Hybrid Data Center
Switching and More. In IEEE/ACM 12th International Conference on Utility
and Cloud Computing (UCC’19), December 2–5, 2019, Auckland, New Zealand.
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3344341.3368807

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
UCC ’19, December 2–5, 2019, Auckland, New Zealand
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6894-0/19/12. . . $15.00
https://doi.org/10.1145/3344341.3368807

1 INTRODUCTION
Data center network continues to grow both in size, as measured
by the number of server racks, and in link speeds, thanks to the
phenomenal growth of cloud computing services. This in turn has
led to an explosive growth in the amount of traffic the data center
has to switch between its server racks [5]. A cost-effective solution
approach to this scalability problem, called hybrid circuit (optical)
and packet switching or hybrid switching in short, has received
considerable research attention in recent years [8, 17, 24, 26, 28, 29].
In a hybrid-switched data center, shown in Figure 1, n racks of
computers on the left, called input ports, are connected by both a
circuit switch and a packet switch to n racks on the right, called
output ports. The circuit switch has a much higher bandwidth than
the packet switch, but incurs a nontrivial reconfiguration delay δ
when the switch configuration has to change. Since such a circuit
switch is almost invariably an optical switch nowadays, we will
always refer to a circuit switch as an optical switch in the sequel.

All existing research work on optical or hybrid switching are
focused on the following optimization problem: Given a traffic
demand matrix D from input ports to output ports, how to schedule
the optical switch to best (e.g., in the shortest possible makespan)
meet the demand? A (workable) schedule for the optical switch
typically consists of a sequence of configurations (matchings) and
their time durations (P1,α1), (P2,α2), · · · , (PK ,αK) that allow the
optical switch to remove (i.e., transmit) most of the traffic demand
fromD, so that the remaining traffic demand is small enough for the
packet switch to handle. Now, for the purpose only of simplifying
our presentation, we ignore the (existence of) packet switch and
formulate the hybrid switching problem as an optical switching
(only) problem. We will show in §2.3 that this simplification does
not change the nature and the difficulty of our research problem,
to be introduced next.

1.1 Load Balance over Multiple Switches
In this work, we focus on a different but related research problem
that is also orthogonal to this optical switching problem. More
specifically, we formulate and solve a new load-balancing problem
that naturally arises when the n racks shown in Figure 1 are con-
nected by not just one but multiple independent (i.e., parallel) optical
switches of the same size and capacity. Such parallel switching net-
works have already been proposed for boosting the total switching
capacity of an optical data center network. For example, in Mi-
crosoft’s ProjecToR [11], each rack is equipped with multiple (say s)
independent optical transmitters and receivers, and any transmitter
at a rack can pair with any (available) receiver at another rack.

All optical switching algorithms [3, 16, 18–21, 25] have compu-
tational complexities that grow at least quadratically (i.e., O(n2))

https://doi.org/10.1145/3344341.3368807
https://doi.org/10.1145/3344341.3368807

Optical
(Circuit)
Switch

Packet
Switch

Hybrid Switch

Input ports Output ports

11

n

2 2

n

Figure 1: Hybrid Circuit and Packet Switch

with the switch size n. As will be explained in §2.1, s parallel opti-
cal switches can be naturally viewed as a giant sn × sn switch, so
centrally scheduling such a giant switch using any such algorithm
has a high computational complexity of at leastO(s2n2). Therefore,
this scheduling problem naturally calls for the following divide-
and-conquer approach: Given a traffic demand matrix D, we split
D into s sub-workload matrices D1,D2, ...,Ds and give them to
the s switches as their respective workloads. This approach makes
perfect systems sense, as the scheduling of each Dk on switch k
can be computed independent of each other (using a different pro-
cessor). We will show in §4.5 that such parallelization is critical in
keeping the amount of time needed to compute all the s schedules
at acceptable levels when the switch size (i.e., number of racks) n is
large.

We focus on a Matrix Split and Balance (MSB) problem that
lies at the heart of this divide-and-conquer approach: How to split
the traffic demand D so that the resulting sub-workload matrices
D1,D2, ...,Ds lead to near-optimal switching performance yet the
computation of this split is not NP-hard or otherwise extremely
expensive? One intuitive notion of optimality is to minimize the
worst-case (i.e., longest) makespan of the s schedules resulting
from D1,D2, ...,Ds respectively. This optimality notion is however
computationally infeasible since even to minimize the makespan of
a single schedule is usually NP-hard [16]. Hence, we instead impose
the following two milder conditions on this split that can work
toward this optimality.

The first condition is that the total traffic demand in every row of
D, which corresponds to that originating at an input port, should
be evenly split among D1,D2, ...,Ds , and so should every column
of D, which corresponds to that destined for an output port; we
call this condition line-even as each row or column is a straight line
through the matrix. The rationale for such a split is that, since every
optical switch receives roughly the same amount of workload to
its 2n input and output ports, these s switches hopefully can finish
their respective workloads in similar amounts of time (i.e., similar
makespans), leading to a short overall makespan (the maximum
among the s makespans).

Although letting D1 = D2 = · · · = Ds = D/s trivially satis-
fies this condition, this naive split is far from ideal because every

nonzero entry inD is cut into s identical pieces, each of which incurs
a nontrivial reconfiguration delay δ . Hence we impose the second
condition that

∑s
k=1 ∥Dk ∥0, the total number of nonzero entries

in these s matrices, is to be minimized, which we call the sparsity
condition. Here ∥M ∥0 denotes the number of nonzero entries in a
matrixM .

1.2 LESS: Our MSB Solution
To summarize, our MSB problem is to split D into D1,D2, ...,Ds un-
der the constraint that every row or column sum of D is evenly split
and with the objective of minimizing the total number of nonzero
entries in D1,D2, ...,Ds . Unfortunately, this relatively easier con-
strained minimization problem is still NP-hard [1]. The first con-
tribution of this work is LESS (Line-Even Sparse Split), an approx-
imation algorithm that provides the following strong theoretical
guarantee: In any solution (split) produced by the LESS algorithm,
the number of nonzero entries, starting with ∥D∥0 before the split,
will not be increased by more than (s − 1)(2n − 1) after the split. In
other words, we have

s∑
k=1
∥Dk ∥0 ≤ ∥D∥0 + (s − 1)(2n − 1) (1)

For example, suppose s = 8 (switches), n = 100 (racks), and an
100 × 100 traffic demand matrix D has 4, 000 nonzero entries (i.e.,
∥D∥0 = 4, 000). Then after the split,

∑s
k=1 ∥Dk ∥0 ≤ 4, 000 + (8 −

1) ∗ (200 − 1) = 5, 393, and each Dk contains on average about 674
nonzero entries. In comparison, the aforementioned simple even
split of D results in each Dk containing 4, 000 nonzero entries.

Although LESS guarantees a strong upper bound on the to-
tal number of nonzero entries

∑s
k=1 ∥Dk ∥0, it does not in the-

ory guarantee that this total is roughly evenly distributed among
D1,D2, ...,Ds . However, empirically in almost all splits produced
by our algorithm, ∥D1∥0, ∥D2∥0, ..., ∥Ds ∥0 do have similar values,
as will be shown in §4.4. Intuitively, this outcome is to be expected
because, as we will explain in §3.4.2, LESS is “equal-opportunity"
in the sense its logic is inherently not biased toward or against
any matrix Dk in “doling out" nonzero entries. This said, it appears
extremely hard, if not impossible, to prove any such evenness (of
split) guarantee for this algorithm. On the other hand, if we were
to modify LESS to optimize also this evenness, we would almost
certainly get back into the NP-hard territory.

The LESS algorithm, based on linear programming (LP), is con-
ceptually straightforward, as we will explain in §3.2. However, its
execution time is a bit too long, since there are O(m) linear equa-
tions to be satisfied by sm variables, wherem = ∥D∥0 is the number
of nonzero entries in D and is usually much larger than n. For ex-
ample, when n = 100 and s = 8 (switches), it takes hundreds of
milliseconds to compute a single 8-way split. In comparison, the
length of a scheduling epoch is typically a few milliseconds.

Our second contribution is to reduce this execution time by
converting this LP computation problem to a graph computation
problem that is much less expensive. In theory the computational
complexity of this graph algorithm is O(m2), but in practice the
actual complexity is close toO(m1.5), as we will show in §3.4.4. Our
experiments show that the graph algorithm runs roughly an order

of magnitude faster than the LP-based algorithm when n is quite
large (e.g., n = 100).

1.3 Beyond Optical/Hybrid Switching
A third contribution of this work is the formulation itself of the
MSB (matrix split and balance) problem under the line-even and the
sparsity conditions. This is a well-defined load-balancing problem
that we expect will find many new applications beyond optical
and hybrid switching. Furthermore, this problem is intricately con-
nected to (to be shown in §3.1) and algorithmically equivalent to
the following theoretical question that is interesting in its own
right: How to split a doubly stochastic matrix into s scaled (by a
factor of 1/s) doubly stochastic matrices so that the total number
of nonzero entries in the s resulting matrices is minimized? To
the best of our knowledge, there had been no study of anything
equivalent or similar to this question, whereas several other theoret-
ical questions concerning doubly stochastic matrix and its Birkhoff
von Neumann decomposition have received considerable research
attention (e.g., [4, 7, 14]).

The rest of the paper is organized as follows. In §2, we provide
a succinct description of the background and the related work. In
§3, we formulate the MSB problem and present our solution LESS.
Finally, we evaluate the performance of LESS in §4 and conclude
the paper in §5.

2 BACKGROUND AND RELATED WORK
2.1 Parallel Hybrid/Optical Switching
As explained earlier, in studying our MSB problem, we simplify the
hybrid switching problem by ignoring the (existence of the much
slower) packet switch, and formulate it as an optical switching
(only) problem. This simplification is justified for two reasons. First,
all existing hybrid switching algorithms generate an optical switch
schedule by iteratively finding and subtracting a configuration
(Pk ,αk), until the remaining traffic demand is small enough for
the packet switch to handle. Hence none of them would behave
differently (e.g., adopt a different scheduling strategy) if “told" in
advance that the capacity of the packet switch is 0. Second, every
optical switching (only) algorithm is readily convertible to a hybrid
switching algorithm by wrapping up the computation of the optical
switch schedule whenever this termination condition is met.

Datacenter switching with multiple (say s) optical transmitters
and receivers attached to each of the n racks, such as the setting
in ProjecToR [11], can be first formulated as scheduling an sn × sn
optical switch as follows. We are given an n × n traffic demand
matrix D, and each matrix entry D(i, j) is the amount of traffic that
originates at Rack i and is destined for Rack j, within a short (e.g.,
3 milliseconds long) scheduling epoch of the recent past (e.g., from
4 milliseconds ago to 1 millisecond ago). Our optical switching
algorithm needs to meet this demand in the next scheduling epoch.
We assume full knowledge of the precise and complete demand
matrix D (in this recent past epoch), as do almost all prior works on
hybrid switching and on optical switching. At any time t , each rack
(as an input port) can transmit data to up to s other racks (output
ports) and each rack (as an output port) can receive data from up to
s other racks (input ports) in parallel. Furthermore, more than one
(say s ′(≤ s)) transmitters at an input port i can be paired with s ′

receivers at an output port j at the same time. In this case, the total
transmission rate from rack i to rack j (at time t) is s ′ times the
single (transmitter-to-receiver) link rate, which is normalized to 1
throughout the paper. The scheduling problem for the sn×sn optical
switch is how to match the sn transmitters with the sn receivers
over time to transmit the traffic demand D, so that the makespan
of the resulting schedule is minimized.

In formulating the MSB problem in this work, we convert this
sn×sn optical switching problem to that of scheduling s independent
n × n virtual switches, by imposing the following slight restriction.
We number the s transmitters at each input port 1, 2, ..., s , and
do the same to the s receivers at each output port; the number-1
transmitters at all input ports and the number-1 receivers all output
ports form the first n × n virtual switch, the number-2 transmitters
and the number-2 receivers form the second n × n virtual switch,
and so on. In other words, the restriction is that only transmitters
and receivers of the same ID (e.g., number-1, number-2, etc.) can
pair with each other. This restriction is effectively almost innocuous
in the following sense: There is no scheduling algorithm known to
us at the moment that allows the original sn × sn switching system
to deliver a significantly higher throughput than our divide-and-
conquer approach, using the same or less amount of computation.

2.2 BvND of Doubly Stochastic Matrices
In this section, we explain the subtle connection between the line-
even condition (that every row or column sum is evenly split among
the sub-workload matrices) imposed on the MSB problem and the
Birkhoff-von Neumann Decomposition (BvND) of doubly stochastic
matrices, in the context of optical switching. We say that a nonneg-
ative n × n matrixM is doubly stochastic (or doubly sub-stochastic)
if every row or column sum of M is equal to 1 (or no larger than
1). The Birkhoff-von Neumann Theorem [2] states that a doubly
stochastic (or doubly sub-stochastic) matrix M can be expressed as
(or dominated by) a linear combination of permutation matrices.
More precisely, we have M =

∑K
k=1 αkPk (or M ≤

∑K
k=1 αkPk),

where
∑K
k=1 αk = 1 and P1, P2, ..., PK are permutation matrices, in

which each row or column has exactly one non-zero entry with
value 1. LetM be doubly stochastic. We call any uM , where u > 0 is
a scaling factor, a scaled doubly stochastic matrix, or u-scaled if the
scaling factor u is to be emphasized. Clearly, any u-scaled doubly
stochastic matrix can also be expressed as a linear combination of
permutation matrices, in which the sum of the linear coefficients∑K
k=1 αk is equal to u instead of 1.
We assume there is only one optical switch for the moment. For

ease of presentation, we usually normalize the following quantities
to 1: the rate of the transmission link in the optical switch (between
an input port and an output port), the length of a scheduling epoch,
and hence the maximum amount of traffic that the link can carry
during the epoch. Suppose we do that, and normalize all the ele-
ments in a traffic demand matrix D accordingly. Then, when the
reconfiguration delay δ of the optical switch is assumed to be 0, by
the Birkhoff-von Neumann Theorem above, we can find a schedule
according to which the circuit switch can finish transmitting D
within the epoch, if and only if D is doubly sub-stochastic.

We now assume there are s parallel optical switches and the nor-
malized rate of each transmission link in each switch is 1/s (so that

the s links from any input port or to any output port have a com-
bined normalized rate of 1). Again we assume the reconfiguration
delay δ of every optical switch is 0. Then a doubly-stochastic traffic
demand matrix D for these s switches combined is scheduleable
(i.e., can be completely transmitted with a scheduling epoch), as
just explained. However, if we split D into sub-workload matri-
ces D1, D2, · · · , Ds , every sub-workload matrix is scheduleable
by the corresponding switch if and only if they are all 1/s-scaled
doubly-stochastic, which is precisely the line-even condition.

2.3 Optical/Hybrid Switching Algorithms
As explained earlier, our divide-and-conquer approach to sched-
uling the s parallel optical switches consists of two steps that cor-
respond to two separate problems respectively. The first step is
to split the demand matrix D into s line-even and sparse (to the
extent possible) sub-workload matrices D1,D2, ...,Ds that are fed
into the s optical switches as their respective workloads. The corre-
sponding MSB problem is the focus of this paper, The second step
is for each optical switch to schedule its respective sub-workload.
The corresponding problem, known as optical switching with a
nontrivial reconfigurable cost, has been thoroughly studied in the
optical and the hybrid (circuit and packet) switching literatures
(e.g., [3, 9, 16, 18–21, 25, 27]) and is hence not a focus of this paper.
Therefore, we will describe only those optical/hybrid switching
concepts and algorithms that are involved in evaluating the effica-
cies of our LESS algorithm, such as partial reconfigurability and
the Best First Fit algorithm [19].

As mentioned in §1, an sn × sn switching fabric resulting from
deploying s transmitters and receivers at each rack/port has been
used in Microsoft’s ProjecToR [11] datacenter network. Its sched-
uling algorithm, briefly described and not considered as a major
contribution in [11], is to schedule the sn × sn switch as a whole, so
it is very different than our divide-and-conquer approach. In [11],
most of the transmitters and receivers are “prewired" for handling
static traffic workloads. For the remaining “free" (for matching)
transmitters and receivers, their matching is modeled in [11] as a
(distributed) stable marriage problem, in which a sender’s prefer-
ence score for a receiver is equal to the age of the data the former
has to transmit to the latter in a scheduling epoch, and is solved
using a variant of the Gale-Shapely algorithm [10]. Clearly, this so-
lution is aimed at minimizing transmission latencies while avoiding
starvations, and not at maximizing network throughput, or equiva-
lently minimizing makespan. In comparison, the design objective
of LESS is to minimize overall makespan to the extent possible.

In the rest of this section, we focus on how a single optical
switch schedules the sub-workload (matrix) assigned to it. All ex-
isting works on optical and hybrid switching, except BFF (Best
First Fit) [19] and [25], assume that the optical switch is not par-
tially reconfigurable in the following sense: When the circuit switch
changes from one configuration (matching) to the next, all input
ports have to stop data transmission during the reconfiguration
period (of duration δ), including those input ports that pair with
the same output ports during both configurations.

This is however an outdated and unnecessarily restrictive as-
sumption because nowadays optical technologies (e.g., free-space

optics as used in [11, 13]) can readily support partial reconfigu-
ration in the following sense: Only the input ports affected by
the reconfiguration need to pay a reconfiguration delay δ , while
unaffected input ports can continue to transmit data during the
reconfiguration. It has been shown that this partially reconfigurable
capability allows for the design of new hybrid/optical switching
algorithms, such as the aforementioned BFF algorithm [19], that
have much lower computational complexities, yet can deliver much
better makespan (completion time) performances.

Although our MSB problem and LESS solution is mostly or-
thogonal to how each optical switch schedules the sub-workload
(matrix) assigned to it, we assume that the optical switches have
partially reconfigurable capability and use BFF [19] as their under-
lying scheduler, because an inefficient underlying scheduler would
“muddle the water" in evaluating LESS against the naive solution
(i.e., result in poor makespan performances for both).

Here we give only a brief description of BFF (Best First Fit) [19].
At the beginning of the scheduling (i.e., t = 0), when all input ports
and all output ports are available, BFF runs a maximum weighted
matching (MWM) algorithm [6] to obtain the heaviest (w.r.t. their
weights in D) initial matching between inputs and outputs. Then
BFF tries to match input ports with output ports as soon as they
become available (i.e., after their previous transmissions are over) in
the following greedy manner: Each available output port attempts
to match with the best available input port (i.e., the one with the
largest amount of traffic to send to the output port) at the moment,
and vice versa.

3 MSB PROBLEM AND LESS SOLUTION
In this section, we first formally formulate the Matrix Split and
Balance (MSB) problem in §3.1. Then in §3.2, we introduce our
solution, Line-Even Sparse Split (LESS), and elaborate how to reduce
LESS for a s-way MSB problem to LESS for a 2-way MSB problems.
Then we describe in details how LESS solves a 2-way MSB problems
by two different methods, a straightforward but slower LP-based
method in §3.3, and a faster combinatorial method in §3.4.

3.1 Matrix Split and Balance (MSB)
In this section, we formally formulate the MSB problem of splitting
the demand matrix D into s sub-workload matrices D1,D2, ...,Ds .
It is a constrained optimization problem with the objective of mini-
mizing the total number of nonzero entries (Formula (2)), or equiv-
alently of maximizing the sparsity of the split. There are four sets
of constraints shown in Formulae (3) through (6) respectively. In
them we define [s] , {1, 2, · · · , s} and [n] , {1, 2, · · · ,n}.

The first set of constraints (Equations (3)) state that, for each
column j in each matrix Dk , the sum of entries in the jth column
of Dk must be equal to 1/s of the sum of entries in the jth column
of D. These constraints ensure that the jth output port of every
switch is given the same amount of workload that is equal to 1/s of
the traffic to be received by the rack j . The second set of constraints
(Equations (4)) state the same for each row i in each matrix Dk .
These constraints ensure that the ith input port of every switch
is given the same amount of workload that is equal to 1/s of the
traffic to be transmitted by rack i . These two sets of constraints
correspond to the aforementioned “line-even" (i.e., identical row

or column sum) requirement. The fourth (Inequalities (6)) and the
third (Equations (5)) sets state respectively that D1,D2, ...,Ds are
nonnegative matrices and that their total is D.

minimize
s∑

k=1
∥Dk ∥0 (2)

subject to
n∑
i=1

Dk (i, j) =
1
s

n∑
i=1

D(i, j),∀j ∈ [n],k ∈ [s] (3)

n∑
j=1

Dk (i, j) =
1
s

n∑
j=1

D(i, j),∀i ∈ [n],k ∈ [s] (4)

s∑
k=1

Dk (i, j) = D(i, j),∀i, j ∈ [n] (5)

0 ≤ Dk (i, j) ≤ D(i, j),∀i, j ∈ [n] (6)

Although all the constraints are linear, the objective function∑s
k=1 ∥Dk ∥0 is not, so this constrained optimization problem is not

a Linear Programming (LP) problem. In fact, it has been proved
to be NP-hard [1], so only heuristic or approximate solutions to
it exist that run in polynomial time. Our solution LESS is a (1 +
(2n−1)(s−1)

m)-approximation algorithm, wherem = ∥D∥0 is the num-
ber of nonzero entries in D. In practice, it can be considered a
(1 + ϵ)-approximation algorithm, since typically n = o(m), s is a
small constant (typically < 10), and n can grow to hundreds (of
racks) in real-world datacenter networks.

3.2 Line-Even Sparse Split (LESS)
The design of LESS is based on the following insight: The linear
constraints (3) through (6) define a polytope within which any
point satisfies the line-even condition and any extreme point of
this polytope corresponds to a fairly sparse split in the sense of (1),
which we will prove shortly. Hence our LESS algorithm is simply to
find an extreme point of this polytope. This can be done by replacing
the nonlinear objective function in (2) by a dummy linear objective
function such as "Minimizing 0" in the constrained optimization
problem above, and solving the resulting LP problem using an LP
solver such as Gurobi [12].

3.2.1 Reduction from s-way Split to 2-way Splits. Throughout this
section, whenever we use the term split, we mean to split (the
matrix) in the LESS manner. In other words, such a split always
corresponds to an extreme point of the corresponding polytope.
Now we show that, for any s > 2, we can reduce an s-way split (i.e.,
D into D1, D2, ..., Ds) to a “binary tree" of s − 1 recursive 2-way
splits. This reduction will not only significantly simplify our pre-
sentation of the resulting linear programming (LP) problem and
solution, but also allow for the use of parallel processing (to be
elaborated next) to speedup its computation. Intuitively, this reduc-
tion is straightforward when s is a power of 2. For example, when
s = 8, D is split first into “two halves", then into “four quarters",
and finally into eight sub-workload matrices D1, D2, ..., D8, each
of which accounts for exactly 1/8 of the total workload contained
in D. The corresponding “binary tree" is a complete binary tree of
height 3 with a total of s − 1 = 7 internal nodes, each of which
corresponds to a 2-way split.

We now explain how this reduction can be done when s is not a
power of 2. Due to the recursive nature of the splits, we need only
to explain what the very first 2-way split of a matrix D ′ should
be, when D ′ needs to eventually be split into s ′ pieces. There are
only two cases to consider. In the first case where s ′ is an even
number, the 2-way split has weights (1/2, 1/2) in the sense each
row or column sum of D ′1 is equal to 1/2 of the corresponding row
or column sum of D ′. Matrices D ′1 and D

′
2 will then be split further

into s ′/2 pieces each. In the second case when s ′ is an odd number,
the 2-way spit has weights (s ′−12s ′ ,

s ′+1
2s ′) in the sense each row or

column sum of D ′1 is equal to s ′−1
2s ′ of the corresponding row or

column sum of D ′. Matrices D ′1 and D ′2 will then be split further
into (s ′− 1)/2 and (s ′+ 1)/2 pieces respectively. For example, when
s ′ = 7, the 2-way split has weights (3/7, 4/7). The resulting D ′1 and
D ′2 need to be split further into 3 and 4 pieces respectively.

Now that any s-way split can be reduced to s − 1 2-way splits,
we will only describe how a 2-way split is performed in the sequel.
Furthermore, we will only consider weights (1/2, 1/2) because the
2-way LESS algorithm works with any (pair of) weights (as pa-
rameters) in the same manner. When describing the 2-way LESS
algorithm with weights (1/2, 1/2) in the next section, we will also
prove that each 2-way split increases the number of nonzero entries∑s
k=1 ∥Dk ∥0 by at most 2n − 1. This implies that any s-way split

increases
∑s
k=1 ∥Dk ∥0 by at most (s − 1)(2n − 1) (Inequality (1)),

since it can be reduced to s − 1 2-way splits.

3.2.2 Parallelization. As explained earlier, this reduction from s-
way split to 2-way splits allows for the speedup of its computation
using parallelization. We now illustrate how to parallelize the com-
putation in the aforementioned simple case of s = 8, where there
are seven instances of 2-way split computations over three rounds:
split D first into “two halves" (one instance) in the first round , then
into “four quarters" (two instances) in the second round, and finally
into eight sub-workload matrices D1, D2, ..., D8 (four instances)
in the third round. Clearly, four (more generally s/2) parallel pro-
cessors (or cores) can compute this 8-way split in three rounds of
time, that is, roughly three (more generally log2 s) times the amount
of time needed to compute a 2-way split instance. In comparison,
serial execution takes roughly seven (more generally s − 1) rounds
of time. Finally, we do not advocate further pipelining these three
(more generally log2 s) rounds of computations because although it
increases the “throughput" of this computation, it does not reduce
the “delay", which is what matters in real-world operations.

3.2.3 Comparison with Naive Solution. Although the naive MSB
solution of splitting D evenly (i.e., D1 = D2 = · · · = Ds = D/s)
satisfies all the constraints (3) through (6), it maximizes, rather than
minimizes, the objective function

∑s
k=1 ∥Dk ∥0. This leads to much

higher reconfiguration costs for the naive solution, as we will show
in §4. As a result, LESS outperforms the naive solutions under most
of the realistic parameter settings.

3.3 LP-based 2-way LESS
In this section, we describe the 2-way split of a matrix D ′ into two
matrices D ′1 and D ′2 with weights (1/2, 1/2). For convenience of
presentation, we drop the apostrophe character from D ′, D ′1, and
D ′2 and write them as D, D1, and D2 respectively. We emphasize

this (new) D could be the original demand matrix or any internal
node of the aforementioned “binary tree" of 2-way splits.

This 2-way split corresponds to finding an extreme point of the
polytope defined by the following equations and inequalities using
the LESS algorithm. Here (7), (8), and (9) correspond to the special
case of (3), (4), (5), and (6) when s is set to 2. And the weight forD1 is
the term 1

2 in (7) and (8). This term will have a different value if D1
has a different weight (e.g., 3/7 in the “odd split" example in §3.2.1).
Note that we only need to compute D1, since D2 = D − D1.

n∑
j=1

D1(i, j) =
1
2

n∑
j=1

D(i, j),∀i ∈ [n] (7)

n∑
i=1

D1(i, j) =
1
2

n∑
i=1

D(i, j),∀j ∈ [n] (8)

0 ≤ D1(i, j) ≤ D(i, j),∀i, j ∈ [n] (9)

Note that (7) corresponds to n equations (also called tight con-
straints below in Lemma 1), one for each row i , and so does (8).
Out of these 2n tight constraints, only 2n − 1 of them are linearly
independent, because the sum of n row sums of D1 has to be equal
to the sum of n column sums of D1. According to Lemma 1 below,
any extreme point solution (defined precisely below in Definition 1)
of this LP problem has at most 2n − 1 variables. In this context, a
variable corresponds to a matrix entry D1(i, j) that is not on the
boundary of (9), or in other words 0 < D1(i, j) < D(i, j). Clearly,
each such variable D1(i, j) increases the number of nonzero entries
from one (namely D(i, j)) before the split to two (namely D1(i, j)
and D2(i, j)) after the split. This proves the following proposition.

Proposition 1. A 2-way split of D under constraints (7) through (9)
increases the total number of nonzero entries by at most 2n − 1.

Lemma 1 (Rank Lemma, Lemma 1.2.3 in [15]). Let P = {x :
Ax ≥ b, x ≥ 0}, and let x be an extreme point solution of P such that
xi > 0 for each i . Then any maximal number of linearly independent
tight constraints of the form Aix = bi for some row i of A equals the
number of variables.

Definition 1 (Definition 1.2.1 in [15]). Let P = {x : Ax ≥ b, x ≥
0} ⊆ Rn . Then x ∈ P is an extreme point solution of P if there does
not exist a nonzero vector y ∈ Rn such that x + y, x − y ∈ P .

Such an extreme point solution can be computed using a LP
solver such as Gurobi [12]. However, when n is large, this LP com-
putation is very slow. For example, when n = 100 (racks), it takes
the Gurobi, which is the quickest among LP solvers by our experi-
ence, hundreds of milliseconds to compute a 2-way split of D. In
the next section, we describe a non-LP-based LESS algorithm that
performs the same LP computation, but in a combinatorial manner.
For n = 100, it runs an order of magnitude faster than LP-based
LESS, as we will show in §4.5.

3.4 Combinatorial 2-way LESS
The combinatorial LESS algorithm performs the same LP (solving)
operation as before: Starting with the aforementioned naive solu-
tion of D1 = D/2, the algorithm iteratively modifies D1 within the

Algorithm 1: The pseudocode of combinatorial 2-way
LESS
Input :D;
Output :D1;

1 Initialize D1(i, j) ← D(i, j)/2,∀i, j ∈ [n];
2 Convert D1 to G;
3 while An alternating cycle σ is found in G do
4 Increase and decrease the weights of edges in σ in an

alternating manner by the same value η so that all edge
weights remain within their “legal ranges" and one or
more edges become tight;

5 Remove tight edges from G;
6 end
7 Return D1 that is converted back from G;

solution space to push it towards one of its extremal points. How-
ever, it does so by modeling D1 as a bipartite graph and converting
this LP (solving) operation into a graph computation problem.

3.4.1 Conversion to Graph Computation. To describe this conver-
sion, we need the following definition.

Definition 2. We call a matrix entry D1(i, j) tight if D1(i, j) = 0
or D1(i, j) = D(i, j). In other words, D1(i, j) is tight if it is on the
boundary of the constraint 0 ≤ D1(i, j) ≤ D(i, j) (as a part of (9)). We
call D1(i, j) loose otherwise (i.e., when 0 < D1(i, j) < D(i, j)).

In the combinatorial LESS algorithm, the matrix D1 is modeled
as a bipartite graphG(U ∪V , E) whose edge set E evolves when the
values of its entries are changed by the execution of the algorithm.
In this bipartite graph, one partite (vertex set)U contains n vertices
u1,u2, · · · ,un , in which each ui , 1 ≤ i ≤ n, corresponds to row i
of D1. The other partiteV also contains n vertices v1,v2, · · · ,vn in
which eachvj , 1 ≤ j ≤ n, corresponds to column j ofD1. Aweighted
edge exists between ui and vj , or in other words (ui ,vj) ∈ E, if and
only if D1(i, j) is loose. The weight of this edge is set to D1(i, j).

3.4.2 Pseudocode of Combinatorial 2-way LESS. The pseudocode
of the combinatorial (graph) algorithm is shown in Algorithm 1.
The design of the algorithm is based on the following fact: If the
bipartite graph G contains a cycle σ (Line 3), then we can modify
the weights of the matrix entries (of D1) that correspond to the
edges in σ so that one or more such matrix entries become tight
(Line 4). Once such a matrix entry becomes tight, its corresponding
edge is removed from the bipartite graph (Line 5), according to the
definition of the edge set E above. In Line 3 of Algorithm 1, the
depth-first search (DFS) procedure is used to find a cycle.

Algorithm 1 terminates only when no cycle exists in the bipartite
graph. The resulting cycle-free graph, which has only 2n vertices,
can have nomore than 2n−1 edges (loose entries), since otherwise it
cannot be cycle-free. Since each loose entry increases the number of
nonzero entries by 1 as explained earlier, each 2-way split increases
this number by at most 2n− 1. Hence this combinatorial view offers
another proof of Proposition 1.

Now we explain why and how we can make one or more edges
(rather the corresponding matrix entries) tight in each such cycle σ ,

0 0.1 0.3 0
0.05 0 0 0
0.2 0.15 0 0.05

0.15 0.15 0.1 0

+

- Iteration 1

⌘ = 0.1
<latexit sha1_base64="DMRrFdXAJ8mpZD2RAQnusUTJqK4=">AAAB8HicbVBNS8NAEN34WetX1aOXxSJ4CkkV9CIUvXisYD+kDWWznbRLdzdhdyOU0F/hxYMiXv053vw3btoctPXBwOO9GWbmhQln2njet7Oyura+sVnaKm/v7O7tVw4OWzpOFYUmjXmsOiHRwJmEpmGGQydRQETIoR2Ob3O//QRKs1g+mEkCgSBDySJGibHSYw8MufZcv9yvVD3XmwEvE78gVVSg0a989QYxTQVIQznRuut7iQkyogyjHKblXqohIXRMhtC1VBIBOshmB0/xqVUGOIqVLWnwTP09kRGh9USEtlMQM9KLXi7+53VTE10FGZNJakDS+aIo5djEOP8eD5gCavjEEkIVs7diOiKKUGMzykPwF19eJq2a65+7tfuLav2miKOEjtEJOkM+ukR1dIcaqIkoEugZvaI3RzkvzrvzMW9dcYqZI/QHzucPEUuPRA==</latexit>

0 0.2 0.2 0
0.05 0 0 0
0.3 0.05 0 0.05

0.05 0.15 0.2 0

Iteration 2

0 0.2 0.2 0
0.05 0 0 0
0.35 0 0 0.05

0 0.2 0.2 0
⌘ = 0.05

<latexit sha1_base64="5ZYCEFSbu5jwqLgnX54gB2ie1Gw=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRV0YtQ9OKxgv3ANpTNdtMu3WzC7kQoof/CiwdFvPpvvPlv3LQ5aOuDZR/vzTAzz48F1+g431ZhZXVtfaO4Wdra3tndK+8ftHSUKMqaNBKR6vhEM8ElayJHwTqxYiT0BWv749vMbz8xpXkkH3ASMy8kQ8kDTgka6bHHkFw7Veei1C9XzD+DvUzcnFQgR6Nf/uoNIpqETCIVROuu68TopUQhp4JNS71Es5jQMRmyrqGShEx76WzjqX1ilIEdRMo8ifZM/d2RklDrSeibypDgSC96mfif100wuPJSLuMEmaTzQUEibIzs7Hx7wBWjKCaGEKq42dWmI6IIRRNSFoK7ePIyadWq7lm1dn9eqd/kcRThCI7hFFy4hDrcQQOaQEHCM7zCm6WtF+vd+piXFqy85xD+wPr8AYekj4I=</latexit>

0 0.2 0.6 0
0.1 0 0 0
0.4 0.3 0 0.1
0.3 0.3 0.2 0

D =
<latexit sha1_base64="tfhuCD2Vd/pndPrhWM6XXo+YksA=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbBU9mtBb0IRT14rGA/oF1KNs22oUl2SbJCWfoXvHhQxKt/yJv/xmy7B219MPB4b4aZeUHMmTau++0U1tY3NreK26Wd3b39g/LhUVtHiSK0RSIeqW6ANeVM0pZhhtNurCgWAaedYHKb+Z0nqjSL5KOZxtQXeCRZyAg2mXSHrtGgXHGr7hxolXg5qUCO5qD81R9GJBFUGsKx1j3PjY2fYmUY4XRW6ieaxphM8Ij2LJVYUO2n81tn6MwqQxRGypY0aK7+nkix0HoqAtspsBnrZS8T//N6iQmv/JTJODFUksWiMOHIRCh7HA2ZosTwqSWYKGZvRWSMFSbGxlOyIXjLL6+Sdq3qXVRrD/VK4yaPowgncArn4MElNOAemtACAmN4hld4c4Tz4rw7H4vWgpPPHMMfOJ8/xjWNZw==</latexit>

D1 =
D

2
=

<latexit sha1_base64="+Br2AGFbE7BdIhx/na3McHOIn9Q=">AAAB/HicbVDLSsNAFL3xWesr2qWbwSK4KkkVdFMo2oXLCvYBbQiT6aQdOnkwMxFCiL/ixoUibv0Qd/6N0zYLbT1w4XDOvdx7jxdzJpVlfRtr6xubW9ulnfLu3v7BoXl03JVRIgjtkIhHou9hSTkLaUcxxWk/FhQHHqc9b3o783uPVEgWhQ8qjakT4HHIfEaw0pJrVlqujRpo6AtMslae1XPUcM2qVbPmQKvELkgVCrRd82s4ikgS0FARjqUc2FasnAwLxQineXmYSBpjMsVjOtA0xAGVTjY/PkdnWhkhPxK6QoXm6u+JDAdSpoGnOwOsJnLZm4n/eYNE+ddOxsI4UTQki0V+wpGK0CwJNGKCEsVTTTARTN+KyATrHJTOq6xDsJdfXiXdes2+qNXvL6vNmyKOEpzAKZyDDVfQhDtoQwcIpPAMr/BmPBkvxrvxsWhdM4qZCvyB8fkDoZyTeQ==</latexit>

+

+ +

+

-

- -
-

Figure 2: Example of cycle cancellation

U V
u1

<latexit sha1_base64="MbC02krwJ3eCG6t5YpN7VC9uUuM=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YA2lM120i7d3YTdjVBC/4IXD4p49Q9589+YtDlo64OBx3szzMwLYsGNdd1vZ219Y3Nru7RT3t3bPzisHB23TZRohi0WiUh3A2pQcIUty63AbqyRykBgJ5jc5X7nCbXhkXq00xh9SUeKh5xRm0vJwCsPKlW35s5BVolXkCoUaA4qX/1hxBKJyjJBjel5bmz9lGrLmcBZuZ8YjCmb0BH2MqqoROOn81tn5DxThiSMdFbKkrn6eyKl0pipDLJOSe3YLHu5+J/XS2x446dcxYlFxRaLwkQQG5H8cTLkGpkV04xQpnl2K2FjqimzWTx5CN7yy6ukXa95l7X6w1W1cVvEUYJTOIML8OAaGnAPTWgBgzE8wyu8OdJ5cd6dj0XrmlPMnMAfOJ8/PYGNtQ==</latexit>

u2
<latexit sha1_base64="3KK009f1vFrlgPwst9msQx+MaaY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh7Rf65crbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUrOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4bWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb+8Slq1qndRrd1fVuo3eRxFOIFTOAcPrqAOd9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AEJ8I2i</latexit>

u3
<latexit sha1_base64="DDWbuH+aNlcNaNhpX9SwMVfPK7s=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0laQY9FLx4r2lpoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgbjm5n/+IRK81g+mEmCfkSHkoecUWOl+7Rf75crbtWdg6wSLycVyNHsl796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwis/4zJJDUq2WBSmgpiYzP4mA66QGTGxhDLF7a2EjaiizNh0SjYEb/nlVdKuVb16tXZ3UWlc53EU4QRO4Rw8uIQG3EITWsBgCM/wCm+OcF6cd+dj0Vpw8plj+APn8wcLdI2j</latexit>

u4
<latexit sha1_base64="fPwldOuaqJ8R+kDAtXk0VN3U1EA=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4Kkkt6LHoxWNF+wFtKJvtpF262YTdjVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8O/PbT6g0j+WjmSToR3QoecgZNVZ6SPu1fqnsVtw5yCrxclKGHI1+6as3iFkaoTRMUK27npsYP6PKcCZwWuylGhPKxnSIXUsljVD72fzUKTm3yoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2naEPwll9eJa1qxbusVO9r5fpNHkcBTuEMLsCDK6jDHTSgCQyG8Ayv8OYI58V5dz4WrWtOPnMCf+B8/gAM+I2k</latexit>

v1
<latexit sha1_base64="CjmP85F9x9vbcL2ENUsPPB1Vqnk=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM120i7dbMLuplBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0N/NbY1Sax/LJTBL0IzqQPOSMGis9jnter1R2K+4cZJV4OSlDjnqv9NXtxyyNUBomqNYdz02Mn1FlOBM4LXZTjQllIzrAjqWSRqj9bH7qlJxbpU/CWNmShszV3xMZjbSeRIHtjKgZ6mVvJv7ndVIT3vgZl0lqULLFojAVxMRk9jfpc4XMiIkllClubyVsSBVlxqZTtCF4yy+vkma14l1Wqg9X5dptHkcBTuEMLsCDa6jBPdShAQwG8Ayv8OYI58V5dz4WrWtOPnMCf+B8/gAJ8o2i</latexit>

v2
<latexit sha1_base64="lE8WDoWfUTC8KgvVYi3+vwjrTxc=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM120y7dbMLupFBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWju5nfGnNtRKyecJJwP6IDJULBKFrpcdyr9kplt+LOQVaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzyabGbGp5QNqID3rFU0YgbP5ufOiXnVumTMNa2FJK5+nsio5ExkyiwnRHFoVn2ZuJ/XifF8MbPhEpS5IotFoWpJBiT2d+kLzRnKCeWUKaFvZWwIdWUoU2naEPwll9eJc1qxbusVB+uyrXbPI4CnMIZXIAH11CDe6hDAxgM4Ble4c2Rzovz7nwsWtecfOYE/sD5/AELdo2j</latexit>

v3
<latexit sha1_base64="Q/aveuY5+n/l8vwyIRXs5XSXR+c=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbBRI9ELx4xyiOBDZkdemHC7OxmZpaEED7BiweN8eoXefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWju7nfGqPSPJZPZpKgH9GB5CFn1Fjpcdyr9oolt+wuQNaJl5ESZKj3il/dfszSCKVhgmrd8dzE+FOqDGcCZ4VuqjGhbEQH2LFU0gi1P12cOiMXVumTMFa2pCEL9ffElEZaT6LAdkbUDPWqNxf/8zqpCW/8KZdJalCy5aIwFcTEZP436XOFzIiJJZQpbm8lbEgVZcamU7AheKsvr5NmpexVy5WHq1LtNosjD2dwDpfgwTXU4B7q0AAGA3iGV3hzhPPivDsfy9ack82cwh84nz8M+o2k</latexit>

v4
<latexit sha1_base64="iVTvddOc7068PJ07WLG+5oEmaUE=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHaRRI9ELx4xyiOBDZkdGpgwO7uZmSUhGz7BiweN8eoXefNvHGAPClbSSaWqO91dQSy4Nq777eQ2Nre2d/K7hb39g8Oj4vFJU0eJYthgkYhUO6AaBZfYMNwIbMcKaRgIbAXju7nfmqDSPJJPZhqjH9Kh5APOqLHS46RX7RVLbtldgKwTLyMlyFDvFb+6/YglIUrDBNW647mx8VOqDGcCZ4VuojGmbEyH2LFU0hC1ny5OnZELq/TJIFK2pCEL9fdESkOtp2FgO0NqRnrVm4v/eZ3EDG78lMs4MSjZctEgEcREZP436XOFzIipJZQpbm8lbEQVZcamU7AheKsvr5NmpexdlSsP1VLtNosjD2dwDpfgwTXU4B7q0AAGQ3iGV3hzhPPivDsfy9ack82cwh84nz8Ofo2l</latexit>

Figure 3: Alternating cycle mapping

as stated in Line 4 of Algorithm 1. Since G is bipartite, σ must con-
tain an even number of edges. Like in the graph algorithm literature,
we call σ an alternating cycle for a similar reason: “Walking around"
the cycle starting at an arbitrary vertex on the σ and following
a direction chosen arbitrarily (from the two possible directions),
we will increase or decrease the weights of the edges traversed by
the walk in an alternating manner, by the same amount η. In other
words, we will increase the weight of the first edge by η, decrease
the weight of the second edge by η, increase the weight of the third
edge by η, and so on. As we will explain shortly using a toy example,
this amount η is decided such that after the weight modifications,
the weights of all edges (matrix entries) in σ remain within their
“legal ranges" (i.e., 0 ≤ D1(i, j) ≤ D(i, j) for any D1(i, j) in σ), and
at least one of them becomes tight.

Since the starting point and the direction of each such walk
are chosen arbitrarily, which can be implemented as being cho-
sen randomly in practice, it appears that Algorithm 1 is “equal-
opportunity" in the sense its logic is inherently not biased for or
against D1 (equivalently against or for D2) in distributing the up to
2n − 1 new nonzero entries to D1 and D2. As mentioned in §1, this
behavior explains why the resulting s sub-workload matrices from
an s-way split have similar sparsities, as will be shown in §4.4.

3.4.3 A Toy Example. We now illustrate the concept of alternating
cycle and the process of weight modification by an example shown
in Figure 2 and Figure 3. The first 4× 4matrix to the left in Figure 2
is the demand matrix D, which has 9 nonzero entries. As shown in
Figure 2, D1 is initialized to D

2 (second 4 × 4 matrix to the left), so
it also has 9 nonzero entries. All of them are loose to start with so
they are all underlined. The bipartite graph corresponding to D1 at
this moment is shown in Figure 3. As explained earlier, vertices u1,
u2, u3, and u4 correspond to rows 1, 2, 3, and 4 of D1 respectively
and vertices v1, v2, v3, and v4 correspond to columns 1, 2, 3, and 4

of D1 respectively. The graph G has 9 edges, corresponding respec-
tively to the 9 loose entries of D1. For example, the edge u1 → v2
corresponds to the loose (underlined) matrix entry D1(1, 2).

In the first iteration, the alternating cycle u1 → v2 → u3 →
v1 → u4 → v3 → u1, highlighted in Figure 3 in alternating red
and blue colors, is discovered. We start the cycle traversal at u1.
As specified in Line 4, we increase D1(1, 2), D1(3, 1), and D1(4, 3),
which correspond to the red edges in Figure 3 and are hence circled
in red with a superscript ‘+’ in Figure 2, and decrease D1(3, 2),
D1(4, 1), D1(1, 3), which correspond to the blue edges in Figure 3
and are hence circled in blue with a superscript ‘-’ in Figure 2, all
by the same value η.

This alternating increase and decrease by the same value has
a desirable property: Any row and column sum of D1 remains
the same after the weight modifications, because an increase to
a matrix entry in any row or column is always accompanied by
a decrease to another entry in the same row or column, and vice
versa. For example, an increase to D1(1, 2) is accompanied by a
decrease to D1(1, 3). Due to this desirable property, the final D1
output by Algorithm 1 satisfies (7) and (8).

We now explain how this η is determined using this example.
The three matrix entries to be increased and their current values
are D1(1, 2) = 0.1, D1(3, 1) = 0.2, and D1(4, 3) = 0.1 respectively.
Their respective upper bounds are D(1, 2) = 0.2, D(3, 1) = 0.4,
and D(4, 3) = 0.2. The three respective differences are D(1, 2) −
D1(1, 2) = 0.1, D(3, 1) − D1(3, 1) = 0.2, and D(4, 3) − D1(4, 3) = 0.1.
So η cannot exceed 0.1, the minimum of the three. Similarly, η
cannot exceed 0.15, since the three matrix entries to be decreased
are D1(3, 2) = 0.15, D1(4, 1) = 0.15, and D1(1, 3) = 0.3 and their
lower bounds are all 0. Then η is set to the minimum of these two
upper bounds, which in this case is min{0.1, 0.15} = 0.1. After
these increases and decreases by η = 0.1, the new values of these
matrix entries are D1(1, 2) = 0.2, D1(3, 1) = 0.3, D1(4, 3) = 0.2,
D1(3, 2) = 0.05, D1(4, 1) = 0.05, and D1(1, 3) = 0.2. Among them,
the values of D1(1, 2) and D1(4, 3) have reached their respective
upper bounds (both due to an increase) D(1, 2) and D(4, 3), so both
of them become tight. Hence the two corresponding edges are
removed fromG (so no longer underlined in the third 4×4matrix to
the left in Figure 2) after the first iteration. In Figure 3, Algorithm 1
stops after two iterations, when no more alternating cycle exists.

3.4.4 Computational Complexity of Algorithm 1. In the following
analysis, we assume the n × n matrix D is not extremely sparse
in the sense n = o(m) wherem = ∥D∥0 is the number of nonzero
entries in D. In this case, the “while” loop in Algorithm 1 runs at
mostm− (2n− 1) = O(m) iterations because there arem edges inG
to start with, each iteration removes at least one edge from G, and
Algorithm 1 terminates whenG contains nomore than 2n−1 = o(m)

edges. Hence, the computational complexity of Algorithm 1 is in
theory O(m2) since, in each iteration, detecting a cycle using DFS
has complexity O(m), and so are computing η and updating edge
weights. In practice, however, cycles are usually quite short for a
real-world workload D, so empirically the complexity “feels more
like" O(m1.5) or less.

4 EVALUATION
In this section, we evaluate the efficacy of LESS, and compare it with
that of the naive algorithm (denoted in the figures and called “Naive"
in the sequel) of simply dividing D by s . We do so by feeding the
sub-workload matrices resulting from LESS and Naive respectively
to the s optical switches, each of which is scheduled by BFF [19].
We denote these these two resulting schedulers as LESS+BFF and
Naive+BFF respectively. In this comparison, we use the overall
makespan, defined as the maximum among the makespans of the
schedules of the s switches, as the performance metric.

4.1 Simulation Parameters and Setup
Traffic demand matrix D: It was shown in [3, 18] that typical
traffic workloads in real-world data centers exhibit two characteris-
tics: sparsity (the vast majority of the demand matrix elements have
value 0 or close to 0) and skewness (few large elements in a row or
column account for the majority of the row or column sum). Hence,
for our simulations, we use the same set of sparse and skewed
demand matrices as used in [3, 18]. In each such matrix D, each
row (or column) contains nL large equal-valued elements (large
input-output flows) that as a whole account for cL (percentage) of
the total workload to the row (or column), nS medium equal-valued
elements (medium input-output flows) that as a whole account for
the rest cS = 1 − cL (percentage), and noises. Hence nL and nS
control the sparsity, and cL and cS control the skewness, of the
traffic demand, respectively. Roughly speaking, we have

D =

nL∑
i=1

cL
nL

Pi +

nS∑
i=1

cS
nS

P ′i +N (10)

where each Pi and each P ′i is an n × n random permutation matrix.
Same as in [3, 18], in our simulation studies, the default values of

the sparsity parameters nL and nS are set to 4 and 12 respectively
and the default values of cL and cS are set to 0.7 (i.e., 70%) and 0.3
(i.e., 30%) respectively. In other words, in each row (or column) of
the demand matrix, by default the 4 large flows account for 70% of
its total traffic demand, and the 12 medium flows account for the
rest 30%. We will also vary the sparsity parameters nL and nS and
skewness parameters cL and cS in our evaluations. In Equation (10),
before a noise matrixN (described next) is added to it, each such D
is doubly stochastic (defined in §2.2). As shown in Equation (10), we
also add a noise matrix term N to D, like in [3, 18]. Each nonzero
element inN is a Gaussian random variable that is added to a traffic
demand matrix element that was nonzero before the noise added.
Each nonzero (noise) element here in N has a standard deviation,
which is equal to 0.3% of the normalized workload 1.
Reconfiguration delay of the optical switch δ : The larger δ is,
the more time the optical switch has to spend on reconfigurations,
and hence the higher the resulting makespan is. By default, δ = 0.04
(i.e., 4% of the scheduling epoch), although we will vary δ in our

simulation studies. Here we use a larger default value of δ than
that in [3, 18], which is δ = 0.01 (i.e., 1% of the scheduling epoch),
because the former is closer to the δ values of real-world large
(e.g., 100 × 100) optical switches that range mostly from hundreds
of µs to milliseconds [22] (after being normalized by the typical
epoch length of 3 milliseconds). Although δ values as small as 12µs
were mentioned in both [11] and [22], they apply only to a small
switch (e.g., 4 × 4) or an optical transmitter-receiver pair with tiny
rotation-angle distance.
Simulation Setup: In the rest of §4, every point in every plot in
every figure is the sample mean averaged from 100 simulation runs,
so is every number in Table 1 and Table 2.

0.01 0.02 0.04 0.08
Reconfiguration delay

0.5

1

1.5

0.01 0.02 0.04 0.08
Reconfiguration delay

0.5

1

1.5

O
ve

ra
ll

M
ak

es
pa

n

LESS+BFF Naive+BFF
s=8s=4

Figure 4: LESS+BFF vs. Naive+BFF while varying δ

4.2 Under Different System Parameters
In this section, we compare the overall makespan performances
of LESS+BFF and Naive+BFF for different value combinations of s
(number of parallel switches) and δ (reconfiguration delay), under
traffic demand D with the default parameter settings described
above (4 large flows and 12 small flows accounting for roughly
70% and 30% of the total traffic demand into each input port). The
simulation results, presented in Figure 4, show that LESS+BFF out-
performs Naive+BFF, as indicated by shorter overall makespans,
when the reconfiguration delay δ is large (say δ ≥ 0.02). More
specifically, when δ = 0.04 and s = 8, LESS+BFF results in ap-
proximately 59% shorter overall makespan than Naive+BFF; when
δ = 0.08 and s = 8, LESS+BFF results in approximately 74% shorter
overall makespan than Naive+BFF. Although error bars represent-
ing 95% confidence intervals are used in Figure 4, they are barely
noticeable since, for every case (point) in the figure, the simulation
results are very close to one another.

Figure 4 also shows that when δ is mall (say δ ≤ 0.01), LESS+BFF
results in similar or slightly longer overall makespan thanNaive+BFF.
Our explanation is as follows. With a LESS split, the sub-workloads
D1, D2, ..., Ds are line-even but not identical matrices, and although
these s matrices have superb total sparsity (i.e.,

∑s
k=1 ∥Dk ∥0), there

can be some variations in their individual sparsities. Due to these
variations among the sub-workload matrices and their individual
sparsities, the makespans of the s switches can have some varia-
tions. In comparison, with a naive split, all s switches are given
identical sub-workloads, so the resulting s makespans are identical.
Since the performance metric (overall makespan) is the maximum
of these s makespans, this identicalness gives the naive solution

8 16 24 32 40 48 56 64
Number of flows per node

0.5

1

1.5

O
ve

ra
ll

M
ak

es
pa

n

8 16 24 32 40 48 56 64
Number of flows per node

1

1.5

2

8 16 24 32 40 48 56 64
Number of flows per node

0.4

0.6

0.8

1

8 16 24 32 40 48 56 64
Number of flows per node

0

1

2

LESS+BFF Naive+BFF
 = 0.02, s=4 = 0.04, s=8 = 0.02, s=8 = 0.04, s=4

Figure 5: LESS+BFF vs. Naive+BFF while varying sparsity of D

5 15 25 35 45 55 65 75
% traffic carried by small flows

0.45

0.5

0.55

0.6

O
ve

ra
ll

M
ak

es
pa

n

5 15 25 35 45 55 65 75
% traffic carried by small flows

0.7

0.8

0.9

5 15 25 35 45 55 65 75
% traffic carried by small flows

0.3

0.35

0.4

0.45

5 15 25 35 45 55 65 75
% traffic carried by small flows

0.4

0.6

0.8 = 0.02, s=4 = 0.04, s=4 = 0.04, s=8 = 0.02, s=8

Figure 6: LESS+BFF vs. Naive+BFF while varying skewness of D

a performance edge over LESS. As a result, when δ is very small
as in this case or when D is extremely sparse (e.g., in the case of
nL +nS = 8 to be presented in §4.3), LESS’s performance gain from
the total sparsity of the split could be dwarfed by naive solution’s
performance edge from this identicalness.

This said, LESS+BFF may still outperform Naive+BFF in this
case (of δ = 0.01) when the performance metric is changed to the
average makespan of all s switches. For example, when δ = 0.01
and s = 4, although the overall makepsan for LESS+BFF (= 0.4516)
is longer than that for Naive+BFF (= 0.4270), the average makepsn
for LESS+BFF (= 0.4192) is actually shorter than that of Naive+BFF
(= 0.4270).

4.3 Under Different Traffic Demands
In this section, we compare the overall makespan performances
of LESS+BFF and Naive+BFF under a diverse set of traffic demand
matrices that vary by sparsity and skewness.We control the sparsity
of the traffic demand matrix D by varying the total number of flows
(nL + nS) in each row from 8 to 64, while fixing the ratio of the
number of large flow to that of small flows (nL/nS) at 1 : 3. We
control the skewness of D by varying cS , the total percentage of
traffic carried by small flows, from 5% (most skewed as large flows
carry the rest 95%) to 75% (least skewed). In all these evaluations,
we consider four different value combinations of system parameters
δ and s: (1) δ = 0.02, s = 4; (2) δ = 0.04, s = 4; (3) δ = 0.02, s = 8;
and (4) δ = 0.04, s = 8.

Figure 5 compares the overall makespan performances of LESS+BFF
and Naive+BFF when the sparsity parameter nL + nS varies from
8 to 64 and the value of the skewness parameter cS is fixed at 0.3.
Figure 6 compares the overall makespan performances of LESS+BFF

and Naive+BFF when the skewness parameter cS varies from 5%
to 75% and the sparsity parameter nL + nS is fixed at 16 (= 4 + 12).
In each figure, the four subfigures correspond to the four value
combinations of δ and s above. Both Figure 5 and Figure 6 show
that LESS+BFF invariably results in shorter overall makespans than
Naive+BFF, under various traffic demand matrices. In Figure 5,
LESS+BFF performs consistently better than Naive+BFF, except in
some cases where the traffic matrices are extremely sparse (more
specifically where nL + nS = 8).

Although the reason for these outliers has been explained in
the previous section, we zoom in on the case of nL + nS = 8 and
δ = 0.02 to emphasize that LESS is “not to blame". In this case,
the average number of nonzero entries in a sub-workload matrix
resulting from Naive is 731 (or 7.31 per row or column) whereas
that from LESS is only 352 (or 3.52 per row or column). Hence on
average, an input port pays 7.31δ reconfiguration cost in the case of
Naive and 3.52δ reconfiguration cost in the case of LESS. However,
when δ = 0.02, this advantage of LESS in reconfiguration cost is
dwarfed by the identicalness advantage enjoyed by Naive.

4.4 Sparsity Evenness of LESS
In this section, we show that, the s sub-workload matrices resulting
from LESS generally have similar sparsities (numbers of nonzero
entries) empirically as measured by their normalized mean abso-
lute deviation (NMAD), although as explained earlier this prop-
erty is not theoretically guaranteed. The mean absolute deviation
(MAD, or average absolute deviation) of a data set {x1, x2, ..., xn }
is defined as the average distance between xi and its mean x̄ :
1
n
∑n
i=1 | xi − x̄ |. The normalized mean absolute deviation (NMAD)

is defined as MAD divided by x̄ . Smaller NMAD means better even-
ness. Table 1 shows the mean and the 95% percentile of NMAD
of {∥D1∥0, ∥D2∥0, ..., ∥Ds ∥0} (the number of nonzero entries in the
s sub-workload matrices), for s = 4 and s = 8, under D with the
default parameter settings (nL = 4, nS = 12, cL = 0.7, cS = 0.3).
Table 1 shows that the average NMAD is only 5% (i.e., deviates 5%
from the mean on average) when s = 4 and only 4% when s = 8.

s = 4 s = 8
Mean NMAD 5.00% 4.01%

95%-percentile NMAD 7.36% 5.61%
Table 1: Variations among {∥D1∥0, ∥D2∥0, ..., ∥Ds ∥0}

4.5 Execution Times of LESS
In this section, we compare the (single-processor) execution times
of LP-based LESS and combinatorial LESS, both implemented in
C++, under D with the default parameter settings (nL = 4, nS = 12,
cL = 0.7, cS = 0.3), on an Apple MacBook Air laptop equipped with
an 1.6 GHz Intel Core i5 processor and 8 GB 2133 MHz LPDDR3.
We select Gurobi [12] as the LP solver in the former algorithm due
to its superior computational efficiency. As shown in Table 2, the
execution times of the combinatorial LESS are roughly an order of
magnitude shorter than those of LP-based LESS.

The former are already generally lower than the execution times
of BFF (the underlying optical/hybrid switching algorithm), which
as reported in [19] is much more computationally efficient than
any other hybrid switching algorithm. With parallel processing
(described in §3.2.2), the former can be further improved by 20% to
40%, as we have estimated through experiments.

This said, as mentioned earlier, the epoch duration is typically
a few milliseconds long (e.g., 3ms), so ideally the execution time
of LESS should be no more than that. Currently, with software
implementation, our combinatorial algorithm takes roughly an
order of magnitude longer, when n = 100 (i.e., 100 × 100 switch)
and k = 8 (parallel switches). However, we believe this execution
time gap can be closed with ASIC implementation, because our
combinatorial algorithm is heavy on memory I/O (mostly linked
list traversals), which can be done much faster if all data reside in
on-chip SRAM. The SRAM cost of ASIC implementation is quite
low: Only tens of KBs of SRAM is needed when n = 100 and k = 8.

Although the focus of this work is on the MSB problem and the
LESS solution, we understand that for LESS to be practically useful,
its “companion" scheduler, which throughout this paper is BFF,
also should have an execution time not exceeding the epoch dura-
tion. While with software implementation BFF [19] takes around
20 − 30ms to compute a schedule when n = 100, we believe it too
can be sped up by an order of magnitude, by replacing the expen-
sive maximum weighted matching (MWM) computation (at the
beginning) with a much less expensive but slightly lower-quality
matching computation (e.g., using iSLIP [23]) and by using the ASIC
implementation.

s = 2 s = 4 s = 8
Combinatorial 11.51ms 23.35ms 35.26ms
Gurobi [12] 85.72ms 216.55ms 431.02ms

Table 2: Execution Time Comparison

5 CONCLUSION
In this work, we formulate a matrix split and balance (MSB) problem
that naturally arises in an optical- or hybrid-switched datacenter
network where racks of servers are connected by multiple par-
allel optical switches. A roughly equivalent formulation of this
MSB problem is “how to split a doubly stochastic matrix D into
matrices D1,D2, ...,Ds such that each of them is 1/s-scaled dou-
bly stochastic and the total number of nonzero entries in these s
matrices is minimized?" As this problem is NP-hard, we propose
LESS (Line-Even Sparse Split), an approximation algorithm that
has a low approximation ratio of only 1 + ϵ in practice and a low
computational complexity of only O(m2), wherem = ∥D∥0 is the
number of nonzero elements in D. Our simulation studies show
that LESS results in excellent overall makespan performances under
realistic datacenter traffic workloads and parameter settings.

ACKNOWLEDGMENT
This work is supported in part by US NSF through award CNS-
1909048, AF-1910423, and AF-1717947.

REFERENCES
[1] Edoardo Amaldi and Viggo Kann. 1998. On the approximability of minimizing

nonzero variables or unsatisfied relations in linear systems. Theoretical Computer
Science 209, 1-2 (1998), 237–260.

[2] D. Birkhoff. 1946. Tres observaciones sobre el algebra lineal. Universidad Nacional
de Tucuman Revista , Serie A 5 (1946), 147–151.

[3] Shaileshh Bojja Venkatakrishnan, Mohammad Alizadeh, and Pramod Viswanath.
2016. Costly circuits, submodular schedules and approximate carathéodory
theorems. In SIGMETRICS. ACM, 75–88.

[4] Richard A Brualdi. 1982. Notes on the Birkhoff algorithm for doubly stochastic
matrices. Canad. Math. Bull. 25, 2 (1982), 191–199.

[5] Casimer DeCusatis. 2014. Optical interconnect networks for data communica-
tions. J. Lightw. Technol. 32, 4 (2014), 544–552.

[6] Ran Duan and Hsin-Hao Su. 2012. A scaling algorithm for maximum weight
matching in bipartite graphs. In SODA. SIAM, 1413–1424.

[7] Fanny Dufossé and Bora Uçar. 2016. Notes on Birkhoff–von Neumann decompo-
sition of doubly stochastic matrices. Linear Algebra Appl. 497 (2016), 108–115.

[8] Nathan Farrington, George Porter, Sivasankar Radhakrishnan, Hamid Hajabdolali
Bazzaz, Vikram Subramanya, Yeshaiahu Fainman, George Papen, and Amin
Vahdat. 2010. Helios: a hybrid electrical/optical switch architecture for modular
data centers. SIGCOMM Comput. Commun. Rev. 40, 4 (2010), 339–350.

[9] Shu Fu, Bin Wu, Xiaohong Jiang, Achille Pattavina, Lei Zhang, and Shizhong Xu.
2013. Cost and delay tradeoff in three-stage switch architecture for data center
networks. In HPSR. IEEE, 56–61.

[10] David Gale and Lloyd S Shapley. 1962. College admissions and the stability of
marriage. The American Mathematical Monthly 69, 1 (1962), 9–15.

[11] Monia Ghobadi, Ratul Mahajan, Amar Phanishayee, Nikhil Devanur, Janard-
han Kulkarni, Gireeja Ranade, Pierre-Alexandre Blanche, Houman Rastegarfar,
Madeleine Glick, and Daniel Kilper. 2016. ProjecToR: Agile Reconfigurable Data
Center Interconnect. In SIGCOMM. 216–229.

[12] Inc Gurobi Optimization. 2019. Gurobi optimizer 8.1.1. URL http://www.gurobi.com
(2019).

[13] Navid Hamedazimi, Zafar Qazi, Himanshu Gupta, Vyas Sekar, Samir R. Das, Jon P.
Longtin, Himanshu Shah, and Ashish Tanwer. 2014. FireFly: A Reconfigurable
Wireless Data Center Fabric Using Free-space Optics. In Proceedings of the ACM
SIGCOMM. 319–330.

[14] Janardhan Kulkarni, Euiwoong Lee, and Mohit Singh. 2017. Minimum Birkhoff-
vonNeumannDecomposition. In International Conference on Integer Programming
and Combinatorial Optimization. Springer, 343–354.

[15] Lap Chi Lau, Ramamoorthi Ravi, and Mohit Singh. 2011. Iterative methods in
combinatorial optimization. Vol. 46. Cambridge University Press.

[16] Xin Li and Mounir Hamdi. 2003. On scheduling optical packet switches with
reconfiguration delay. IEEE J. Sel. Areas Commun. 21, 7 (2003), 1156–1164.

[17] Odile Liboiron-Ladouceur, Isabella Cerutti, Pier Giorgio Raponi, Nicola Andriolli,
and Piero Castoldi. 2011. Energy-efficient design of a scalable optical multi-
plane interconnection architecture. IEEE Journal of Selected Topics in Quantum
Electronics 17, 2 (2011), 377–383.

[18] He Liu, Matthew K. Mukerjee, Conglong Li, Nicolas Feltman, George Papen, Ste-
fan Savage, Srinivasan Seshan, Geoffrey M. Voelker, David G. Andersen, Michael
Kaminsky, George Porter, and Alex C. Snoeren. 2015. Scheduling Techniques
for Hybrid Circuit/Packet Networks. In ACM CoNEXT (CoNEXT ’15). ACM, New
York, NY, USA, Article 41, 13 pages. https://doi.org/10.1145/2716281.2836126

[19] Liang Liu, Long Gong, Sen Yang, Jun Xu, and Lance Fortnow. 2018. Best First Fit
(BFF): An Approach to Partially Reconfigurable Hybrid Circuit and Packet Switch-
ing. In 2018 IEEE 11th International Conference on Cloud Computing (CLOUD).
IEEE, 426–433.

[20] Liang Liu, Long Gong, Sen Yang, Jun Jim Xu, and Lance Fortnow. 2018. 2-Hop
Eclipse: A Fast Algorithm for Bandwidth-Efficient Data Center Switching. In
International Conference on Cloud Computing. Springer, 69–83.

[21] Liang Liu, Jun Xu, and Lance Fortnow. 2018. Quantized BvND: A Better Solution
for Optical and Hybrid Switching in Data Center Networks. In 2018 IEEE/ACM
11th International Conference on Utility and Cloud Computing (UCC). IEEE, 237–
246.

[22] William M. Mellette, Alex C. Snoeren, and George Porter. 2018. Toward optical
switching in the data center. In High Performance Switching and Routing. IEEE.

[23] Nick McKeown. 1999. The iSLIP scheduling algorithm for input-queued switches.
IEEE/ACM transactions on networking 2 (1999), 188–201.

[24] Ankit Singla, Atul Singh, Kishore Ramachandran, Lei Xu, and Yueping Zhang.
2010. Proteus: a topology malleable data center network. In Proceedings of the
9th ACM SIGCOMMWorkshop on Hot Topics in Networks. ACM, 8.

[25] Brian Towles and William J Dally. 2003. Guaranteed scheduling for switches
with configuration overhead. IEEE/ACM Transactions on Networking 11, 5 (2003),
835–847.

[26] Guohui Wang, David G Andersen, Michael Kaminsky, Konstantina Papagiannaki,
TS Ng, Michael Kozuch, and Michael Ryan. 2010. c-Through: Part-time optics in
data centers. In SIGCOMM Comput. Commun. Rev., Vol. 40. ACM, 327–338.

[27] BinWu and Kwan L Yeung. 2006. Nxg05-6: Minimum delay scheduling in scalable
hybrid electronic/optical packet switches. In GLOBECOM. IEEE, 1–5.

[28] Kang Xi, Yu-Hsiang Kao, and H Jonathan Chao. 2013. A petabit bufferless optical
switch for data center networks. In Optical interconnects for future data center
networks. Springer, 135–154.

[29] Xiaohui Ye, Yawei Yin, SJ Ben Yoo, Paul Mejia, Roberto Proietti, and Venkatesh
Akella. 2010. DOS: A scalable optical switch for datacenters. In Proceedings of the
6th ACM/IEEE Symposium on Architectures for Networking and Communications
Systems. ACM, 24.

https://doi.org/10.1145/2716281.2836126

	Abstract
	1 Introduction
	1.1 Load Balance over Multiple Switches
	1.2 LESS: Our MSB Solution
	1.3 Beyond Optical/Hybrid Switching

	2 Background and Related Work
	2.1 Parallel Hybrid/Optical Switching
	2.2 BvND of Doubly Stochastic Matrices
	2.3 Optical/Hybrid Switching Algorithms

	3 MSB Problem and LESS Solution
	3.1 Matrix Split and Balance (MSB)
	3.2 Line-Even Sparse Split (LESS)
	3.3 LP-based 2-way LESS
	3.4 Combinatorial 2-way LESS

	4 Evaluation
	4.1 Simulation Parameters and Setup
	4.2 Under Different System Parameters
	4.3 Under Different Traffic Demands
	4.4 Sparsity Evenness of LESS
	4.5 Execution Times of LESS

	5 Conclusion
	References

