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demonstrated on applications in image recovery and parametric bilinear estimation.
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1. Introduction

The estimation of an unknown vector x° € RY from noisy linear measurements y of
the form

y = Ax” +w € RV, (1)

where A € RM™*VN ig a known transform and w is disturbance, arises in a wide-range
of learning and inverse problems. In many high-dimensional situations, such as when
the measurements are fewer than the unknown parameters (i.e. M < N), it is essential
to incorporate known structure on x° in the estimation process. A fundamental chal-
lenge is how to perform structured estimation of x° while maintaining computational
efficiency and a tractable analysis.

Approzimate message passing (AMP), originally proposed in [1], refers to a powerful
class of algorithms that can be applied to reconstruction of x° from (1) that can eas-
ily incorporate a wide class of statistical priors. In this work, we restrict our attention
to w ~ N(0,7,T), noting that AMP was extended to non-Gaussian measurements in
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[2-4]. AMP is computationally efficient, in that it generates a sequence of estimates
{Xk}72, by 1terat1 (g the steps

ka/}/k (2(1)

. N
=y — Ax; + M<Vg(rk7 Vi) Vi—1 (20)
Tt =R+ ATV e = M/||vilP, (20)

initialized with ro = ATy, 70 = M/||ly||%, v_1 =0, and assuming A is scaled so that
|A|Z ~ N. In (2), g: RY x R - R" is an estimation function chosen based on prior

knowledge about x°, and (Vg(r,7)) :== & SV %‘:7) denotes the divergence of g(r,~).
For example, if x° is known to be sparse, then it is common to choose g(-) to be the
componentwise soft-thresholding function, in which case AMP iteratively solves the
LASSO [5] problem.

Importantly, for large, i.i.d., sub-Gaussian random matrices A and Lipschitz denois-
ers g(-), the performance of AMP can be exactly predicted by a scalar state evolution
(SE), which also provides testable conditions for optimality [6-8]. The initial work
[6, 7] focused on the case where g(-) is a separable function with identical comp-
onents (i.e. [g(r,7)], = g(rn,7y) Vn), while the later work [8] allowed non-separable g(-).
Interestingly, these SE analyses establish the fact that

re = x° +N(0,1/7), 3)

leading to the important interpretation that g(-) acts as a denoiser. This interpreta-
tion provides guidance on how to choose g(-). For example, if x is i.i.d. with a known
prior, then (3) suggests to choose a separable g(-) composed of minimum mean-squared
error (MMSE) scalar denoisers g(r,,7) = E(z,|r, = x, + N(0,1/7)). In this case, [6, 7]
established that, whenever the SE has a unique fixed point, the estimates X;, generated
by AMP converge to the Bayes optimal estimate of x" from y. As another example, if
x is a natural image, for which an analytical prior is lacking, then (3) suggests to choose
g(-) as a sophisticated image-denoising algorithm like BM3D [9] or DnCNN [10], as
proposed in [11]. Many other examples of structured estimators g(-) can be considered;
we refer the reader to [8] and section 5. Prior to [8], AMP SE results were established
for special cases of g(-) in [12, 13]. Plug-in denoisers have been combined in related
algorithms [14-16].

An important limitation of AMP’s SE is that it holds only for large, i.i.d., sub-
Gaussian A. AMP itself often fails to converge with small deviations from i.i.d. sub-
Gaussian A, such as when A is mildly ill-conditioned or non-zero-mean [4, 17, 18].
Recently, a robust alternative to AMP called vector AMP (VAMP) was proposed and
analyzed in [19], based closely on expectation propagation [20]—see also [21-23].
There it was established that, if A is a large right-rotationally invariant random
matrix and g(-) is a separable Lipschitz denoiser, then VAMP’s performance can be
exactly predicted by a scalar SE, which also provides testable conditions for optimal-
ity. Importantly, VAMP applies to arbitrarily conditioned matrices A, which is a
significant benefit over AMP, since it is known that ill-conditioning is one of AMP’s
main failure mechanisms [4, 17, 18].
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Algorithm 1. Vector AMP (LMMSE form).

Require: LMMSE estimator gs(-,v2x) from (4), denoiser g;(-,v1x), and number of iterations
K.

1: Select initial r1g and 19 = 0.

2: for k=0,1,...,K;; do

// Denoising

Xk = g1(r1r, 11x)

a1k = (Vg1 (T, 1))

Mk = Yik/Qks Yok = Mk — Vik

ror = (MeXie — V1kT1x)/ Yok

// LMMSE estimation
10: Xor = 2(Tak, Yor)

110 ag, = (Vga(rok, Yor))
120 nop = Yo/ ok, Vi = Mok — Yo

13: e = (772k§2k - 72k1‘2k)/%,k+1
14: end for

15: Return Xg,.

Unfortunately, the SE analyses of VAMP in [24] and its extension in [25] are limited
to separable denoisers. This limitation prevents a full understanding of VAMP’s behavior
when used with non-separable denoisers, such as state-of-the-art image-denoising meth-
ods as recently suggested in [26]. The main contribution of this work is to show that the
SE analysis of VAMP can be extended to a large class of non-separable denoisers that are
Lipschitz continuous and satisfy a certain convergence property. The conditions are simi-
lar to those used in the analysis of AMP with non-separable denoisers in [8]. We show
that there are several interesting non-separable denoisers that satisfy these conditions,
including group-structured and convolutional neural network based denoisers.

An extended version with all proofs and other details are provided in [27].

2. Review of vector AMP

The steps of VAMP algorithm of [19] are shown in algorithm 1. Each iteration has two
parts: a denoiser step and a linear MMSE (LMMSE) step. These are characterized by
estimation functions g1(-) and gs(-) producing estimates X, and Xg;. The estimation
functions take inputs ri; and rg that we call partial estimates. The LMMSE estimation
function is given by,

—1
g2 (Top, Yor) := (’YwATA + ’Y2k1> (’YwATy + ’Vzkl‘%) , 4)

where 7, > 0 is a parameter representing an estimate of the precision (inverse variance)
of the noise w in (1). The estimate Xy is thus an MMSE estimator, treating the x as
having a Gaussian prior with mean given by the partial estimate ro;. The estimation
function g;(-) is called the denoiser and can be designed identically to the denoiser
g(:) in the AMP iterations (2). In particular, the denoiser is used to incorporate the
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structural or prior information on x. As in AMP, in lines 5 and 11, (Vg;) denotes the
normalized divergence.

The main result of [24] is that, under suitable conditions, VAMP admits a state
evolution (SE) analysis that precisely describes the mean squared error (MSE) of the
estimates X;, and Xy, in a certain large system limit (LSL). Importantly, VAMP’s SE
analysis applies to arbitrary right rotationally invariant A. This class is considerably
larger than the set of sub-Gaussian i.i.d. matrices for which AMP applies. However,
the SE analysis in [24] is restricted separable Lipschitz denoisers that can be described
as follows: let gy, (r1,71) be the nth component of the output of gi(ry,~1). Then, it is
assumed that,

T1n = gin(r, M) = ¢(T10, M), (5)

for some function scalar-output function ¢(-) that does not depend on the component
index n. Thus, the estimator is separable in the sense that the nth component of the
estimate, Z1,, depends only on the nth component of the input r, as well as the preci-
sion level ;. In addition, it is assumed that ¢(rq,~;) satisfies a certain Lipschitz con-
dition. The separability assumption precludes the analysis of more general denoisers
mentioned in the introduction.

3. Extending the analysis to non-separable denoisers

The main contribution of the paper is to extend the state evolution analysis of VAMP
to a class of denoisers that we call uniformly Lipschitz and convergent under Gaussian
noise. This class is significantly larger than separable Lipschitz denoisers used in [24]. To
state these conditions precisely, consider a sequence of estimation problems, indexed by
a vector dimension N. For each N, suppose there is some ‘true’ vector u = u(N) € RY
that we wish to estimate from noisy measurements of the form, r = u + z, where z € RY
is Gaussian noise. Let &1 = g(r, ) be some estimator, parameterized by 7.

Definition 1. The sequence of estimators g(-) are said to be uniformly Lipschitz con-
tinuous if there exists constants A, B and C > 0, such that

Ig(r2,72) — g(r1, M)l < (A+ Bly2 — ml)|r2 — r1] + CVN |2 — 7l (6)
for any ry,rs, 71,72 and N.

Definition 2. The sequence of random vectors u and estimators g(-) are said to be
convergent under Gaussian noise if the following condition holds: let z;,z, € RY be two
sequences where (21, 22,) are i.i.d. with (z1,, 20,) = N(0,S) for some positive definite
covariance S € R?*2. Then, all the following limits exist almost surely:

.1 o1
i Ng(quzl,%)Tg(quzQ,’Vz), Aim Ng(uﬂLZlm)Tu, (7a)
Ly A =

https://doi.org/10.1088/1742-5468 /ab321a 5
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1

. T
Adim (Vg(u +21,m)) = Nsmg(quzwl) 2, (7¢)

for all 71,72 and covariance matrices S. Moreover, the values of the limits are continu-
ous in S, v; and s.

With these definitions, we make the following key assumption on the denoiser.

Assumption 1. For each N, suppose that we have a ‘true’ random wvector x° € RN
and a denoiser g1(r1,71) acting on signals v1 € RYN. Following definition 1, we assume
the sequence of denoiser functions indexed by N, is uniformly Lipschitz continuous. In
addition, the sequence of true vectors x° and denoiser functions are convergent under
Gaussian noise following definition 2.

The first part of assumption 1 is relatively standard: Lipschitz and uniform Lipschitz
continuity of the denoiser is assumed several AMP-type analyses including [6, 24, 28]
What is new is the assumption in definition 2. This assumption relates to the behavior
of the denoiser g;(ry,v;) in the case when the input is of the form, r; = x° + z. That
is, the input is the true signal with a Gaussian noise perturbation. In this setting, we
will be requiring that certain correlations converge. Before continuing our analysis,
we briefly show that separable denoisers as well as several interesting non-separable
denoisers satisfy these conditions.

3.1. Separable denoisers

We first show that the class of denoisers satisfying assumption 1 includes the sepa-
rable Lipschitz denoisers studied in most AMP analyses such as [6]. Specifically, sup-
pose that the true vector x° has i.i.d. components with bounded second moments and
the denoiser g;(-) is separable in that it is of the form (5). Under a certain uniform
Lipschitz condition, it is shown in the extended version of this paper [27] that the
denoiser satisfies assumption 1.

3.2. Group-based denoisers

As a first non-separable example, let us suppose that the vector x° can be represented

as an [ x K matrix. Let x) € R¥ denote the ¢th row and assume that the rows are
ii.d. Each row can represent a group. Suppose that the denoiser gi(-) is groupwise
separable. That is, if we denote by gi,(r, ¢) the £th row of the output of the denoiser,
we assume that

gie(r,y) = ¢(rs,7) € R, (8)

for a vector-valued function ¢(-) that is the same for all rows. Thus, the {th row output
g/(-) depends only on the ¢th row input. Such groupwise denoisers have been used in
AMP and EP-type methods for group LASSO and other structured estimation prob-
lems [29-31]. Now, consider the limit where the group size K is fixed, and the number
of groups L — co. Then, under suitable Lipschitz continuity conditions, the extended
version of this paper [27] shows that groupwise separable denoiser also satisfies assump-
tion 1.

https://doi.org/10.1088/1742-5468 /ab321a 6
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3.3. Convolutional denoisers

As another non-separable denoiser, suppose that, for each N, x° is an N sample seg-
ment of a stationary, ergodic process with bounded second moments. Suppose that the
denoiser is given by a linear convolution,

gi(r1) :=Tn(h=ry), 9)

where h is a finite length filter and T (-) truncates the signal to its first N samples.
For simplicity, we assume there is no dependence on ;. Convolutional denoising arises
in many standard linear estimation operations on wide sense stationary processes such
as Weiner filtering and smoothing [32]. If we assume that h remains constant and
N — o0, the extended version of this paper [27] shows that the sequence of random
vectors x° and convolutional denoisers g;(-) satisfies assumption 1.

3.4. Convolutional neural networks

In recent years, there has been considerable interest in using trained deep convolutional
neural networks for image denoising [33, 34]. As a simple model for such a denoiser,
suppose that the denoiser is a composition of maps,

gi(r1) = (FpoFp 10---0F)(ry), (10)

where Fy(-) is a sequence of layer maps where each layer is either a multi-channel
convolutional operator or Lipschitz separable activation function, such as sigmoid or
ReLU. Under mild assumptions on the maps, it is shown in the extended version of this
paper [27] that the estimator sequence g;(-) can also satisfy assumption 1.

3.5. Singular-value thresholding (SVT) denoiser

Consider the estimation of a low-rank matrix X° from linear measurements y = A(X?°),

where A is some linear operator [35]. Writing the SVD of R as R=)", aiul-v;r , the
SVT denoiser is defined as
T
gi(R,7) = Z(Ui —7)+wv; (11)

where (x) := max{0, z}. In the extended version of this paper [27], we show that g;(-)
satisfies assumption 1.

4. Large system limit analysis

4.1. System model

Our main theoretical contribution is to show that the SE analysis of VAMP in [19] can
be extended to the non-separable case. We consider a sequence of problems indexed
by the vector dimension N. For each N, we assume that there is a ‘true’ random
vector x” € RY observed through measurements y € RM of the form in (1) where

https://doi.org/10.1088/1742-5468 /ab321a 7
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w ~ N(0,7,41). We use 7,0 to denote the ‘true’ noise precision to distinguish this from
the postulated precision, 7, used in the LMMSE estimator (4). Without loss of gener-
ality (see below), we assume that M = N. We assume that A has an SVD,

A=USV' S=diag(s), s=(si,...,sy) (12)

where U and V are orthogonal and S is non-negative and diagonal. The matrix U
is arbitrary, s is an i.i.d. random vector with components s; € [0, Spax] almost surely.
Importantly, we assume that V is Haar distributed, meaning that it is uniform on the
N x N orthogonal matrices. This implies that A is right rotationally invariant meaning
that A < AV, for any orthogonal matrix V. We also assume that w, x", s and V are
all independent. As in [19], we can handle the case of rectangular V by zero padding s.

These assumptions are similar to those in [19]. The key new assumption is assump-
tion 1. Given such a denoiser and postulated variance 7,,, we run the VAMP algorithm,
algorithm 1. We assume that the initial condition is given by,

r = XO —f-N(O, TloI), (13)
for some initial error variance 7. In addition, we assume
]\}1_{%0 Y10 = V10> (14)

almost surely for some 7, = 0.

Analogous to [24], we define two key functions: error functions and sensitivity func-
tions. The error functions characterize the MSEs of the denoiser and LMMSE estimator
under AWGN measurements. For the denoiser g;(-,71), we define the error function as

£u0m) = Jim (< +29) X7, A0, 7, (15)
and, for the LMMSE estimator, as
E(72,72) = lim iEng(rza%) —x’|%
N—oo N
ro = x" + N(0,I), y=Ax"+N(0,7,,]).

(16)

The limit (15) exists almost surely due to the assumption of g;(-) being convergent
under Gaussian noise. Although & (72, 72) implicitly depends on the precisions 7,0 and
Yw, We omit this dependence to simplify the notation. We also define the sensitivity
functions as

Ai(yimi) o= lim (VX" +2i,%)), 2 ~ N(0,71). (17)

The LMMSE error function (16) and sensitivity functions (17) are identical to those
in the VAMP analysis [19]. The denoiser error function (15) generalizes the error func-
tion in [19] for non-separable denoisers.

4.2. State evolution of VAMP

We now show that the VAMP algorithm with a non-separable denoiser follows the
identical state evolution equations as the separable case given in [19]. Define the error
vectors,

https://doi.org/10.1088/1742-5468 /ab321a 8
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Pr =Ty — X, Q= VT(T% —x). (18)

Thus, px represents the error between the partial estimate ry; and the true vector
0 0 :

x”. The error vector qj represents the transformed error ro;, — x°. The SE analysis
will show that these errors are asymptotically Gaussian. In addition, the analysis will
exactly predict the variance on the partial estimate errors (18) and estimate errors,
X; — x°. These variances are computed recursively through what we will call the state
evolution equations:

_ _ _ ol _ _ _
aw = A1 (Vg Tiv)s Mip = 6_:’ Yok = Thik — Y1k (19a)
— s [ ) — @

Tok = (1)’ 1Yk Tik) — Q9 Tk| (190)
o — e o~

Qo = Ao(Vop, Tok),  Top, = a—%7 Vit = Mok — Yok (19¢)

1 — —2
Tk = (1 — oy )2 [52(’72ka Tok) — a2k72k] ) (19d)

which are initialized with k=0, 7y in (13) and 7,, defined from the limit (14). The
SE equations in (19) are identical to those in [19] with the new error and sensitivity
functions for the non-separable denoisers. We can now state our main result, which is
proven in the extended version of this paper [27].

Theorem 1. Under the above assumptions and definitions, assume that the sequence
of true random vectors x° and denoisers gi(r1,v1) satisfy assumption 1. Assume ad-
ditionally that, for all iterations k, the solution @ from the SE equations (19) satisfies
ay, € (0,1) and 7, > 0. Then,

(a) For any k, the error vectors on the partial estimates, pr and qi in (18) can be
written as,

), (20)

=

. 1 -
Pk :pk+0(\/_ﬁ)7 qr = qr + O(

where, py and i € RY are each i.i.d. Gaussian random vectors with zero mean
and per component variance Ty, and Tok, respectively.
(b) For any fized iteration k > 0, and i = 1,2, we have, almost surely

L.
lim —||%; —x°)|* =

Aim A}i_r)noo(aik, Nik, %’k) = (ailmﬁik’ﬁik)‘ (21)

1
T

In (20), we have used the notation, that when u, 1 € R are sequences of random vec-
tors, u =1+ O(\/I—N) means limy_ ||u — @||> = 0 almost surely. Part (a) of theorem
1 thus shows that the error vectors p; and q; in (18) are approximately i.i.d. Gaussian.

https://doi.org/10.1088/1742-5468 /ab321a 9
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The result is a natural extension to the main result on separable denoisers in [19].
Moreover, the variance on the variance on the errors, along with the mean squared
error (MSE) of the estimates X;; can be exactly predicted by the same SE equations as
the separable case. The result thus provides an asymptotically exact analysis of VAMP
extended to non-separable denoisers.

5. Numerical experiments

5.1. Compressive image recovery

We first consider the problem of compressive image recovery, where the goal is to
recover an image x° € RY from measurements y € RM of the form (1) with M < N.
This problem arises in many imaging applications, such as magnetic resonance imaging,
radar imaging, computed tomography, etc, although the details of A and x° change in
each case.

One of the most popular approaches to image recovery is to exploit sparsity in the
wavelet transform coefficients ¢ := ¥x" where ¥ is a suitable orthonormal wavelet
transform. Rewriting (1) as y = AWc + w, the idea is to first estimate ¢ from y (e.g.
using LASSO) and then form the image estimate via X = wle Although many algo-
rithms exist to solve the LASSO problem, the AMP algorithms are among the fast-
est (see, e.g. [36, figure 1]). As an alternative to the sparsity-based approach, it was
recently suggested in [11] to recover x° directly using AMP (2) by choosing the estima-
tion function g as a sophisticated image-denoising algorithm like BM3D [9] or DnCNN
[10].

Figure 1(a) compares the LASSO- and DnCNN-based versions of AMP and VAMP
for 128128 image recovery under well-conditioned A and no noise. Here, A = JPHD,
where D is a diagonal matrix with random 41 entries, H is a discrete Hadamard trans-
form (DHT), P is a random permutation matrix, and J contains the first M rows of I.
The results average over the well-known lena, barbara, boat, house, and peppers images
using ten random draws of A for each. The figure shows that AMP and VAMP have
very similar runtimes and PSNRs when A is well-conditioned, and that the DnCNN
approach is about 10 dB more accurate, but 10x as slow, as the LASSO approach.
Figure 2 shows the state-evolution prediction of VAMP’s PSNR on the barbara image
at M/N = 0.5, averaged over 50 draws of A. The state-evolution accurately predicts
the PSNR of VAMP.

To test the robustness to the condition number of A, we repeated the experi-
ment from figure 1(a) using A = JDiag(s)PHD, where Diag(s) is a diagonal matrix of
singular values. The singular values were geometrically spaced, i.e. $;,/Sm—1 = p Vm,
with p chosen to achieve a desired cond(A) := s;/sy. The sampling rate was fixed
at M/N=0.2, and the measurements were noiseless, as before. The results, shown in
figure 1(b), show that AMP diverged when cond(A) > 10, while VAMP exhibited only
a mild PSNR degradation due to ill-conditioned A. The original images and example
image recoveries are included in the extended version of this paper.

https://doi.org/10.1088/1742-5468 /ab321a 10
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10° 35 100
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0.1 0.2 03 0.4 05 0.1 0.2 0.3 0.4 05 10° 102 104 10° 102 104
sampling ratio M /N sampling ratio M /N hﬁll cond(A) cond(A)
(a) (b)

Figure 1. Compressive image recovery: PSNR and runtime versus rate M/N and
cond(A). (a) Average PSNR and runtime with versus M/N with well-conditioned
A and no noise after 12 iterations (b) Average PSNR and runtime versus cond(A)
at M/N = 0.2 and no noise after ten iterations.

image recovery CS with matrix uncertainty

45

40

20 |

A
S

PSNR in dB
NMSE in dB

20 -

I
10 15 0 10 15

iteration iteration

Figure 2. SE prediction & VAMP for image recovery and CS with matrix
uncertainty.

5.2. Bilinear estimation via lifting

We now use the structured linear estimation model (1) to tackle problems in bilinear
estimation through a technique known as ‘lifting’ [37-40]. In doing so, we are moti-
vated by applications like blind deconvolution [41], self-calibration [39], compressed
sensing (CS) with matrix uncertainty [42], and joint channel-symbol estimation [43].
All cases yield measurements y of the form

y= (X, b®)c+weRY, (22)

where {®;}f, are known, w ~ N(0,I/v,), and the objective is to recover both
b:=[by,... ,bL]T and c¢ € R”. This bilinear problem can be ‘lifted’ into a linear prob-
lem of the form (1) by setting

A= [@1 P, --- <I>L] e RM*IP gnd x = vec(ch) e REP, (23)

where vec(X) vectorizes X by concatenating its columns. When b and c are i.i.d. with
known priors, the MMSE denoiser g(r,v) = E(x|r = x + A(0,I/7)) can be implemented

https://doi.org/10.1088/1742-5468 /ab321a 11
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Figure 4. Compressive sensing with matrix uncertainty. (a) NMSE versus M/P
with i.i.d. N(0,1) A. (b) NMSE versus cond(A) at M/P = 0.6.

near-optimally by the rank-one AMP algorithm from [44] (see also [45—47]), with diver-
gence estimated as in [11].

We first consider CS with matrix uncertainty [42], where b; is known. For these
experiments, we generated the unknown {b;}’, as ii.d. A(0,1) and the unknown
c € RY as K-sparse with A/(0, 1) nonzero entries. Figure 2 shows that the MSE on x of
lifted VAMP is very close to its SE prediction when K = 12. We then compared lifted
VAMP to PBiGAMP from [48], which applies AMP directly to the (non-lifted) bilinear
problem, and to WSS-TLS from [42], which uses non-convex optimization. We also
compared to MMSE estimation of b under oracle knowledge of ¢, and MMSE estima-
tion of ¢ under oracle knowledge of support(c) and b. For b; = /20, L =11, P = 256,
K =10, iid. N(0,1) matrix A, and SNR =40 dB, figure 4(a) shows the normalized
MSE on b (i.e. NMSE(b) := E||b — b?||2/E[|b°||?) and ¢ versus sampling ratio 1//P. This
figure demonstrates that lifted VAMP and PBiGAMP perform close to the oracles and
much better than WSS-TLS.

Although lifted VAMP performs similarly to PBiGAMP in figure 4(a), its advan-
tage over PBIGAMP becomes apparent with non-i.i.d. A. For illustration, we repeated

the previous experiment, but with A constructed using the SVD A = UDiag(s)VT
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with Haar distributed U and V and geometrically spaced s. Also, to make the problem
more difficult, we set b; = 1. Figure 4(b) shows the normalized MSE on b and c versus
cond(A) at M/P=0.6. There it can be seen that lifted VAMP is much more robust
than PBiGAMP to the conditioning of A.

We next consider the self-calibration problem [39], where the measurements take
the form

y = Diag(Hb)¥c +w € R, (24)

Here the matrices H € RM*L and ¥ € RM*F are known and the objective is to recover
the unknown vectors b and c. Physically, the vector Hb represents unknown calibra-
tion gains that lie in a known subspace, specified by H. Note that (24) is an instance
of (22) with ®; = Diag(h;)¥, where h; denotes the ith column of H. Different from
‘CS with matrix uncertainty,” all elements in b are now unknown, and so WSS-TLS
[42] cannot be applied. Instead, we compare lifted VAMP to the SparseLift approach
from [39], which is based on convex relaxation and has provable guarantees. For
our experiment, we generated ¥ and b € RF as i.i.d. AM(0,1); c as K-sparse with
N(0,1) nonzero entries; H as randomly chosen columns of a Hadamard matrix; and
w = 0. Figure 3 plots the success rate versus L and K, where ‘success’ is defined

as E||éf)T—co(bO)T||2F/IE||CO(bO)T||% < —60 dB. The figure shows that, relative to
SparseLift, lifted VAMP gives successful recoveries for a wider range of L and K.

6. Conclusions

We have extended the analysis of the method in [24] to a class of non-separable denois-
ers. The method provides a computational efficient method for reconstruction where
structural information and constraints on the unknown vector can be incorporated in a
modular manner. Importantly, the method admits a rigorous analysis that can provide
precise predictions on the performance in high-dimensional random settings.
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