# Plug in estimation in high dimensional linear inverse problems a rigorous analysis\*

# Alyson K Fletcher<sup>1</sup>, Parthe Pandit<sup>2</sup>, Sundeep Rangan<sup>3</sup>, Subrata Sarkar<sup>4</sup> and Philip Schniter<sup>4,5</sup>

- <sup>1</sup> Department of Statistics, UC Los Angeles, CA, United States of America
- <sup>2</sup> Department of ECE, UC Los Angeles, CA, United States of America
- <sup>3</sup> Department of ECE, NYU, New York, NY, United States of America
- <sup>4</sup> Department of ECE, The Ohio State University, Columbus, OH, United States of America

E-mail: akfletcher@ucla.edu, parthepandit@ucla.edu, srangan@nyu.edu, sarkar.51@osu.edu and schniter.1@osu.edu

Received 15 May 2019 Accepted for publication 6 June 2019 Published 20 December 2019



Online at stacks.iop.org/JSTAT/2019/124021 https://doi.org/10.1088/1742-5468/ab321a

**Abstract**. Estimating a vector  $\mathbf{x}$  from noisy linear measurements  $\mathbf{A}\mathbf{x} + \mathbf{w}$  often requires use of prior knowledge or structural constraints on  $\mathbf{x}$  for accurate reconstruction. Several recent works have considered combining linear least-squares estimation with a generic or 'plug-in' denoiser function that can be designed in a modular manner based on the prior knowledge about  $\mathbf{x}$ . While these methods have shown excellent performance, it has been difficult to obtain rigorous performance guarantees. This work considers plug-in denoising combined with the recently-developed vector approximate message passing (VAMP) algorithm, which is itself derived via expectation propagation techniques. It shown that the mean squared error of this 'plug-and-play' VAMP can be exactly predicted for high-dimensional right-rotationally invariant random  $\mathbf{A}$  and Lipschitz denoisers. The method is demonstrated on applications in image recovery and parametric bilinear estimation.

**Keywords:** machine learning

Supplementary material for this article is available online

<sup>\*</sup> This article is an updated version of: Fletcher A K, Pandit P, Rangan S, Sarkar S and Schniter P 2018 Plugin estimation in high-dimensional linear inverse problems: a rigorous analysis *Advances in Neural Information Processing Systems 31* ed S Bengio, H Wallach, H Larochelle, K Grauman, N Cesa-Bianchi and R Garnett (Red Hook, NY: Curran Associates, Inc) pp 7440–7449.

<sup>&</sup>lt;sup>5</sup> Author to whom any correspondence should be addressed.

#### **Contents**

| 1. Introduction                                      | 2  |
|------------------------------------------------------|----|
| 2. Review of vector AMP                              | 4  |
| 3. Extending the analysis to non-separable denoisers | 5  |
| 3.1. Separable denoisers                             | 6  |
| 3.2. Group-based denoisers                           | 6  |
| 3.3. Convolutional denoisers                         | 7  |
| 3.4. Convolutional neural networks                   |    |
| 3.5. Singular-value thresholding (SVT) denoiser      | 7  |
| 4. Large system limit analysis                       | 7  |
| 4.1. System model                                    | 7  |
| 4.2. State evolution of VAMP                         |    |
| 5. Numerical experiments                             | 10 |
| 5.1. Compressive image recovery                      | 10 |
| 5.2. Bilinear estimation via lifting                 | 11 |
| 6. Conclusions                                       | 13 |
| Acknowledgments                                      | 13 |
| References                                           | 13 |

#### 1. Introduction

The estimation of an unknown vector  $\mathbf{x}^0 \in \mathbb{R}^N$  from noisy linear measurements  $\mathbf{y}$  of the form

$$\mathbf{y} = \mathbf{A}\mathbf{x}^0 + \mathbf{w} \in \mathbb{R}^M,\tag{1}$$

where  $\mathbf{A} \in \mathbb{R}^{M \times N}$  is a known transform and  $\mathbf{w}$  is disturbance, arises in a wide-range of learning and inverse problems. In many high-dimensional situations, such as when the measurements are fewer than the unknown parameters (i.e.  $M \ll N$ ), it is essential to incorporate known structure on  $\mathbf{x}^0$  in the estimation process. A fundamental challenge is how to perform structured estimation of  $\mathbf{x}^0$  while maintaining computational efficiency and a tractable analysis.

Approximate message passing (AMP), originally proposed in [1], refers to a powerful class of algorithms that can be applied to reconstruction of  $\mathbf{x}^0$  from (1) that can easily incorporate a wide class of statistical priors. In this work, we restrict our attention to  $\mathbf{w} \sim \mathcal{N}(0, \gamma_w^{-1}\mathbf{I})$ , noting that AMP was extended to non-Gaussian measurements in

[2–4]. AMP is computationally efficient, in that it generates a sequence of estimates  $\{\widehat{\mathbf{x}}_k\}_{k=0}^{\infty}$  by iterating the steps  $\widehat{\mathbf{x}}_k = \mathbf{g}(\mathbf{r}_k, \gamma_k)$ 

$$\widehat{\mathbf{x}}_k = \mathbf{g}(\widehat{\mathbf{r}}_k, \gamma_k) \tag{2a}$$

$$\mathbf{v}_{k} = \mathbf{y} - \mathbf{A}\widehat{\mathbf{x}}_{k} + \frac{N}{M} \langle \nabla \mathbf{g}(\mathbf{r}_{k}, \gamma_{k}) \rangle \mathbf{v}_{k-1}$$
(2b)

$$\mathbf{r}_{k+1} = \widehat{\mathbf{x}}_k + \mathbf{A}^\mathsf{T} \mathbf{v}_k, \quad \gamma_{k+1} = M/\|\mathbf{v}_k\|^2, \tag{2c}$$

initialized with  $\mathbf{r}_0 = \mathbf{A}^\mathsf{T} \mathbf{y}$ ,  $\gamma_0 = M/\|\mathbf{y}\|^2$ ,  $\mathbf{v}_{-1} = 0$ , and assuming  $\mathbf{A}$  is scaled so that  $\|\mathbf{A}\|_F^2 \approx N$ . In (2),  $\mathbf{g} : \mathbb{R}^N \times \mathbb{R} \to \mathbb{R}^N$  is an estimation function chosen based on prior knowledge about  $\mathbf{x}^0$ , and  $\langle \nabla \mathbf{g}(\mathbf{r}, \gamma) \rangle := \frac{1}{N} \sum_{n=1}^{N} \frac{\partial g_n(\mathbf{r}, \gamma)}{\partial r_n}$  denotes the divergence of  $\mathbf{g}(\mathbf{r}, \gamma)$ . For example, if  $\mathbf{x}^0$  is known to be sparse, then it is common to choose  $\mathbf{g}(\cdot)$  to be the componentwise soft-thresholding function, in which case AMP iteratively solves the LASSO [5] problem.

Importantly, for large, i.i.d., sub-Gaussian random matrices A and Lipschitz denoisers  $\mathbf{g}(\cdot)$ , the performance of AMP can be exactly predicted by a scalar state evolution (SE), which also provides testable conditions for optimality [6–8]. The initial work [6, 7] focused on the case where  $\mathbf{g}(\cdot)$  is a separable function with identical components (i.e.  $[\mathbf{g}(\mathbf{r},\gamma)]_n = g(r_n,\gamma) \ \forall n$ ), while the later work [8] allowed non-separable  $\mathbf{g}(\cdot)$ . Interestingly, these SE analyses establish the fact that

$$\mathbf{r}_k = \mathbf{x}^0 + \mathcal{N}(0, \mathbf{I}/\gamma_k),\tag{3}$$

leading to the important interpretation that  $\mathbf{g}(\cdot)$  acts as a denoiser. This interpretation provides guidance on how to choose  $\mathbf{g}(\cdot)$ . For example, if  $\mathbf{x}$  is i.i.d. with a known prior, then (3) suggests to choose a separable  $\mathbf{g}(\cdot)$  composed of minimum mean-squared error (MMSE) scalar denoisers  $g(r_n, \gamma) = \mathbb{E}(x_n | r_n = x_n + \mathcal{N}(0, 1/\gamma))$ . In this case, [6, 7] established that, whenever the SE has a unique fixed point, the estimates  $\hat{\mathbf{x}}_k$  generated by AMP converge to the Bayes optimal estimate of  $\mathbf{x}^0$  from  $\mathbf{y}$ . As another example, if **x** is a natural image, for which an analytical prior is lacking, then (3) suggests to choose  $\mathbf{g}(\cdot)$  as a sophisticated image-denoising algorithm like BM3D [9] or DnCNN [10], as proposed in [11]. Many other examples of structured estimators  $\mathbf{g}(\cdot)$  can be considered; we refer the reader to [8] and section 5. Prior to [8], AMP SE results were established for special cases of  $g(\cdot)$  in [12, 13]. Plug-in denoisers have been combined in related algorithms [14–16].

An important limitation of AMP's SE is that it holds only for large, i.i.d., sub-Gaussian A. AMP itself often fails to converge with small deviations from i.i.d. sub-Gaussian A, such as when A is mildly ill-conditioned or non-zero-mean [4, 17, 18]. Recently, a robust alternative to AMP called vector AMP (VAMP) was proposed and analyzed in [19], based closely on expectation propagation [20]—see also [21–23]. There it was established that, if A is a large right-rotationally invariant random matrix and  $\mathbf{g}(\cdot)$  is a separable Lipschitz denoiser, then VAMP's performance can be exactly predicted by a scalar SE, which also provides testable conditions for optimality. Importantly, VAMP applies to arbitrarily conditioned matrices A, which is a significant benefit over AMP, since it is known that ill-conditioning is one of AMP's main failure mechanisms [4, 17, 18].

# **Algorithm 1.** Vector AMP (LMMSE form).

```
Require: LMMSE estimator \mathbf{g}_2(\cdot, \gamma_{2k}) from (4), denoiser \mathbf{g}_1(\cdot, \gamma_{1k}), and number of iterations
1: Select initial \mathbf{r}_{10} and \gamma_{10} \ge 0.
2: for k = 0, 1, ..., K_{it} do
             // Denoising \widehat{\mathbf{x}}_{1k} = \mathbf{g}_{\underline{1}}(\mathbf{r}_{1k}, \gamma_{1k})
4:
              \alpha_{1k} = \langle \nabla \mathbf{g}_1(\mathbf{r}_{1k}, \gamma_{1k}) \rangle
5:
              \eta_{1k} = \gamma_{1k}/\alpha_{1k}, \ \gamma_{2k} = \eta_{1k} - \gamma_{1k}
6:
              \mathbf{r}_{2k} = (\eta_{1k}\widehat{\mathbf{x}}_{1k} - \gamma_{1k}\mathbf{r}_{1k})/\gamma_{2k}
7:
            // LMMSE estimation
9:
                \widehat{\mathbf{x}}_{2k} = \mathbf{g}_2(\mathbf{r}_{2k}, \gamma_{2k})
10:
              \alpha_{2k} = \langle \nabla \mathbf{g}_2(\mathbf{r}_{2k}, \gamma_{2k}) \rangle
11:
              \eta_{2k} = \gamma_{2k}/\alpha_{2k}, \ \gamma_{1,k+1} = \eta_{2k} - \gamma_{2k}
12:
              \mathbf{r}_{1,k+1} = (\eta_{2k}\widehat{\mathbf{x}}_{2k} - \gamma_{2k}\mathbf{r}_{2k})/\gamma_{1,k+1}
14: end for
15: Return \widehat{\mathbf{x}}_{1K_{it}}.
```

Unfortunately, the SE analyses of VAMP in [24] and its extension in [25] are limited to separable denoisers. This limitation prevents a full understanding of VAMP's behavior when used with non-separable denoisers, such as state-of-the-art image-denoising methods as recently suggested in [26]. The main contribution of this work is to show that the SE analysis of VAMP can be extended to a large class of non-separable denoisers that are Lipschitz continuous and satisfy a certain convergence property. The conditions are similar to those used in the analysis of AMP with non-separable denoisers in [8]. We show that there are several interesting non-separable denoisers that satisfy these conditions, including group-structured and convolutional neural network based denoisers.

An extended version with all proofs and other details are provided in [27].

### 2. Review of vector AMP

The steps of VAMP algorithm of [19] are shown in algorithm 1. Each iteration has two parts: a denoiser step and a linear MMSE (LMMSE) step. These are characterized by estimation functions  $\mathbf{g}_1(\cdot)$  and  $\mathbf{g}_2(\cdot)$  producing estimates  $\hat{\mathbf{x}}_{1k}$  and  $\hat{\mathbf{x}}_{2k}$ . The estimation functions take inputs  $\mathbf{r}_{1k}$  and  $\mathbf{r}_{2k}$  that we call partial estimates. The LMMSE estimation function is given by,

$$\mathbf{g}_{2}(\mathbf{r}_{2k}, \gamma_{2k}) := \left(\gamma_{w} \mathbf{A}^{\mathsf{T}} \mathbf{A} + \gamma_{2k} \mathbf{I}\right)^{-1} \left(\gamma_{w} \mathbf{A}^{\mathsf{T}} \mathbf{y} + \gamma_{2k} \mathbf{r}_{2k}\right), \tag{4}$$

where  $\gamma_w > 0$  is a parameter representing an estimate of the precision (inverse variance) of the noise  $\mathbf{w}$  in (1). The estimate  $\hat{\mathbf{x}}_{2k}$  is thus an MMSE estimator, treating the  $\mathbf{x}$  as having a Gaussian prior with mean given by the partial estimate  $\mathbf{r}_{2k}$ . The estimation function  $\mathbf{g}_1(\cdot)$  is called the *denoiser* and can be designed identically to the denoiser  $\mathbf{g}(\cdot)$  in the AMP iterations (2). In particular, the denoiser is used to incorporate the

structural or prior information on  $\mathbf{x}$ . As in AMP, in lines 5 and 11,  $\langle \nabla \mathbf{g}_i \rangle$  denotes the normalized divergence.

The main result of [24] is that, under suitable conditions, VAMP admits a state evolution (SE) analysis that precisely describes the mean squared error (MSE) of the estimates  $\hat{\mathbf{x}}_{1k}$  and  $\hat{\mathbf{x}}_{2k}$  in a certain large system limit (LSL). Importantly, VAMP's SE analysis applies to arbitrary right rotationally invariant **A**. This class is considerably larger than the set of sub-Gaussian i.i.d. matrices for which AMP applies. However, the SE analysis in [24] is restricted separable Lipschitz denoisers that can be described as follows: let  $g_{1n}(\mathbf{r}_1, \gamma_1)$  be the *n*th component of the output of  $\mathbf{g}_1(\mathbf{r}_1, \gamma_1)$ . Then, it is assumed that,

$$\hat{x}_{1n} = g_{1n}(\mathbf{r}_1, \gamma_1) = \phi(r_{1n}, \gamma_1),$$
 (5)

for some function scalar-output function  $\phi(\cdot)$  that does not depend on the component index n. Thus, the estimator is separable in the sense that the nth component of the estimate,  $\hat{x}_{1n}$  depends only on the nth component of the input  $r_{1n}$  as well as the precision level  $\gamma_1$ . In addition, it is assumed that  $\phi(r_1, \gamma_1)$  satisfies a certain Lipschitz condition. The separability assumption precludes the analysis of more general denoisers mentioned in the introduction.

# 3. Extending the analysis to non-separable denoisers

The main contribution of the paper is to extend the state evolution analysis of VAMP to a class of denoisers that we call uniformly Lipschitz and convergent under Gaussian noise. This class is significantly larger than separable Lipschitz denoisers used in [24]. To state these conditions precisely, consider a sequence of estimation problems, indexed by a vector dimension N. For each N, suppose there is some 'true' vector  $\mathbf{u} = \mathbf{u}(N) \in \mathbb{R}^N$  that we wish to estimate from noisy measurements of the form,  $\mathbf{r} = \mathbf{u} + \mathbf{z}$ , where  $\mathbf{z} \in \mathbb{R}^N$  is Gaussian noise. Let  $\hat{\mathbf{u}} = \mathbf{g}(\mathbf{r}, \gamma)$  be some estimator, parameterized by  $\gamma$ .

**Definition 1.** The sequence of estimators  $\mathbf{g}(\cdot)$  are said to be uniformly Lipschitz continuous if there exists constants A, B and C > 0, such that

$$\|\mathbf{g}(\mathbf{r}_2, \gamma_2) - \mathbf{g}(\mathbf{r}_1, \gamma_1)\| \leqslant (A + B|\gamma_2 - \gamma_1|) \|\mathbf{r}_2 - \mathbf{r}_1\| + C\sqrt{N}|\gamma_2 - \gamma_1|, \tag{6}$$

for any  $\mathbf{r}_1, \mathbf{r}_2, \gamma_1, \gamma_2$  and N.

**Definition 2.** The sequence of random vectors  $\mathbf{u}$  and estimators  $\mathbf{g}(\cdot)$  are said to be convergent under Gaussian noise if the following condition holds: let  $\mathbf{z}_1, \mathbf{z}_2 \in \mathbb{R}^N$  be two sequences where  $(z_{1n}, z_{2n})$  are i.i.d. with  $(z_{1n}, z_{2n}) = \mathcal{N}(0, \mathbf{S})$  for some positive definite covariance  $\mathbf{S} \in \mathbb{R}^{2 \times 2}$ . Then, all the following limits exist almost surely:

$$\lim_{N \to \infty} \frac{1}{N} \mathbf{g}(\mathbf{u} + \mathbf{z}_1, \gamma_1)^{\mathsf{T}} \mathbf{g}(\mathbf{u} + \mathbf{z}_2, \gamma_2), \quad \lim_{N \to \infty} \frac{1}{N} \mathbf{g}(\mathbf{u} + \mathbf{z}_1, \gamma_1)^{\mathsf{T}} \mathbf{u}, \tag{7a}$$

$$\lim_{N \to \infty} \frac{1}{N} \mathbf{u}^{\mathsf{T}} \mathbf{z}_{1}, \quad \lim_{N \to \infty} \frac{1}{N} \|\mathbf{u}\|^{2}$$
(7b)

$$\lim_{N \to \infty} \langle \nabla \mathbf{g}(\mathbf{u} + \mathbf{z}_1, \gamma_1) \rangle = \frac{1}{N S_{12}} \mathbf{g}(\mathbf{u} + \mathbf{z}_1, \gamma_1)^{\mathsf{T}} \mathbf{z}_2, \tag{7c}$$

for all  $\gamma_1, \gamma_2$  and covariance matrices **S**. Moreover, the values of the limits are continuous in **S**,  $\gamma_1$  and  $\gamma_2$ .

With these definitions, we make the following key assumption on the denoiser.

**Assumption 1.** For each N, suppose that we have a 'true' random vector  $\mathbf{x}^0 \in \mathbb{R}^N$  and a denoiser  $\mathbf{g}_1(\mathbf{r}_1, \gamma_1)$  acting on signals  $\mathbf{r}_1 \in \mathbb{R}^N$ . Following definition 1, we assume the sequence of denoiser functions indexed by N, is uniformly Lipschitz continuous. In addition, the sequence of true vectors  $\mathbf{x}^0$  and denoiser functions are convergent under Gaussian noise following definition 2.

The first part of assumption 1 is relatively standard: Lipschitz and uniform Lipschitz continuity of the denoiser is assumed several AMP-type analyses including [6, 24, 28] What is new is the assumption in definition 2. This assumption relates to the behavior of the denoiser  $\mathbf{g}_1(\mathbf{r}_1, \gamma_1)$  in the case when the input is of the form,  $\mathbf{r}_1 = \mathbf{x}^0 + \mathbf{z}$ . That is, the input is the true signal with a Gaussian noise perturbation. In this setting, we will be requiring that certain correlations converge. Before continuing our analysis, we briefly show that separable denoisers as well as several interesting non-separable denoisers satisfy these conditions.

#### 3.1. Separable denoisers

We first show that the class of denoisers satisfying assumption 1 includes the separable Lipschitz denoisers studied in most AMP analyses such as [6]. Specifically, suppose that the true vector  $\mathbf{x}^0$  has i.i.d. components with bounded second moments and the denoiser  $\mathbf{g}_1(\cdot)$  is separable in that it is of the form (5). Under a certain uniform Lipschitz condition, it is shown in the extended version of this paper [27] that the denoiser satisfies assumption 1.

#### 3.2. Group-based denoisers

As a first non-separable example, let us suppose that the vector  $\mathbf{x}^0$  can be represented as an  $L \times K$  matrix. Let  $\mathbf{x}^0_\ell \in \mathbb{R}^K$  denote the  $\ell$ th row and assume that the rows are i.i.d. Each row can represent a *group*. Suppose that the denoiser  $\mathbf{g}_1(\cdot)$  is *groupwise separable*. That is, if we denote by  $\mathbf{g}_{1\ell}(\mathbf{r},\ell)$  the  $\ell$ th row of the output of the denoiser, we assume that

$$\mathbf{g}_{1\ell}(\mathbf{r}, \gamma) = \phi(\mathbf{r}_{\ell}, \gamma) \in \mathbb{R}^K,$$
 (8)

for a vector-valued function  $\phi(\cdot)$  that is the same for all rows. Thus, the  $\ell$ th row output  $\mathbf{g}_{\ell}(\cdot)$  depends only on the  $\ell$ th row input. Such groupwise denoisers have been used in AMP and EP-type methods for group LASSO and other structured estimation problems [29–31]. Now, consider the limit where the group size K is fixed, and the number of groups  $L \to \infty$ . Then, under suitable Lipschitz continuity conditions, the extended version of this paper [27] shows that groupwise separable denoiser also satisfies assumption 1.

#### 3.3. Convolutional denoisers

As another non-separable denoiser, suppose that, for each N,  $\mathbf{x}^0$  is an N sample segment of a stationary, ergodic process with bounded second moments. Suppose that the denoiser is given by a linear convolution,

$$\mathbf{g}_1(\mathbf{r}_1) := T_N(\mathbf{h} * \mathbf{r}_1), \tag{9}$$

where **h** is a finite length filter and  $T_N(\cdot)$  truncates the signal to its first N samples. For simplicity, we assume there is no dependence on  $\gamma_1$ . Convolutional denoising arises in many standard linear estimation operations on wide sense stationary processes such as Weiner filtering and smoothing [32]. If we assume that **h** remains constant and  $N \to \infty$ , the extended version of this paper [27] shows that the sequence of random vectors  $\mathbf{x}^0$  and convolutional denoisers  $\mathbf{g}_1(\cdot)$  satisfies assumption 1.

#### 3.4. Convolutional neural networks

In recent years, there has been considerable interest in using trained deep convolutional neural networks for image denoising [33, 34]. As a simple model for such a denoiser, suppose that the denoiser is a composition of maps,

$$\mathbf{g}_1(\mathbf{r}_1) = (F_L \circ F_{L-1} \circ \cdots \circ F_1)(\mathbf{r}_1), \tag{10}$$

where  $F_{\ell}(\cdot)$  is a sequence of layer maps where each layer is either a multi-channel convolutional operator or Lipschitz separable activation function, such as sigmoid or ReLU. Under mild assumptions on the maps, it is shown in the extended version of this paper [27] that the estimator sequence  $\mathbf{g}_1(\cdot)$  can also satisfy assumption 1.

#### 3.5. Singular-value thresholding (SVT) denoiser

Consider the estimation of a low-rank matrix  $\mathbf{X}^0$  from linear measurements  $\mathbf{y} = \mathcal{A}(\mathbf{X}^0)$ , where  $\mathcal{A}$  is some linear operator [35]. Writing the SVD of  $\mathbf{R}$  as  $\mathbf{R} = \sum_i \sigma_i \mathbf{u}_i \mathbf{v}_i^{\mathsf{T}}$ , the SVT denoiser is defined as

$$\mathbf{g}_{1}(\mathbf{R}, \gamma) := \sum_{i} (\sigma_{i} - \gamma)_{+} \mathbf{u}_{i} \mathbf{v}_{i}^{\mathsf{T}}, \tag{11}$$

where  $(x)_+ := \max\{0, x\}$ . In the extended version of this paper [27], we show that  $\mathbf{g}_1(\cdot)$  satisfies assumption 1.

## 4. Large system limit analysis

# 4.1. System model

Our main theoretical contribution is to show that the SE analysis of VAMP in [19] can be extended to the non-separable case. We consider a sequence of problems indexed by the vector dimension N. For each N, we assume that there is a 'true' random vector  $\mathbf{x}^0 \in \mathbb{R}^N$  observed through measurements  $\mathbf{y} \in \mathbb{R}^M$  of the form in (1) where

 $\mathbf{w} \sim \mathcal{N}(0, \gamma_{w0}^{-1}\mathbf{I})$ . We use  $\gamma_{w0}$  to denote the 'true' noise precision to distinguish this from the postulated precision,  $\gamma_w$ , used in the LMMSE estimator (4). Without loss of generality (see below), we assume that M = N. We assume that  $\mathbf{A}$  has an SVD,

$$\mathbf{A} = \mathbf{U}\mathbf{S}\mathbf{V}^{\mathsf{T}}, \quad \mathbf{S} = \operatorname{diag}(\mathbf{s}), \quad \mathbf{s} = (s_1, \dots, s_N),$$
 (12)

where **U** and **V** are orthogonal and **S** is non-negative and diagonal. The matrix **U** is arbitrary, **s** is an i.i.d. random vector with components  $s_i \in [0, s_{\text{max}}]$  almost surely. Importantly, we assume that **V** is Haar distributed, meaning that it is uniform on the  $N \times N$  orthogonal matrices. This implies that **A** is right rotationally invariant meaning that  $\mathbf{A} \stackrel{d}{=} \mathbf{A} \mathbf{V}_0$  for any orthogonal matrix  $\mathbf{V}_0$ . We also assume that  $\mathbf{w}$ ,  $\mathbf{x}^0$ ,  $\mathbf{s}$  and  $\mathbf{V}$  are all independent. As in [19], we can handle the case of rectangular **V** by zero padding  $\mathbf{s}$ .

These assumptions are similar to those in [19]. The key new assumption is assumption 1. Given such a denoiser and postulated variance  $\gamma_w$ , we run the VAMP algorithm, algorithm 1. We assume that the initial condition is given by,

$$\mathbf{r} = \mathbf{x}^0 + \mathcal{N}(0, \tau_{10}\mathbf{I}),\tag{13}$$

for some initial error variance  $\tau_{10}$ . In addition, we assume

$$\lim_{N \to \infty} \gamma_{10} = \overline{\gamma}_{10},\tag{14}$$

almost surely for some  $\overline{\gamma}_{10} \ge 0$ .

Analogous to [24], we define two key functions: error functions and sensitivity functions. The error functions characterize the MSEs of the denoiser and LMMSE estimator under AWGN measurements. For the denoiser  $\mathbf{g}_1(\cdot, \gamma_1)$ , we define the error function as

$$\mathcal{E}_1(\gamma_1, \tau_1) := \lim_{N \to \infty} \frac{1}{N} \|\mathbf{g}_1(\mathbf{x}^0 + \mathbf{z}, \gamma_1) - \mathbf{x}^0\|^2, \quad \mathbf{z} \sim \mathcal{N}(0, \tau_1 \mathbf{I}), \tag{15}$$

and, for the LMMSE estimator, as

$$\mathcal{E}_{2}(\gamma_{2}, \tau_{2}) := \lim_{N \to \infty} \frac{1}{N} \mathbb{E} \|\mathbf{g}_{2}(\mathbf{r}_{2}, \gamma_{2}) - \mathbf{x}^{0}\|^{2},$$

$$\mathbf{r}_{2} = \mathbf{x}^{0} + \mathcal{N}(0, \tau_{2}\mathbf{I}), \quad \mathbf{y} = \mathbf{A}\mathbf{x}^{0} + \mathcal{N}(0, \gamma_{w0}^{-1}\mathbf{I}).$$
(16)

The limit (15) exists almost surely due to the assumption of  $\mathbf{g}_1(\cdot)$  being convergent under Gaussian noise. Although  $\mathcal{E}_2(\gamma_2, \tau_2)$  implicitly depends on the precisions  $\gamma_{w0}$  and  $\gamma_w$ , we omit this dependence to simplify the notation. We also define the *sensitivity functions* as

$$\mathcal{A}_i(\gamma_i, \tau_i) := \lim_{N \to \infty} \langle \nabla \mathbf{g}_i(\mathbf{x}^0 + \mathbf{z}_i, \gamma_i) \rangle, \quad \mathbf{z}_i \sim \mathcal{N}(0, \tau_i \mathbf{I}).$$
(17)

The LMMSE error function (16) and sensitivity functions (17) are identical to those in the VAMP analysis [19]. The denoiser error function (15) generalizes the error function in [19] for non-separable denoisers.

# 4.2. State evolution of VAMP

We now show that the VAMP algorithm with a non-separable denoiser follows the identical state evolution equations as the separable case given in [19]. Define the error vectors,

$$\mathbf{p}_k := \mathbf{r}_{1k} - \mathbf{x}^0, \quad \mathbf{q}_k := \mathbf{V}^\mathsf{T} (\mathbf{r}_{2k} - \mathbf{x}^0). \tag{18}$$

Thus,  $\mathbf{p}_k$  represents the error between the partial estimate  $\mathbf{r}_{1k}$  and the true vector  $\mathbf{x}^0$ . The error vector  $\mathbf{q}_k$  represents the transformed error  $\mathbf{r}_{2k} - \mathbf{x}^0$ . The SE analysis will show that these errors are asymptotically Gaussian. In addition, the analysis will exactly predict the variance on the partial estimate errors (18) and estimate errors,  $\hat{\mathbf{x}}_i - \mathbf{x}^0$ . These variances are computed recursively through what we will call the *state evolution* equations:

$$\overline{\alpha}_{1k} = \mathcal{A}_1(\overline{\gamma}_{1k}, \tau_{1k}), \quad \overline{\eta}_{1k} = \frac{\overline{\gamma}_{1k}}{\overline{\alpha}_{1k}}, \quad \overline{\gamma}_{2k} = \overline{\eta}_{1k} - \overline{\gamma}_{1k}$$
 (19a)

$$\tau_{2k} = \frac{1}{(1 - \overline{\alpha}_{1k})^2} \left[ \mathcal{E}_1(\overline{\gamma}_{1k}, \tau_{1k}) - \overline{\alpha}_{1k}^2 \tau_{1k} \right], \tag{19b}$$

$$\overline{\alpha}_{2k} = \mathcal{A}_2(\overline{\gamma}_{2k}, \tau_{2k}), \quad \overline{\eta}_{2k} = \frac{\overline{\gamma}_{2k}}{\overline{\alpha}_{2k}}, \quad \overline{\gamma}_{1,k+1} = \overline{\eta}_{2k} - \overline{\gamma}_{2k}$$
(19c)

$$\tau_{1,k+1} = \frac{1}{(1 - \overline{\alpha}_{2k})^2} \left[ \mathcal{E}_2(\overline{\gamma}_{2k}, \tau_{2k}) - \overline{\alpha}_{2k}^2 \tau_{2k} \right], \tag{19d}$$

which are initialized with k = 0,  $\tau_{10}$  in (13) and  $\overline{\gamma}_{10}$  defined from the limit (14). The SE equations in (19) are identical to those in [19] with the new error and sensitivity functions for the non-separable denoisers. We can now state our main result, which is proven in the extended version of this paper [27].

**Theorem 1.** Under the above assumptions and definitions, assume that the sequence of true random vectors  $\mathbf{x}^0$  and denoisers  $\mathbf{g}_1(\mathbf{r}_1, \gamma_1)$  satisfy assumption 1. Assume additionally that, for all iterations k, the solution  $\overline{\alpha}_{1k}$  from the SE equations (19) satisfies  $\overline{\alpha}_{1k} \in (0,1)$  and  $\overline{\gamma}_{ik} > 0$ . Then,

(a) For any k, the error vectors on the partial estimates,  $\mathbf{p}_k$  and  $\mathbf{q}_k$  in (18) can be written as,

$$\mathbf{p}_k = \tilde{\mathbf{p}}_k + O(\frac{1}{\sqrt{N}}), \quad \mathbf{q}_k = \tilde{\mathbf{q}}_k + O(\frac{1}{\sqrt{N}}), \tag{20}$$

where,  $\tilde{\mathbf{p}}_k$  and  $\tilde{\mathbf{q}}_k \in \mathbb{R}^N$  are each i.i.d. Gaussian random vectors with zero mean and per component variance  $\tau_{1k}$  and  $\tau_{2k}$ , respectively.

(b) For any fixed iteration  $k \ge 0$ , and i = 1, 2, we have, almost surely

$$\lim_{N \to \infty} \frac{1}{N} \|\widehat{\mathbf{x}}_i - \mathbf{x}^0\|^2 = \frac{1}{\overline{\eta}_{ik}}, \quad \lim_{N \to \infty} (\alpha_{ik}, \eta_{ik}, \gamma_{ik}) = (\overline{\alpha}_{ik}, \overline{\eta}_{ik}, \overline{\gamma}_{ik}). \tag{21}$$

In (20), we have used the notation, that when  $\mathbf{u}, \tilde{\mathbf{u}} \in \mathbb{R}^N$  are sequences of random vectors,  $\mathbf{u} = \tilde{\mathbf{u}} + O(\frac{1}{\sqrt{N}})$  means  $\lim_{N\to\infty} \frac{1}{N} ||\mathbf{u} - \tilde{\mathbf{u}}||^2 = 0$  almost surely. Part (a) of theorem 1 thus shows that the error vectors  $\mathbf{p}_k$  and  $\mathbf{q}_k$  in (18) are approximately i.i.d. Gaussian.

The result is a natural extension to the main result on separable denoisers in [19]. Moreover, the variance on the variance on the errors, along with the mean squared error (MSE) of the estimates  $\hat{\mathbf{x}}_{ik}$  can be exactly predicted by the same SE equations as the separable case. The result thus provides an asymptotically exact analysis of VAMP extended to non-separable denoisers.

# 5. Numerical experiments

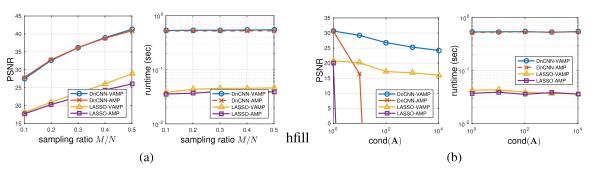
#### 5.1. Compressive image recovery

We first consider the problem of compressive image recovery, where the goal is to recover an image  $\mathbf{x}^0 \in \mathbb{R}^N$  from measurements  $\mathbf{y} \in \mathbb{R}^M$  of the form (1) with  $M \ll N$ . This problem arises in many imaging applications, such as magnetic resonance imaging, radar imaging, computed tomography, etc, although the details of  $\mathbf{A}$  and  $\mathbf{x}^0$  change in each case.

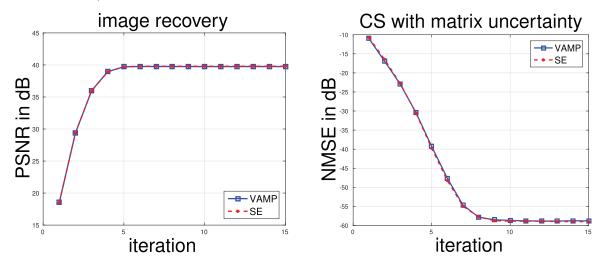
One of the most popular approaches to image recovery is to exploit sparsity in the wavelet transform coefficients  $\mathbf{c} := \Psi \mathbf{x}^0$ , where  $\Psi$  is a suitable orthonormal wavelet transform. Rewriting (1) as  $\mathbf{y} = \mathbf{A}\Psi\mathbf{c} + \mathbf{w}$ , the idea is to first estimate  $\mathbf{c}$  from  $\mathbf{y}$  (e.g. using LASSO) and then form the image estimate via  $\hat{\mathbf{x}} = \Psi^{\mathsf{T}}\hat{\mathbf{c}}$ . Although many algorithms exist to solve the LASSO problem, the AMP algorithms are among the fastest (see, e.g. [36, figure 1]). As an alternative to the sparsity-based approach, it was recently suggested in [11] to recover  $\mathbf{x}^0$  directly using AMP (2) by choosing the estimation function  $\mathbf{g}$  as a sophisticated image-denoising algorithm like BM3D [9] or DnCNN [10].

Figure 1(a) compares the LASSO- and DnCNN-based versions of AMP and VAMP for  $128\times128$  image recovery under well-conditioned  $\bf A$  and no noise. Here,  $\bf A=\bf JPHD$ , where  $\bf D$  is a diagonal matrix with random  $\pm 1$  entries,  $\bf H$  is a discrete Hadamard transform (DHT),  $\bf P$  is a random permutation matrix, and  $\bf J$  contains the first M rows of  $\bf I_N$ . The results average over the well-known lena, barbara, boat, house, and peppers images using ten random draws of  $\bf A$  for each. The figure shows that AMP and VAMP have very similar runtimes and PSNRs when  $\bf A$  is well-conditioned, and that the DnCNN approach is about 10 dB more accurate, but  $10\times$  as slow, as the LASSO approach. Figure 2 shows the state-evolution prediction of VAMP's PSNR on the barbara image at M/N=0.5, averaged over 50 draws of  $\bf A$ . The state-evolution accurately predicts the PSNR of VAMP.

To test the robustness to the condition number of  $\mathbf{A}$ , we repeated the experiment from figure 1(a) using  $\mathbf{A} = \mathbf{J}\mathrm{Diag}(\mathbf{s})\mathbf{PHD}$ , where  $\mathrm{Diag}(\mathbf{s})$  is a diagonal matrix of singular values. The singular values were geometrically spaced, i.e.  $s_m/s_{m-1} = \rho \ \forall m$ , with  $\rho$  chosen to achieve a desired  $\mathrm{cond}(\mathbf{A}) := s_1/s_M$ . The sampling rate was fixed at M/N = 0.2, and the measurements were noiseless, as before. The results, shown in figure 1(b), show that AMP diverged when  $\mathrm{cond}(\mathbf{A}) \geqslant 10$ , while VAMP exhibited only a mild PSNR degradation due to ill-conditioned  $\mathbf{A}$ . The original images and example image recoveries are included in the extended version of this paper.



**Figure 1.** Compressive image recovery: PSNR and runtime versus rate M/N and cond(**A**). (a) Average PSNR and runtime with versus M/N with well-conditioned **A** and no noise after 12 iterations (b) Average PSNR and runtime versus cond(**A**) at M/N = 0.2 and no noise after ten iterations.



**Figure 2.** SE prediction & VAMP for image recovery and CS with matrix uncertainty.

#### 5.2. Bilinear estimation via lifting

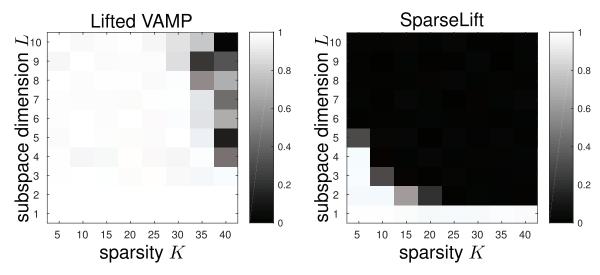
We now use the structured linear estimation model (1) to tackle problems in bilinear estimation through a technique known as 'lifting' [37–40]. In doing so, we are motivated by applications like blind deconvolution [41], self-calibration [39], compressed sensing (CS) with matrix uncertainty [42], and joint channel-symbol estimation [43]. All cases yield measurements  $\mathbf{y}$  of the form

$$\mathbf{y} = \left(\sum_{l=1}^{L} b_l \mathbf{\Phi}_l\right) \mathbf{c} + \mathbf{w} \in \mathbb{R}^M, \tag{22}$$

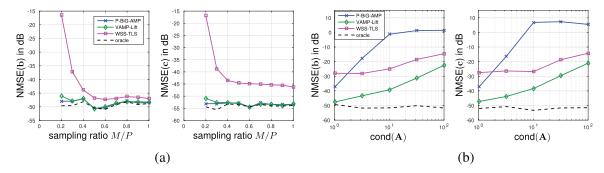
where  $\{\Phi_l\}_{l=1}^L$  are known,  $\mathbf{w} \sim \mathcal{N}(0, \mathbf{I}/\gamma_w)$ , and the objective is to recover both  $\mathbf{b} := [b_1, \dots, b_L]^\mathsf{T}$  and  $\mathbf{c} \in \mathbb{R}^P$ . This bilinear problem can be 'lifted' into a linear problem of the form (1) by setting

$$\mathbf{A} = \begin{bmatrix} \mathbf{\Phi}_1 & \mathbf{\Phi}_2 & \cdots & \mathbf{\Phi}_L \end{bmatrix} \in \mathbb{R}^{M \times LP} \text{ and } \mathbf{x} = \text{vec}(\mathbf{cb}^\mathsf{T}) \in \mathbb{R}^{LP},$$
 (23)

where  $\text{vec}(\mathbf{X})$  vectorizes  $\mathbf{X}$  by concatenating its columns. When  $\mathbf{b}$  and  $\mathbf{c}$  are i.i.d. with known priors, the MMSE denoiser  $\mathbf{g}(\mathbf{r}, \gamma) = \mathbb{E}(\mathbf{x}|\mathbf{r} = \mathbf{x} + \mathcal{N}(0, \mathbf{I}/\gamma))$  can be implemented



**Figure 3.** Self-calibration: success rate versus sparsity K and subspace dimension L.



**Figure 4.** Compressive sensing with matrix uncertainty. (a) NMSE versus M/P with i.i.d.  $\mathcal{N}(0,1)$  **A.** (b) NMSE versus cond(**A**) at M/P = 0.6.

near-optimally by the rank-one AMP algorithm from [44] (see also [45–47]), with divergence estimated as in [11].

We first consider CS with matrix uncertainty [42], where  $b_1$  is known. For these experiments, we generated the unknown  $\{b_l\}_{l=2}^L$  as i.i.d.  $\mathcal{N}(0,1)$  and the unknown  $\mathbf{c} \in \mathbb{R}^P$  as K-sparse with  $\mathcal{N}(0,1)$  nonzero entries. Figure 2 shows that the MSE on  $\mathbf{x}$  of lifted VAMP is very close to its SE prediction when K=12. We then compared lifted VAMP to PBiGAMP from [48], which applies AMP directly to the (non-lifted) bilinear problem, and to WSS-TLS from [42], which uses non-convex optimization. We also compared to MMSE estimation of  $\mathbf{b}$  under oracle knowledge of  $\mathbf{c}$ , and MMSE estimation of  $\mathbf{c}$  under oracle knowledge of support( $\mathbf{c}$ ) and  $\mathbf{b}$ . For  $b_1 = \sqrt{20}$ , L = 11, P = 256, K = 10, i.i.d.  $\mathcal{N}(0,1)$  matrix  $\mathbf{A}$ , and SNR = 40 dB, figure 4(a) shows the normalized MSE on  $\mathbf{b}$  (i.e. NMSE( $\mathbf{b}$ ) :=  $\mathbb{E}\|\hat{\mathbf{b}} - \mathbf{b}^0\|^2/\mathbb{E}\|\mathbf{b}^0\|^2$ ) and  $\mathbf{c}$  versus sampling ratio M/P. This figure demonstrates that lifted VAMP and PBiGAMP perform close to the oracles and much better than WSS-TLS.

Although lifted VAMP performs similarly to PBiGAMP in figure 4(a), its advantage over PBiGAMP becomes apparent with non-i.i.d. **A**. For illustration, we repeated the previous experiment, but with **A** constructed using the SVD  $\mathbf{A} = \mathbf{U} \mathrm{Diag}(\mathbf{s}) \mathbf{V}^\mathsf{T}$ 

with Haar distributed **U** and **V** and geometrically spaced **s**. Also, to make the problem more difficult, we set  $b_1 = 1$ . Figure 4(b) shows the normalized MSE on **b** and **c** versus cond(**A**) at M/P = 0.6. There it can be seen that lifted VAMP is much more robust than PBiGAMP to the conditioning of **A**.

We next consider the *self-calibration* problem [39], where the measurements take the form

$$\mathbf{y} = \operatorname{Diag}(\mathbf{H}\mathbf{b})\mathbf{\Psi}\mathbf{c} + \mathbf{w} \in \mathbb{R}^{M}. \tag{24}$$

Here the matrices  $\mathbf{H} \in \mathbb{R}^{M \times L}$  and  $\mathbf{\Psi} \in \mathbb{R}^{M \times P}$  are known and the objective is to recover the unknown vectors  $\mathbf{b}$  and  $\mathbf{c}$ . Physically, the vector  $\mathbf{H}\mathbf{b}$  represents unknown calibration gains that lie in a known subspace, specified by  $\mathbf{H}$ . Note that (24) is an instance of (22) with  $\mathbf{\Phi}_l = \mathrm{Diag}(\mathbf{h}_l)\mathbf{\Psi}$ , where  $\mathbf{h}_l$  denotes the lth column of  $\mathbf{H}$ . Different from 'CS with matrix uncertainty,' all elements in  $\mathbf{b}$  are now unknown, and so WSS-TLS [42] cannot be applied. Instead, we compare lifted VAMP to the SparseLift approach from [39], which is based on convex relaxation and has provable guarantees. For our experiment, we generated  $\mathbf{\Psi}$  and  $\mathbf{b} \in \mathbb{R}^L$  as i.i.d.  $\mathcal{N}(0,1)$ ;  $\mathbf{c}$  as K-sparse with  $\mathcal{N}(0,1)$  nonzero entries;  $\mathbf{H}$  as randomly chosen columns of a Hadamard matrix; and  $\mathbf{w} = 0$ . Figure 3 plots the success rate versus L and K, where 'success' is defined as  $\mathbb{E}\|\hat{\mathbf{c}}\hat{\mathbf{b}}^{\mathsf{T}} - \mathbf{c}^0(\mathbf{b}^0)^{\mathsf{T}}\|_F^2 / \mathbb{E}\|\mathbf{c}^0(\mathbf{b}^0)^{\mathsf{T}}\|_F^2 < -60$  dB. The figure shows that, relative to SparseLift, lifted VAMP gives successful recoveries for a wider range of L and K.

# 6. Conclusions

We have extended the analysis of the method in [24] to a class of non-separable denoisers. The method provides a computational efficient method for reconstruction where structural information and constraints on the unknown vector can be incorporated in a modular manner. Importantly, the method admits a rigorous analysis that can provide precise predictions on the performance in high-dimensional random settings.

# Acknowledgments

A K Fletcher and P Pandit were supported in part by the National Science Foundation under Grants 1738285 and 1738286 and the Office of Naval Research under Grant N00014-15-1-2677. S Rangan was supported in part by the National Science Foundation under Grants 1116589, 1302336, and 1547332, and the industrial affiliates of NYU WIRELESS. P Schniter and S Sarkar were supported in part by the National Science Foundation under Grant CCF-1716388.

#### References

Donoho D L, Maleki A and Montanari A 2009 Message-passing algorithms for compressed sensing Proc. Natl Acad. Sci. 106 18914–9

<sup>[2]</sup> Rangan S 2011 Generalized approximate message passing for estimation with random linear mixing Proc. IEEE ISIT pp 2174–8

- [3] Rangan S, Schniter P, Riegler E, Fletcher A and Cevher V 2013 Fixed points of generalized approximate message passing with arbitrary matrices *Proc. IEEE ISIT* pp 664–8
- [4] Rangan S, Schniter P and Fletcher A K 2014 On the convergence of approximate message passing with arbitrary matrices *Proc. IEEE ISIT* pp 236–40
- [5] Tibshirani R 1996 Regression shrinkage and selection via the lasso J. R. Stat. Soc. B 58 267–88
- [6] Bayati M and Montanari A 1996 The dynamics of message passing on dense graphs, with applications to compressed sensing IEEE Trans. Inf. Theory 57 764–85
- [7] Javanmard A and Montanari A 2013 State evolution for general approximate message passing algorithms, with applications to spatial coupling Inf. Inference 2 115-44
- [8] Berthier R, Montanari A and Nguyen P-M 2017 State evolution for approximate message passing with non-separable functions (arXiv:1708.03950)
- [9] Dabov K, Foi A, Katkovnik V and Egiazarian K 2007 Image denoising by sparse 3-D transform-domain collaborative filtering IEEE Trans. Image Process. 16 2080–95
- [10] Zhang K, Zuo W, Chen Y, Meng D and Zhang L 2017 Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising IEEE Trans. Image Process. 26 3142–55
- [11] Metzler C A, Maleki A and Baraniuk R G 2016 From denoising to compressed sensing  $I\!E\!E\!E$  Trans. Inf. Theory 62 5117–44
- [12] Donoho D, Johnstone I and Montanari A 2013 Accurate prediction of phase transitions in compressed sensing via a connection to minimax denoising IEEE Trans. Inf. Theory 59 3396–433
- [13] Ma Y, Rush C and Baron D 2017 Analysis of approximate message passing with a class of non-separable denoisers Proc. ISIT pp 231–5
- [14] Venkatakrishnan S V, Bouman C A and Wohlberg B 2013 Plug-and-play priors for model based reconstruction Proc. IEEE Global Conf. on Signal and Inf. Processing pp 945–8
- [15] Chen S, Luo C, Deng B, Qin Y, Wang H and Zhuang Z 2017 BM3D vector approximate message passing for radar coded-aperture imaging PIERS-FALL pp 2035–8
- [16] Wang X and Chan S H 2017 Parameter-free plug-and-play ADMM for image restoration Proc. IEEE Acoustics, Speech and Signal Processing (IEEE) pp 1323–7
- [17] Caltagirone F, Zdeborová L and Krzakala F 2014 On convergence of approximate message passing Proc. IEEE ISIT pp 1812–6
- [18] Vila J, Schniter P, Rangan S, Krzakala F and Zdeborová L 2015 Adaptive damping and mean removal for the generalized approximate message passing algorithm Proc. IEEE ICASSP pp 2021–5
- [19] Rangan S, Schniter P and Fletcher A K 2017 Vector approximate message passing Proc. IEEE ISIT pp 1588–92
- [20] Opper M and Winther O 2005 Expectation consistent approximate inference J. Mach. Learn. Res. 1 2177–204
- [21] Fletcher A K, Sahraee-Ardakan M, Rangan S and Schniter P 2016 Expectation consistent approximate inference: generalizations and convergence *Proc. IEEE ISIT* pp 190–4
- [22] Ma J and Ping L 2017 Orthogonal AMP IEEE Access 5 2020–33
- [23] Takeuchi K 2017 Rigorous dynamics of expectation-propagation-based signal recovery from unitarily invariant measurements Proc. ISIT pp 501–5
- [24] Rangan S, Schniter P and Fletcher A K 2016 Vector approximate message passing (arXiv:1610.03082)
- [25] Fletcher A K, Sahraee-Ardakan M, Rangan S and Schniter P 2017 Rigorous dynamics and consistent estimation in arbitrarily conditioned linear systems *Proc. NIPS* pp 2542–51
- [26] Schniter P, Fletcher A K and Rangan S 2017 Denoising-based vector AMP Proc. Int. Biomedical and Astronomical Signal Process. Workshop pp 77
- [27] Fletcher A K, Pandit P, Rangan S, Sarkar S and Schniter P 2018 Plug-in estimation in high-dimensional linear inverse problems: a rigorous analysis (arXiv:1806.10466)
- [28] Kamilov U S, Rangan S, Fletcher A K and Unser M 2014 Approximate message passing with consistent parameter estimation and applications to sparse learning *IEEE Trans. Inf. Theory* **60** 2969–85
- [29] Taeb A, Maleki A, Studer C and Baraniuk R 2013 Maximin analysis of message passing algorithms for recovering block sparse signals (arXiv:1303.2389)
- [30] Andersen M R, Winther O and Hansen L K 2014 Bayesian inference for structured spike and slab priors Advances in Neural Information Processing Systems (Red Hook, NY: Curran Associates, Inc.) pp 1745–53
- [31] Rangan S, Fletcher A K, Goyal V K, Byrne E and Schniter P 2017 Hybrid approximate message passing IEEE Trans. Signal Process. 65 4577–92
- [32] Scharf L L and Demeure C 1991 Statistical signal Processing: Detection, Estimation, and Time Series Analysis vol 63 (Reading, MA: Addison-Wesley)
- [33] Xie J, Xu L and Chen E 2012 Image denoising and inpainting with deep neural networks Advances in Neural Information Processing Systems (Red Hook, NY: Curran Associates, Inc.) pp 341–9

- [34] Xu L, Ren J S, Liu C and Jia J 2014 Deep convolutional neural network for image deconvolution Advances in Neural Information Processing Systems (Red Hook, NY: Curran Associates, Inc.) pp 1790–8
- [35] Cai J-F, Candès E J and Shen Z 2010 A singular value thresholding algorithm for matrix completion SIAM J. Optim. 20 1956–82
- [36] Borgerding M, Schniter P and Rangan S 2017 AMP-inspired deep networks for sparse linear inverse problems IEEE Trans. Signal Process. 65 4293–308
- [37] Candès E J, Strohmer T and Voroninski V 2013 PhaseLift: exact and stable signal recovery from magnitude measurements via convex programming Commun. Pure Appl. Math. 66 1241–74
- [38] Ahmed A, Recht B and Romberg J 2014 Blind deconvolution using convex programming IEEE Trans. Inf. Theory 60 1711–32
- [39] Ling S and Strohmer T 2015 Self-calibration and biconvex compressive sensing Inverse Problems 31 115002
- [40] Davenport M A and Romberg J 2016 An overview of low-rank matrix recovery from incomplete observations IEEE J. Sel. Top. Signal Process. 10 608–22
- [41] Haykin S S (ed) 1994 Blind Deconvolution (Upper Saddle River, NJ: Prentice-Hall)
- [42] Zhu H, Leus G and Giannakis G B 2011 Sparsity-cognizant total least-squares for perturbed compressive sampling *IEEE Trans. Signal Process.* **59** 2002–16
- [43] Sun P, Wang Z and Schniter P 2018 Joint channel-estimation and equalization of single-carrier systems via bilinear AMP IEEE Trans. Signal Process. 66 2772–85
- [44] Rangan S and Fletcher A K 2012 Iterative estimation of constrained rank-one matrices in noise Proc. IEEE ISIT (Cambridge, MA) pp 1246–50
- [45] Deshpande Y and Montanari A 2014 Information-theoretically optimal sparse PCA Proc. ISIT pp 2197–201
- [46] Matsushita R and Tanaka T 2013 Low-rank matrix reconstruction, clustering via approximate message passing and Proc. NIPS pp 917–25
- [47] Lesieur T, Krzakala F and Zdeborova L 2015 Phase transitions in sparse PCA Proc. IEEE ISIT pp 1635-9
- [48] Parker J and Schniter P 2016 Parametric bilinear generalized approximate message passing *IEEE J. Sel. Top. Signal Process.* **10** 795–808