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Abstract. Estimating a vector x from noisy linear measurements Ax+w 
often requires use of prior knowledge or structural constraints on x for accurate 
reconstruction. Several recent works have considered combining linear least-squares 
estimation with a generic or ‘plug-in’ denoiser function that can be designed in a 
modular manner based on the prior knowledge about x. While these methods have 
shown excellent performance, it has been difficult to obtain rigorous performance 
guarantees. This work considers plug-in denoising combined with the recently-
developed vector approximate message passing (VAMP) algorithm, which is itself 
derived via expectation propagation techniques. It shown that the mean squared 
error of this ‘plug-and-play’ VAMP can be exactly predicted for high-dimensional 
right-rotationally invariant random A and Lipschitz denoisers. The method is 
demonstrated on applications in image recovery and parametric bilinear estimation.
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1. Introduction

The estimation of an unknown vector x0 ∈ RN from noisy linear measurements y of 
the form

y = Ax0 +w ∈ RM, (1)
where A ∈ RM×N is a known transform and w is disturbance, arises in a wide-range 
of learning and inverse problems. In many high-dimensional situations, such as when 
the measurements are fewer than the unknown parameters (i.e. M ≪ N), it is essential 
to incorporate known structure on x0 in the estimation process. A fundamental chal-
lenge is how to perform structured estimation of x0 while maintaining computational 
efficiency and a tractable analysis.

Approximate message passing (AMP), originally proposed in [1], refers to a powerful 
class of algorithms that can be applied to reconstruction of x0 from (1) that can eas-
ily incorporate a wide class of statistical priors. In this work, we restrict our attention 
to w ∼ N (0,γ−1

w I), noting that AMP was extended to non-Gaussian measurements in 
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[2–4]. AMP is computationally efficient, in that it generates a sequence of estimates 
{x̂k}∞k=0 by iterating the steps

x̂k = g(rk,γk) (2a)

vk = y −Ax̂k +
N

M
⟨∇g(rk,γk)⟩vk−1 (2b)

rk+1 = x̂k +ATvk, γk+1 =M/∥vk∥2, (2c)
initialized with r0 = ATy, γ0 = M/∥y∥2, v−1 = 0, and assuming A is scaled so that 
∥A∥2F ≈ N . In (2), g : RN × R → RN is an estimation function chosen based on prior 

knowledge about x0, and ⟨∇g(r,γ)⟩ := 1
N

∑N
n=1

∂gn(r,γ)
∂rn

 denotes the divergence of g(r,γ). 
For example, if x0 is known to be sparse, then it is common to choose g(·) to be the 
componentwise soft-thresholding function, in which case AMP iteratively solves the 
LASSO [5] problem.

Importantly, for large, i.i.d., sub-Gaussian random matrices A and Lipschitz denois-
ers g(·), the performance of AMP can be exactly predicted by a scalar state evolution 
(SE), which also provides testable conditions for optimality [6–8]. The initial work 
[6, 7] focused on the case where g(·) is a separable function with identical comp-
onents (i.e. [g(r,γ)]n = g(rn,γ) ∀n), while the later work [8] allowed non-separable g(·). 
Interestingly, these SE analyses establish the fact that

rk = x0 +N (0,I/γk), (3)
leading to the important interpretation that g(·) acts as a denoiser. This interpreta-
tion provides guidance on how to choose g(·). For example, if x is i.i.d. with a known 
prior, then (3) suggests to choose a separable g(·) composed of minimum mean-squared 
error (MMSE) scalar denoisers g(rn, γ) = E(xn|rn = xn +N (0, 1/γ)). In this case, [6, 7] 
established that, whenever the SE has a unique fixed point, the estimates x̂k generated 
by AMP converge to the Bayes optimal estimate of x0 from y. As another example, if 
x is a natural image, for which an analytical prior is lacking, then (3) suggests to choose 
g(·) as a sophisticated image-denoising algorithm like BM3D [9] or DnCNN [10], as 
proposed in [11]. Many other examples of structured estimators g(·) can be considered; 
we refer the reader to [8] and section 5. Prior to [8], AMP SE results were established 
for special cases of g(·) in [12, 13]. Plug-in denoisers have been combined in related 
algorithms [14–16].

An important limitation of AMP’s SE is that it holds only for large, i.i.d., sub-
Gaussian A. AMP itself often fails to converge with small deviations from i.i.d. sub-
Gaussian A, such as when A is mildly ill-conditioned or non-zero-mean [4, 17, 18]. 
Recently, a robust alternative to AMP called vector AMP (VAMP) was proposed and 
analyzed in [19], based closely on expectation propagation [20]—see also [21–23]. 
There it was established that, if A is a large right-rotationally invariant random 
matrix and g(·) is a separable Lipschitz denoiser, then VAMP’s performance can be 
exactly predicted by a scalar SE, which also provides testable conditions for optimal-
ity. Importantly, VAMP applies to arbitrarily conditioned matrices A, which is a 
significant benefit over AMP, since it is known that ill-conditioning is one of AMP’s 
main failure mechanisms [4, 17, 18].
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Unfortunately, the SE analyses of VAMP in [24] and its extension in [25] are limited 
to separable denoisers. This limitation prevents a full understanding of VAMP’s behavior 
when used with non-separable denoisers, such as state-of-the-art image-denoising meth-
ods as recently suggested in [26]. The main contribution of this work is to show that the 
SE analysis of VAMP can be extended to a large class of non-separable denoisers that are 
Lipschitz continuous and satisfy a certain convergence property. The conditions are simi-
lar to those used in the analysis of AMP with non-separable denoisers in [8]. We show 
that there are several interesting non-separable denoisers that satisfy these conditions, 
including group-structured and convolutional neural network based denoisers.

An extended version with all proofs and other details are provided in [27].

2. Review of vector AMP

The steps of VAMP algorithm of [19] are shown in algorithm 1. Each iteration has two 
parts: a denoiser step and a linear MMSE (LMMSE) step. These are characterized by 
estimation functions g1(·) and g2(·) producing estimates x̂1k and x̂2k. The estimation 
functions take inputs r1k and r2k that we call partial estimates. The LMMSE estimation 
function is given by,

g2(r2k,γ2k) :=
(
γwA

TA+ γ2kI
)−1 (

γwA
Ty + γ2kr2k

)
, (4)

where γw > 0 is a parameter representing an estimate of the precision (inverse variance) 
of the noise w in (1). The estimate x̂2k is thus an MMSE estimator, treating the x as 
having a Gaussian prior with mean given by the partial estimate r2k. The estimation 
function g1(·) is called the denoiser and can be designed identically to the denoiser 
g(·) in the AMP iterations (2). In particular, the denoiser is used to incorporate the 

Algorithm 1. Vector AMP (LMMSE form).

Require: LMMSE estimator g2(·,γ2k) from (4), denoiser g1(·,γ1k), and number of iterations 
Kit.
1: Select initial r10 and γ10 ! 0.
2: for k = 0, 1, . . . ,Kit do
3:   // Denoising
4:   x̂1k = g1(r1k,γ1k)
5:   α1k = ⟨∇g1(r1k,γ1k)⟩
6:   η1k = γ1k/α1k, γ2k = η1k − γ1k
7:   r2k = (η1kx̂1k − γ1kr1k)/γ2k
8:
9:  // LMMSE estimation
10:   x̂2k = g2(r2k,γ2k)

11:  α2k = ⟨∇g2(r2k,γ2k)⟩
12:  η2k = γ2k/α2k, γ1,k+1 = η2 k − γ2 k

13:  r1,k+1 = (η2 kx̂2 k − γ2 kr2 k)/γ1,k+1
14: end for
15: Return x̂1Kit.
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structural or prior information on x. As in AMP, in lines 5 and 11, ⟨∇gi⟩ denotes the 
normalized divergence.

The main result of [24] is that, under suitable conditions, VAMP admits a state 
evolution (SE) analysis that precisely describes the mean squared error (MSE) of the 
estimates x̂1k and x̂2k in a certain large system limit (LSL). Importantly, VAMP’s SE 
analysis applies to arbitrary right rotationally invariant A. This class is considerably 
larger than the set of sub-Gaussian i.i.d. matrices for which AMP applies. However, 
the SE analysis in [24] is restricted separable Lipschitz denoisers that can be described 
as follows: let g1n(r1,γ1) be the nth component of the output of g1(r1,γ1). Then, it is 
assumed that,

x̂1n = g1n(r1,γ1) = φ(r1n,γ1), (5)
for some function scalar-output function φ(·) that does not depend on the component 
index n. Thus, the estimator is separable in the sense that the nth component of the 
estimate, x̂1n depends only on the nth component of the input r1n as well as the preci-
sion level γ1. In addition, it is assumed that φ(r1,γ1) satisfies a certain Lipschitz con-
dition. The separability assumption precludes the analysis of more general denoisers 
mentioned in the introduction.

3. Extending the analysis to non-separable denoisers

The main contribution of the paper is to extend the state evolution analysis of VAMP 
to a class of denoisers that we call uniformly Lipschitz and convergent under Gaussian 
noise. This class is significantly larger than separable Lipschitz denoisers used in [24]. To 
state these conditions precisely, consider a sequence of estimation problems, indexed by 
a vector dimension N. For each N, suppose there is some ‘true’ vector u = u(N) ∈ RN  
that we wish to estimate from noisy measurements of the form, r = u+ z, where z ∈ RN 
is Gaussian noise. Let û = g(r,γ) be some estimator, parameterized by γ.

Definition 1. The sequence of estimators g(·) are said to be uniformly Lipschitz con-
tinuous if there exists constants A, B and C  >  0, such that

∥g(r2,γ2)− g(r1,γ1)∥ ! (A+ B|γ2 − γ1|)∥r2 − r1∥+ C
√
N |γ2 − γ1|, (6)

for any r1, r2, γ1, γ2 and N.

Definition 2. The sequence of random vectors u and estimators g(·) are said to be 
convergent under Gaussian noise if the following condition holds: let z1, z2 ∈ RN be two 
sequences where (z1n,z2n) are i.i.d. with (z1n, z2n) = N (0,S) for some positive definite 
covariance S ∈ R2×2. Then, all the following limits exist almost surely:

lim
N→∞

1

N
g(u+ z1, γ1)

Tg(u+ z2, γ2), lim
N→∞

1

N
g(u+ z1, γ1)

Tu, (7a)

lim
N→∞

1

N
uTz1, lim

N→∞

1

N
∥u∥2 (7b)
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lim

N→∞
⟨∇g(u+ z1,γ1)⟩ =

1

NS12
g(u+ z1,γ1)

Tz2, (7c)

for all γ1, γ2 and covariance matrices S. Moreover, the values of the limits are continu-
ous in S, γ1 and γ2.

With these definitions, we make the following key assumption on the denoiser.

Assumption 1. For each N, suppose that we have a ‘true’ random vector x0 ∈ RN 
and a denoiser g1(r1,γ1) acting on signals r1 ∈ RN . Following definition 1, we assume 
the sequence of denoiser functions indexed by N, is uniformly Lipschitz continuous. In 
addition, the sequence of true vectors x0 and denoiser functions are convergent under 
Gaussian noise following definition 2.

The first part of assumption 1 is relatively standard: Lipschitz and uniform Lipschitz 
continuity of the denoiser is assumed several AMP-type analyses including [6, 24, 28] 
What is new is the assumption in definition 2. This assumption relates to the behavior 
of the denoiser g1(r1,γ1) in the case when the input is of the form, r1 = x0 + z. That 
is, the input is the true signal with a Gaussian noise perturbation. In this setting, we 
will be requiring that certain correlations converge. Before continuing our analysis, 
we briefly show that separable denoisers as well as several interesting non-separable 
denoisers satisfy these conditions.

3.1. Separable denoisers

We first show that the class of denoisers satisfying assumption 1 includes the sepa-
rable Lipschitz denoisers studied in most AMP analyses such as [6]. Specifically, sup-
pose that the true vector x0 has i.i.d. components with bounded second moments and 
the denoiser g1(·) is separable in that it is of the form (5). Under a certain uniform 
Lipschitz condition, it is shown in the extended version of this paper [27] that the 
denoiser satisfies assumption 1.

3.2. Group-based denoisers

As a first non-separable example, let us suppose that the vector x0 can be represented 
as an L×K matrix. Let x0

ℓ ∈ RK denote the ℓth row and assume that the rows are 
i.i.d. Each row can represent a group. Suppose that the denoiser g1(·) is groupwise 
separable. That is, if we denote by g1ℓ(r,ℓ) the ℓth row of the output of the denoiser, 
we assume that

g1ℓ(r,γ) = φ(rℓ,γ) ∈ RK, (8)
for a vector-valued function φ(·) that is the same for all rows. Thus, the ℓth row output 
gℓ(·) depends only on the ℓth row input. Such groupwise denoisers have been used in 
AMP and EP-type methods for group LASSO and other structured estimation prob-
lems [29–31]. Now, consider the limit where the group size K is fixed, and the number 
of groups L → ∞. Then, under suitable Lipschitz continuity conditions, the extended 
version of this paper [27] shows that groupwise separable denoiser also satisfies assump-
tion 1.
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3.3. Convolutional denoisers

As another non-separable denoiser, suppose that, for each N, x0 is an N sample seg-
ment of a stationary, ergodic process with bounded second moments. Suppose that the 
denoiser is given by a linear convolution,

g1(r1) := TN(h ∗ r1), (9)
where h is a finite length filter and TN(·) truncates the signal to its first N samples. 
For simplicity, we assume there is no dependence on γ1. Convolutional denoising arises 
in many standard linear estimation operations on wide sense stationary processes such 
as Weiner filtering and smoothing [32]. If we assume that h remains constant and 
N → ∞, the extended version of this paper [27] shows that the sequence of random 
vectors x0 and convolutional denoisers g1(·) satisfies assumption 1.

3.4. Convolutional neural networks

In recent years, there has been considerable interest in using trained deep convolutional 
neural networks for image denoising [33, 34]. As a simple model for such a denoiser, 
suppose that the denoiser is a composition of maps,

g1(r1) = (FL ◦ FL−1 ◦ · · · ◦ F1)(r1), (10)
where Fℓ(·) is a sequence of layer maps where each layer is either a multi-channel 
convolutional operator or Lipschitz separable activation function, such as sigmoid or 
ReLU. Under mild assumptions on the maps, it is shown in the extended version of this 
paper [27] that the estimator sequence g1(·) can also satisfy assumption 1.

3.5. Singular-value thresholding (SVT) denoiser

Consider the estimation of a low-rank matrix X0 from linear measurements y = A(X0), 

where A is some linear operator [35]. Writing the SVD of R as R =
∑

i σiuivT
i , the 

SVT denoiser is defined as

g1(R,γ) :=
∑

i

(σi − γ)+uiv
T
i , (11)

where (x)+ := max{0,x}. In the extended version of this paper [27], we show that g1(·) 
satisfies assumption 1.

4. Large system limit analysis

4.1. System model

Our main theoretical contribution is to show that the SE analysis of VAMP in [19] can 
be extended to the non-separable case. We consider a sequence of problems indexed 
by the vector dimension N. For each N, we assume that there is a ‘true’ random 
vector x0 ∈ RN observed through measurements y ∈ RM of the form in (1) where 
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w ∼ N (0,γ−1

w0I). We use γw0 to denote the ‘true’ noise precision to distinguish this from 
the postulated precision, γw, used in the LMMSE estimator (4). Without loss of gener-
ality (see below), we assume that M  =  N. We assume that A has an SVD,

A = USVT, S = diag(s), s = (s1,. . . ,sN), (12)
where U and V are orthogonal and S is non-negative and diagonal. The matrix U 
is arbitrary, s is an i.i.d. random vector with components si ∈ [0, smax] almost surely. 
Importantly, we assume that V is Haar distributed, meaning that it is uniform on the 
N ×N orthogonal matrices. This implies that A is right rotationally invariant meaning 
that A

d
= AV0 for any orthogonal matrix V0. We also assume that w, x0, s and V are 

all independent. As in [19], we can handle the case of rectangular V by zero padding s.
These assumptions are similar to those in [19]. The key new assumption is assump-

tion 1. Given such a denoiser and postulated variance γw, we run the VAMP algorithm, 
algorithm 1. We assume that the initial condition is given by,

r = x0 +N (0,τ10I), (13)
for some initial error variance τ10. In addition, we assume

lim
N→∞

γ10 = γ10, (14)
almost surely for some γ10 ! 0.

Analogous to [24], we define two key functions: error functions and sensitivity func-
tions. The error functions characterize the MSEs of the denoiser and LMMSE estimator 
under AWGN measurements. For the denoiser g1(·,γ1), we define the error function as

E1(γ1,τ1) := lim
N→∞

1

N
∥g1(x

0 + z,γ1)− x0∥2, z ∼ N (0,τ1I), (15)

and, for the LMMSE estimator, as

E2(γ2,τ2) := lim
N→∞

1

N
E∥g2(r2,γ2)− x0∥2,

r2 = x0 +N (0,τ2I), y = Ax0 +N (0,γ−1
w0I).

 (16)

The limit (15) exists almost surely due to the assumption of g1(·) being convergent 
under Gaussian noise. Although E2(γ2,τ2) implicitly depends on the precisions γw0 and 
γw, we omit this dependence to simplify the notation. We also define the sensitivity 
functions as

Ai(γi,τi) := lim
N→∞

⟨∇gi(x
0 + zi,γi)⟩, zi ∼ N (0,τiI). (17)

The LMMSE error function (16) and sensitivity functions (17) are identical to those 
in the VAMP analysis [19]. The denoiser error function (15) generalizes the error func-
tion in [19] for non-separable denoisers.

4.2. State evolution of VAMP

We now show that the VAMP algorithm with a non-separable denoiser follows the 
identical state evolution equations as the separable case given in [19]. Define the error 
vectors,
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pk := r1k − x0, qk := VT(r2k − x0). (18)

Thus, pk represents the error between the partial estimate r1k and the true vector 
x0. The error vector qk represents the transformed error r2k − x0. The SE analysis 
will show that these errors are asymptotically Gaussian. In addition, the analysis will 
exactly predict the variance on the partial estimate errors (18) and estimate errors, 
x̂i − x0. These variances are computed recursively through what we will call the state 
evolution equations:

α1k = A1(γ1k,τ1k), η1k =
γ1k

α1k
, γ2k = η1k − γ1k (19a)

τ2k =
1

(1− α1k)2
[
E1(γ1k,τ1k)− α2

1kτ1k
]
, (19b)

α2 k = A2 (γ2 k,τ2 k), η2 k =
γ2 k
α2 k
, γ1,k+1 = η2 k − γ2 k (19c)

τ1,k+1 =
1

(1− α2 k)2
[
E2 (γ2 k,τ2 k)− α22 kτ2 k

]
, (19d)

which are initialized with k  =  0, τ10 in (13) and γ10 defined from the limit (14). The 
SE equations in (19) are identical to those in [19] with the new error and sensitivity 
functions for the non-separable denoisers. We can now state our main result, which is 
proven in the extended version of this paper [27].
Theorem 1. Under the above assumptions and definitions, assume that the sequence 
of true random vectors x0 and denoisers g1(r1,γ1) satisfy assumption 1. Assume ad-
ditionally that, for all iterations k, the solution α1k from the SE equations (19) satisfies 
α1k ∈ (0, 1) and γik > 0. Then,

 (a)  For any k, the error vectors on the partial estimates, pk and qk in (18) can be 
written as,

pk = p̃k +O(
1√
N
), qk = q̃k +O(

1√
N
), (20)

  where, p̃k and q̃k ∈ RN  are each i.i.d. Gaussian random vectors with zero mean 
and per component variance τ1k and τ2k, respectively.

 (b)  For any fixed iteration k ! 0, and i = 1, 2, we have, almost surely

lim
N→∞

1

N
∥x̂i − x0∥2 = 1

ηik
, lim

N→∞
(αik, ηik, γik) = (αik, ηik, γik). (21)

In (20), we have used the notation, that when u, ũ ∈ RN  are sequences of random vec-

tors, u = ũ+O( 1√
N
) means limN→∞

1
N ∥u− ũ∥2 = 0 almost surely. Part (a) of theorem 

1 thus shows that the error vectors pk and qk in (18) are approximately i.i.d. Gaussian. 
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The result is a natural extension to the main result on separable denoisers in [19]. 
Moreover, the variance on the variance on the errors, along with the mean squared 
error (MSE) of the estimates x̂ik can be exactly predicted by the same SE equations as 
the separable case. The result thus provides an asymptotically exact analysis of VAMP 
extended to non-separable denoisers.

5. Numerical experiments

5.1. Compressive image recovery

We first consider the problem of compressive image recovery, where the goal is to 
recover an image x0 ∈ RN from measurements y ∈ RM of the form (1) with M ≪ N . 
This problem arises in many imaging applications, such as magnetic resonance imaging, 
radar imaging, computed tomography, etc, although the details of A and x0 change in 
each case.

One of the most popular approaches to image recovery is to exploit sparsity in the 
wavelet transform coefficients c := Ψx0, where Ψ is a suitable orthonormal wavelet 
transform. Rewriting (1) as y = AΨc+w, the idea is to first estimate c from y (e.g. 
using LASSO) and then form the image estimate via x̂ = ΨTĉ. Although many algo-
rithms exist to solve the LASSO problem, the AMP algorithms are among the fast-
est (see, e.g. [36, figure 1]). As an alternative to the sparsity-based approach, it was 
recently suggested in [11] to recover x0 directly using AMP (2) by choosing the estima-
tion function g as a sophisticated image-denoising algorithm like BM3D [9] or DnCNN 
[10].

Figure 1(a) compares the LASSO- and DnCNN-based versions of AMP and VAMP 
for 128×128 image recovery under well-conditioned A and no noise. Here, A = JPHD, 
where D is a diagonal matrix with random ±1 entries, H is a discrete Hadamard trans-
form (DHT), P is a random permutation matrix, and J contains the first M rows of IN. 
The results average over the well-known lena, barbara, boat, house, and peppers images 
using ten random draws of A for each. The figure shows that AMP and VAMP have 
very similar runtimes and PSNRs when A is well-conditioned, and that the DnCNN 
approach is about 10 dB more accurate, but 10× as slow, as the LASSO approach. 
Figure 2 shows the state-evolution prediction of VAMP’s PSNR on the barbara image 
at M/N  =  0.5, averaged over 50 draws of A. The state-evolution accurately predicts 
the PSNR of VAMP.

To test the robustness to the condition number of A, we repeated the experi-
ment from figure 1(a) using A = JDiag(s)PHD, where Diag(s) is a diagonal matrix of 
singular values. The singular values were geometrically spaced, i.e. sm/sm−1 = ρ ∀m, 
with ρ chosen to achieve a desired cond(A) := s1/sM. The sampling rate was fixed 
at M/N  =  0.2, and the measurements were noiseless, as before. The results, shown in 
figure 1(b), show that AMP diverged when cond(A) ! 10, while VAMP exhibited only 
a mild PSNR degradation due to ill-conditioned A. The original images and example 
image recoveries are included in the extended version of this paper.
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5.2. Bilinear estimation via lifting

We now use the structured linear estimation model (1) to tackle problems in bilinear 
estimation through a technique known as ‘lifting’ [37–40]. In doing so, we are moti-
vated by applications like blind deconvolution [41], self-calibration [39], compressed 
sensing (CS) with matrix uncertainty [42], and joint channel-symbol estimation [43]. 
All cases yield measurements y of the form

y =
(∑L

l=1 blΦl

)
c+w ∈ RM, (22)

where {Φl}Ll=1 are known, w ∼ N (0,I/γw), and the objective is to recover both 

b := [b1, . . . , bL]T and c ∈ RP . This bilinear problem can be ‘lifted’ into a linear prob-
lem of the form (1) by setting

A =
[
Φ1 Φ2 · · · ΦL

]
∈ RM×LP and x = vec(cbT) ∈ RLP , (23)

where vec(X) vectorizes X by concatenating its columns. When b and c are i.i.d. with 
known priors, the MMSE denoiser g(r,γ) = E(x|r = x+N (0,I/γ)) can be implemented 

Figure 1. Compressive image recovery: PSNR and runtime versus rate M/N and 
cond(A). (a) Average PSNR and runtime with versus M/N with well-conditioned 
A and no noise after 12 iterations (b) Average PSNR and runtime versus cond(A) 
at M/N  =  0.2 and no noise after ten iterations.

Figure 2. SE prediction & VAMP for image recovery and CS with matrix 
uncertainty.
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near-optimally by the rank-one AMP algorithm from [44] (see also [45–47]), with diver-
gence estimated as in [11].

We first consider CS with matrix uncertainty [42], where b1 is known. For these 
experiments, we generated the unknown {bl}Ll=2 as i.i.d. N (0, 1) and the unknown 
c ∈ RP as K-sparse with N (0, 1) nonzero entries. Figure 2 shows that the MSE on x of 
lifted VAMP is very close to its SE prediction when K  =  12. We then compared lifted 
VAMP to PBiGAMP from [48], which applies AMP directly to the (non-lifted) bilinear 
problem, and to WSS-TLS from [42], which uses non-convex optimization. We also 
compared to MMSE estimation of b under oracle knowledge of c, and MMSE estima-
tion of c under oracle knowledge of support(c) and b. For b1 =

√
20, L  =  11, P  =  256, 

K  =  10, i.i.d. N (0, 1) matrix A, and SNR  =  40 dB, figure 4(a) shows the normalized 
MSE on b (i.e. NMSE(b) := E∥b̂− b0∥2/E∥b0∥2) and c versus sampling ratio M/P. This 
figure demonstrates that lifted VAMP and PBiGAMP perform close to the oracles and 
much better than WSS-TLS.

Although lifted VAMP performs similarly to PBiGAMP in figure 4(a), its advan-
tage over PBiGAMP becomes apparent with non-i.i.d. A. For illustration, we repeated 

the previous experiment, but with A constructed using the SVD A = UDiag(s)VT 

Figure 3. Self-calibration: success rate versus sparsity K and subspace 
dimension L.

Figure 4. Compressive sensing with matrix uncertainty. (a) NMSE versus M/P 
with i.i.d. N (0, 1) A. (b) NMSE versus cond(A) at M/P  =  0.6.
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with Haar distributed U and V and geometrically spaced s. Also, to make the problem 
more difficult, we set b1  =  1. Figure 4(b) shows the normalized MSE on b and c versus 
cond(A) at M/P  =  0.6. There it can be seen that lifted VAMP is much more robust 
than PBiGAMP to the conditioning of A.

We next consider the self-calibration problem [39], where the measurements take 
the form

y = Diag(Hb)Ψc+w ∈ RM. (24)
Here the matrices H ∈ RM×L and Ψ ∈ RM×P are known and the objective is to recover 
the unknown vectors b and c. Physically, the vector Hb represents unknown calibra-
tion gains that lie in a known subspace, specified by H. Note that (24) is an instance 
of (22) with Φl = Diag(hl)Ψ, where hl denotes the lth column of H. Different from 
‘CS with matrix uncertainty,’ all elements in b are now unknown, and so WSS-TLS 
[42] cannot be applied. Instead, we compare lifted VAMP to the SparseLift approach 
from [39], which is based on convex relaxation and has provable guarantees. For 
our experiment, we generated Ψ and b ∈ RL as i.i.d. N (0, 1); c as K-sparse with 
N (0, 1) nonzero entries; H as randomly chosen columns of a Hadamard matrix; and 
w = 0. Figure 3 plots the success rate versus L and K, where ‘success’ is defined 

as E∥ĉb̂T − c0(b0)T∥2F/E∥c0(b0)T∥2F < −60 dB. The figure shows that, relative to 
SparseLift, lifted VAMP gives successful recoveries for a wider range of L and K.

6. Conclusions

We have extended the analysis of the method in [24] to a class of non-separable denois-
ers. The method provides a computational efficient method for reconstruction where 
structural information and constraints on the unknown vector can be incorporated in a 
modular manner. Importantly, the method admits a rigorous analysis that can provide 
precise predictions on the performance in high-dimensional random settings.
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