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ABSTRACT

We consider the linear regression problem, where the goal is to
recover the vector x ∈ Rn from measurements y = Ax+w ∈ Rm

under known matrix A and unknown noise w. For large i.i.d. sub-
Gaussian A, the approximate message passing (AMP) algorithm
is precisely analyzable through a state-evolution (SE) formalism,
which furthermore shows that AMP is Bayes optimal in certain
regimes. The rigorous SE proof, however, is long and complicated.
And, although the AMP algorithm can be derived as an approxima-
tion of loop belief propagation (LBP), this viewpoint provides little
insight into why large i.i.d. A matrices are important for AMP, and
why AMP has a state evolution. In this work, we provide a heuristic
derivation of AMP and its state evolution, based on the idea of “first-
order cancellation,” that provides insights missing from the LBP
derivation while being much shorter than the rigorous SE proof.

Index Terms— Approximate message passing, belief propaga-
tion, linear regression, compressive sensing, state evolution

1. INTRODUCTION

We consider the standard linear regression problem, where the goal
is to recover the vector x ∈ Rn from measurements

y = Ax+w ∈ Rm, (1)

whereA is a known matrix andw is an unknown disturbance. With
high-dimensional random A, the approximate message passing
(AMP) algorithm [1] remains one of the most celebrated and best
understood iterative algorithms. In particular, when the entries ofA
are drawn i.i.d. from a sub-Gaussian distribution and m,n → ∞
with m/n → δ ∈ (0,∞), ensemble behaviors of AMP, such as the
per-iteration mean-squared error (MSE), can be perfectly predicted
using a state evolution (SE) formalism [2].1 Furthermore, the SE
formalism shows that, in certain regimes, AMP’s MSE converges
to the minimum MSE as predicted by the replica method [3, 2],
which has been shown to coincide with the minimum MSE for lin-
ear regression under i.i.d. Gaussian A [4, 5] as m,n → ∞ with
m/n → δ ∈ (0,∞). More recently, it has been proven that the
state-evolution accurately characterizes AMP’s behavior for large
but finite m,n [6].

The rigorous SE proofs in [2, 3, 6], however, are long and com-
plicated, and thus remain out of reach for many readers. And, al-
though the AMP algorithm can be heuristically derived from an ap-
proximation of loop belief propagation (LBP), as outlined in [1] and
[7], the LBP perspective is lacking in several respects. First, LBP is
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1See also [3] for an earlier proof of AMP’s state evolution under i.i.d.
Gaussian entries.

generally suboptimal, making it surprising that a simplified approxi-
mation of LBP can be optimal. Second, the LBP derivation provides
little insight into why large i.i.d.A matrices are important for AMP.
Third, the LBP derivation does not suggest a scalar state evolution.

In this work, we propose a heuristic derivation of AMP and its
state evolution that uses the simple idea of “first-order cancellation.”
This derivation provides insights missing from the LBP derivation,
while being much more accessible than the rigorous SE proofs.

2. PROBLEM SETUP

For the linear regression problem (1), we treat y = [y1, . . . , ym]>,
x = [x1, . . . , xn]

>, and w = [w1, . . . , wm]> as deterministic vec-
tors and A ∈ Rm×n as a deterministic matrix. But we assume that
the components {aij} of A are realizations of i.i.d. Bernoulli2 ran-
dom variables Aij ∈ ± 1√

m
that are drawn independently of x and

w. Our model forA is a special case of that considered in [2].
Throughout, we will focus on the following LSL.

Definition 1. The “large system limit” (LSL) is defined as m,n →
∞ with m/n→ δ for some fixed sampling ratio δ ∈ (0,∞).

We will assume that the components of x, w, and y scale as O(1)
in the LSL.

We consider a family of algorithms that, starting with x(0) = 0,
iterates the following over iteration index t = 0, 1, 2, . . . :

v(t) = y −Ax(t) + µ(t) (2a)
x(t+1) = η(t)(x(t) +A>v(t)︸ ︷︷ ︸

, r(t)

), (2b)

where η(t)(·) is component-wise separable (i.e., [η(t)(r)]j =
η(t)(rj) ∀j) and µ(t) is a correction term. The quantity x(t) is
iteration-t estimate of the unknown vector x. We refer to η(t)(·)
as a “denoiser” for reasons that will become clear in the sequel.
For technical reasons, we will assume that η(t)(·) is a polynomial
function of bounded degree, similar to the assumption in [2].

The classical iterative shrinkage/thresholding (IST) algorithm
[8] uses no correction, i.e., µ(t) = 0 for all iterations t, whereas
the AMP algorithm [1] uses the “Onsager” correction

µ(t) =
1

m
v(t−1)

n∑
j=1

η(t−1)′(r(t−1)

j ), (3)

initialized with µ(0) = 0. In (3), η(t)′ refers to the derivative of η(t).
Our goal is to analyze the effect of µ(t) on algorithm (2) in the LSL
and in particular to understand why the Onsager correction (3) is a
good choice. To do this, we analyze the errors on r(t) and x(t) in (2)
and drop terms that vanish in the LSL.

2Our derivation can be extended to i.i.d. Gaussian Aij , but doing so
lengthens the derivation and provides little additional insight.
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3. AMP DERIVATION

We now analyze the error e(t) on the input to the denoiser r(t), i.e.,

e(t) , r(t) − x. (4)

From (2) and (4) we have that

e(t) = x(t) +A>(y −Ax(t) + µ(t))− x (5)

= (I −A>A)x(t) +A>(Ax+w + µ(t))− x (6)

= (I −A>A)x(t) − (I −A>A)x+A>(w + µ(t)). (7)

Let us examine the jth component of e(t) when t ≥ 1. We have that

[(I −A>A)x(t)]j = x(t)

j −
∑
i

aij
∑
l

ailx
(t)

l

=
(
1−

m∑
i=1

a2ij

)
x(t)

j −
∑
i

aij
∑
l6=j

ailx
(t)

l (8)

= −
∑
i

aij
∑
l 6=j

ailx
(t)

l (9)

since a2ij = 1/m ∀ij. Continuing,

[(I −A>A)x(t)]j

= −
∑
i

aij
∑
l 6=j

ailη
(t−1)(r(t−1)

l ) (10)

= −
∑
i

aij
∑
l 6=j

ailη
(t−1)

(
x(t−1)

l +
∑
k 6=i

aklv
(t−1)

k︸ ︷︷ ︸
, r(t−1)

il

+ailv
(t−1)

i

)
, (11)

where r(t−1)

il omits the direct contribution of ail from r(t−1)

l and thus
is only weakly dependent on {aij}nj=1. We formalize this weak de-
pendence through Assumption 1, which is admittedly an approxima-
tion. In fact, the approximate nature of Assumption 1 is one of the
main reasons that our derivation is heuristic.

Assumption 1. The matrix entry aij is a realization of an equiprob-
able Bernoulli random variable Aij ∈ ± 1√

m
, where {Aij} are mu-

tually independent and Aij is independent of {r(t−1)

il }nl=1, {xl}nl=1,
and {wk}mk=1.

Assumption 1 will often be used when analyzing summations,
as in the following lemma.

Lemma 1. Consider the quantity zi =
∑n

j=1 aijuj , where aij
are realizations of i.i.d. random variables Aij with zero mean and
E[A2

ij ] = 1/m. If {Aij} are drawn independently of {uj}, and
{uj} scale as O(1) in the LSL, then zi also scales as O(1).

Proof. First, note that zi is a realization of the random variable
Zi ,

∑n
j=1Aijuj . Furthermore, E[Z2

i ] = E[(
∑n

j=1Aijuj)
2] =∑n

j=1

∑n
l=1 E[AijAil]ujul = 1

m

∑n
j=1 u

2
j = n

m
1
n

∑n
j=1 u

2
j ,

since E[AijAil] = 1/m if j = l and E[AijAil] = E[Aij ]E[Ail] =
0 if j 6= l. Clearly m/n and 1

n

∑n
j=1 u

2
j are both O(1) in the

LSL. Thus we conclude that E[Z2
i ] is O(1). Finally, since zi is a

realization of a random variable Zi whose second moment is O(1),
we conclude that zi scales as O(1) in the LSL.

Later we will make use of the following lemma, whose proof is
omitted because it is a bit long and does not provide much insight.

Lemma 2. Under Assumption 1 and the Onsager choice of µ(t)

from (3), the elements of v(t), r(t), x(t), and µ(t) scale as O(1) in
the LSL for all iterations t.

Proof. See [9, App. A].

We now perform a Taylor series expansion of the η(t−1) term in
(11) about r(t−1)

il :

η(t−1)(r(t−1)

il + ailv
(t−1)

i ) = η(t−1)(r(t−1)

il ) (12)

+ ailv
(t−1)

i η(t−1)′(r(t−1)

il ) +
1

2
a2il(v

(t−1)

i )2η(t−1)′′(r(t−1)

il ) + H.O.T.︸ ︷︷ ︸
O(1/m)

where theO(1/m) scaling follows from the fact that a2il = 1/m ∀il,
that both v(t−1)

i and r(t−1)

il scale as O(1) via Lemma 2, and η(t−1)(·)
is polynomial of bounded degree, which implies that η(t−1)′′(r(t−1)

il )
also scales as O(1). Similarly, the 2nd term in (12) scales as
O(1/

√
m). We will ignore the O(1/m) term in (12) since it van-

ishes relative to the O(1/
√
m) term in the LSL. Thus we have

[(I −A>A)x(t)]j

≈ −
∑
i

aij
∑
l6=j

ail
[
η(t−1)(r

(t−1)

il ) + ailv
(t−1)

i η(t−1)′(r(t−1)

il )
]

(13)

= −
∑
i

aij
∑
l6=j

ailη
(t−1)(r

(t−1)

il )−
1

m

∑
i

aijv
(t−1)

i

∑
l 6=j

η(t−1)′(r(t−1)

il )

(14)

using a2il = 1/m ∀il. Similar to (9), we have

[(I −A>A)x]j = −
∑
i

aij
∑
l 6=j

ailxl, (15)

which, combined with (7) and (14), yields

e(t)j ≈
∑
i

aij
∑
l 6=j

ail
[
xl − η(t−1)(r(t−1)

il )
]

(16)

− 1

m

∑
i

aijv
(t−1)

i

∑
l 6=j

η(t−1)′(r(t−1)

il ) +
∑
i

aij(wi + µ(t)

i )

=
∑
i

aij
∑
l6=j

ail
[
xl − η(t−1)(r(t−1)

il )
]

(17)

+
∑
i

aijwi +
∑
i

aij
[
µ(t)

i − v
(t−1)

i

1

m

∑
l 6=j

η(t−1)′(r(t−1)

il )
]
.

We are now in a position to observe the principal mechanism
of AMP. As we argue below (using the central limit theorem), the
first and second terms in (17) behave like realizations of zero-mean
Gaussians in the LSL, because {ail} are realizations of i.i.d. zero-
mean random variables {Ail} that are independent of xl, wi, and
{r(t−1)

il } under Assumption 1. But the same cannot be said in general
about the third term in (17), because v(t−1)

i is strongly coupled to aij .
Consequently, the denoiser input-error e(t)j is difficult to characterize
for general choices of the correction term µ(t)

i .
With AMP’s choice of µ(t)

i , however, the 3rd term in (17) van-
ishes in the LSL. In particular, with µ(t)

i from (3), it becomes∑
i

aij
[v(t−1)

i

m

∑
l

η(t−1)′(r(t−1)

l )− v(t−1)

i

m

∑
l 6=j

η(t−1)′(r(t−1)

il )
]

=
1

m

∑
i

aijv
(t−1)

i

[
η(t−1)′(r(t−1)

j )+
∑
l 6=j

(
η(t−1)′(r(t−1)

l )−η(t−1)′(r(t−1)

il )
)]

≈ 1

m

∑
i

aijv
(t−1)

i

[
η(t−1)′(r(t−1)

j ) +
∑
l6=j

ailv
(t−1)

i η(t−1)′′(r(t−1)

il )
]
, (18)

where, for the last step, we used the Taylor-series expansion

η(t−1)′(r(t−1)

l ) = η(t−1)′(r(t−1)

il + ailv
(t−1)

i ) (19)

= η(t−1)′(r(t−1)

il ) + ailv
(t−1)

i η(t−1)′′(r(t−1)

il ) +O(1/m) (20)
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and dropped the O(1/m) term, since it will vanish relative to the
ailv

(t−1)

i η(t−1)′′(r(t−1)

il ) term in the LSL. In (18), the first term is

1

m

m∑
i=1

aijv
(t−1)

i η(t−1)′(r(t−1)

j )︸ ︷︷ ︸
O(1/

√
m)

= O(1/
√
m) (21)

since aij ∈ ±1/
√
m and v(t−1)

i η(t−1)′(r(t−1)

j ) is O(1) due to
Lemma 2. Thus the first term in (18) will vanish in the LSL.
The second term in (18) is

1

m

m∑
i=1

aij(v
(t−1)

i )2
∑
l 6=j

ailη
(t−1)′′(r(t−1)

il )

︸ ︷︷ ︸
O(1)︸ ︷︷ ︸

O(1/
√
m)

= O(1/
√
m), (22)

which will also vanish in the LSL. The O(1) scaling in (22) follows
from Lemma 2 under Assumption 1, and the O(1/

√
m) scaling fol-

lows from the fact that ail ∈ ±1/
√
m and (v(t−1)

i )2 = O(1).
Thus, for largem and the AMP choice of µ(t)

i , eq. (17) becomes

e(t)j ≈
∑
i

aij
∑
l 6=j

ail
[
xl − η(t−1)(r(t−1)

il )︸ ︷︷ ︸
, ε(t)il

]
+
∑
i

aijwi. (23)

Under Assumption 1, ail is a realization of equiprobable Ail ∈
± 1√

m
that is independent of {xl}Nl=1, r(t−1)

il , and {Aij}j 6=l. Thus we

can apply the central limit theorem to say that, for any fixed {ε(t)il },
the first term converges to a Gaussian with mean and variance

E
[∑

i

Aij

∑
l6=j

Ailε
(t)

il

]
=
∑
i

E[Aij ]
∑
l 6=j

E[Ail]ε
(t)

il = 0 (24)

E
[(∑

i

Aij

∑
l 6=j

Ailε
(t)

il

)2]
=
∑
i

E[A2
ij ]
∑
l 6=j

E[A2
il](ε

(t)

il )
2 (25)

=
1

m2

∑
i

∑
l 6=j

(ε(t)il )
2. (26)

From the Taylor expansion (12), we have

ε(t)il = xl − η(t−1)(r(t−1)

il ) (27)

= xl − η(t−1)(r(t−1)

l )︸ ︷︷ ︸
, ε(t)l

+ ailv
(t−1)

i η(t−1)′(r(t−1)

il ) +O(1/m)︸ ︷︷ ︸
O(1/

√
m)

, (28)

where the O(1/
√
m) scaling follows from the facts that ail ∈

±1/
√
m and v(t−1)

i η(t−1)′(r(t−1)

il ) is O(1). Notice that ε(t)l is the
denoiser output error, which is also O(1). Because the O(1/

√
m)

term in (28) vanishes in the LSL, we see that (26) becomes

1

m2

∑
i

∑
l 6=j

(ε(t)il )
2 ≈ 1

m2

m∑
i=1

∑
l 6=j

(ε(t)l )2 =
1

m

∑
l 6=j

(ε(t)l )2 (29)

=
n

m

1

n

n∑
l=1

(ε(t)l )2︸ ︷︷ ︸
O(1)

− 1

m
(ε(t)j )2︸ ︷︷ ︸

O(1/m)

≈ δ−1E(t), (30)

where E(t) is the average squared error on the denoiser output x(t):

E(t) , lim
n→∞

1

n

n∑
l=1

(ε(t)l )2. (31)

We have thus deduced that, in the LSL, the first term in (23) behaves
like a zero-mean Gaussian with variance δ−1E(t). For the second
term in (23), we can again use the central limit theorem to say that,
for any fixed {wi}, the second term converges to a Gaussian with
mean and variance

E
[∑

i

Aijwi

]
=
∑
i

E[Aij ]wi = 0 (32)

E
[(∑

i

Aijwi

)2]
=
∑
i

E[A2
ij ]w

2
i =

1

m

m∑
i=1

w2
i ≈ τw, (33)

where τw denotes the empirical second moment of the noise:

τw , lim
m→∞

1

m

m∑
i=1

w2
i . (34)

To summarize, with AMP’s choice ofµ(t) from (3), the jth com-
ponent of the denoiser input-error behaves like

e(t)j ∼ N
(
0, δ−1E(t) + τw︸ ︷︷ ︸

, τ (t)
r

)
(35)

in the LSL, where N (µ, σ2) denotes a Gaussian random variable
with mean µ and variance σ2. With other choices of µ(t) (e.g.,
ISTA’s choice of µ(t) = 0 ∀t), it is difficult to characterize the de-
noiser input-error e(t) and in general it will not be Gaussian.

4. AMP STATE EVOLUTION

In Section 3, we used Assumption 1 to argue that the AMP algorithm
yields a denoiser input-error e(t) whose components are N (0, τ (t)

r )
in the large system limit. Here, τ (t)

r = δ−1E(t) + τw where E(t) is
the average squared-error at the denoiser output in the LSL.

Recalling the definition of E(t) from (31), we can write

1

n

n∑
l=1

(ε(t)l )2 ≈ 1

n

n∑
l=1

[
η(t−1)(xl +N (0, τ (t−1)

r ))− xl
]2 (36)

= E
[
η(t−1)(X +N (0, τ (t−1)

r ))−X
]2 (37)

where X is a scalar random variable with the empirical distribution

X ∼ p(x) = 1

n

n∑
l=1

δ(x− xl), (38)

where δ(·) denotes the Dirac delta. Thus, in the LSL, we can argue

E(t) = E
[
η(t−1)

(
X +N (0, τ (t−1)

r )
)
−X

]2
, (39)

where X now is distributed according to the n → ∞ limit of the
empirical distribution. Combining (39) with the update equation for
τ (t)
r gives the following recursion for t = 0, 1, 2, . . . :

τ (t)
r = δ−1E(t) + τw (40a)

E(t+1) = E
[
η(t)
(
X +N (0, τ (t)

r )
)
−X

]2
, (40b)

initialized with E(0) = E[X2]. The recursion (40) is known as
AMP’s “state evolution” for the mean-squared error [1, 3, 2].

The reason that we call η(t)(·) a “denoiser” should now be clear.
To minimize the mean-squared error E(t+1), the function η(t)(·)
should remove as much of the noise from its input as possible. The
smaller that E(t+1) is, the smaller the input-noise variance τ (t+1)

r will
be during the next iteration.
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5. AMP VARIANCE ESTIMATION

For best performance, the iteration-t denoiser η(t)(·) should be de-
signed in accordance with the iteration-t input noise variance τ (t)

r .
With the AMP algorithm, there is an easy way to estimate the value
of τ (t)

r at each iteration t from the v(t) vector, i.e., τ (t)
r ≈ ‖v(t)‖2/m

[7]. We now explain this approach using arguments similar to those
used above.

To begin, it is straightforward to show (see [9, eq.(44)]) that

v(t)

i = yi −
n∑

l=1

ailη
(t−1)(r(t−1)

il )

− v(t−1)

i

1

m

n∑
l=1

η(t−1)′(r(t−1)

il ) + µ(t)

i +O(1/m). (41)

Ignoring the O(1/m) term and use AMP’s µ(t)

i from (3), we get

v(t)

i ≈ yi −
n∑

l=1

ailη
(t−1)(r(t−1)

il )

+ v(t−1)

i

1

m

n∑
l=1

[
η(t−1)′(r(t−1)

l )− η(t−1)′(r(t−1)

il )
]

(42)

= yi −
n∑

l=1

ailη
(t−1)(r(t−1)

il )

+ v(t−1)

i

n

m

1

n

n∑
l=1

[
ailv

(t−1)

i η(t−1)′′(r(t−1)

il ) +O(1/m)
]︸ ︷︷ ︸

O(1/
√
m)

, (43)

where we used the Taylor series (20) in the second step and ail ∈
±1/
√
m to justify the O(1/

√
m) scaling. Since the last term in

(43) is the scaled average of O(1/
√
m) terms, with O(1) scaling,

the entire term isO(1/
√
m). We can thus drop it since it will vanish

relative to the others in the LSL. With this and y = Ax+w, we get

v(t)

i ≈ wi +

n∑
l=1

ail
[
xl − η(t−1)(r(t−1)

il )︸ ︷︷ ︸
= ε(t)il

]
, (44)

recalling ε(t)il defined in (23). Squaring and averaging over i yields

1

m

m∑
i=1

(v(t)

i )2 ≈ 1

m

m∑
i=1

w2
i +

1

m

m∑
i=1

( n∑
l=1

ailε
(t)

il

)2

+
2

m

m∑
i=1

(
wi

n∑
l=1

ail
[
xl − η(t−1)(r(t−1)

il )
])
. (45)

We now examine the components of (45) in the LSL. By definition,
the first term in (45) converges to τw. By the law of large numbers,
the second term converges to

lim
n→∞

E
[( n∑

l=1

Ailε
(t)

il

)2]
= lim

n→∞

n∑
l=1

n∑
j=1

E[AilAij ]ε
(t)

il ε
(t)

ij (46)

= lim
n→∞

1

m

n∑
l=1

(ε(t)il )
2, (47)

since E[AilAij ] = 1/m when l= j and E[AilAij ] = 0 when l 6= j.
Using the relationship between ε(t)il and ε(t)l from (28), we have

lim
n→∞

1

m

n∑
l=1

(ε(t)il )
2 = lim

n→∞

n

m

1

n

n∑
l=1

(ε(t)l )2 = δ−1E(t), (48)

where m depends on n because m/n = O(1). In summary,

lim
m→∞

1

m

m∑
i=1

(v(t)

i )2 = τw + δ−1E(t) = τ (t)
r , (49)

which shows that τ (t)
r is well estimated by ‖v(t)‖2/m in the LSL.
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Fig. 1. Denoiser output MSE E(t)
n and denoiser input-error variance

τ (t)
r,n versus iteration for AMP and its state evolution. Dashed lines

show the empirical average over 1000 random draws ofA and error
bars show the empirical standard deviation.

Table 1. Numerical evidence that std(E(t)
n )
√
n and std(τ (t)

r,n)
√
n are

approximately constant with n, implying that std(E(t)
n ) and std(τ (t)

r,n)
scale as 1/

√
n for sufficiently large n.
n 1000 3000 10 000 30 000

std(E(29)
n )
√
n 0.0011 0.0008 0.0010 0.0010

std(τ (29)
r,n )
√
n 0.0026 0.0017 0.0022 0.0020

6. NUMERICAL EXPERIMENTS

We now present numerical experiments that demonstrate the AMP
behaviors discussed above. In all experiments, we used a sampling
ratio of δ = 0.5, {Aij} drawn i.i.d. zero-mean Gaussian with vari-
ance 1/m, {xj} drawn i.i.d. from the Bernoulli-Gaussian distribu-
tion with sparsity rate β = 0.1 and {wi} drawn i.i.d. zero-mean
Gaussian with variance such that E[‖Ax‖2]/E[‖w‖2] ≈ 20 dB.
We used MMSE denoising: η(t)(rj) = E[X | rj = X+N (0, τ (t)

r )].
Below we plot finite-dimensional versions of the denoiser output

MSE E(t) and the denoiser input-error variance τ (t)
r versus iteration

t for the AMP algorithm (2) and the AMP state evolution (40). For
the algorithm, the iteration-t denoiser output MSE was computed as
E(t)
n = 1

n

∑n
j=1(xj − x

(t)

j )2 and the denoiser input-error variance
was computed as τ (t)

r,n = ‖v(t)‖2/m, where the subscript n indi-
cates the dimensional dependence of these quantities. For the state
evolution, the denoiser output MSE was computed as

E(t)
n =

{
E
[
η(t−1)(X +N (0, τ (t−1)

r,n ))−X
]2

t > 0

E
[
X2
]

t = 0,
(50)

with the expectation evaluated using the n-term empirical distri-
bution for X , and the iteration-t denoiser input-error variance was
computed as τ (t)

r,n = δ−1E(t)
n + τw,n using the empirical noise vari-

ance τw,n = 1
m

∑m
i=1 w

2
i . Each figure plots the empirical mean and

standard deviation over T random draws ofA for a single fixed draw
of x andw.

Figure 1 shows the results at dimension n ∈ {300, 3000, 30000}.
The figures show an excellent agreement between the state evolution
and average AMP quantities when n ≥ 3000, where the average
was computed over T = 1000 realizations of A. The error bars,
which show the empirical standard deviation over the T realizations,
decrease as the dimension n increases. Table 1 suggests that the
standard deviation scales proportional to 1/

√
n at large n.
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