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Abstract—In this paper, we propose a novel soft-output multi-
user detector for non-coherent multiple access with Grassman-
nian signaling under Rayleigh block fading. Our detector is based
on expectation propagation (EP) approximate inference and has
polynomial complexity in the number of users. A simplified
version of this scheme coincides with a scheme based on soft
minimum-mean-square-error (MMSE) estimation and successive
interference cancellation (SIC). Both schemes, especially EP,
produce accurate approximates of the true posterior. They
outperform a baseline decoder based on projecting the received
signal onto the subspace orthogonal to the interference in terms
of both hard-detected symbol error rate and coded bit error rate.

Index Terms—non-coherent communications, multiple access,
expectation propagation, Grassmannian constellations

I. INTRODUCTION

In wireless communications, multiple-input multiple-output
(MIMO) technology is capable of improving significantly both
the system spectral efficiency and reliability [1], [2]. In practical
MIMO systems, the transmitted symbols are normally drawn
from a finite discrete constellation. The task of the receiver
is to detect these symbols based on the received signal and
available channel information. If the instantaneous value of
the channel matrix is treated as known, such as when it is
obtained via channel estimation, the detection problem is said
to be coherent and has been investigated extensively in the
literature [3]. If only statistical information about the channel
is available, the detection problem is said to be non-coherent.

In the non-coherent case, the transmitted symbols are
typically structured, e.g., using differential encoding, or such
that (s.t.) the matrix of symbols in the space-time domain is
orthonormal and isotropically distributed [4]. The latter was
proposed for the block fading channel where the channel matrix
remains constant for each coherence block of 7' symbols and
varies independently between blocks. There, information is
carried in the subspace of the signal matrix, which is invariant
to multiplication by the channel matrix. Thus, a non-coherent
constellation can be designed as a collection of points in the
Grassmann manifold G(C7T, K), which is the space of K-
dimensional subspaces in CT, where K is the number of
transmit antennas. This was shown to be capacity-achieving at
high signal-to-noise-ratio (SNR) for the Rayleigh block fading
channel [5]. The optimal maximum-likelihood (ML) detector
is NP-hard, thus low-complexity sub-optimal detectors have
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been proposed for Grassmannian constellations with additional
structure, e.g., [6], [7].

In this paper, we focus on non-coherent detection in the
single-input multiple-output (SIMO) multiple-access channel
with K single-antenna users under flat and block Rayleigh
fading with coherence time 7'. The transmitted signals are con-
structed from disjoint Grassmannian constellations in G(C7, 1).
The receiver is interested not only in the hard detections of the
symbols but also in their posterior marginals to, e.g., compute
the bit-wise log-likelihood ratios (LLRs) required for channel
decoding. Exact posterior marginalization is prohibitive with
many users or large constellations. Thus we seek sub-optimal
schemes with practical complexity.

In contrast to probabilistic coherent MIMO detection, for
which many schemes have been proposed [3], the probabilistic
non-coherent MIMO detection has not been well investigated.
The detection scheme in [8] decouples the multi-user detection
into K single-user detection problems, but it is sub-optimal
and compatible only with the constellation structure therein.
The list-based soft demapper in [9] reduces the number of
terms considered in posterior marginalization by including
only those symbols at a certain distance from a reference point.
However, it was designed for the single-user case only and has
no obvious generalization to the multi-user case.

In this work, we propose message-passing algorithms for
posterior marginal inference in non-coherent multi-user MIMO
channels. Our algorithms are based on expectation propaga-
tion (EP) approximate inference [10]. For EP, we build a factor
graph whose variable nodes correspond to the noiseless received
signal vectors and the Grassmannian symbol indices. The EP
algorithm passes messages between these variable nodes and the
corresponding factor nodes. We also propose a simplification
of this scheme that can be interpreted as soft MMSE estimation
and successive interference cancellation (SIC).

We numerically compare the performance of our EP and
MMSE-SIC detectors to the optimal ML detector (when
possible), a genie-aided detector, the conventional coherent
detector, and the state-of-the-art detector from [8]. We find
that EP and MMSE-SIC achieve near-optimal symbol error
rate and coded bit error rate. To the best of our knowledge,
these are the first message-passing schemes for non-coherent
multi-user MIMO detection with Grassmannian signaling.

The remainder of this paper is organized as follows. We
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present the system model in Section II. A brief review of
EP is presented in Section III, and the EP approach to the
non-coherent MIMO detection is presented in Section IV. In
Section V, a MMSE-SIC detector is presented as a simplifi-
cation of the EP detector. Numerical results are presented in
Section VI, and conclusions are presented in Section VII.
Notation: We denote vectors and matrices with italic bold
letters in respectively lowercase and uppercase, e.g., a vector v
and a matrix M. The Euclidean norm is denoted by ||v|| and the
Frobenius norm |M|| . The trace, transpose, and conjugated
transpose of M are tr{M}, M" and M", respectively. 1{-} is
the indicator function. O denotes the all-zero vectors/matrices.
[n] := {1,2,...,n}. The Grassmann manifold G(CT, K) is
defined as the space of K -dimensional subspaces in CT'. In par-
ticular, G(CT', 1) is the Grassmannian of lines. D(q||p) denotes
the Kullback-Leibler (KL) divergence between two distributions
p and q. N'(p, X)) denotes the Gaussian vector distribution with
mean g, covariance matrix ¥, and thus probability density

function (pdf) N (z;p,X) := exp(_(z;fé);?z;(m_”)), zcCn.

II. SYSTEM MODEL

We consider a SIMO multiple access channel in which K
single-antenna users transmit to a receiver having [N antennas.
We assume that the channel between the receiver and each user
is flat and block fading with an equal-length and synchronous
(across the users) coherence interval of 7" symbols. That is, the
channel vectors hj, € CV*1 between the transmit antenna of
user k and the IV receive antennas remain constant within each
coherence block of 7" > 1 symbols, and change independently
between blocks. The distribution of h, is assumed to be known
to the receiver, but its realizations are unknown to both the
receiver and users. We consider independent and identically
distributed (i.i.d.) Rayleigh fading, i.e., hx ~ N(0,1Iy).

Within a coherence block, each user k sends a signal vector
s, € CT, and the receiver receives a T x N signal matrix

K
Y =) sih+W=8SH +W, (1)

k=1

where § = [81...8x] € CT*E and H = |hy...hg] €
CN*K concatenate the transmitted signals and channel vectors,
respectively, W is the Gaussian noise with i.i.d. N(0,02)
entries, and the block index is omitted for simplicity. We
assume that the transmitted signals have average unit norm, i.e.,
E [||sx]|?] = 1, Vk. Under this normalization, the SNR of each
transmitted signal at each receive antenna is SNR = 1/(T'c?).
We assume that the transmitted signals belong to disjoint finite
individual Grassmannian constellations in G(C”,1). That is,
s, € S = {s,(el),...,s,(clsk‘)}, where each symbol s,(;) is a
unit-norm vector representative of a point in G(C”,1).
Given S, the matrix Y is Gaussian with independent columns
having the same covariance matrix o2I+S8". Thus,

exp (—tr {YH(UQIT + SSH)_lY})

Y|S) =
p(¥19) TNTdet™ (0217 1 SS7)

)

When a channel code is used, most channel decoders require
the LLR of the bits computed from the posteriors p(sx|Y),
k € [K], which are marginalized from

p(Y;(Sl),P;(S) x p(Y|S)p(S).

Assuming that the transmitted signals are independent and
uniformly distributed over the discrete constellations, the prior
p(S) factorizes as p(S = [s1,...,8k]) = Hf:uslT\]l{sk €
Sk}. On the other hand, the likelihood function p(Y'|S)
involves all the signals s1,...,8x in a manner that does
not easily factorize. Exact marginalization of p(S|Y’) requires

computing
plsl¥) = Y
8,ES; ,Vl#k

p(SY) = (3)

p(S|Y), fork € [K]. 4)

This becomes formidable in the case of many users or large

constellations. Thus, we seek a low-complexity approximation
K

p(SIY) = p(SIY) = [[ plsrlY). 5)

k=1

In what follows, we design a posterior marginal estimation

scheme based on expectation propagation (EP).

III. EXPECTATION PROPAGATION

EP was proposed in [10] for approximate inference in
probabilistic graphical models. Let us consider a set of variables
contained in a random vector  with posterior of the form

p(@) o [ ] ta(@a), (6)
e

where x, is the subset of variables involved in the factor 1.
Let us partition the components of z into some sets {z3},
where no 3 is split across factors (i.e., V a, 3 either xg C z,,
or g Nz, = (). We are interested in the posterior marginals
with respect to (w.r.t.) the partition {3}

EP approximates the true posterior p from (6) by a distribu-
tion p that can be expressed in two ways. First, it can be w.r.t.
the “target” partition {z3} as

p(@) = [[ps(=s), @)
B

where pg are constrained to be in the exponential family so that

pa(x) = exp (7;3¢5 (zg) — Ag(vy)), for sufficient statistics
&5(xs3), parameters 74, and log-partition function Ag(y):=

In f e7T4’ﬂ (zﬁ)dxg. Second, p can also be expressed w.r.t. the
partition {z,} in accordance with (6) as

p@) o [ ma(@a)- (8)

For (7) and (8) to be consistent, there must exist factors mq g
of the form mq 3(xs) = exp (v}, sbs(xp)) such that

mo(@a) = [] mos(es) =exp( 3 v;,ﬂqsﬂ(zg)), ©)

BEN BEN,

pa(@s) x [ mosas) =exp( T v;,ﬁqsg(zﬁ)), (10)

aeNg acMNg
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where 91, collects the indices 8 for which 25 C z,, and g
collects the indices o for which £z C z,. It turns out that
Mq,g can be interpreted as a message from the factor node «
to the variable node 3 on a bipartite factor graph.

EP works by first initializing all m(z,) and pg(zs) then
iteratively updating each m,, in turn. Let us fix a factor index
. We construct the “tilted” distribution g, by swapping v,
for its approximate mq, in p(x) as g (x) = 2E¥LaEe) "anq

Mma(Ta)
then project it back onto the exponential family by solving

), (D

AIIEW

Hpgeg Tg) = arg gr)réigD(qa(x) | p(z

where P is the set of distributions with the form of p in (7).

After some manipulations following [10], we deduce that for
each 8 € M, the optimal p;°F is the moment match of gq 4 in
the exponential family with sufficient statistics ¢4(x ), where

Go,5(Zp): /¢a To lH H Mo g(T5) | dEa g (12)

BENL Gmg\a

is formed by taking the product of the true factor v, and all
the messages impinging on that factor, and then integrating
out all variables except zs. For 8 ¢ M, the optimal ppy is
simply pg(zg). The factor m,, is then updated via

gew mOL xO&
me () = Lo (@) o [] mics (@s),  (13)
p BEN
new T
with m2%Y (z5) := Pocs (@) (14)

Ha’e‘)’tg\a Ma a/B(xB) .

Observe that the update of m,, only affects the approximate
posterior of the variable nodes S in the neighborhood of factor
node o Equation (14) says that the new message "5 passed
from a to g € D, equals Py 5 divided by the message
product {ma/,g}afemﬁ\a, i.e., previous messages to [ from
all directions except «v. After that, the process is repeated with
the next a.

IV. APPLICATION OF EP TO NON-COHERENT DETECTION

To apply EP to the problem of non-coherent detection, we
express the signal of user k as s = s,(;’“), where 7;, are random
symbol indices that are independent and uniformly distributed
over [|Si|]. We rewrite (1) in vector form as

K
= E zZi +w,
k=1

where y = vec(Y"), z, := (s;’”) @ In)hy, and w :=
vec(W") ~ N(0,0%Iy7). The problem of estimating the
posteriors p(s;|Y') is equivalent to estimating p(ix|Y") since
they admit the same probability mass function (pmf).

With z := [2],...,2%]" and i := [iy,...,ix]", we can write

p(yl2)p(2[i)p(i)
=1o(z1,...,2 [H¢k1 2k, ik } [ﬁ%ﬂ%)]a (16)

(15)

p(i, zly) o< p(i,2,y) =

corresponding to (6), where

K
1/’0(317 R 7ZK) = p(y|z) = N(ya sz7U2INT>7
k=1
Yr1(2k, k) = p(zliv) = N(zk; 0, (Sl(glk)s(lk)H) @Iy),
wkg(ik) = p(Zk) for i € [|Sk|]

W

We will use EP to infer the posterior distribution of the indices
{ix}. To do so, we choose the partition = {zy, i}, and
illustrate the interaction between these variables and the factors
Yo, Yr1, and Yo by the bipartite factor graph in Fig. 1. This
graph has a tree structure with a root ¥y and K leaves {zpkg}f:l.

#11,Cna {r 11)}‘5 {r 12)}|S”
[or: | /\ 5
v ‘ :
. Ch ,Cr1 - |Sk| y \SL\
o ko@ﬂk k @{ k1 } ]\Q k } "
ki1, Cr1 {r Kl}‘s E { KQ}‘SH

Fig. 1. A factor graph representation of the non-coherent detection problem.

We write the EP approximation according to (7) as

Hpk (21)Dr (i),

where Py (21) and Py (ix) are implicitly conditioned on y and
constrained to be a Gaussian vector distribution and a discrete
distributions with support [|S|], respectively, i.e.,

p(zly) = p(i, zly) = (17)

Pr(zr) = N(2k; 2, Xk) s.t. Xy is positive definite, (18)
) ISkl
Pr(in) = 7% for iy, € [|Sk|] Sal=1. (19)
i=1

We also write the EP approximation according to (8) as

p(xly) cmo(z1,...,2 {Hmm 2k, Uk ] Lf[lmkz(ik)}

[Tt N (zk; o Cro)-
mkl(zk,ik) 0.8 N(Zk;ukl,ckl)ﬂlilk), and mkg(ik) = 7Tk12k)
for iy, €[|Sk|]. On the factor graph in Fig. 1, we can interpret
(10, Cro) as the message from factor node v to variable
node 2z, (t4;,1,Ck1) as the message from node 1 to node

where  mg(21,...,2K) o

IS
{ (““)} "' as the message from node v;; to node iy,

and { (“‘)}I kl as the message from node ;2 to node 7.
1) The EP message upa’ates Following (12) and ( 14) We
derive the messages as follows.! First, the message {ﬂ(lk) }

from node ;2 to node iy, is simply 77,(62 k)

zkl

= W for ix, € [|Sk]-

A full derivation can be found in the long version [11].
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The message {7Tk ’“)}‘ #| from node Y1 to node iy is given
by

(in) _ N (05 g, (55, syt (lk)H) @Iy +Chro)
k1 )
Zikll N(0; g, (S;E;)SI(Q)H) @Iy +Chro)

for iy, € [|Sk|]- The message (u;;,Cr1) from node 15 to
nodes zj, is given by

Cri= (21;1 _0;01)—1’ 12951 =C1 (zilﬁk _01201%0)7 (21

where

(20)

|Sk| |Sk|
B = Zmzkz, Sk = > e (Bridhy k) — 2kl (22)
=1

1
with 8; = ([(s( )S](C)H)Q@IN] 1+C;Zol> , and 2p; =

%1iC g 1yo- Finally, the message (0, Cro) from node v to
node 2 is given by

Cro=0’Inr + Zcﬂ, Pro =Y — ijl.

J#k J#k
2) Initialization of the EP messages: We choose the non-
informative initialization Cy = 0 and g, = 0, so that, from
(20), the initial message from node 11 to node i coincides
with the uniform prior W,(czl) = & 5  for i € [|Sk[]; the initial

parameters Xj; = (s,(;)s,(c) ) ® Iy and zy; = 0. This leads
to the initial parameters of py(z) from (22) as 2 = 0, and
¥ = \Skl Z‘S’“l( () mH) ® Iy, and the initial message from
node 1 to node 2z given in (21) as C1 = Xy, and py = 2.
Finally, the initial messages from node )y to node 2y, follows
from (23) as Cjg = o2 INT+ZJ¢k & IZ‘S \( ()H)®I
and pyo = y.

After the initialization, the EP algorithm proceeds by
iteratively updating the messages. In particular, it goes through
the branches of the tree graph in Fig. 1 in a round-robin
manner, and in each branch, the factor nodes are visited in the
order from leaf to root (other message passing schedulings can
be implemented). In the end, according to (10) and (19), the
estimated pmf of p(s;|Y) is py (i) = 70" oc 70 7% that

is pr(ix) = 7r,(€1") since 77,(@2) is constant over iy, € [|Skl].
V. MMSE-SIC: A SIMPLIFICATION OF EP

In the EP message updates, if we replace (21) by

(23)

|Sk|
(2) ’L)H
E 7rk1 sk sk Y@ Iy,

which arises by skipping a pI'Q]GCthIl onto the Gaussian family
in the derivation of (g, C1), it follows from (23) that p;,, =

y and Cjo = O. INT + Zﬁskzl&‘ (9) ( () i)H) @ 1In. Let
Z‘Sk s, s,(C)H and Q,, == Zl# R, + o?Ir, then

Ckl =R, ® IN and Cyo = @, ® In. It follows that the

posterior update (20) of the EP scheme can be written as

=0 and Cjy = (24)

This simplified scheme can be alternatively constructed
as follows. In the channel output (15), the interference
from other users while decoding the signal of user k is
tr == > ;44 %1 with mean E [¢;] = 0 and covariance matrix

[tktk] Zl#k [slsl]®IN = Zl;ﬁk Ry 1 . If we treat t,
as a Gaussian vector with the same mean and covariance matrix,
then tj,+w ~ N (0,Q,®Iy). Since y = (8,1 v )hj, +tp+w,
the single-user likelihood under this approximation is

Pylse) = N (450, (sesl + @) @ In) .

Then, the update of the approximate posterior p(sy|y) xp(y|sk)
coincides with (25). Ry is then recalculated with the updated
value of p(skly), and @, | # k, are updated accordingly. This
is done for each user k€ [K], and then the next iteration starts.

In short, the derived simplification of the EP scheme
iteratively MMSE-estimates the signal 2z, of one user at a time
while treating the interference as Gaussian. At each iteration,
the Gaussian approximation of the interference for each user
is successively improved using the estimates of the signals of
other users. We refer to this scheme as MMSE-SIC. As for
the general EP scheme, we can start with the non-informative
initialization p(s;|Y) = ‘S—lkl]l{sk € Sk}

(26)

VI. PERFORMANCE EVALUATION

We evaluate the performance of the proposed schemes
for a given set of individual constellations with |S;| = 25,
Vk € [K]. We consider the design in [8], which generates
Sy, as s\ = %,i € [25], where U; € CT*(T-K+)
is a full-rank precoder defined uniquely for user k£ and
D = {d(l),...,d(2 )} is a Grassmannian constellation in
G(CT—K+11). We consider the precoders U}, defined in [8,
Eq.(11)] and the cube-split constellation proposed in [7] for
D. This structured constellation has good packing properties,
allows for low-complexity single-user decoding and a simple
yet effective binary labeling scheme. We take the binary label
of d for sg), Vk. Exploiting the precoder structure, [8]
introduces a detector [8, Sec.V-B-3] that mitigates interference
by projecting the received signal onto the subspace orthogonal
to the interference subspace. We refer to it as POCIS (Projection
onto the Orthogonal Complement of the Interference Subspace).

We set the number of iterations of EP and MMSE-SIC as
20, and of POCIS as 3 since it quickly converges.?

First, in Fig. 2, we plot the hard-detected symbol error
rate (SER) of EP, MMSE-SIC, and POCIS for T'=6, K =3,
N =8, and B =8. For a benchmark, since the optimal joint
ML detector is computationally infeasible, we consider a genie-
aided detector consisting in giving the receiver, while it decodes
s, the knowledge of the signals s; (but not the channels h;)
of all interfering users [# k. The performance of EP is very
close to this genie-aided detector and better than MMSE-SIC at
SNR > 10 dB. Both EP and MMSE-SIC are better than POCIS.
We also show the SER of a non-coherent time division multiple

G N (0;%( ](;k)s;czk)HJFQ )®IN) access (TDMA) scheme where each user transmits from a
ik .
T = ik €[|Skl]. (29)
|Sk| ( (i)H I ) 2To stabilize, we damp the update of C1, 1, Cro, phro in EP and of
2N (0, (sk Qi) 1y Ry, Q,, in MMSE-SIC. M "
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cube-split constellation of size 2% in G(CT,1) in a round-
robin manner. We also show a coherent pilot-based scheme
with quadrature amplitude modulation signals, MMSE channel
estimation, and MMSE symbol equalization. These latter two
schemes are outperformed by the non-coherent multiple-access
scheme [8] with EP, MMSE-SIC, and POCIS detectors.

Symbol Error Rate

—o— Genie-aided detector

—©& —EP

L MMSE-SIC
—v-—POCIS

—-A-= Pilot-based scheme

++%* Non-coherent TDMA

refine significantly the pmf if the constellation is sparse. This
situation is not observed for B = 8§, i.e., larger constellations.
Also, as compared to the case T'= 6, K = 3, B = 8 in Fig. 3,
the performance of MMSE-SIC is significantly improved as
the number of receive antennas N increases from 3 to 4.

100 T T T T T T T T

0 2 4 6 8
SNR (dB)

Fig. 2. The symbol error rate of EP, MMSE-SIC, POCIS, and a genie-aided
detector for 7' = 6, K = 3, N = 8 in comparison with a pilot-based scheme
and non-coherent TDMA for the same transmission rate of 8 bits/user/block.

Next, we integrate a rate-1/3 turbo code. The turbo encoder
accepts packets of 1008 bits; the turbo decoder computes the
bit-wise LLRs from the detector’s soft outputs and performs 10
decoding iterations. In Fig. 3, we show the bit error rate (BER)
with this turbo code using B = 8 bits/symbol and different
values of T" and i = N. EP achieves the closest performance
to the genie-aided detector and the optimal detector with exact
marginalization (4). The BER of MMSE-SIC vanishes slower
with SNR than the other schemes, and becomes better than
POCIS as K grows. For T'=7 and K = N =4, the power
gain of EP w.r.t. MMSE-SIC and POCIS for the same BER of
1073 is about 3 dB and 4 dB, respectively.

100 T T T T T T T T T T

1071 F
2 4102kF
£ 10
~
g
=
- 103k
a
104 F H
* Optimal detector VvV POCIS
L4 Genie-aided detector T=5K=N=2
o e == T=6,K=N=3
105F |+ MMSE-siC T=7,K=N=4 El
n n n n n n n n | .
-2 -1 0 1 2 3 4 5 6 7 8 9
SNR (dB)

Fig. 3. The bit error rate with turbo codes of EP, MMSE-SIC, POCIS, and
the optimal/genie-aided detector for B = 8 bits/symbol and K = N.

Finally, in Fig. 4, we compare the BER with the same turbo
code with different constellation sizes for T' = 6, K = 3, and

T
o
P ]
..
D
3 102} '. 1
5]
o
o
2
=
A 103 355 E
8 )
104 - ]
#*  Optimal detector VvV  POCIS
®  Genie-aided detector B=5
10 o EP  ——= B=8
+ MMSE-SIC
-4 -3 -2 -1 0 1 2
SNR (dB)

Fig. 4. The bit error rate with turbo codes of EP, MMSE-SIC, POCIS, and
the optimal/genie-aided detector for 7' =6, K = 3, and N = 4.

VII. CONCLUSION

We proposed an expectation propagation based scheme and
a MMSE-SIC scheme for soft-output multi-user detection in
non-coherent SIMO communications. The latter scheme can be
interpreted as a simplification of the former. Both schemes are
shown to achieve good performance, especially the EP scheme,
in terms of symbol error rate when they are used for hard
detection, and bit error rate when used for channel decoding.
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