2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI)

April 3-7, 2020, lowa City, lowa, USA

FREE-BREATHING CARDIOVASCULAR MRI USING A PLUG-AND-PLAY METHOD WITH
LEARNED DENOISER

Sizhuo Liu, Edward Reehorst, Philip Schniter, and Rizwan Ahmad

The Ohio State University

ABSTRACT

Cardiac magnetic resonance imaging (CMR) is a noninva-
sive imaging modality that provides a comprehensive eval-
uation of the cardiovascular system. The clinical utility of
CMR is hampered by long acquisition times, however. In
this work, we propose and validate a plug-and-play (PnP)
method for CMR reconstruction from undersampled multi-
coil data. To fully exploit the rich image structure inherent in
CMR, we pair the PnP framework with a deep learning (DL)-
based denoiser that is trained using spatiotemporal patches
from high-quality, breath-held cardiac cine images. The re-
sulting “PnP-DL” method iterates over data consistency and
denoising subroutines. We compare the reconstruction perfor-
mance of PnP-DL to that of compressed sensing (CS) using
eight breath-held and ten real-time (RT) free-breathing car-
diac cine datasets. We find that, for breath-held datasets, PnP-
DL offers more than one dB advantage over commonly used
CS methods. For RT free-breathing datasets, where ground
truth is not available, PnP-DL receives higher scores in qual-
itative evaluation. The results highlight the potential of PnP-
DL to accelerate RT CMR.

Index Terms— Cardiac MRI, deep learning, denoising,
plug-and-play algorithms

1. INTRODUCTION

Magnetic resonance imaging (MRI) is a well-established
imaging modality that offers high soft-tissue contrast with-
out the use of ionizing radiation. Cardiovascular magnetic
resonance imaging (CMR) extends the application of MRI
to yield static or dynamic images of the cardiovascular sys-
tem. Cardiac cine, i.e., creating a movie of the beating heart,
is one of the most common applications of CMR. Cardiac
cine is typically performed under breath-holding conditions
and requires regular heart rhythm. Under these conditions,
the measured k-space data can be combined from several
heartbeats, leading to a well-posed inverse problem. This
approach, however, is not feasible for subjects who cannot
hold their breath or are arrhythmic. For such patients, cardiac
cine is performed in real-time (RT) and under free-breathing
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conditions. RT cine does not combine data across heartbeats,
leading to high undersampling rates.

To facilitate RT cine, several methods that combine multi-
coil MRI and compressed sensing (CS) have been proposed.
Selecting a sparsifying transform in CS, however, is non-
trivial. Also, most commonly used transforms do not fully
capture the rich structure of CMR images. More recently,
deep learning (DL) methods have been shown to outperform
CS methods. Some DL methods pose reconstruction as a “de-
aliasing” problem, where the coil-combined aliased image is
de-aliased using a convolutional neural network (CNN) [1].
These methods are computationally fast after the training
phase, but ignore the multi-coil structure of the MRI data. In
other methods, such as AUTOMAP [2], the training is used
to learn the entire reconstruction process, from undersampled
k-space to the final image, without any guidance from the for-
ward model. The resulting CNN has fully connected layers,
making it computationally prohibitive in practice. Also, such
methods require extensive training to handle variations in the
forward model. More recently, methods that explicitly use
knowledge of the forward model [3] have gained significant
attention. In these methods, the training is guided by explicit
inclusion of prototypical forward models. For these methods,
however, significant deviations between the forward models
used for training versus testing can be problematic.

In this work, we recover CMR images from undersam-
pled, multi-coil k-space data by iterating between data-
fidelity enforcement and image denoising, i.e., via plug-and-
play (PnP) recovery [4]. To fully exploit the rich spatiotem-
poral structure of CMR images, we use a DL-based denoiser
trained specifically on CMR images. In the resulting “PnP-
DL” method, training images are used to learn the denoiser,
and these images are invariant to the forward model. Thus,
the learned PnP-DL method is not biased by assumptions
about the forward model, which can change significantly
from training to testing. This unique feature of PnP-DL can
lead to improved generalizability. We apply PnP-DL to re-
construct cardiac cine images and show that it outperforms
traditional CS methods. More importantly, we demonstrate
that PnP-DL can recover RT free-breathing cine images by
using a denoiser trained on breath-held cine images. This ca-
pability is important because it is difficult, if not impossible,
to obtain training data for RT free-breathing cine.
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2. METHODS

2.1. PnP for Image Reconstruction

We consider the problem of recovering an image = € CV
from noisy k-space measurements. Most CS methods recover
x by solving an optimization problem of the form

Bos = argmin {f(x) + ¢(@) }, (1)

where f(x) is a (usually quadratic) data-fidelity term and
¢(x) a convex, sparsity-promoting regularizer. A common
algorithm to solve Eq. 1 is the “alternating directions method
of multipliers” (ADMM), which reformulates Eq. 1 as

ZapMM = arg min min {f(:c) + (b(v)} st. z=wv, (2
@x v

and solves it using Algorithm 1, with g(z) = prox, 4(2) and

Prox, () £ argmin {¢(x) + 5,z — 2[5},  3)

which is known as the proximal operator.

Algorithm 1 The ADMM Algorithm
Require: v > 0,5 € CN,uy € CV
1: fort=1,2,3,... do
2 v = argming { f(@) + 55| — (@1 —we1)3}
3 Ty = g(’Ut — ut_1)
4: U :ut_lﬁ’(’l]t*mt)
5
6

: end for
: return TapuMm < T

From the Bayesian perspective, the proximal operator in
Eq. 3 can be interpreted as the maximum a posteriori esti-
mator of  from the noisy measurement z = x + w, where
w is v-variance additive white Gaussian noise and x has the
probabilistic prior p(x) x exp(—¢(x)). Given this denoising
interpretation, Bouman et al. [4] replaced the proximal update
in ADMM with a call to a sophisticated image denoising sub-
routine like BM3D and observed a dramatic improvement in
the quality of image recovery. The approach was called “plug-
and-play” (PnP) because essentially any image denoiser g(+)
can be “plugged into” ADMM, including those based on DL.

2.2. Learned Denoiser

Compared to PnP methods that use generic denoisers (e.g.,
BM3D or BM4D), we propose to use a DL denoiser specif-
ically trained for cardiac cine. First, it has been shown that
application-specific DL denoisers can outperform generic
denoisers [5]. Second, CNN-based denoisers can be effi-
ciently implemented on a GPU, unlike generic denoisers
(e.g., BM4D), which can be prohibitively slow for the image
sizes encountered in MRI. Third, most generic denoisers are
designed only for real-valued 2D images, leaving limited op-
tions for complex-valued or higher-dimensional images. In
contrast, DL denoisers can be trained and implemented for
images in any domain or dimension.
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Fig. 1. The spatiotemporal DL denoiser used in this work.
Here, conv, SN, and ReLU stand for 3D convolution, spectral
normalization, and rectified linear unit, respectively.

The DL-based denoiser used in this work has the archi-
tecture shown in Fig. 1. The denoiser is constructed with five
3D-convolution layers, each with 64 3 x 3 x 3 kernels. Spectral
normalization (SN) [6] was used to control the Lipschitz con-
stant of each convolution layer and to provide some control
of the overall Lipschitz constant of the network. We observed
that the use of SN was critical for the stability of PnP [7]. The
denoiser was trained using spatiotemporal patches extracted
from high-quality, complex-valued cine images.

3. EXPERIMENT AND RESULTS

3.1. Experimental Setup

For training, we acquired 50 fully sampled, breath-held cine
datasets from eight healthy volunteers. To promote diversity
in the training data, 28 short-axis, seven two-chamber, seven
three-chamber, and eight four-chamber views were acquired.
The reference images were reconstructed by taking the in-
verse FFT along phase and frequency encoding directions
and combining the resulting coil images using the method [8]
by Walsh et al. Then, complex-valued i.i.d. Gaussian noise
was added to these “noise-free” reference images to simulate
noisy images with an SNR of 26 dB. For training, we cropped
each image into patches of size 55 x 55 x 15, with the last
dimension representing time. The resulting noisy and noise-
free patches were assigned as input and target output when
training the DL denosier. We fed the real and imaginary parts
into separate channels, set the minibatch size to four, and
used the ADAM optimizer with a learning rate of 10~* over
500 epochs on an NVIDIA GPU (GeForce RTX 2080 Ti).
For testing, nine breath-held datasets were collected from
four different healthy volunteers, with four in the short-axis
view, two in the two-chamber view, two in the four-chamber
view, and one in the axial view. Note, the axial view was not
included in the training datasets. All datasets were retrospec-
tively undersampled at three different acceleration rates: R =
6, 8, and 10. We also collected ten RT free-breathing datasets
with prospective undersampling at R = 9. Pseudo-random
Cartesian masks were used to perform undersampling; an ex-
ample is shown in Fig. 2. Before reconstruction, all datasets
were compressed to 12 virtual coils for faster processing. For
PnP-DL, the reconstruction followed Algorithm 1, with f(x)
representing the SENSE-based forward model. The coil sen-
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phase encoding
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Fig. 2. A representative sampling pattern. Left: phase en-
coding and frame (time) dimensions shown for one frequency
encoding location. Middle: phase encoding and frequency
encoding dimensions shown for the last frame. Right: same
as the middle column but with asymmetric echo, which was

only used in prospective undersampling.
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CS-Tv L+S

CS-UwTt PnP-UWT PnP-DL

Fig. 3. Reconstruction SNR (rSNR) for breath-held datasets
retrospectively undersampled at R = 6, 8, and 10.

sitivity maps were estimated using the method [8] by Walsh
et al. For the recruitment and consent of human subjects used
in this study, the ethical approval was given by an Internal
Review Board (2005H0124) at The Ohio State University.

3.2. Results from Breath-held Data

In the study with retrospective undersampling, we evaluated
the reconstructed images using reconstruction SNR (rSNR),
defined as 20log;o(||z]|2/||lx — &||2), where & and = rep-
resent reconstructed and reference cine images, respectively.
The results from PnP-DL and PnP-UWT were compared to
those from CS-TV [9], CS-UWT [10], and L+S [11], which
represent CS with spatiotemporal finite difference as the spar-
sifying transform, CS with undecimated wavelet transform
(UWT) as the sparsifying transform, and low-rank plus sparse
reconstruction, respectively. For PnP-UWT, denoising was
accomplished by soft-thresholding the UWT coefficients.
Therefore, CS-UWT and PnP-UWT solve the same opti-
mization problem, but CS-UWT used bFISTA [10] while
PnP-UWT used ADMM from Algorithm 1. PnP-DL also
used ADMM, but with the trained DL-based denoiser shown
in Fig. 1.

Fig. 3 shows rSNR values aggregated over eight datasets

1750

\ | CS-TV | L+S [ CS-UWT | PnP-UWT [ PnP-DL |

R=6 | 306 32.1 | 31.6 31.9 33.5
R=8 |290 31.1 | 30.2 30.5 32.5
R=10 | 27.1 294 | 28.5 28.8 31.3

Table 1. Reconstruction SNR (rSNR) for the retrospectively
undersampled dataset collected in the axial view.

and for three acceleration rates. The dataset collected in the
the axial view was not included. As expected, the perfor-
mances of PnP-UWT and CS-UWT were similar. The aver-
age advantage of PnP-DL over L+S (second best) was 1.3 dB,
1.5 dB, and 1.5 dB for R =6, 8, and 10, respectively.

Table 1 compares rSNR of the ninth dataset, which was
collected in the axial view. Note, the axial view was not in-
cluded when training the denoiser. Even for this “unseen”
view, PnP-DL maintains its advantage over the CS methods.
The superiority of PnP-DL is also evident from the example
recoveries in Fig. 4, which show that PnP-DL did better in
preserving the mitral valve and papillary muscles (yellow ar-
rows), as well as in suppressing artifacts (green arrows).

3.3. Results from Free-breathing Data

In the study with prospective undersampling, we recon-
structed ten RT cine datasets collected under free-breathing
conditions. Each dataset was reconstructed using PnP-DL,
PnP-UWT, and L+S. To evaluate the reconstructed images,
each cine series was blindly reviewed by an expert, with seven
years of experience in CMR, who assigned a qualitative score
on a five-point Likert scale (1: non-diagnostic, 2: poor, 3:
adequate, 4: good, 5: excellent). L+S, PnP-UWT, and PnP-
DL received average scores of 3.2, 3.5, and 3.9, respectively.
Also, in nine out of ten cases, the PnP-DL recoveries were
deemed best among the three reconstruction methods. As
seen in Fig. 5, which shows a representative frame from one
of the RT free-breathing datasets, PnP-DL was able to pre-
serve details lost with PnP-UWT (green arrows) and was
more effective in removing the noise that is evident in the
L+S recoveries (yellow arrows).

4. CONCLUSIONS

In this work, we proposed and validated a reconstruction
method for real-time cardiac MRI. The method utilizes an
application-specific deep-learning denoiser within the plug-
and-play framework. The learning process, which entails
training a denoiser on spatiotemporal image patches, is to-
tally decoupled from the forward model. Our preliminary
results suggest that PnP-DL outperforms CS in both quantita-
tive and qualitative assessments. More importantly, PnP-DL
was also effective in reconstructing real-time, free-breathing
cine images even when the denoiser was trained using only
breath-held cine images.
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Fig. 4. Top row: A representative frame from the retrospectively undersampled dataset collected in the axial view. The arrows
highlight the details that are better preserved in PnP-DL. Middle row: Error map with five-fold amplification. Bottom row:
Temporal profile along the red line shown on the Reference image in the top row.

Fig. 5. A representative frame from an RT dataset.
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