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Abstract. Biological transport phenomena frequently exhibit complex
network behavior when several molecular fluxes converge to special junctions
from which another fluxes move out in different directions. Similar behavior
is also observed in vehicular transport. Stimulated by these observations, we
developed a theoretical framework to investigate network junction models
of totally asymmetric simple exclusion processes with interacting particles.
Utilizing a two-site cluster mean field framework that takes into account
some correlations in the system, stationary dynamic properties, such as phase
diagrams, density profiles and correlations profiles, are explicitly evaluated.
It is found that the number of stationary phases strongly depend on the
number of segments that come and leave the network junction. The inter-
particle interactions also have a strong effect of dynamic properties of the
system. Our method can be extended to the systems with several junctions.
All theoretical predictions are in good agreement with extensive Monte Carlo
computer simulations.
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1. Introduction

Non-equilibrium transport models have gained much popularity from the theoretical
as well as applications point of view [1-3]. One such non-equilibrium driven model is
totally asymmetric simple exclusion process (TASEP), in which particles hop forward
along a one-dimensional lattice with a unit rate [4, 5]. They interact only under the
hard-core exclusion principle, which guarantees no more than a single particle at a lat-
tice site. Over the years, TASEP has captured the position of a paradigmatic model
among the class of driven diffusive lattice models. It has been thoroughly explored
under various boundary conditions and via several theories [6, 7] and in particular,
for the open boundary conditions, it displays several interesting phenomena such as
boundary-induced phase transitions, spontaneous-symmetry breaking, etc [3, 8, 9].
Several generalizations of TASEP have provided their contribution to understand the
mechanisms of biological and vehicular transport processes such as traffic flow, intra-
cellular transport, surface growth, transport in ion channels, mRNA translation, etc
[10-16].

The one-dimensional (1D) TASEP with nearest-neighbor interactions is one of the
variants of simple TASEP that has gained much attention for its relevancy in the
dynamics of motor proteins and vehicular transport [17-21]. The KLS is a primarily
model for the interactions, in which the hopping rates of the particles depend on the
four following sites and that displays exciting features such as downward shocks [22].
Some recent research on motor proteins reveal that their dynamics on the microtu-
bules is affected in the presence of interaction energy [23, 24]. This has motivated to
incorporate the nearest-neighbor interactions among the particles in a thermodynamic
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consistent way, which is relevant to biological motor proteins as well as to other trans-
port processes. The TASEP model with thermodynamically consistent interactions has
been analyzed using different approximate theories, such as cluster mean-field [20],
two-cluster mean-field theory [21], and modified cluster mean-field theory [25].

One of the major challenges in the application of TASEP and its many variants to
the real world situations is the inter-connectivity of a manifold of segments. In biologi-
cal transport processes, experiments indicate the presence of junctions and the lattice
defects. For instance, in protein secretion, there are storage structures for proteins,
which may be called as junctions, at which a large number of individual microtubules
meet and the coupling of segment-wise transport arises. The junctions also play a cru-
cial role in vehicular transport processes for they constitute bottlenecks for the flow
of particles. Blockages have been seen to arise, depending on the overall density of
particles. They induce a traffic-jam-like back-lag of particles, and therefore affect the
transport far beyond a local scale. In this regard, many theoretical models and stud-
ies revealing the dynamics of networks of several simple TASEP segments have been
performed [26-31]. In particular, in [27], the topological coupling of simple TASEP seg-
ments is achieved by introducing an explicit junction site, at which all four TASEP seg-
ments meet. The phase behavior of the composed system was deduced by matching the
well known TASEP phases of the individual segments, subject to current conservation
at the junctions. They proposed the explicit-vertex procedure, which was successful in
analyzing the stationary phases of TASEP-like transport through complex networks in
a mean-field approximation [32-35]. Also in [26], the simple mean-field approach was
utilized to analyze a network made up of coupling of two parallel simple TASEP seg-
ments with an individual segment. However, the literature on networks is still deprived
of the study of networks of interacting TASEP segments.

In this work, we consider a junction vertex v at which m similar TASEP segments
with mutual interactions enter. From the vertex, n identical TASEP segments with
interactions leave. Such vertex is labeled as V(m : n), i.e. a vertex with m incoming
segments and n outgoing segments. The paper is organized as follows. In section 2, we
briefly discuss the results for a single channel interacting TASEP model. In section 3,
we provide the description of the model and the theoretical approach. The phase dia-
grams are theoretically computed in section 4, and is followed by the results and discus-
sions in section 5. Finally, we summarize and conclude in section 6.

2. Brief discussion on single-channel open interacting TASEP model

In this section, we discuss the bulk and the boundary properties of single channel
interacting TASEP model, where interactions are incorporated in a thermodynamic
consistent way. In the interacting TASEP model, it is assumed that any two nearest
neighboring particles form a bond with energy FE. The rate of hopping of particles,
which leads to the formation or destruction of these bonds, depends upon FE. If the
particle hopping leads to the bond formation (destruction), the hopping rate is ¢ = e?®
(r = e 1E), Otherwise, when bond formation and destruction occur simultaneously or
neither of them occur, the hopping rate is 1 (see figure 1). Here, F is expressed in units
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Figure 1. Schematic view of a single channel open interacting TASEP model.
Filled circles represent particles, while empty sites indicate absence of particles. L
and R are, rescpectively, left and right, reservoirs.

of kgT and the the rates ¢ and r follow the relation g = ef [20] due to the interpreta-
tion of the phenomenon of creating and breaking of bonds between pair of particles as
reversible chemical reaction. The parameter 6 (0 < 6 < 1) is a dimensionless splitting
parameter that quantifies how much the transitions rates are affected by the inter-
action energy. The interactions are attractive (repulsive) for £ >0 (F < 0). Clearly,
for the case of attractive interactions, we obtain ¢ > 1 and r < 1, while the repulsive
interactions make r > 1 and ¢ < 1. Figure 1 shows the schematic view of an open single
channel interacting TASEP model consisting of total N lattice sites. We can see from
the figure that the bond formation and bond destruction affect the entrance rate a and
exit rate (3, respectively. A particle enters from an infinite left reservoir L with a rate «
when both the first as well as second sites of the lattice are empty. Whereas, the rate
of entrance is modified to ga when the first and the second sites are empty and occu-
pied, respectively. The rate of exit of a particle present at the Nth site into an infinite
right reservoir R is 0 when the N — 1th site is empty; otherwise the rate is 8 due to
bond breaking. For the case of zero energy, the rates, the model reduces to the simple
TASEP with rates ¢g=r=1.

The bulk properties of the interacting TASEP model under both open and periodic
boundary conditions has been well examined in the literature, using the two-cluster
mean-field theory [21]. In the two-cluster mean-field approach, the probability of clus-
ters of size three or more are written as the product of clusters of size two, for details
refer [21]. The four possible two-clusters in a lattice, where ‘1°(‘0’), represents the
occupied (empty) site are shown in figure 1. We write the particle current in terms of
the average particle density, p, and the two-cluster probability Pjo for two-cluster (1,0)
as follows.

P[P+ (g —2) Py +7(p — Pio)(1 — p — Pio)]
- _ , (1)
p(1—=p)

. Substituting Pjy in equation (1), one can obtain the

J

—r+4/r2+4(g—r)rp(1-p)
)

2(qg—r
particle current, explicitly as a function of particle density p. For the thermodynami-
cally consistent boundary conditions, the single-channel interacting TASEP model has
three phases namely low-density (LD), high-density (HD) and maximal current (MC).
We denote the homogeneous bulk particle density for site ¢ (2 < i < N — 1) in a phase
€ {LD,HD,MC} by pphase (given in table 1). Correspondingly, the particle current in
that phase is denoted by Jppase and can be obtained by substituting the densities of the
respective phases in the current expression given by equation (1). The density prp in

where P10 =
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Table 1. Mean-field expressions of the bulk and the boundary densities for the
single channel interacting TASEP segment with left and right reservoir density as
a and f,respectively and for £ > —2.885kgT', 6 = 0.5.

Phase ppuix 01 oL
a(g+1)—1—(ag(g+1)—1)4/(1+a(g—1)2(a(q+1)2 -2 PLD ——Jip____
LD  pw= ;(1 B W (UL ”) A i)
B+ (Bl D) —1)\ /P (@12 2pqla12+g? | 1 — ——2H>_  pup
HD  pup = ;(1 P D)y e ) & F(a- Do)
MC pmc = 0.5 1— Jmc Juc

a(l+(g—1)pmc) B(1+(r—1)pmc)”

the LD phase is obtained by equating the entrance current, Jyp = a(Py + ¢Fo1), with
the bulk current given by equation (1) and solving for ppux = prp. Similarly, the solu-
tion p obtained by equating the exit current, Jyp = B(FPy; + rPi1), with the bulk cur-
rent from equation (1) yields the density p = pup in the HD phase. Here, Py, P;; and
Py1, respectively denote the probabilities of the two-clusters (0,0), (1,1) and (0, 1), as
shown in figure 1. For the two-cmf theory, the particle-hole symmetry in the bulk yields
Py = Py;. Further, the Kolmogorov Consistency conditions for the particle density p
in the bulk implies Pyo =1 — p — Pjg and P13 = p — Pio. The bulk particle density in
the MC phase is obtained by solving 0.J/9p = 0 for the maximal density p = pmc. The
existence conditions for the phases are described below.

LD if Oz<L a < ag,

Va/r

B
Va/r

MC if a>a. B=Pp.,

HD if a> B < Be,

where a. and [, are the triple points separating the three phases. The first-order con-
tinuous phase transition line a = gﬁ, separating the LD and HD phases is obtained

by the current continuity condition for Jip and Jygp. While the triple points and corre-
spondingly the phase transition lines separating the LD and the HD phases from the
MC phase are, respectively, obtained by equating the current Jip and Jyp with Jyc and
tending the prp and pup to pumc. It has been found in [21] that for £ > E.(6), pmc = 0.5,
independent of energy E. In particular, for § = 0, E.(0) ~ —4.87kgT, while for § = 0.5,
E.(0.5) ~ —2.885kpT and 0 = 1 yields E.(1) ~ —1.76kgT, as computed in [21]. Figure 2
shows the triple points with respect to interaction energy F, when pyic = 0.5 for any value

- . _ r[q?(6r—2(14/GF))+q(6/qF+r(2r—6(14/TF)))+2r/G7)
of splitting parameter 6. In this case, o, = = et (F )

and . = \/q/_r a.. One of the key findings from figure 2 is that the triple points remain
invariant with respect to the splitting parameter 6, under the proposed transition rules
in the model. Therefore, for the simplicity in obtaining the results for the networks, we
choose 6 = 0.5, that also splits the interaction energy with maximum effect on both the
rates ¢ and r, simultaneously. Further, for any energy F > —2.885kgT, the maximal
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Figure 2. Triple points (a., 8.) as a function of interaction energy E for various
values of 0, and for pye = 0.5. The triple points remain invariant for any value of
splitting parameter 6 for £ > E.(0 = 1) ~ —1.76kgT [21].

density becomes independent of E and is given as pyc = 0.5, and it yields the simplified

#, and (. = ui—z)Q. While for very strong repul-
sive interactions, i.e. for F < —2.885kgT’, pyc does not remain constant and varies with
E (refer [21]). The expression of triple points obtained using this pyc are lengthy and
thus makes the general theoretical calculations very complex for a network. Moreover,
the experiments on motor proteins suggest the presence of weak interaction energy of
range Y ~ 1.6 = 0.5kgT. Therefore, for producing the theoretical results for networks,
we limit the range of interaction energy to £ > —2.885 kgT'. Table 1 shows the bulk
(Pphase), the left (p1) and the right (pr) boundary densities for the possible phases
€ {LD,HD,MC} of single channel interacting system for £ > —2.885kgT. Note that the
particle-hole symmetry breaks at the boundary sites 1 and N. Thus the density at the
first site for HD and MC phase is different from the bulk density and is obtained by
equating the entrance current at first site, simplified under the simple mean-field argu-
ments as (1 — p1)[1 + (¢ — 1)Pphase), with the bulk current in that phase. Similarly the
particle density at the Nth site for LD and MC phase is different from the bulk density
and is obtained by equating the simplified mean-field expression of exit current from
site N, given by Bpn[l + (r — 1)pphase] With the bulk current in that phase.

expressions for triple points as a, =

3. Network of many interacting TASEP segments

3.1. Description of network V(m : n)

We consider a network V(m:n) of interacting TASEP segments. In the network
V(m :n), m similar interacting TASEP segments A;, As, ---, A, meet at a vertex (or
junction site) v. From the vertex v, the n similar interacting segments By, By, -+, B,
diverges. The vertex v is assumed as a special site with density p (see figure 3). Each
TASEP segment consists of N sites and thus the complete network is considered as a

https://doi.org/10.1088/1742-5468 /ab310d 6


https://dx.doi.org/10.1088/1742-5468/2019/00/000000

Theoretical study of network junction models for totally asymmetric exclusion processes with interacting particles

e ! ! ! ! !

ol '
. : 1 1
H : | i
H H | i
. : 1 1
H H i |
: : 1 1

........ m pon
i i
i
\ : unctlon site '

1

H

Figure 3. Schematic view of a vertex V' (m : n) with density p and m incoming and
n outgoing segments.

system with (m + n)N + 1 sites. Each site can either be empty or occupied. We assign
an occupation variable 7, to each ith site of the jth lattice branch, where i € {1,2,--- L}
and j € {1,2,--- ,m+ n} lattice. Let 7, denotes the occupation variable for the vertex
v. It is to be noted that in our model, the particles follow the random-sequential update
rule and they are only allowed to move forward with no vertical lane changing.

The rate of entrance of a particle from the left reservoir ‘L’ into the first site of
any of the left m incoming segments is « if the second site of the segment is empty;
otherwise the entrance rate is gqa. A particle present at the last site of any of the left
m segments exits into the junction site v with a rate e = (1 — p) if its left neighbor-
ing site is empty; otherwise the rate of leaving is rf., due to the breakage of bond
between the particles sitting at the last two sites of the segment. The junction site v is
thus interpreted as a finite right reservoir for the left m segments.

The vertex v with density p, also act as a finite left reservoir for the right segments
By, By, ---, B, from which the probability of entrance of a particle to any of the right
segments is same. A particle can thus enter with an entrance rate cg = 5, if the seg-
ment’s Bj, where [ € {1,2,--- ,n}, first as well as the second site is empty, whereas the
rate is entrance is gagr, when the segment’s first site is empty but the second site is
occupied. The particles at the last site of the segments B;s’ exit to the right reservoir R
with the same rates defined for the individual segments in section 2 (see figure 1). The
explicit dependence of the exit and entrance rates of segments A;s and Bjs, respec-
tively on the vertex density p ensures the effective coupling between the left segments
and the right segments.

In the absence of the junction site, the system is decoupled and all the lattice
branches behave identically as a single-channel interacting TASEP model, whose prop-
erties have been well examined [21].

3.2. Explicit-vertex framework

We employ the explicit-vertex framework to determine the dynamics of the entire net-
work [27]. In the approach, the vertex is introduced explicitly as an additional site. It
couples the m parallel left incoming interacting TASEP segments with the decoupled
n right outgoing interacting TASEP segments (as shown in section 3.1). To determine
the overall state of the system, we examine the master equation for the vertex v in the
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steady-state. The equation implies that the total particle current entering at vertex
v is equal to the total particle current leaving from the vertex v. The particle current
in each of the left m segments is a function of entrance rate «, interaction energy E
and exit rate Pe(p). We denote the particle current in any of the left segments Ajs
by Ja,(a, p, E), where k € {1,2,---m}. Since, the bulk as well as boundary dynam-
ics of segments A, Ay, -+, A, are same, we write Jy, = Ja, = -+ Ja,, = Ja(a, p, E).
Similarly, the particle current in segments B, B, ---, B, is identical and is a function
of p, B, and E. We denote the particle current in these segments by Jg(p, 3, E). The
current continuity condition at vertex v gives

mJA(a7ﬁ7E) :nJB(ﬁvﬁa E) (2)

The above condition can be utilized to obtain the vertex density p, and hence the
effective exit and the effective entrance rates of left and right segments, respectively.
Once, we have obtained the effective entrance rate, we can determine the properties
of all the left m incoming segments to vertex v from its mapping to a single interac-
tive TASEP segments with the entrance rate o and exit rate Se(p). Similarly, we can
obtain the steady-state properties of the right n outgoing segments by mapping them
to a single interactive TASEP segment with entrance rate aes(p) and exit rate 3. Thus,
by using the well expressed cluster mean-field results of single channel interacting
TASEP segment in terms of entrance and exit rates given in table 1 and section 2, we
can determine all the dynamical properties of the entire network.

4. Stationary phase diagrams

We now explore the effect of interactions, the number of incoming and outgoing seg-
ments on the topology of the phase diagram of a network V(m : n) consisting of m + n
interacting TASEP segments. In the proposed network V(m : n), all the m incoming
interacting TASEP segments (A}s), where k € {1,2,---m}, behave identically and thus
for given parameters «, p and E, they exist in the same phase among the three possible
phases (LD, HD, and MC) in a phase diagram. Similarly, all the n outgoing interacting
TASEP segments (Bjs), where [ € {1,2,---n}, have identical dynamics and hence all
of them together exist in one same phase among the LD, HD, and MC phases for the
given parameters p, S and F in a phase diagram. It is thus expected that the complete
network can have nine possible phases. We use the notation P, : P, to label a phase in
a network V(m : n), where P; and P, respectively describe a phase in the left and the
right side segments, while the colon separates the two phases.

Among the nine possible phases, the certain phases in a phase diagram can appear
only for particular relation between the number of incoming segments m and the
number of outgoing segments n. For instance, we observed that the MC:MC phase
can exist only for m = n. To understand the reason for such existence, we first note
that, in general, a phase P, : P, exists, if the equation mJp, 4 = nJp, p can be solved
for the unknown vertex density p, where Jp 4 represents the current in phase P
for segment A. Further, if, in addition, the solution p also satisfy the simultaneous
existence condition for the phases P; and P, given the values of a and /3, then the
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phase P, : P, exist, otherwise not. Now, in the MC:MC phase, the maximal current
depends on the bulk dynamics and is independent of entry and exit rates. Since the
bulk behavior of all the segments A}s and Bjs are same, we obtain the same maximal
current in all the segments for a given interaction energy E. Hence, the existence con-
dition mJyc a4 = nJduc,p, for the MC:MC phase, can hold only for m = n. Similarly,
the phases HD:MC, LD:MC (MC:LD, MC:HD) can exist only for m > n (m < n). This
is because the particle current Juyp a < Jumc,a (Jup,s < Jumc,B), therefore the condition
mJup.a = nduc,s (mJvc,a = nJip p), for the phase HD:MC (MC:LD) to exist, can be
satisfied only for m > n (m < n). We now derive the spanning regions and discuss the
properties and existence conditions of all the possible phases.

(a) LD:LD: This is the phase when all the left m segments and all the right n seg-
ments are in LD phase. The LD phase in the incoming segments can exist when

o < o, and o < 24 Whereas the LD phase in the right n segments exists for

q/r ﬁ . . . . .
Qepr < . and aegp < ——. This implies that LD:LD phase can exist, if the pos-

q/Tr

sible solution p of the equation mJyp 4 = nJip p satisfies the condition

0<p<mingl a nf < 3)
p < min —— N, < Q.
Vrle \alr

In particular, for 6 = 0.5, a,. = ﬁ, Be = (13‘—(51)2’ and then LD:LD phase exists,

if p satisfies
0<p<l—qa, p<nBlqg, p<2n/(1+q)? and a<?2/(1+q)>

The above relations imply that LD:LD phase can exist for any number of incoming
and outgoing segments and for any finite value of energy FE. In particular, the
relation 0 < p < 1 — ga also implies that

1

a < 5 4)

Since for attractive energy ¢ > 1 and for repulsive interaction energy ¢ < 1, the
above inequality indicate that with the increase in the attractive interaction
energy, the LD:LD region shrinks, while the region gets enlarged for high repul-
sive interactions. This is physically justified because repulsive interactions pull
particles away from each other, thus maximize the LD region, while the attrac-
tive interactions cause particles to make big clusters and hence the LD region is
minimized in this case.

(b) HD:HD: In this phase, all the incoming and outgoing segments of the network
are in the HD phase. The particle current in the incoming segments are domi-

nated by the effective exit rate [t and exists when o > % and Ber < B, while

https://doi.org/10.1088,/1742-5468/ab310d 9
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the particle current in the outgoing segments is dominated by the exit rate 5, and

the existence condition for the phase is g > }/LT and 8 < (.. Therefore, the
q/r

HD:HD phase subsists if the possible solution p of the equation mJup 4 = nJup 5,
simultaneously satisfies the existence conditions for both the phases, which is
simplified to

5 a ng
p>mal‘{1—m,\/77;1_ﬁc}a B<Bc- (5)

Since the probability of the filled vertex site can not be greater than 1, the above
condition gives the following relation between the exit rate [, rate ¢, and total
number of outgoing segments for § = 0.5:

B < % (6)

It implies that for a fixed n, the HD phase occupies more area for attractive inter-
action while the reverse happens for the case of repulsive interactions. This is
also physically justified because of the nature of attractive interactions that favor
large clusters of particles while the repulsive interactions pull the particles away
from each other. We also conclude from equation (6) that for a fixed interaction
energy, whether attractive, zero or repulsive, the HD region shrinks with the
increase in the total number of outgoing segments. This is justified because with
the increase in n, the rate of entrance of each of the right segments to v decreases,
which favor the diminishing of the HD phase in these segments.

(c) HD:LD: When the left segments A}.s are in HD phase while the right hand seg-
ments Bjs are in LD phase, then we say the network V' (m : n)is in HD:LD phase.
The existence conditions for the left segments and right segments from their
mapping to a single interactive TASEP segments with the respective entrance-
exit rates as «, Betr, and e, B yield the following three conditions for vertex

density p.
1 —f. < p < na, for a > a., 8= B, (7)
«Q np
l——<p< ——, p<na., fora<ag, 8
Vr/a Va/r ®)
1% 5™ 1B fwf<s
- — - Mo [ 9
7/q Vajr ©

If the solution, p for the equation mJup 4 = nJip p satisfy either of the above
three inequalities, then the phase HD:LD exists in that region. Moreover for
6 = 0.5, the above complex inequalities give the following simplified relation
between energy E and number of segments n

https://doi.org/10.1088/1742-5468 /ab310d 10
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¢g<vV2n-1, or E<2In(v2n—1). (10)

Equation (10) gives the upper bound on the energy F or rate ¢ for the existence
of the HD:LD phase depending on n. For the case of n =1, the equation (10)
disapproves the existence of HD:LD phase for attractive and zero interactions for
any value of m. This can be verified for the particular case of m = 2 given in [26],
where the HD:LD phase did not exist for £ = 0. Now, when n = 2, equation (10)
implies that the HD:LD phase can exist only if ¢ < v/3. This is also verified with
the known result for the particular case of m = 2 in [27], where the HD:LD phase
existed for ¢ =1 < /3.

(d) MC:MC: This phase is independent of the entrance rate a and exit rate . It
exists for a > a., f = B. provided m = n and «, (. satisfy the following relation.

no. < 1— 0. (11)

In particular, for § = 0.5, we get that MC:MC phase exists only when
g=V2n—1, or E>=2In(v2n—1). (12)

We observe that for the case of m = n, the existence conditions for the phase
HD:LD and phase MC:MC, given, respectively by equations (10) and (12) are
complimentary to each other. This implies that the two phases can not exist
simultaneously in a phase diagram. Figure 4(a) shows the critical interaction
energy curve depending on n, above which the MC:MC phase occurs, while in
the compliment area the HD:LD phase is found. Remarkably, figure 4(a) implies
that the MC:MC phase can never exist for repulsive energy. The consequence of
this interesting finding in the framework of biological molecular motors will be
discussed in section 5. Also, when m = n =2, the MC:MC phase can occur only
for g >3 or E > E.,, which is true as MC:MC does not exist even for F=0
[27]. While we observe from figure 5(d) that for the case of attractive interac-
tions, £ = 1.6kgT’, the HD:LD phase is replaced by the MC:MC phase.

(e) HD:MC: This phase occurs only when m > n and when the solution p of the
equation: mJyp 4 = nJuc,p, satisfies the condition

p > max{l — B.,na.}. (13)
In particular for the critical values for 6 = 0.5, the condition 13 is possible for

¢>V2n—1, or E>2In(v2n —1). (14)
Equation (14)impliesthat, for m > n,the HD:MC phaseoccursfor E > 21In(v/2n — 1),
as shown by the fully filled region above the blue curve in figure 4(b). While

equation (10) implies that the HD:LD phase is possible for E < 21In(y/2n — 1),
the region filled with the vertical lines under the red curve in figure 4(b). This
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Figure 4. (a) Plot of critical interaction energies separating the existence of HD:LD
(shaded region with vertical lines) and MC:MC phases for m = n, as function of n.
(b) Blue (red) curve represents the upper (lower) bound, given as E,(E,,) for the
critical interaction energy with respect to n below (above) which HD:LD (HD:MC)
phase can exist. The plot of critical interaction energies separating the two phases
for m > n, which depends on m and n is marked by circles in the common region,
for a fixed m = 10 and as function of n.

implies that for the energies between 21In(y/2n — 1) < E < 2In(y/2n — 1), there is
a possibility of the occurrence of both the HD:LD and HD:MC phases (see the
region which is shaded and as well as has vertical lines in figure 4(b)). However,
for given values of m, n and FE, with m > n, only one of the phase can exist
depending on whether the solution p for the equation mJup 4 = nJip p satisty
either of the inequalities given by equations (7)—(9) or the solution p of the equa-
tion: mJup 4 = nJuc,s, satisfies the equation (13). To determine the phase within
the intersection of two regions, which depends on m, we numerically solve the
corresponding current equations for p for a fixed m = 10 and n varying from 1 to
8 and found the critical interacting energies for the existence of the two phases
(see the black filled circles in inset of figure 4(b)). We observed that for m > n,
the bottom solid line represented by the curve: E,, = 2In(v/2n — 1), separates the
existence of the two phases. While as m — n — 1, the red upper curve, given by
E., = 2In(y/2n — 1) yields the critical energies for the existence of the two phases.
We verify these results for the case of m =2 and n= 1. Equation (14) implies
that the HD:MC phase occurs if p satisfies mJup a4 = nJuc, g for ¢ > V2 —1or
E > —1.7627. This is true as seen for £ = 0 that HD:MC phase exists [26].

() MC:LD: This phase can only occur if m < n and the solution p of equation:
mJuc,a = nJip,p, satisfies the condition

p < min {1 — Be, nac}. (15)

https://doi.org/10.1088/1742-5468 /ab310d 12


https://dx.doi.org/10.1088/1742-5468/2019/00/000000

Theoretical study of network junction models for totally asymmetric exclusion processes with interacting particles

0.8

0.6

(a)

LD:LD

0.8

0.6

(b)

LD:LD

MC:.LD

(c)

0.8

0.6

==

MC:LD

LD:LD
L

Q. Q.
0.4 04 0.4 \
il
0.2 HD:HD 0.2 0.2 I‘,l-—||-—|l-—l-—l-—l-—l-—
" HD:HD HD:HD
0 0 o]
o 02 04 06 08 1 o 02 04 06 08 0 02 04 06 08 1
« « «
(d) (e) (f)
1 1 1
: [
08 3 08 08 E
.; a ; MC:MC
' 9
06f LDLD . HDLD 0l 4 HD:LD 06f & |
. . 9 o O e e e
1 g 4
0.4 N 0.4 0.4 /
1
0.2 1 0.2 HD:HD 02t 4 HD:HD
= B —0— —0— -2 — & —
—=- HD:HD
0 0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 1
« « «
() (h) @)
1 1 1
s "
{ i
0.8 08 08t fi o
! 2 !
] a DG 4;_9 HD:MC
9 :
06} LD:LD HD:LD 06t & o6l B
q 4 B- -0 -o- —o- —o- —0- -0~ —o- -
oY ] oY
04 [ 04 0.4
e ——— gy
0.2 HD:HD 0.2 HD:HD 0.2 HD:HD
0 0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
« « «

Figure 5. Stationary phase diagrams for ((a)—(c), i.e. row 1) m=1 and n=2;
((d)—(D), i.e. row 2) m=2 and n=2; ((g)-(), i.e. row 3) m=2 and n=1 and
for interaction energies F = —2 kg7 in column 1 (i.e. (a), (d), (g)); £ =0 kgT in
column 2 (i.e. (b), (e), (h)) and F =2 kgT in column 3 (i.e. (¢), (f), (i)). Solid blue
lines correspond to theoretical results and dotted red lines with symbols represent
the Monte Carlo simulation results for each segment having N = 500 sites.

In particular, for 8 = 0.5, this phase can exist for any value of F provided the

solution p < min {(({1—2)12, (I_QF—Z)Q }

For the remaining three possible phases LD:MC, LD:HD, and MC:HD, we noticed
that the particle current in the LD and the MC phases for segments A} s and in the HD
and the MC phases for segments Bjs is independent of the vertex density (p). Thus, the
current equality conditions for the corresponding phases, LD:HD, LD:MC, and MC:HD,
in a network can either yield a phase transition curve or a line but can not span a
region in the (o, ) parameter space. For instance, the condition mJyp 4 = nJuc g for
the phase LD:MC can only yield a phase transition line: ¢;(m,n, E,a) = 0. On the
same arguments, we can say that the condition mJyc a4 = nJup, g for the existence of
the phase MC:HD yields a phase transition line ¢o(m,n, E, ) = 0. Similarly, the cur-
rent matching condition: mJip a4 = nJup g for the phase LD:HD, produces a phase
transition curve or a line with a finite and non-zero slope in the («, ) parameter space.
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Thus, there can exist only six regions, namely, LD:LD, HD:LD, HD:HD, HD:MC,
MC:LD and MC:MC in a phase-diagram of a network V(m : n).

5. Results and discussions

In the previous section, we theoretically computed the general existence conditions
for the possible phases in a phase diagram for a network with ‘m + n’ interacting
TASEP segments meeting at a vertex v. In order to validate our general approximate
theoretical results, we perform extensive computer Monte Carlo simulations for some
fixed particular values of m and n. Moreover, we also observed from figure 4 that the
phases do not further change for higher interaction energy and large number of outgo-
ing segments. Therefore, we perform simulations for the weak and moderate interaction
energy, which is also relevant to biological molecular motors. Further, to observe the
effect of interaction energy on the network and to compare our results with the known
results for zero energy, we consider the fix values m = n = 2 [27] for the case when the
number of incoming and outgoing segments are equal. But, when number of incoming
segments and outgoing segments are unequal, we choose the fix values m =2,n =1
for m > n and m=1 and n=2 for m < n, for comparing our results with the results
in [26].

Figure 5 shows the stationary phase diagram for repulsive (column 1), zero (column
2) and attractive energy (column 3) for different values of m and n. We have re-plot
the phase diagrams for zero energy for comparing the results of interaction energy. Our
theoretical findings are in agreement with the Monte Carlo simulations. We find that
the interactions in a network of several TASEP segments not only shift the boundar-
ies but also has non trivial effect on the topology of the phase diagrams. For the case
when m < n, i.e. m =1,n = 2 (see figures 5(a)—(c)), we find that with the increase in
the repulsive energy, the MC:LD phase diminishes, while the LD:LD region expands,
and the HD:HD region shrinks. On the contrary, the attractive interactions shrink
the LD:LD phase, but expand the MC:LD and HD:HD regions. For m=n=2, we
find that the HD:LD phase that exists for £ = 0 vanishes for £ > 1.1 kg'I" and instead
get replaced by the MC:MC phase (see figures 5(e) and (f)), where the critical energy
E ~ 1.1 kgT is obtained for n=2 from the theoretical relation E., =2In(v/2n — 1)
that determines the existence of HD:LD region. The attractive energy due to more par-
ticle cluster formation also shrinks the LD:LD phase and enlarges the HD:HD phase:
see figure 5(f). While for the repulsive interactions, the region for LD:LD phase enlarges
and the HD:HD region shrinks due to the separation among the particles in this sce-
nario. Figures 5(g)—(i) shows the phase diagrams for m =2, n=1 for £ = —2.0 kgT,
E=0.0kgT, and F = 2.0 kgT, respectively. It was observed that as the interaction
energy decreases from positive to negative, the LD:LD region expands, while the
HD:HD phase shrinks. This is in accordance with the results shown by equations (4)
and (6), which shows the direct dependence of the HD region on energy F, while the
LD region was inversely proportional to E. We also observe that for a given pair of m
and n, the topology of the phase diagram changes with an appearance of HD:MC phase
and continuous disappearance of HD:LD phase after a critical interaction strength
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E,, > 2In(v/2n — 1) for m > n. While the critical interaction strength for the phase
change between HD:MC and HD:LD for m —n — 1 is given as E,, = 2In(y/2n — 1).
This is evident from figures 5(a) and (b), where the HD:MC phase existed for attractive
energy F = 1.6kgT (figure 5(a)) and weak repulsive £ = —1kgT (figure 5(b)), but the
phase changes to the HD:LD phase for higher repulsive energy F = —1.6kgT (figure
5(c)). This is also physically justified since the repulsive interactions favor the LD phase
due to the repulsions between the particles.

Experiments on motor proteins suggest the presence of attractive interactions
within the range £ ~ —1.6 0.5 kg7 among the molecular motors [24]. It is interest-
ing to observe whether such range of energy optimize the flow of molecules or not.
The recent study of single channel thermodynamically consistent interacting TASEP
model indicated that the weak repulsive energy is required for the maximal flow of
particles [20]. However, the model was single channel and the realistic work environ-
ment of motor proteins involves complex microtubule network, the observation for the
single channel model can not be generalized. In the proposed network, we find that for
the special case when number of incoming segments is equal to the number of outgo-
ing segments, i.e. m = n, there exists the interaction energy depending on n given by
E., =2In(v/2n — 1) beyond which the MC:MC phase exist in the complete network.
The critical interaction energy implies that for any value of n that the motor proteins
can not optimize their transport for the repulsive energy. Moreover, it suggests that for
current to maximize in a network, they must operate under the attractive energy, as
observed in the experiments. The above finding is evident from figure 5(f), which shows
the phase diagram for m =n=2 and E = 2.0kgT. In comparison to the case of zero
energy where the MC:MC phase can not exist for n = 2 (see figure 5(e)), we found using
the existence condition that the MC:MC phase exists for all attractive energy greater
than F ~ 1.1kgT.

The vehicular transport in a highway network of converging and diverging roads
often deals with the presence of repulsive interactions among the vehicles, it is found
that when there is only one outgoing segments and the number of incoming segments
is more than one. Then, even in the presence of repulsive interactions, the outgoing
segment can have the maximal current phase, while in the incoming segments being
greater than one can not be found in the MC phase. If the number of outgoing seg-
ments are more than one, then they can be found in the MC phase only in the presence
of attractive interactions. We also plot the density profiles for the different phases in
figure 6. There is an excellent agreement between the theoretical and simulation results.

5.1. Correlations

The correlations have played an important role in determining the dynamical proper-
ties of the system for a single channel interacting TASEP model, Basically, a two-point
correlation function for a single lattice gives a measure of how the presence of the
particle sitting at site ¢ affects the occupation of the neighboring site 7 + 1. The results
for the single channel interacting TASEP system suggested that the correlations are
weaker, negative and short-range for the repulsive interactions, while they are stron-
ger, positive and long range for the attractive interactions [25]. It was also concluded
that two-cluster mean-field analysis for the model was sufficient to handle the weak
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Figure 6. Density profiles for different stationary phases with m = 2. (a) LD:LD
phase for n=1, E=—-1.6 kgT, a=0.1, 3 =0.6; (b) HD:HD phase for n=1,
E=—-1kgT, a=0.6, 3 =0.2; (c) HD:MC phase for n=1, E= -1 kgT, a = 0.6,
£ =0.8; (d) HD:LD phase for n=2, F=—1.6 kg7, a = 0.6, 8 =0.8; (e) MC:MC
phase for n=1, £ = 1.6kgT, a = 0.6, § = 0.8; (f) MC:LD phase for m=1, n= 2,
E =1.6kgT, a =04, 8 = 0.4. Here z =i/ N, where i € {1,2,--- , N} represents the
lattice sites for a left incoming segment and ¢ varying from N+ 1 to 2N represents
the lattice sites for the right outgoing segments. Solid blue lines correspond to
theoretical results and red symbols represent the Monte Carlo simulation results
for each segment having N = 500 sites.

correlations but for a more elaborate analysis of the single channel system with strong
interactions, one require a further advanced theory.

Here, we aim at focusing on how a two-point correlation function affect the dynam-
ics of a complex network consisting of many interacting TASEP system and also we
find whether the two-cluster mean-field theory is strong enough to handle correlations
in this large network of interacting TASEP system. For this, we compute the two-point
nearest-neighbor correlations in the segments left to the vertex v as well as in the seg-
ments right to the vertex v. Since the dynamics of all the left segments is same and
also the dynamics of all the right segments is identical, we compute a general two-point
correlation function in one of the left segment (say) A as well as in one of the right seg-
ment (say) B, defined as

— <7_i><7—i+1> = P(Tl = 1,Ti+1 = 1) — P(Tz = 1)P(7_i+1 = 1) = PH — p2, (16)

where 7;, (---) denotes the occupancy state of any site 7 and the statistical average,
respectively and P;; denotes the probability of the two-cluster (1,1). Note that we have

C; = <Tm‘+1>

https://doi.org/10.1088/1742-5468 /ab310d 16


https://dx.doi.org/10.1088/1742-5468/2019/00/000000

Theoretical study of network junction models for totally asymmetric exclusion processes with interacting particles

(a)

(b)

(c)

0.1 0.1 0.1

m=2n=1 m=2n=1 m
0.05 0.05 0.05
O o 0f 0

1! I
-0.05 -0.05 * -0.05
m=2n=1

-0.1 -0.1 -0.1

0.5 1 1.5 2 0 0.5 1 1.5 2 0 0.5 1 1.5 1

T i X
(d) (e) (£)
0.1 0.1 0.1
o m = L n=2 M
0.05 0.05 0.05
D 0 0 0
-0.05 -0.05 -0.05
m=2n=2 m=1n=2

-0.1 -0.1 -0.1

0 0.5 1 1.5 2 0 0.5 1 1.5 2 0 0.5 1 1.5 2

T x X

Figure 7. Correlation profiles in different stationary phases for stated values of
m, n and (a) LD:LD phase for £ = —1.6 kg7, a = 0.1, § = 0.6; (b) HD:HD phase
for E=—1 kgT, a=0.6, 5 =0.2; (c) HD:MC phase for £ =1.6 kgT, o = 0.6,
£ =0.8; (d) MC:MC phase for £ = 1.6kgT, a = 0.6, 3 = 0.8; (¢) LD:LD phase for
E=-1.6 kgT, a =0.6, §=0.8; (f) MC:LD phase for E= —1.6 kgT, a = 0.6 and
B =0.8. Here =i/ N, where i € {1,2,--- , N} represents the lattice sites for a left
incoming segment and i varying from N+ 1 to 2N represents the lattice sites for
the right outgoing segments. Solid blue lines correspond to theoretical results and
red symbols represent the Monte Carlo simulation results for each segment having
N = 500 sites.

only considered correlations within each segment and have ignored the correlations
between the boundary sites of the segments connecting through the vertex.

Figure 7 shows the correlation profiles for varying interaction energy and different
values of m and n. We first investigate the effect of m and n on the strength of the cor-
relations. It is clear from the figure that for m > n, the magnitude of correlations are
larger at the exiting segments (see figures 7(a)—(c)). While for the case of m < n, the
correlations becomes higher in magnitude at the incoming segments: see figures 7(e)
and (f). These observations can be explained as follows. When m < n, the incoming
total flux from the m left segments to the n outgoing segments gets diluted and as a
result correlations becomes weaker in the exiting segments. Similarly, when m > n, the
particle current gets more concentrated at the outgoing segments which makes the cor-
relations stronger in them. But when m = n, the correlations in entering as well as exit-
ing segments are equal (see figure 7(d)) as the particle flux in all the segments is same.
We now observe the effect of interaction energy on the correlations. The correlations
are found to be negative for F < 0: see figures 7(a), (b) and (e). This implies that the
probability to find a particle at a site next to a given occupied site is less due to being
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energetically unfavorable. For the attractive interactions, figures 7(c), (d) and (f), the
correlations are positive as here the probability for finding the particle at the neighbor-
ing site is higher. Moreover, figure 7 also indicate that the two cluster mean-field theory
sufficiently captures the correlations in the proposed system.

6. Conclusion

To summarize, we have considered a complex topology of interacting TASEP segments.
In particular, we have explored a network V(m : n), which consists of m incoming seg-
ments to a junction site v and n outgoing segments from the vertex v. The junction
site is viewed as a reservoir of finite density, from where several segments converge
and diverge. Correlations within the segments are treated in a cluster mean-field sense,
while at the junction site, we ignore the correlations and employ the simple mean field
approximation. We theoretically obtain the critical conditions for the existence of all
the possible phases in the system. We found that among the nine possible phases, a
phase diagram consists of only three phases at a time depending on E, m and n. We
validated our theoretical results for fixed values of m and n with the computer Monte
Carlo simulations. Our theoretical findings are generalized in terms of m, n and repro-
duce the results for the case of zero interactions. We observed that when the number
of incoming and outgoing segments are equal, the maximal current phase in all the seg-
ments can exist only beyond some positive critical interaction energy. However, when
n=1 and m > n, the MC phase in the outgoing segments diminishes after some criti-
cal repulsive interaction strength. We also plot the phase diagrams, density, and the
correlation profiles for various interaction strength, and number of incoming, outgoing
segments. We found that the correlations in a network, V(m : n), weakens among the
segments which are large in number, due to the dilution of the particle flux. We also
observed that with the increase in the total number of outgoing segments the probabil-
ity of the HD phase decreases among them.
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