SaSTL: Spatial Aggregation Signal Temporal Logic for
Runtime Monitoring in Smart Cities

Meiyi Ma
Department of Computer Science
University of Virginia
Charlottesville, USA
Email: meiyi@virginia.edu

Ezio Bartocci

TU Wien

Abstract—We present SaSTL—a novel Spatial Aggregation
Signal Temporal Logic—for the efficient runtime monitoring
of safety and performance requirements in smart cities. We
first describe a study of over 1,000 smart city requirements,
some of which can not be specified using existing logic such as
Signal Temporal Logic (STL) and its variants. To tackle this
limitation, we develop two new logical operators in SaSTL to
augment STL for expressing spatial aggregation and spatial
counting characteristics that are commonly found in real city
requirements. We also develop efficient monitoring algorithms
that can check a SaSTL requirement in parallel over multiple
data streams (e.g., generated by multiple sensors distributed
spatially in a city). We evaluate our SaSTL monitor by applying
to two case studies with large-scale real city sensing data
(e.g., up to 10,000 sensors in one requirement). The results
show that SaSTL has a much higher coverage expressiveness
than other spatial-temporal logics, and with a significant
reduction of computation time for monitoring requirements.
We also demonstrate that the SaSTL monitor can help improve
the safety and performance of smart cities via simulated
experiments.

Keywords-Spatial Temporal Logic, runtime monitoring, re-
quirement specification, smart cities

I. INTRODUCTION

Smart cities are emerging around the world. Examples
include Chicago’s Array of Things project [1], IBM’s Rio de
Janeiro Operations Center [2] and Cisco’s Smart+Connected
Operations Center [3], just to name a few. Smart cities utilize
a vast amount of data and smart services to enhance the
safety, efficiency, and performance of city operations [4],
[5]. There is a need for monitoring city states in real-time
to ensure safety and performance requirements [6]. If a
requirement violation is detected by the monitor, the city
operators and smart service providers can take actions to
change the states, such as improving traffic performance,
rejecting unsafe actions, sending alarms to polices, etc. The
key challenges of developing such a monitor include how to
use an expressive, machine-understandable language to spec-
ify smart city requirements, and how to efficiently monitor
requirements that may involve multiple sensor data streams
(e.g., some requirements are concerned about thousands of
sensors in a smart city).

Faculty of Informatics

Vienna, Austria
Email: ezio.bartocci@tuwien.ac.at Email: {edl9cy, stankovic, lu.feng}@virginia.edu

Eli Lifland, John Stankovic, Lu Feng
Department of Computer Science
University of Virginia
Charlottesville, USA

Previous works [7], [8], [9], [10] have proposed solutions
to monitor smart cities using formal specification languages
and their monitoring machinery. One of the latest works,
CityResolver [11] uses Signal Temporal Logic (STL) [12]
to support the specification-based monitoring of safety and
performance requirements of smart cities. However, STL is
not expressive enough to specify smart city requirements
concerning spatial information such as “the average noise
level within 1 km of all elementary schools should always be
less than 50 dB”. There are some existing spatial extensions
of STL (e.g., SSTL [13], SpaTeL [10] and STREL [14]),
which can express requirements such as “there should be
no traffic congestion on all the roads in the northeast
direction”. But they are not expressive enough to specify
requirements like “there should be no traffic congestion
on all the roads on average”, or “on 90% of the roads”,
which require the aggregation and counting of signals in the
spatial domain. To tackle these challenges and limitations,
we develop a novel Spatial Aggregation Signal Temporal
Logic (SaSTL), which extend STL with two new logical
operators for expressing spatial aggregation and spatial
counting characteristics that are commonly found in real city
requirements. More specifically, this paper has the following
major contributions:

(1) To the best of our knowledge, this is the first
work studying and annotating over 1,000 real smart city
requirements across different domains to identify the gap
of expressing smart city requirements with existing formal
specification languages. As a result, we found that aggre-
gation and counting signals in the spatial domain (e.g., for
representing sensor signals distributed spatially in a smart
city) are extremely important for specifying and monitoring
city requirements.

(2) Drawing on the insights from our requirement study,
we develop a new specification language SaSTL, which ex-
tends STL with a spatial aggregation operator and a spatial
counting operator. SaSTL can be used to specify Point of
Interests (Pols), the physical distance, spatial relations of
the Pols and sensors, aggregation of signals over locations,
degree/percentage of satisfaction and the temporal elements

r20 23

5t ”°15:M = ,_1[):123066 0
l 1
s;:AQl %0 I, 50: 70 .
tn :

—_ 1 1 1 5

_ 10 20

79 35
17 13711
7! 3073

1
i |6|3]—»| Efficient Runtime , / x

t tp o o P e e
142 10; 30 .. 50 90|71 »* | Monitoring for SaSTL) -
- i 1 b0 20 .. 60 80 Real-time Decision
LI = . : "TE Tty e t, o Making Support
= D ° City States
Smart City i The average air quality within 2 km i Formalizing Real-time o \
\—n: of all parks should always be better i I Temporal-Spatial) ([0, 00),Park) O(0,10] (A[G 27,1y (z > Good)) |
1 than Good for the next 10 hours. ' Requirements [l e e
""""""""""""""""""""" SaSTL Requirements {g,, ..., ¢;}

Real-time Requirements {R;,...R\}

Figure 1: A framework for runtime monitoring of real-time city requirements

in a very flexible spatial-temporal scale.

(3) We compare SaSTL with some existing specification
languages and show that SaSTL has a much higher coverage
experessiveness (95%) than STL (18.4%), SSTL (43.1%) or
STREL (43.1%) over 1,000 real city requirements.

(4) We develop novel and efficient monitoring algorithms
for SaSTL. In particular, we present two new methods to
speed up the monitoring performance: (i) dynamically pri-
oritizing the monitoring based on cost functions assigned to
nodes of the syntax tree, and (ii) parallelizing the monitoring
of spatial operators among multiple locations and/or sensors.

(5) We evaluate the SaSTL monitor by applying it to
a case study of monitoring real city data collected from
the Chicago’s Array of Things [1]. The results show that
SaSTL monitor has the potential to help identify safety
violations and support the city managers and citizens to
make decisions.

(6) We also evaluate the SaSTL monitor on a second
case study of conflict detection and resolution among smart
services in simulated New York city with large-scale real
sensing data (e.g., up to 10,000 sensors in one requirement).
Results of our simulated experiments show that SaSTL
monitor can help improve the city’s performance (e.g.,
21.1% on the environment and 16.6% on public safety), with
a significant reduction of computation time compared with
previous approaches.

II. APPROACH OVERVIEW

Figure 1 shows an overview of our SaSTL runtime
monitoring framework for smart cities. We envision that
such a framework would operate in a smart city’s central
control center (e.g., IBM’s Rio de Janeiro Operations Cen-
ter [2] or Cisco’s Smart+Connected Operations Center [3])
where sensor data about city states across various locations
are available in real time. The framework would monitor
city states and check them against a set of smart city
requirements at runtime. The monitoring results would be
presented to city managers to support decision making. The
framework makes abstractions of city states in the following
way. The framework formalizes a set of smart city require-
ments (See Section III) to some machine checkable SaSTL

formulas (See Section IV). Different data streams (e.g. CO
emission, noise level) over temporal and spatial domains
can be viewed as a 3-dimensional matrix. For any signal s;
in signal domain S, each row is a time-series data at one
location and each column is a set of data streams from all
locations at one time. Next, the efficient real-time monitoring
for SaSTL verifies the states with the requirements and
outputs the Boolean satisfaction to the decision makers,
who would take actions to resolve the violation. To support
decision making in real time, we improve the efficiency of
the monitoring algorithm in Section V. We will describe
more details of the framework in the following sections.

III. ANALYSIS OF REAL CITY REQUIREMENTS

To better understand real city requirements, we conduct a
requirement study. We collect and statistically analyze 1000
quantitatively specified city requirements (e.g., standards,
regulations, city codes, and laws) across different applica-
tion domains, including energy, environment, transportation,
emergency, and public safety from large cities (e.g. New
York City, San Francisco, Chicago, Washington D.C., Bei-
jing, etc.). Some examples of these city requirements are
highlighted in Table I. We identify key required features to
have in a specification language and its associated use in
a city runtime monitor. The summarized statistical results
of the study and key elements we identified (i.e., temporal,
spatial, aggregation, entity, comparison, and condition) are
shown in Table II.

Temporal: Most of the requirements include a variety
of temporal constraints, e.g. a static deadline, a dynamic
deadline, or time intervals. In many cases (65.7%), the tem-
poral information is not explicitly written in the requirement,
which usually means it should be ‘“always” satisfied. In
addition, city requirements are highly real-time driven. In
over 80% requirements, cities are required to detect and
resolve requirement violations at runtime. It indicates a high
demand for runtime monitoring.

Spatial: A requirement usually specifies its spatial range
explicitly using the Points of Interest (Pols) (80.1%), such
as “park”, “xx school”, along with a distance range (65%).

Table I: Examples of city requirements from different domains (The key elements of a requirement are highlighted as,
temporal , spatial , aggregation , entity , condition , comparison .)

Domain Example
Limits vehicle idling to one minute adjacent to any school, pre-K to 12th grade , public or private, in the City of New York [15].
Transportation | The engine, power and exhaust mechanism of each motor vehicle shall be equipped, adjusted and operated to prevent the escape of a trail of
visible fumes or smoke for more than ten (10) consecutive seconds [16].
| Prohibit sight-seeing buses from using all ~bus lanes between the hours of 7:00 a.m. and 10:00 a.m. “on weekdays [17].
Energy Operate thﬁi system to maintain zone temperatures down to 55°F or up to 85°F [18]. L
The total leakage shall be less than or equal to 4 cubic feet per minute per 100 square feet of conditioned floor area [19].
Environment LA Sec 111.03 minimum ambient noise level table: ZONE M2 and M3 — DAY : 65 dB(A) NIGHT : 65 dB(A) [20].
The total amount of HCHO emission should be less than W within an hour M total amount of PM10 emission should
be less than 0.15 mg per m® within 24 hours [21].
Emergency *NYC Authorized emergency vehicles may disregard 4 primary rules regarding traffic [22].
At least one ambulance should be equipped per 30,000 population (counted by area) to obtain the shortest radius and fastest response
time [23].
Public Safety Security staff shall visit ~at least once per week in public schools [24].

Table II: Key elements of city requirements and statistical
results from 1000 real city requirements

Element Form Num | Example
Dynamic Deadline 77 limit ... to one minute
Static Deadline 98 at least once a week
Temporal Interval 168 from 8am to 10am; within 24 hours;
. The noise (always) should not exceed
Default 657 50dB.
Pols/Tags 801 school area; all parks;
Spatial Distance 650 Nearby
Default 154 (everywhere) ; (all) locations
Count, Sum 256 in total; x out of N locations; %;
Aggregation | Average 196 per m?;
Max, Min 67 highest/lowest value
Entity Subject 1000 air quality; Buses;
Value comparison 836 More than, less than
Comparison | Boolean 388 Street is blocked; should
Not 456 It is unlawful/prohibited...
Condition Until 24 keep... until the street is not blocked.
If/Except 44 If rainy, the speed limit...

One requirement usually points to a set of places (e.g. all
the schools). Therefore, it is very important for a formal
language to be able to specify the spatial elements across
many locations within the formula, rather than one formula
for each location.

We also found that the city requirements specify a very
large spatial scale. Different from the requirements of many
other cyber physical systems, requirements from smart cities
are highly spatial-specific and usually involve a very large
number of locations/sensors. For example, the first require-
ment in Table I specifies a vehicle idling time “adjacent to
any school, pre-K to 12th grade in the City of New York™.
There are about 2000 pre-K to 12th schools, even counting
20 street segments nearby each school, there are 40,000
data streams to be monitored synchronously. An efficient
monitoring is highly demanded.

Aggregation: In 51.9% cases, requirements are specified
on the aggregated signal over an area, such as, “the to-
tal amount”, “average...per 100 square feet”, “up to four

vending vehicles in any given city block”, “at least 20%
of travelers from all entrances should ...”, etc. Therefore,
aggregation is a key feature for the specification language.

IV. FORMALIZING TEMPORAL-SPATIAL REQUIREMENTS

SaSTL extends STL with two spatial operators: a spatial
aggregation operator and a neighborhood counting operator.
Spatial aggregation enables combining (according to a cho-
sen operation) measurements of the same type (e.g., environ-
mental temperature), but taken from different locations. The
use of this operator can be suitable in requirements where it
is necessary to evaluate the average, best or worst value of a
signal measurement in an area close to the desired location.
The neighborhood counting operator allows measuring the
number/percentage of neighbors of a location that satisfy a
certain requirement. In this section, we formally define the
syntax, and semantics.

A. SaSTL Syntax

We define a multi-dimensional spatial-temporal signal as
w:TxL - {Ru{1}}", where T = Ry, represents the
continuous time and L is the set of locations. We define
X = {1, x,} as the set of variables for each location.
Each variable can assume a real value v € R or is undefined
for a particular location (z; = 1).

We denote by m,,(w) as the projection of w on its
component variable x; € X. We define P = {py, -, p;, } a set
of propositions (e.g. {School, Street, Hospital,---}) and L a
labeling function £ : L — 2 that assigns for each location
the set of the propositions that are true in that location.

A weighted undirected graph is a tuple G = (L, E,n)
where L is a finite non-empty set of nodes representing
locations, £ € L x L is the set of edges connecting nodes,
and 1 : E - Ry(is a cost function over edges. We define
the weighted distance between two locations [,l’ € L as

d(1,1') :==min{ Y n(e) | o is a path between [and I'}.

eco

Then we define the spatial domain D as,

D:= ([d17d2:|7’l/})
vi= Tlpl-v[v vy

where [dy,ds] defines a spatial interval with d; < dy and
di,ds € R, and 1 specifies the property over the set of
propositions that must hold in each location. In particular,
D = ([0,+00),T) indicates the whole spatial domain. We
denote Ll([dl’dz]}w) ={l' e L|0 < dy < d(ll') <
dy and L(I") = 1} as the set of locations at a distance
between d; and dy from [for which £(I) satisfies 1). We
denote the set of non-null values for signal variable x at
time point ¢ location [over locations in L% by

o (w,t,1) = {mp(W)[t, '] |1 € LY ana (W) [, 1] # L}

We define a set of operations op(af(w,t,1)) for op €
{max, min, sum, avg} when o} (w,t,1) # @ that computes
the maximum, minimum, summation and average of values
in the set o}, (w,t,1), respectively.

To be noted, Graph G and its weights between nodes are
constructed flexibly based on the property of the system.
For example, we can build a graph with fully connected
sensor nodes and their Euclidean distance as the weights
when monitoring the air quality in a city; or we can also
build a graph that only connects the street nodes when the
two streets are contiguous and apply Manhattan distance. It
does not affect the syntax and semantics of SaSTL.

The syntax of SaSTL is given by

pi= x~clap|prAps | oildips | ARz ~c| Cp~c

where © € X, ~¢ {<,<}, c € R is a constant, I € R, is
a real positive dense time interval, U; is the bounded until
temporal operators from STL. The always (denoted O) and
eventually (denoted ¢) temporal operators can be derived the
same way as in STL, where ¢ = true Uy, and Op = =O—p.

We define a set of spatial aggregation operators A% x ~ ¢
for op € {max, min,sum, avg} that evaluate the aggregated
product of traces op(af(w,t,1)) over a set of locations
le LlD. We also define a set of new spatial counting opera-
tors Cy ¢ ~ ¢ for op € {max, min, sum, avg} that counts the
satisfaction of traces over a set of locations. More precisely,
we define CXp = op({g((w,t,l') & @) | I € LL}),
where g((w,t,1) E ¢)) = 1 if (w,t,l) = ¢, otherwise
g((w,t,1) E)) = 0. From the new counting operators, we
also derive the everywhere operator as Epyp = Cgi“go > 0,
and somewhere operator as ©pp = C5* ¢ > 0. In addition,
CH"™p specifies the total number of locations that satisfy ¢
and C3)®¢ specifies the percentage of locations satisfying ¢.

We now illustrate how to use SaSTL to specify various
city requirements, especially for the spatial aggregation and
spatial counting, and how important these operators are for
the smart city requirements using examples below.

Example 1 (Spatial Aggregation). Assume we have a re-

quirement, “The average noise level in the school area
(within 1 km) in New York City should always be less
than 50 dB and the worst should be less than 80 dB in
the next 3 hours” is formalized as, B([0, +o0),School) D[0,3]
((A?E/(il],T)xNOise < 50) A (A?[%i(l]ﬁ)xNoise < 80)).

([0,+00),School) selects all the locations labeled as
“school” within the whole New York city ([0, +o0)) (pre-
defined by users). O3] indicates this requirement is
valid for the next three hours. (A?F§1]7T)xNoise < 50) A
(Ar(“[ffll,T)mNoise < 80) calculates the average and maximal
values in 1 km for each “school”, and compares them with
the requirements, i.e. 50 dB and 80 dB.

Without the spatial aggregation operators, STL and its
extended languages cannot specify this requirement. First,
they are not able to first dynamically find all the locations
labeled as “school”. To monitor the same spatial range,
users have manually get all traces from schools, and then
repeatedly apply this requirement to each located sensor
within 1 km of a school and do the same for all schools.
More importantly, STL and its extended languages could not
specify “average” or “worst” noise level. Instead, it only
monitors each single value, which is prone to noises and
outliers and thereby causes inaccurate results.

Example 2 (Spatial Counting). A requirement that “At least
90% of the streets, the particulate matter (PMx) emission
should not exceed Moderate in 2 hours” is formalized as
C?E’g (010,21 (@pmx < Moderate)) > 0.9.

0,+00),Street)

C?[Vog 4oo) Street)® > 0.9 represents the percentage of sat-

isfaction 1s larger than 90%. Specifying the percentage
of satisfaction is very common and important among city
requirements.

B. SaSTL Semantics

We define the SaSTL semantics as the satisfiability rela-
tion (w,t,1) & ¢, indicating that the spatio-temporal signal
w satisfies a formula ¢ at the time point ¢ in location [
when 7, (w)[¢,1] # L and o} (w,t,1) + @. We define that
(w,t,1) E @ if Ty (w)[t,1] = L.

(w,t,))Ex~C < m(w)[t 1] ~c
(Watvl)':_‘sa ¢>(w7tal)%§0
(w,t,1) Ep1 Apa <= (w,t,1) E ¢ and (w,t,1) E o
(w,t,1) E pilhips <= ' e (t+I)NT: (w,t',1) E @2

and Vt" e (t,t'), (w,t",1) E 1
(w,t,1) E APz ~ ¢ <= op(ap(w,t,1)) ~c
(W,t,0) ECFe ~c = op({g((w,t,1") F @) [e Lp}) ~ ¢

V. EFFICIENT MONITORING FOR SASTL

In this section, we first present monitoring algorithms for
SaSTL, then describe two optimization methods to speed up

the monitoring performance.

A. Monitoring Algorithms for SaSTL

The inputs of the monitor are the SaSTL requirements
(including the time ¢ and location [), a weighted undirected
graph G and the temporal-spatial data w. The output of
the monitoring algorithm for each requirement is a Boolean
value indicating whether the requirement is satisfied or not.
Algorithm 1 outlines the monitoring algorithm. To start with,
the monitoring algorithm parses ¢ to sub formulas and
calculates the satisfaction for each operation recursively. We
derived operators O and ¢ from U/, and operators @ and ¢
from C3} ~ ¢, so we only show the algorithms for ¢{; and
CH ~c.

Algorithm 1: SaSTL monitoring algorithm Monitor(p,w,t, 1, G)

Function Monitor (p,w,t,l,G):

Input : SaSTL Requirement ¢, Signal w, Time ¢, Location [, weighted
undirected graph G
Output: Satisfaction Value (Boolean value)
begin
switch ¢ do
Case z ~ ¢
| return 7, (w)[¢, 1] ~c;
Case -
| return — Monitor(¢, w, t,l, G);
Case ©1 A p2 ; > See Algorithm 4
| return Monitor(¢1,w, t,1, G) A Monitor(¢2,w, t,1, G)
Case p1Urp2
| return SatisfyUntil(p1, p2, I, w,t,l,G);
Case .A%pm ~c; > See Algorithm 2
| return Aggregate(zx, c,op, D, t,l,G);
Case C%pap ~c; D See Algorithm 3 for the standard version, and
Algorithm 5 for an improved parallel version.
| return CountingNeighbours(, ¢, op, D, t,1, G);
end
end

We present the satisfaction algorithms of the operators
A and C3 in Algorithm 2 and Algorithm 3, respectively.
As we can tell from the algorithms, essentially, .A%’ cal-
culates the aggregated values on the signal over a spatial
domain, while C3} calculates the aggregated Boolean results
over spatial domain.

The time complexity of monitoring the logical and tempo-
ral operators of SaSTL is the same as STL [25] as follows.

« The time complexity to monitor classical logical oper-
ators or basic propositions such as -z, A and x ~ ¢ is
O(1).

o The time complexity to monitor temporal operators
such as Oy, O, Uy is O(T), where T is the total number
of samples within time interval [.

In this paper, we present the time complexity analysis
for the spatial operators (Lemma 1) and the new SaSTL
monitoring algorithm (Theorem 1). The total number of
locations is denoted by n. We assume that the positions of
the locations cannot change in time (a fixed grid). We can
precompute all the distances between locations and store

Algorithm 2: Aggregation of (x,op, D,w,t,l,G)

Function Aggregate (z,c,op, D,w,t,l,G):
begin
Real v:=0; n:=0;
if op == "min" then v :=co ;
if op == "max" then v := —oo ;
for ' ¢ LY, do
if op € {min, max, sum} then
| v = op(v, me () [,]):
end
if op =="avg" then
| vi=sum(v, e (W)[E,1]);
end

n:i=n+1
end

if op == "avg" An # 0 then v:=v/n;
if n == 0 then
| return True
else
| return v ~ c;
end

end

Algorithm 3: Counting of (z,0p,D,w,t,l,G)

Function CountingNeighbours (¢, ¢,op, D,w,t,l,G):

begin
Real v:=0;n:=0
if op == "min"” then v := oo ;
if op == "max" then v := —oco ;

for I’ ¢ LY, do
if Monitor(yp,w,t,l,G) A op € {min, max, sum} then
| v = op(v, 1;
end
if Monitor(¢,w,t,l,G) A op =="avg" then
| v:i=sum(v,1);
end
ni=n+l
end
if op == "avg" An # 0 then v:=v/n;
if n == 0 then
I return True
else
| return v ~ c;
end

end

them in an array of range trees [26] (one range tree for
each location). We further denote the monitored formula as
¢, which can be represented by a syntax tree, and let |¢)|
denote the total number of nodes in the syntax tree (number
of operators).

Lemma 1 (Complexity of spatial operators). The time
complexity to monitor at each location | at time t the
satisfaction of a spatial operator such as @p, &p, AP,
and C3 is O(log(n) +|L|) where L is the set of locations
at distance within the range D from l.

Proof: According to [26], the time complexity to re-
trieve a set of nodes L with a distance to a desired location
in a range D from a location [is O(log(n) + |L|). The
aggregation and counting operations of Algorithm 2 and
Algorithm 3 can be performed while the locations are
retrieved. []

Theorem 1. The time complexity of the SaSTL monitor-
ing algorithm is upper-bounded by O(|¢| Timas (log(n) +

|L|maz)) where Taq is the largest number of samples of
the intervals considered in the temporal operators of ¢ and
|L|imaz is the maximum number of locations defined by the
spatial temporal operators of ¢.

Proof: Following Lemma 1, by considering 7},,,, the
worst possible number of samples that we need to consider
for all possible intervals of temporal operators present in
the formula, and |L|;,q4, for the worst possible number of
locations that we need to consider for all possible intervals of
spatial operators present in the formula. When there are two
or more operators nested, the time complexity for one opera-
tion is bounded by O(Tynaz (log(n)+|L|maz))- As there are
|#| nodes in the syntax tree of ¢, the time complexity of the
SaSTL monitoring algorithm is bounded by the summation
over all |¢| nodes, which is O(|¢| Tinaz (log(n) +|Llmaz))-

|

B. Performance Improvement of SaSTL Parsing

To monitor a requirement, the first step is parsing the
requirement to a set of sub formulas with their corresponding
spatial-temporal ranges. Then, we calculate the results for
the sub formulas. The traditional parsing process of STL
builds and calculates the syntax tree on the sequential order
of the formula. It does not consider the complexity of
each sub-formula. However, in many cases, especially with
the Pols specified in smart cities, checking the simpler
propositional variable to quantify the spatial domain first can
significantly reduce the number of temporal signals to check
in a complicated formula. For example, the city abstracted
graph in Figure 2, the large nodes represent the locations
of Pols, among which the red ones represent the schools,
and blue ones represent other Pols. The small black nodes
represent the locations of data sources (e.g. sensors). Assum-
ing a requirement B[+o0],School) D[a,b] (A(()Fo,d],T])S" ~c)
requires to aggregate and check ¢ only nearby schools (i.e.,
the red circles), but it will actually check data sources of all
nearby 12 nodes if one is following the traditional parsing
algorithm. In New York City, there are about 2000 primary
schools, but hundreds of thousands of Pols in total. A very
large amount of computing time would be wasted in this
way.

To deal with this problem, we now introduce a monitoring
cost function cost: ® x L x G, - R*, where ® is the set of
all the possible SaSTL formulas, L is the set of locations,
G, is the set of all the possible undirected graphs with L
locations. The cost function for ¢ is defined as:

cost(p,1,G) =
1 if p:=pvp:=x~cVvep:=True
1 + cost(p1,1,G) if =1
cost(p1,l,G) + cost(p2,l,G) if =1 * @2, * € {A,UI}
|LL| if o= Afz~c
|LL|cost(p1,1, G) if p:=Chp1~c

Figure 2: An example of city abstracted graph. A require-
ment is B([o,+e0],School) D[a,b] (A((’Fo}d]ﬁ)w ~ ¢) (The large
nodes represent the locations of Pols, among which the red
ones represent the schools, and blue ones represent other
Pols. The small black nodes represent the locations of data
sources.)

Using the above function, the cost of each operation is
calculated before “switch ¢ (refer Algorithm 1). The cost
function measures how complex it is to monitor a particular
SaSTL formula. This can be used when the algorithm
evaluates the A operator and it establishes the order in
which the sub-formulas should be evaluated. The simpler
sub-formula is the first to be monitored, while the more
complex one is monitored only when the other sub-formula
is satisfied. We update monitor(p1 A 2, w) in Algorithm 4.

Algorithm 4: Satisfaction of (p1 A p2,w)

case o1 A o2 do

return Monitor(¢1,w, t,1, G) A Monitor(yp2,w, t, 1, G);

if cost(p1,1, G) < cost(p2,l, G) then
if - Monitor(¢1,w, t,l, G) then

| return Monitor(¢2,w, t,1, G);

end
return True;

end

if - Monitor(¢s,w, t,l, G) then

| return Monitor(p1,w,t,l, G);
end
return True;

end

With this cost function, the time complexity of the
monitoring algorithm is reduced to O(|¢|Timaz(log(n) +
|L'|maz)), where |L'| is the maximal number of locations
that an operation is executed with the improved parsing
method. The improvement is significant for monitoring
smart cities, because for most of the city requirements,
|L | maz < 100 X | L]|maz-

C. Parallelization

In the traditional STL monitor algorithm, the signals are
checked sequentially. For example, to see if the data streams
from all locations satisfy @p O,) ¢ in Figure 2, usually,
it would first check the signal from location 1 with O 5},
then location 2, and so on. At last, it calculates the result
from all locations with @p. In this example, checking all
locations sequentially is the most time-consuming part, and
it could reach over 100 locations in the field.

To reduce the computing time, we parallelize the monitor-
ing algorithm in the spatial domain. To briefly explain the
idea: instead of calculating a sub-formula (O, 1) at all
locations sequentially, we distribute the tasks of monitoring
independent locations to different threads and check them
in parallel. (Algorithm 5 presents the parallel version of the
spatial counting operator Cp.) To start with, all satisfied
locations 1’ € LQJ are added to a task pool (a queue). In
the mapping process, each thread retrieves monitoring tasks
(i.e., for l;,0p4,4)¢) from the queue and executes them in
parallel. All threads only execute one task at one time and
is assigned a new one from the pool when it finishes the
last one, until all tasks are executed. Each task obtains the
satisfaction of Monitor(p,w, t, 1, G) function, and calculates
the local result v; of operation op(). The reduce step sums
all the parallel results and calculates a final result of op().

Algorithm 5: Parallelization of Counting of (x,op, D,w,t,l,G)

Function CountingNeighbours (¢, op,D,w,t,l,G):
begin
paratasks = Queue();
for I’ ¢ LY, do
‘ paratasks.add(l);
end
results = Queue();
for i in 1..NumThreads do
| Thread; < worker(p,w,t, G);

end
Wait();
return op(results);

end

Function worker (p,w,t,G):

begin
Real v := 0;
if op == "min" then v := oo, ;
if op == "max" then v := —oo; ;

while Num(tasks)>0 do
l = paratasks.pop();
moni = Monitor(y, w, t, 1, G);
v = op(v, moni);

end

results.add(v)

end

Lemma 2. The time complexity of the parallelized algorithm
Monitor(¢, w) is upper bounded by O(|¢|Tmaz(log(n) +
‘L‘%)) when distributed to P threads.

In general, the parallel monitor on the spatial domain re-
duces the computational time significantly. It is very helpful
to support runtime monitoring and decision making, espe-
cially for a large number of requirements to be monitored in
a short time. In practice, the computing time also depends
on the complexity of temporal and spatial domains as well
as the amount of data to be monitored. A comprehensive
experimental analysis of the time complexity is presented in
Section VI.

VI. EVALUATION

We evaluate the SaSTL monitor by applying it to two
city application scenarios, which are (i) runtime monitoring

P
8L

(1) Chicago (2) New York

Figure 3: Partial Maps of Chicago and New York with
Pols and sensors annotated. (The black nodes represent the
locations of sensors, red nodes represent the locations of
hospitals, dark blue nodes represent schools, light blue nodes
represent parks and green nodes represent theaters.)

Table III: Information of Two Application Scenarios

Chicago New York
Area (km?) 606 60
Data Type Real-time States Real-time Predicted States
Data Sources Real Sensors Simulated Sensors and Actuators
Number of

Sensor Nodes 118 10,000

Time Period 2017.01-2019.05

Sampling 1 min 10 seconds
Rate

. Environment, Public Environment, Trar'lsportatl(?n,
Domain Events, Emergencies, Public

Safety
Safety
.. CO, NO, O3, PM,;, Noise,

Variables €O, NO, Os, Visible Traffic, Pedestrian, Signal Lights,

light, Crime Rate Emergency Vehicles, Accidents

of city requirements in Chicago, and (ii) runtime conflict
detection and resolution among smart services in a simulated
New York City. Then, (iii) we compared the coverage
expressiveness of SaSTL against 1000 real city requirements
with STL, SSTL, and STREL. We provide the information
of two application scenarios in Table III. Figure 3 presents
the partial maps of two cities, where the locations of Pols
and sensors are marked.

A. Runtime Monitoring of Real-Time Requirements in
Chicago

1) Introduction: We apply SaSTL to monitor the real-
time requirements in Chicago. The framework is the same as
shown in Figure 1, where we first formalize the city require-
ments to SaSTL formulas and then monitor the city states
with the formalized requirements. Chicago is collecting and
publishing the city data [1], [27] every day since January,
2017 without a state monitor. In this evaluation, we emulate
the real data as it arrives in real time, i.e. assuming the
city was operating with the monitor. Then we specify 80
safety and performance requirements that are generated from
the real requirements, and apply the SaSTL to monitor the
data every 3 hours continuously to identify the requirement
violations.

workday = weekend

£
S
=
a
o
<
%
£
o
o
=
o
3
a

100.00% 100.00%
80.00% 80.00%
60.00% 60.00%
40.00% 40.00%

20.00% 20.00%

V77773
V777774
V /77777
V /Z7/Z7/777;
V7Z7Z/7Z/7Z/7Z4
V /7/7/7//7/

0.00% 0.00%
7am-10am 1lam-2pm 4pm-7pm 8pm-1lpm

CR1 (2) CR2

7am-10am 1lam-2pm 4pm-7pm 8pm-1lpm

=

Figure 4: Requirement Satisfaction Rate during Different
Time Periods in Chicago

2) Chicago Performance: Valuable information is iden-
tified from the monitor results of different periods during
a day. We randomly select 30 days of weekdays and 30
days of weekends. We divide the daytime of a day into
4 time periods and 3 hours per time period. We calculate
the percentage of satisfaction (i.e., number of satisfied
requirement days divides 30 days) for each time period,
respectively. The results of two example requirements CR1
and CR2 are shown in Figure 4. CR1 specifies “The average
air quality within S5km of all schools should always be
above Moderate in the next 3 hours.” and is formalized as
([0, +00),School) 0[0,3] (A‘E‘E'55]7T)xa;, > Moderate). CR2 spec-
ifies “For the blocks with a high crime rate, the average light
level within 3 km should always be High” and is formalized
as B([0,+00),7) O[0,3] (Tcrime = High — AfGPo 1y Tiighe >=
High).

The SaSTL monitor results can be potentially used by
different stakeholders.

First, with proper requirements defined, the city decision
makers are able to identify the real problems and take
actions to resolve or even avoid the violations in time. For
example, from the two example requirements in Figure 4, we
could see over 20% of the time the requirements are missed
everyday. Based on the monitoring results of requirement
CR1, decision makers can take actions to redirect the traffic
near schools and parks to improve the air quality. Another
example of requirement CR2, the satisfaction is much higher
(up to 33% higher in CR2, 8pm - 11pm) over weekends than
workdays. There are more people and vehicles on the street
on weekends, which as a result also increases the lighted
areas. However, as shown in the figure, the city lighting in
the areas with high crime rate is only 60%. An outcome of
this result for city managers is that they should pay attention
to the illumination of workdays or the areas without enough
light to enhance public safety.

Second, it gives the citizens the ability to learn the
city conditions and map that to their own requirements.
They can make decisions on their daily living, such as the
good time to visit a park. For example, requirement CR1,
1lam - 2pm has the lowest satisfaction rate of the day.
The instantaneous air quality seems to be fine during rush
hour, but it has an accumulative result that affects citizens’

8 threads 17 37 18 13 0

4 threads 9 20 27 15

1 thread

Bl

15 20 19

Standard Parsing 2 6 15 18 39 ‘

o

10 20 30 40 50 60 70 80

m<1ls [@1-10s 10-60s 1160-120s [@>120s

Figure 5: Number of Requirements Checked on Different
Computing Time (x: the number of requirements, y: the
number of threads, bars: different periods of computing
time)

(especially students and elderly people) health. A potential
suggestion for citizens who visit or exercise in the park is

to avoid 1lam - 2pm.
3) Algorithm Performance: We count the average mon-

itoring time taken by each requirement when monitoring
for 3-hour data. Then, we divide the computing time into
5 categories, i.e., less than 1 second, 1 to 10 seconds, 10 to
60 seconds, 60 to 120 seconds, and longer than 120 seconds,
and count the number of requirements under each category
under the conditions of standard parsing, improved parsing
with single thread, 4 threads, and 8 threads. The results are
shown in Figure 5. Comparing the 1st (standard parsing)
and 4th (8 threads) bar, without the improved monitoring
algorithms, for about 50% of the requirements, each one
takes more than 2 minutes to execute. The total time of
monitoring all 80 requirements is about 2 hours, which
means that the city decision maker can only take actions
to resolve the violation at earliest 5 hours later. However,
with the improved monitoring algorithms, for 49 out of
80 requirements, each one of them is executed within 60
seconds, and each one of the rest requirements is executed
within 120 seconds. The total execution time is reduced to
30 minutes, which is a reasonable time to handle as many as
80 requirements. More importantly, it illustrates the effec-
tiveness of the parsing function and parallelization methods.
Even if there are more requirements to be monitored in a
real city, it is doable with our approach by increasing the
number of processors.

B. Runtime Conflict Detection and Resolution in Simulated
New York City

1) Introduction: The framework of runtime conflict de-
tection and resolution [28] considers a scenario where smart
services send action requests to the city center, and where
a simulator predicts how the requested actions change the
current city states over a finite future horizon of time. In
this way, we use SaSTL monitor to specify requirements and
check the predicted spatial-temporal data with the SaSTL

Table IV: Safety and Performance Requirements for New York City

Requirement

SaSTL

NYR1| the next 30min.

The average noise level in the school area (within 1km) should always be less than 50dB in

E([0,+00),School) [0,30] (A?E,Og,l]ﬂr)mNoise < 50)

NYR2| within 2km should not reach the level of congestion in the next 60 min.

If an accident happens, at least one of the nearby hospitals (within Skm), its traffic condition

B([0,+00],7) (Accident —
C([O,S],Hospita\)(D[O,GO](A?E§2]7T)$ < Congestion)) > 0)

NYR3| greater than 50 for more than 10 minutes.

If there is an event, the max number of pedestrians waiting in an intersection should not be

B([0,+o0),7) (Event = O[o,10] (A{[6 1], 7) Tped < 50))

NYR4

At least 90% of the streets, the PMx emission should not exceed Moderate in 60 min.

cavs

([0')+0°),T)(D[0160](AE?S?‘1]7T):CPMX < Moderate)) > 0.9

NYRS| traffic should be above moderate on average and safe in worst case.

If an accident happens, it should be solved within 60 min, and before that nearby (500 m)

B([0, +00),T) (Accident — (A?[UE,SO(J],T)x“amC <
Moderate A A’(]ng‘soo];)act,amc < Safe)lU[o, o) —Accident)

formulas. If there exists a requirement violation within the
future horizon, a conflict is detected. To resolve the conflict,
it provides several possible resolution options and predicts
the outcome of all these options, which are verified by the
SaSTL monitor. It finds the best option without a violation,
otherwise, it provides the trade-offs between a few potential
resolution options to the city manager through monitoring
the predicted traces. Details of the resolution are not the
main part of this paper and we thank the original authors
for making the solution available to the authors of the present
paper.

We set up a smart city simulation of New York City using
the Simulation of Urban MObility (SUMO) [29] with the
real city data [30], on top of which, we implement 10 smart
services (S1: Traffic Service, S2: Emergency Service, S3:
Accident Service, S4: Infrastructure Service, S5: Pedestrian
Service, S6: Air Pollution Control Service, S7: PM2.5/PM10
Service, S8: Parking Service, S9: Noise Control Service,
and S10: Event Service). The states from the domains
of environment, transportation, events and emergencies are
generated from about 10000 simulated nodes. Please see
Table III for the variables.

We use the STL Monitor as the baseline to compare
the capability of requirement specification and the ability
to improve city performance. We simulate the city run-
ning for 30 days in three control sets, one without any
monitor, one with the STL monitor and one with the
SaSTL monitor. For the first set (no monitor), there is no
requirement monitor implemented. For the second one (STL
monitor), we specify NYRI to NYRS using STL without
aggregation over multiple locations, i.e., NYRI is a set of
requirements on many locations and each location has a
temporal requirement. For example, NYRI is specified as
@1, = O[0,4](wair > Moderate), where [; € L, L is a set of
sensors within the range. The setting is the same for the rest
of the requirements. For the third one (SaSTL monitor), five
examples of different types of real-time requirements and
their formalized SaSTL formulas are given in Table IV.

2) NY City Performance: The results are shown in Ta-
ble V. We measure the city performance from the domains
of transportation, environment, emergency and public safety
using the following metrics, the total number of violations
detected, the average CO (mg) emission per street, the

average noise (dB) level per street, the emergency vehicles
waiting time per vehicle per intersection, the average number
and waiting time of vehicles waiting in an intersection
per street, and the average pedestrian waiting time per
intersection. To be noted, the number of violations detected
is the total number of safety requirements violated, rather
than the number of conflicts. Many times there is more than
one requirement violated in one conflict.

Table V: Comparison of the City Performance with the STL
Monitor and the SaSTL Monitor

. STL SaSTL

No Monitor Monitor Monitor

Number of Violation Unknown 219 173
Air Quality Index 67.91 51.22 40.18
Noise (db) 73.32 49.27 41.42
Emergency Waiting Time (s) 20.32 12.93 11.88
Vehicle Waiting Number 22.7 18.2 12.6
Pedestrian Waiting Time (s) 190.2 130.9 61.1
Vehicle Waiting Time (s) 112.12 70.98 59.22

We make some observations by comparing and analyzing
the monitoring results. First, the SaSTL monitor obtains a
better city performance with fewer number of violations
detected under the same scenario. As shown in Table V, the
number of violations detected by SaSTL Monitor is 46 less
than the STL monitor. On average, the framework of conflict
detection and resolution with the SaSTL monitor improves
the air quality by 21.6% and 40.8% comparing to the one
with the STL monitor and without a monitor, respectively. It
improves the pedestrian waiting time by 16.6% and 47.2%
comparing to the STL monitor and without a monitor,
respectively.

Second, the SaSTL monitor reveals the real city issues,
helps refine the safety requirements in real time and supports
improving the design of smart services. We also compare
the number of violations on each requirement. The results
(Figure 6 (1)) help the city managers to measure city’s
performance with smart services for different aspects, and
also help policymakers to see if the requirements are too
strict to be satisfied by the city and make a more realistic
requirement if necessary. For example, in our 30 days
simulation, apparently, NYR4 on air pollution is the one
requirement that is violated by most of the smart services.
Similarly, Figure 6 (2) shows the number of violations

caused by different smart services. Most of the violations are
caused by S1, S5, S6, S7, and S10. The five major services in
total cause 71.3% of the violations. City service developers
can also learn from these statistics to adjust the requested
actions, the inner logic and parameters of the functions of the
services, so that they can design a more compatible service
with more acceptable actions in the city.

3) Algorithm Performance: We compare the average
computing time for each requirement under four conditions,
(1) using the standard parsing algorithm without the cost
function, (2) improved parsing algorithm with a single
thread, (3) improved parsing algorithm with spatial paral-
lelization using 4 threads and (4) using 8 threads. The results
are shown in Table VI

Table VI: Computing time of requirements with standard
parsing function, with improved parsing functions and dif-
ferent number of threads

Standard Parsing (s) 1 thread (s) 4 threads (s) 8 threads (s)
NYRI1 2102.13 140.29 50.31 26.12
NYR2 55.2 0.837 1.023 0912
NYR3 69.22 22.25 7.54 4.822
NYR4 390.19 390.19 100.23 53.32
NYRS 61.76 61.76 20.25 15.68
Total 2678.5 615.32 179.35 100.85

e R1 eR2

R3 ®R4 eR5 ©S1 S2 ©S3 ©S4 #S5 eS6 @S7 ©S8 @S9 ©S10

42 (14.1%) 52(17.5%

35(11.8%)

47 (15.8%)

18 (6.1%)

45 (23.2%)
32 (10.8%)

(1) Requirements (2) Smart Services

Figure 6: Distributions of the violations over requirements
and smart services

First, the improved parsing algorithm reduces the com-
puting time significantly for the requirement specified on
Pols, especially for NYRI1 that computing time reduces from
2102.13 seconds to 140.29 seconds (about 15 times).

Second, the parallelization over spatial operator further
reduces the computing time in most of the cases. For
example, for NYRI1, the computing time is reduced to 26.12
seconds with 8 threads while 140.29 seconds with single
thread (about 5 times). When the amount of data is very
small (NYR2), the parallelization time is similar to the single
thread time, but still much efficient than the standard parsing.

The results demonstrate the effectiveness and importance
of the efficient monitoring algorithms. In the table, the total
time of monitoring 5 requirements is reduced from 2678.5
seconds to 100.85 seconds. In the real world, when multiple

requirements are monitored simultaneously, the improve-
ment is extremely important for real-time monitoring.

C. Coverage Analysis

We compare the specification coverage on 1000
quantitatively-specified real city requirements between STL,
SSTL, STREL and SaSTL, the results are shown in Figure 7.
The study is conducted by graduate students following the
rules that if the language is able to specify the whole
requirement directly with one single formula, then it is
identified as True. To be noted, another spatial STL, SpaTeL
is not considered as a baseline here, because it is not
applicable to most of city spatial requirements. SpaTeL is
built on a quad tree, and able to specify directions rather
than the distance.

0 100 200 300 400 500 600 700 800 900 1000
Number of requirements

Figure 7: Comparison of the Specification Coverage on 1000
Real City Requirements

As shown in Figure 7, STL is only able to specify 184
out of 1000 requirements out, while SSTL and STREL are
able to formalize 431 requirements. SaSTL is able to specify
950 out of 1000 requirements. In particular, we made the fol-
lowing observations from the results. First, 50 requirements
cannot be specified using any of the four languages because
they are defined by complex math formulas that are ambigu-
ous with missing key elements, relevant to the operations of
many variables, or referring to a set of other requirements,
e.g. “follow all the requirements from Section 201.12”, etc.
Secondly, SSTL, STREL and SaSTL outperformed STL in
terms of requirements with spatial ranges, such as “one-
mile radius around the entire facility”; Third, SSTL and
STREL have the same coverage on the requirements that
only contain a temporal and spatial range. Comparing to
SSTL and SaSTL, STREL can also be applied to dynamic
graph and check requirements reachability, which is very
useful in applications like wireless sensor networks, but not
common in smart city requirements; Fourth, for the rest
of the requirements (467 out of 1000) that can only be
specified by SaSTL contains a various set of locations and
the aggregation over spatial ranges.

VII. RELATED WORK
Monitoring spatial-temporal properties over CPS execu-
tions was first proposed in [31] where the author has intro-
duced the notion of spatial-temporal event-based model for

CPS. In such model events triggered by actions, exchange of
messages or a physical changes, are labeled with time and
space stamps and further processed by a monitor. In [32]
this concept is further elaborated, developing a spatial-
temporal event-based model where the space is represented
as a 2D Cartesian coordinate system with location points
and location fields. The approaches described in [31], [32]
provide an algorithmic framework enabling a user to develop
manually a monitor. However, they do not provide any
spatio-temporal logic language enabling the specification
and the automatic monitoring generation.

In the field of collective adaptive systems [33], other
mathematical structures such as fopological spaces, closure
spaces, quasi-discrete closure spaces and finite graphs [13]
have been considered to reason about spatial relations, such
as closeness and neighborhood. In our previous works [34],
[35], we have also studied quad-trees to reason about fractal-
like spatial relations or spatial superposition properties in
a grid, such as electrical spiral formation in cardiac tis-
sues [36] or power management requirements in a smart
grid [34]. Despite these models are suitable for offline
and centralised monitoring of model-based simulations, they
do not scale well for the runtime monitoring of spatially
distributed CPS.

Several logic-based formalisms have been proposed to
specify the behavior and the spatial structure of concurrent
systems [37] and for reasoning about the topological [38] or
directional [39] aspects of the interacting entities. In topo-
logical reasoning [38], the spatial objects are sets of points
and the relation between them is preserved under translation,
scaling and rotation. In directional reasoning, the relation
between objects depends on their relative position. These
logics are usually highly computationally complex [39] or
even undecidable [40]. Monitoring spatial-temporal behav-
iors has started to receive more attention only recently with
SpaTeL [34] and SSTL [13].

The Spatial-Temporal Logic (SpaTeL) is the unification of
Signal Temporal Logic [12] (STL) and Tree Spatial Superpo-
sition Logic (TSSL) introduced in [35] to classify and detect
spatial patterns. TSSL reasons over quad trees, spatial data
structures that are constructed by recursively partitioning the
space into uniform quadrants. The notion of superposition in
TSSL provides a way to describe statistically the distribution
of discrete states in a particular partition of the space and the
spatial operators corresponding to zooming in and out in a
particular region of the space. By nesting these operators, it
is possible to specify self-similar and fractal-like structures
[36] that generally characterize the patterns emerging in
nature. The procedure allows one to capture very complex
spatial structures, but at the price of a complex formulation
of spatial properties, which are in practice only learned from
some template image.

Another important work to mention is VOLTRON [41],
an open-source team-level programming system for drone’s

collaborative sensing. VOLTRON provides special program-
ming constructs to reason about time and space and allows
users to express sophisticated collaborative tasks without ex-
posing them to the complexity of concurrent programming,
parallel execution, scaling, and failure recovery. The spatial
constructs are limited to operate on a set of locations of a
given geometry (that the user need to specify). The system
is suitable more for programming than for monitoring. For
example, it does not allow to quantify how much the current
CPS execution is close to violate a given requirement.

VIII. CONCLUSION

In this paper, we present a novel Spatial Aggregation
Signal Temporal Logic (SaSTL) to specify and to monitor
real-time safety requirements of smart cities at runtime. We
develop an efficient monitoring framework that optimizes
the requirement parsing process and can check in parallel
a SaSTL requirement over multiple data streams generated
from thousands of sensors that are typically spatially dis-
tributed over a smart city.

SaSTL is a powerful specification language for smart
cities because of its capability to monitor the city desirable
features of temporal (e.g. real-time, interval), spatial (e.g.,
Pols, range) and their complicated relations (e.g. always,
everywhere, aggregation) between them. More importantly,
it can coalesce many requirements into a single SaSTL
formula and provide the aggregated results efficiently, which
is a major advance on what smart cities do now. We believe it
is a valuable step towards developing a practical smart city
monitoring system even though there are still open issues
for future work. Furthermore, SaSTL monitor is more than
a smart city monitor, it can also be easily generalized and
applied to monitor other large-scale IoT deployments with
a large number of sensors and actuators across the spatial
domain at runtime efficiently.

ACKNOWLEDGMENT
Supported in part by NSF NRT Grant 1829004.
REFERENCES

[1] C. E. Catlett, P. H. Beckman, R. Sankaran, and K. K. Galvin,
“Array of things: a scientific research instrument in the
public way: platform design and early lessons learned,” in
Proceedings of the 2nd International Workshop on Science of
Smart City Operations and Platforms Engineering. ACM,
2017, pp. 26-33.

[2] New York Times, “IBM takes ‘smarter cities’ to rio de
janeiro,” 2012.

[3] Cisco, “Smart+connected operations center,” 2017.

[4] M. Ma, S. M. Preum, M. Y. Ahmed, W. Tarneberg, A. Hen-
dawi, and J. A. Stankovic, “Data sets, modeling, and decision
making in smart cities: A survey,” ACM Transactions on
Cyber-Physical Systems, vol. 4, no. 2, pp. 1-28, 2019.

[5] Y. Yuan, D. Zhang, F. Miao, J. A. Stankovic, T. He, G. Pappas,
and S. Lin, “Dynamic integration of heterogeneous trans-
portation modes under disruptive events,” in 2018 ACM/IEEE
9th International Conference on Cyber-Physical Systems (IC-
CPS). 1EEE, 2018, pp. 65-76.

(6]

(71

(8]

(9]

(10]

(11]

[12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

[22]
(23]

[24]

M. Ma, S. M. Preum, and J. A. Stankovic, “Cityguard: A
watchdog for safety-aware conflict detection in smart cities,”
in Proceedings of the Second International Conference on
Internet-of-Things Design and Implementation, 2017, pp.
259-270.

H. Zhang, Y. Zheng, and Y. Yu, “Detecting urban anomalies
using multiple spatio-temporal data sources,” ACM on Inter-
active, Mobile, Wearable and Ubiquitous Technologies, vol. 2,
no. 1, p. 54, 2018.

S. Sheng, E. Pakdamanian, K. Han, B. Kim, P. Tiwari, I. Kim,
and L. Feng, “A case study of trust on autonomous driving,”
in 2019 IEEE Intelligent Transportation Systems Conference
(ITSC). 1EEE, 2019, pp. 4368-4373.

M. Ma, J. A. Stankovic, and L. Feng, “Runtime monitoring
of safety and performance requirements in smart cities,” in
1st ACM Workshop on the Internet of Safe Things, 2017.

I. Haghighi, A. Jones, Z. Kong, E. Bartocci, R. Gros, and
C. Belta, “Spatel: a novel spatial-temporal logic and its ap-
plications to networked systems,” in Proceedings of the 18th
International Conference on Hybrid Systems: Computation
and Control. ACM, 2015, pp. 189-198.

M. Ma, J. A. Stankovic, and L. Feng, “Cityresolver: a decision
support system for conflict resolution in smart cities,” in
Proceedings of the 9th ACM/IEEE International Conference
on Cyber-Physical Systems. 1EEE Press, 2018, pp. 55-64.
0. Maler and D. Nickovic, “Monitoring temporal properties
of continuous signals,” in Proc. FORMATS, 2004.

L. Nenzi, L. Bortolussi, V. Ciancia, M. Loreti, and
M. Massink, “Qualitative and quantitative monitoring of
spatio-temporal properties,” in Runtime Verification - 6th
International Conference, RV 2015, vol. 9333. Springer,
2015, pp. 21-37.

E. Bartocci, L. Bortolussi, M. Loreti, and L. Nenzi, “Monitor-
ing mobile and spatially distributed cyber-physical systems,”
in MEMOCODE 2017: the 15th ACM-IEEE International
Conference on Formal Methods and Models for System De-
sign. ACM, 2017, pp. 146-155.

NYC.gov, “Emissions from transportation, nyc environment
protection,” 2019. [Online]. Available: https://www1.nyc.gov/
html/dep/html/air/emissions_from_transportation.shtml
District of Columbia Municipal Regulations and
D. of Columbia Register, “Air quality - motor vehicular
pollutants, lead, odors, and nuisance pollutants,” 2016.

S. Matteo and J. Brannan, “A local law to amend the admin-
istrative code of the city of new york, in relation to restricting
the use of bus lanes by sight-seeing buses,” in Restricting the
use of bus lanes by sight-seeing buses. The New York City
Council, 2019.

NYC Environment Protection, “Use of heating oil remaining
in tanks.” The city of New York, 2019.

United States Environmental Protection Agency, “Residential
energy efficiency,” in Energy Resources for State and Local
Governments. The city of New York, 2019.

LA Sec 111.03. Minimum Ambient Noise Level, “Official
city of los angeles municipal code,” 2016.

Hong Kong, “Guide to indoor air quality management in hong
kong regional offices and public places,” in Guide to Indoor
Air Quality Management, 2019.

NYC.gov, “Stopping, standing or parking prohibited in spec-
ified places,” in New York Public Law, 2016.

Beijing Emergency Agency, “Pre-hospital medical emergency
regulations,” 2016.

Beijing Government, “Safety management for kindergarten,
primary and secondary school,” 2016.

[25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

[37]

(38]

(39]

[40]

[41]

A. Donzé, T. Ferrere, and O. Maler, “Efficient robust mon-
itoring for STL,” in International Conference on Computer
Aided Verification. ~ Springer, 2013, pp. 264-279.

G. S. Lueker, “A data structure for orthogonal range queries,”
in 19th Annual Symposium on Foundations of Computer
Science. 1EEE Computer Society, 1978, pp. 28-34.

City of Chicago, “Crimes of Chicago - one year prior to
present,” 2018.

M. Ma, S. M. Preum, W. Tarneberg, M. Ahmed, M. Ruiters,
and J. Stankovic, “Detection of runtime conflicts among ser-
vices in smart cities,” in 2016 IEEE International Conference
on Smart Computing (SMARTCOMP). 1EEE, 2016, pp. 1-
10.

M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz,
“Sumo-simulation of urban mobility: an overview,” in Pro-
ceedings of SIMUL 2011. ThinkMind, 2011.

NYC.gov, New York City Open Data, https://nycopendata.
socrata.com/.

C. L. Talcott, “Cyber-physical systems and events,” in
Software-Intensive Systems and New Computing Paradigms
- Challenges and Visions, ser. LNCS. Springer, 2008, vol.
5380, pp. 101-115.

Y. Tan, M. C. Vuran, and S. Goddard, “Spatio-temporal
event model for cyber-physical systems,” in 2009 29th IEEE
International Conference on Distributed Computing Systems
Workshops. 1EEE, 2009, pp. 44-50.

V. Ciancia, D. Latella, M. Loreti, and M. Massink, “Spatial
logic and spatial model checking for closure spaces,” in Proc.
of SFM 2016, ser. LNCS, vol. 9700. Springer, 2016, pp.
156-201.

I. Haghighi, A. Jones, J. Z. Kong, E. Bartocci, G. R., and
C. Belta, “SpaTeL: A Novel Spatial-Temporal Logic and Its
Applications to Networked Systems,” in Proc. of HSCC, 2015.
E. A. Gol, E. Bartocci, and C. Belta, “A formal methods
approach to pattern synthesis in reaction diffusion systems,”
in Proc. of CDC, 2014.

R. Grosu, S. A. Smolka, F. Corradini, A. Wasilewska,
E. Entcheva, and E. Bartocci, “Learning and detecting
emergent behavior in networks of cardiac myocytes,”
Commun. ACM, vol. 52, no. 3, pp. 97-105, 2009. [Online].
Available: http://doi.acm.org/10.1145/1467247.1467271

L. Caires and L. Cardelli, “A spatial logic for concurrency
(part 1),” Information and Computation, vol. 186, no. 2, pp.
194 — 235, 2003.

B. Bennett, A. G. Cohn, F. Wolter, and M. Zakharyaschev,
“Multi-dimensional modal logic as a framework for spatio-
temporal reasoning,” Applied Intelligence, vol. 17, no. 3, pp.
239-251, Sep. 2002.

D. Bresolin, P. Sala, D. D. Monica, A. Montanari, and G. Sci-
avicco, “A decidable spatial generalization of metric interval
temporal logic,” in 2010 17th International Symposium on
Temporal Representation and Reasoning, 2010, pp. 95-102.
M. Marx and M. Reynolds, “Undecidability of compass
logic,” J Logic Computation, vol. 9, no. 6, pp. 897-914, 1999.
L. Mottola, M. Moretta, K. Whitehouse, and C. Ghezzi,
“Team-level programming of drone sensor networks,” in
Proceedings of the 12th ACM Conference on Embedded
Network Sensor Systems, SenSys ’14, Memphis, Tennessee,
USA, November 3-6, 2014. ACM, 2014, pp. 177-190.

