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Abstract. Motor proteins or biological molecular motors are special enzyme
molecules that drive biological transport in living cells by moving cellular
cargoes along linear protein filaments. The experimental evidences suggest that
while performing their mechanical work biological molecular motors interact
with each other, and there are other biological molecules on their tracks that
influence their progression. Stimulated by these observations, we propose a one-
dimensional totally asymmetric simple exclusion process with nearest-neighbor
interactions and a dynamic defect that is allowed to reversibly bind and unbind
at a specific site far away from the boundaries. A theoretical framework based
on cluster mean-field approximation is adopted to determine the stationary
properties of the system. The role of interactions and the effect the reversible
defect associations on the dynamics of the system is discussed. It is found
that three or less stationary phases can exist in the system, depending on
the interaction strength, and only one of them is strongly affected by the
defect association/dissociation dynamics. The theoretical results are validated
through extensive Monte Carlo simulations.

Keywords: driven diffusive systems, exclusion processes, molecular motors,
traffic models

© 2020 IOP Publishing Ltd and SISSA Medialab srl 1742-5468/20/043206+20$33.00


mailto:akgupta@iitrpr.ac.in
stacks.iop.org/JSTAT/2020/043206
https://doi.org/10.1088/1742-5468/ab7756
http://crossmark.crossref.org/dialog/?doi=10.1088/1742-5468/ab7756&domain=pdf&date_stamp=2020-04-14
publisher-id
doi

The role of dynamic defects in transport of interacting molecular motors

Contents
1. Introduction 2
2. Definition of the model 4
3. Mathematical description of the model 6
3.1. Two-site CMF approximation for TASEP with interacting particles.............. 7
3.2. Defect dynamics .......ooouiiiiiiiiiiiiiiie e 8
4. Stationary phase diagrams 10
4.1, HD /LD PRASE ..ceeiiiiiiiiiiiiiie e 10
4.2, LD /LD PRASE....ceiuiiiiiiiiiiii et 11
4.3, HD/HD PRASE....uvtiiiiiiiiieiiiiit oot 11
4.4, LD /HD PRASE cceeiieeiiiie et 12
4.5, MO /MO PRASE ...ttt 12
5. Results and discussions 13
5.1. Effect of INteractions.......coiiiiuiiieeiiiiiiiiee e 13
5.2. Effect of the defect dynamics...........ooooeiiiiiiiiiiiiiiiii 15
ST T ©0 <] 1 (o) T S PP 15
6. Summary and conclusions 18
Acknowledgments ...ccoeieiuiiiiiiiiiiiiiiiiiiiiiii e 19
References 19

1. Introduction

The transportation is a universal phenomenon which occurs in a wide range of physical
as well as biological processes, and it is currently a subject of intensive investigations
[1]. Instances of such processes are traffic flow, pedestrian motion, cellular transport,
protein synthesis and many more [1-5]. These processes show non-zero particle cur-
rents, which categorizes them as non-equilibrium. In the cellular world, biological
molecular motors or motor proteins are known to play a special role in supporting the
major functions such as cell motility, cell locomotion, cell division, and cargo transport
along the filaments, etc [6-9]. In the intracellular transport, the motion of molecular
motors carrying cargo is supported by the transformation of chemical energy derived
from ATP hydrolysis into mechanical energy [2].

Recent in vitro experiments indicated that biological molecular motors that move
along protein filaments interact with each other [10, 11]. Due to these short-range
interactions, clusters of motor proteins can be formed, and this might influence their
collective dynamics. In addition, while diffusing on cytoskeleton linear tracks biologi-
cal motors might encounter other protein molecules bound to protein filaments that
might interfere with their motion [12, 13]. These protein molecules can be viewed as
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defects, and their effect on the multi-particle transport of molecular motors have been
studied in recent years [14, 15]. One of the most important features of these defects is
their dynamic nature, i.e. that they can stochastically bind and unbind from the linear
tracks, and this should affect the movement of active motors [14]. There are several
in vivo [16—-18] and in vitro [19-22] experiments that observed the traffic jams in the
transport of molecular motors due to the presence of microtubule-associated proteins
(MAPs). An overview of different types of defects and their effects on molecular motor
movement is represented in tabular form in [14]. In addition, the cytoskeleton motor
proteins that move along cytoskeleton protein filaments can be divided into two groups
depending on their processivity [2]. Processive motors, like conventional kinesins and
myosins-V, can make hundreds of steps before dissociating from the filament tracks,
while non-processive motors, like NCD kinesins and myosins-II, can make only few
steps before dissociating back into the solution. In this case, the non-processive motors
might be viewed as defects for the transport of processive molecular motors.

To explain multi-particle transport phenomena in natural systems, one frequently
uses a class of non-equilibrium models known as totally asymmetric simple exclusion
processes (TASEP) [1]. It was originally proposed as a model to describe the kinetics
of biopolymerization [23]. Later, it was generalized to describe the biological transport
processes, in particular the motion of molecular motors [1]. The simplest version of
TASEP considers the active species as point particles that hop unidirectionally and sto-
chastically in one preferred direction on a homogeneous one-dimensional (1D) lattice.
In contrast to periodic boundary conditions, when the two ends of lattice are connected
to a reservoir of infinite particles (open boundary conditions (OBC)), which seems to
be a more realistic description of real dynamic processes, the model reveals interesting
phenomena such as phase separations, phase segregation and boundary induced phase
transitions [1, 24-28].

TASEP can be solved exactly only for homogeneous systems without interactions
[24, 25, 27]. More complex multi-particle non-equilibrium processes are frequently ana-
lysed using simple mean-field approaches that neglect correlations in such systems [1,
29]. But adding the inter-molecular interactions introduces significant correlations,
and this leads to the failure of the simple mean-field methods. To resolve this issue, a
cluster mean-field (CMF) approach that accounts for some correlations has been intro-
duced [30] and successfully utilized for analysing various molecular motors systems [31,
32]. Furthermore, several generalizations of TASEP have been employed for uncover-
ing collective dynamics of biological molecular motors in more realistic circumstances.
Examples include the investigation on the role of local inhomogeneity [29], the effect
of dynamic blockages where the particles are completely blocked from the forward
motion if the defect is sitting at the specific site [33], the role of association/dissocia-
tion kinetics of defect particles with diffusive and non-diffusive characteristics [34], and
the reversible transformation to a local disordered state that can hinder the movement
of particles [35].

Inspired by the realistic features of the transport of biological molecular motors
along linear filaments, in this paper we aim to analyse the effect of stochastic bind-
ing and unbinding events of the defect particle on dynamics of interacting molecu-
lar motors. More specifically, we are stimulated by observations that the dynamics
of processive cytoskeleton motor proteins can be affected by the presence of other
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non-processive proteins. Our goal is to investigate the coupling between the associa-
tion/dissociation dynamics of the defect and the inter-molecular interactions. Since the
defect introduces the inhomogeneity in the system, simple mean-field approaches can-
not be utilized here. We generalize a CMF approach that allows us to comprehensively
describe the stationary properties of the system. It is found that there are only three or
less possible stationary phases in the system, and one one of them is strongly affected
by the defect dynamics. Our theoretical calculations are supported by extensive Monte
Carlo computer simulations.

2. Definition of the model

The main goal of the proposed model is to investigate a TASEP model for interacting
particles with the addition of binding/unbinding kinetics of the defect particle at the
specific location. We consider a 1D lattice with N sites, as shown in figure 1, where
the moving particles obey hard core exclusion principle. The particle are allowed to
enter the system from the left and the particle leaves the lattice from the last site: see
figure 1. All particles are identical and move along the lattice in one preferred direction
(to the right).

It is also assumed that there is another type of particle, called a defect, that is
allowed to bind to a special site k£ far away from the boundaries. To simplify the
analysis, we neglect the interactions between the defect particle and the molecular
motors because these species are different. But the potential interactions between these
two different types of particles can be considered by extending the proposed theor-
etical method. For our analysis, we set the special site to be k= N/2, and the defect
binds to the lattice with a rate ko, if it is free from the defect and it unbinds with a
rate kop—see figure 1(C). Although the transition rates of the defect at ¢ = k are not
altered by the presence of particles, the presence of the defect modifies the hopping
rates of the particles from the site (kK — 1) to the site k. The particle jumps with a
reduced rate py < 1 from (k — 1)th site to kth site if the defect is present, and otherwise
the hopping rate is 1. For the case p; = 0 the effect of the defect is the strongest, while
for p;=1 the particles do not feel the presence of the defect at all. If the particle and
the defect both are present at the site k, the hopping rate of the particle to (k + 1)th
site remains 1. Since the particles and the defect are two different species, we denote
7, and o as their respective occupation numbers. These occupation numbers 7; and oy
takes two values 1 or 0, which represents the presence or absence of a particle at site i
and defect at the site k, respectively. It should be noted that the parameter p, reflects
the real structures of the cytoskeleton protein filaments that differ from the simplified
1D picture presented above [2, 6]. For example, microtubules can be viewed as several
parallel protofilaments assembled together in a cylindrical fashion. Then the defect pro-
tein can be found at one of the protofilaments, while the molecular motor can be found
on the neighboring protofilament. In this case, the molecular motor can move forward
but it should also feel the presence of the defect particle in passing near it.

It has been experimentally observed that the molecular motors interact with each
other, and these interactions are short-ranged, effectively creating inter-molecular
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Figure 1. (A) A schematic view of the TASEP model for interacting particles
with a dynamic defect. Circle are particles moving from the left to right. Square
describes the defect siting at the site k. (B) The transition rates of the particle
when it moves from the site i = (k — 1) to the site i = k with a rate p; < 1 because
the defect is at the site k. (C) The binding and unbinding rates for the defect at
the site &, which is independent of the particle occupation of this site.

bonds between particles [10, 11]. The formation and breaking of these bonds can be
described using transition rates ¢ and r, respectively, that depend on the energy £ (in
kgT units) of inter-molecular interactions. Here, the positive (£ > 0) energy represents
attractive and the negative (F < 0) energy depicts repulsive interactions between the
motors. One could introduce a thermodynamically consistent description of the trans-
itions rates ¢ and r [32, 36—38]. Then these rates can be written as

q = explfE], r=exp[(§ —1)E] (1)

where 0 is a splitting factor that lies within the range [0, 1] and it specifies how the
interaction energy affects separately the formation and breaking the bonds. From this
point of view, the formation and breaking of the bond is considered as a reversible
chemical reaction with chemical equilibrium constant given by K = ¢/r [8]. Since the
interactions are short-ranged, if the hopping of particle leads to the bond formation
(breaking) with the neighboring particle, the corresponding transition rate is ¢ (7).
Whereas, if bond formation and breaking occurs simultaneously the hopping rate is 1,
as illustrated in figure 1(A).

In the presence of the defect at the site k, the transition rate for the particle from
the site k£ — 1 to the site & is modified due to inter-molecular interactions as shown in
figure 1(B). If the site £ — 2 is occupied (empty) and the site k£ + 1 is empty (occupied)
the particle hops with the rate rpg (gpg). Whereas, if both the neighboring sites are
occupied or empty simultaneously, the particle hops with the rate pg see figure 1(B).
Interactions also change the entry and the exit rates of the particles. The particle
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Figure 2. The division of the original inhomogeneous system into two coupled
homogeneous segments: the left sub-lattice L; (=1 to (k — 1)) and the right sub-
lattice Ly (i = k to N). The effective exit rate from L is Setr and the effective entry
rate into Lo iS augt.

attempts to enter the lattice with a rate ga if the second site (i = 2) is occupied as it
leads to the formation of the inter-molecular bond. The entrance rate is « if the second
site is empty. If the site previous to last site (i = N — 1) is occupied, the particle leaves
the lattice by breaking the bond with a rate r(, otherwise the exit rate is .

To analyse better our inhomogeneous system, we divide the lattice in two homo-
geneous sub-lattices L; and Ly as shown in figure 2. The left sub-lattice L; describes
the lattice segment from the site i =1 to the site i =k — 1, and the right sub-lattice
describes the lattice segment from the site i =k to the site i = N. The homogeneous
TASEP for interacting particles has been already extensively studied: see [32, 36-38].
In our theoretical framework, one needs to introduce the effective exit rate of the par-
ticles from L; as [.r and the effective entry rate of the particle to Lo as aegr. These
quantities are unknown and need to be evaluated. The two sub-lattices are coupled in
the steady-state regime because the same particle currents must pass each sub-lattice.
This allows us to calculate aees and Segr, providing a convenient way of explicitly inves-
tigating the dynamical properties of the TASEP model with interacting particles and
with the dynamic defect.

3. Mathematical description of the model

Dynamic properties of homogeneous TASEP for the particles with only hard-core exclu-
sions has been well studied using exact and simple mean-field approaches [24, 25, 27].
It was found that there exist three distinct stationary phases: low-density (LD), high
density (HD) and maximal current (MC). Adding short-range interactions to particles
make the corresponding TASEP models too complex to be solved exactly, and it was
also argued that simple mean-field approaches fail for these systems. However, the
CMF methods that take into account some correlations are able to correctly describe
the complex dynamics in the TASEP model for interacting molecules [32, 36-38].
Theoretical calculations show that the original LD, HD and MC stationary phases
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remain intact, and only the boundaries between phases change with varying the inter-
action energy F. It seems reasonable to apply the CMF method for our system too. Let
us first review the main results from the CMF theoretical approach.

3.1. Two-site CMF approximation for TASEP with interacting particles

The main assumption of the two-site CMF approximation is that the probability of
the cluster of n sites P(7;, Ti11, - .., Ty) is proportional to the product of probabilities of
two-site clusters,

P(7i, Tisty ooy Tn) X P(Ti, Tig1) P(Tig1, Tiv2) - - P(Tn—1, Tn), (2)
which undergoes normalization and eventually yields,

P(Ti?Ti-i-l)P(Ti—i-l,Ti+2>---P(7_n_1,Tn) ;
P(ri1)P(Tiy2) .. P(Tacr) 3)

P(Ti,Ti+1, Ce ,Tn) =

The probabilities for four possible states of any two-site cluster are the following:
P(1,1) when both sites are occupied by the particles; P(1,0), P(0,1) when only one
site is occupied; and P(0,0) when both sites are empty. For simplicity we denote
x = P(1,1), z= P(0,0) and due to particle-hole symmetry y = P(1,0) = P(0, 1). Now,
we can calculate the bulk particle current in the system,

Jouk = (1 = 7i-1)7i(1 = 7i1) (1 = 7i2)) + ¢{(1 = 7o) 7i(1 — Ti1) Tiga)

+r{(rio1mi(1 = i) (1 = Tis2)) + (TimaTi(1 = Tin1 ) (Ti42))- .

The currents at the entry and at the exit site are written as
Jentr = @ [(1 = 71)(1 = 72)) + (1 — 71)72)], (5)
Jexit = B (1 = 7v_1)7) + r{Tv-17n)] - (6)

The average particle density at the site i is denoted as (1;) = p;, and since the density
is uniform for the homogeneous lattice the subscript i can be dropped. Furthermore,
employing the two-site CMF in the thermodynamic limit N — oo, equations (4)—(6)
reduce to [32],

v2z + qud + reyz + ay?

J, ulk — )

bulk (1) (1)
Jentr = Oé(Z + qy)a (8)
Jexic = By + 1) 9

To compute the current in the system, we need to calculate z, ¥y and z which can be
evaluated by using the Kolmogorov conditions;

r+y=p, (10)

y+z=1-p. (11)

We can also use the master equation for the density of the half-filled clusters, y = P(1,0),
leading to [32, 38]
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TrTre
y=4/—" (12)
q

Solving equations (10)—(12) gives the explicit expressions for the three probabilities of
different clusters in terms of the particle density and interactions:

1 r—/r(r+4(qg—7)p(1—p))
T = §(2p+ >7 Q7T§é]‘

o (13)
P, g=r=1
—rty/r(r+4(g—r)p(1—p))
== \/ 2(q—q’r) 5 - ) Q7 r % 1 (14)
p(1 = p), g=r=1
(o _%rfMMerwmlpD)’ A1
1200 i or# -

(1—p)?, qg=r=1.

Substituting these expressions into equations (7)—(9), we can evaluate the bulk densi-
ties in the LD and the HD phases using the current continuity condition Jepy = Jpuk
and Jexit = Jpuk respectively [32, 36-38]. The bulk density in the MC phase is equal
0.5, which is obtained from the condition 2 a = 0. Moreover, the regions in which the
different phases exist have been calculated [32]. The LD and HD phase exist for param-

_B_

eters that satisfies a < , a < a, and a > ——, B < f3., respectively. The param-
q/T

q/T
eters a. and (. can be found using the relation Jpp = Jyc and Jyp = Jyce. Finally, the
MC phase is found for a > a., 8 > B..

3.2. Defect dynamics

Now let us consider the dynamics of the defect at the site k. The temporal evolution of
the defect density at the site k can be presented as

d(o
) — Fenl(1 = 00)) — o).
(16)
Writing (o},) = p* (the average occupation fraction of the defect), in steady state condi-
tions equation (16) reduces to
Kon
kon + koff '

*

p = (17)
For the case when no defect can bind to the protein filament, we have k,, = 0 and it
yields p* = 0. It reduces the proposed model to the homogeneous interacting molecular
motors model that have been investigated in detail before [32]. However, due to defect
the dynamics in our system differs from the fully homogeneous case. The lattice can
now be divided into two sub-lattices, the current from the site (kK — 1) to the site k
couples the sub-lattices L, and Ls, and it can be written as

https://doi.org/10.1088/1742-5468 /ab7756 8
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J _
Jcoupling = P*J + (1 - P*)Jd (18)

Here, J? and J¢ defines the current in the presence and absence of defect at the site
k, respectively. The parameters p* and (1 — p*) give the probability of the site k being
occupied by the defect or to be empty, respectively. It can be shown that

Jd = (((1 = Th-2)Th-1(1 = %) (1 = Tiy1)) + ¢((1 = To—2) o1 (1 — 70) 1)
+ r(mamier (1= 7 (1= 7)) + (reamiea (L= 1) () ) (19)

To simplify calculations, we ignore all defect-particle and particle—particle interac-
tions for the four consecutive sites i = (k —2), (k — 1), k and (k + 1). Now, denoting
(Tk—2) = pp1 and (1) = pp2, equation (19) reduces to

J4 = (1= pi) ) (1= poa)(1 = po2) + a1 = oo + Tpua(1 = pr2)

+ pb,lpb,2) ; (20)

where p; 1 and py 2 represents bulk density in the left and in the right sub-lattices L; and
Lo, respectively. In the presence of the defect, the particle current is simply written as

J = pyJe. 21)

When the rate p; =1 equation (18) gives Jeoupling = J 4 and the model is identical to
the fully homogeneous case that was investigated in [31, 32]. Hence, it is interesting to
investigate when pg # 1 since this will exhibit the role of the defect at the site k. Under
the mean-field approximation, the current at the exit site of the left sub-lattice L; and
at the entrance site of the right sub-lattice Ly are given by

Jexit,1 = BestPre—1[1 + (r — 1) pp1], (22)

Jentr,2 = CYeff<1 - Pk)[l + (q - 1)pb,2]‘ (23)

The expression for Ser can be computed by equating the current leaving the left sub-
lattice L; to the coupling current Jeit,1 = Jeoupling, producing

= 0 0 ) (0 s -

+q(1 — pp1)pp2 +1po1 (1 — po2) + pb,lpb,2>- (24)

Similarly, aeg is evaluated by equating the entrance current into Ly with the coupling
current Jentr,2 = Jcouplingy

pr—1(1 — pr)
1—pk)(1+(q—1

+q(1 — pp1)pp2 +1pe1 (1 — pp2) + ,Ob,1/?b,2)-

=0 0 ) (3

(25)

The above expressions will be further utilized to compute the properties of the system
such as phase diagrams, density profiles and correlations.
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4. Stationary phase diagrams

Because each homogeneous TASEP can have one of three phases (LD, HD or MC), our
inhomogeneous system consisting of two coupled homogeneous sub-lattices can have
upto 9 possible stationary phases [32]. At the steady-state conditions, we have

Joutk,1 = Jbulk,2; (26)

where Jyu 1 and Jpuk 2 represent the bulk currents in L; and Ly, respectively, which
can be explicitly obtained from equation (7) with the corresponding probabilities of the
clusters zj, y; and z; (j = 1 for Ly and j = 2 for Ly).

The condition in equation (26) implies that

Pb1 = Pb,2, (27)

or Po1+ po2 = 1. (28)

Then the possibility of having the MC phase in any of the sub-lattices and the LD or
the HD phase in the other sub-lattice can be discarded because these phases support
different particle currents. Hence, this leaves only 5 possible stationary phases, namely:
LD/LD, HD/HD, MC/MC, HD/LD and LD/HD. In this notation, the first term cor-
responds to the state of the segment L;, while the second term describes the segment
Ls. Moreover, equation (27) states that in the case of LD/LD, HD/HD and MC/MC
phases the density in both sub-lattices will be equal. Now, let us explore the conditions
for existence of these possible phases.

4.1. HD/LD phase

This phase is determined by the occupation fractions of the exit site on left sub-lattice
(pr—1 = pp1) and the entry site on the right sub-lattice (py = pp2). This phase exists if
the entry and the exit rates satisfy the following conditions:

Bett
a> o Betr < Be, 29
q/r e
Ol < L, Ol < O (30)
Va/r

where a. and (. are the coordinates of the triple point for the system. The current
continuity condition at the entrance of the right sub-lattice helps us to calculate the
bulk density py 2,
2 3 2
Y22 + qYy + TTalYaZo + T2l
Qett(22 + qY2) = 31
et ) Po2(1 — po2) S
where aefr is unknown. The density p, 1 is evaluated using equation (34). Utilizing above
equations along with equations (24) and (25), the effective entrance and exit rates, et
and fBegr are explicitly found. It can be also shown that aer = @, and Begr = Se.

https://doi.org/10.1088/1742-5468 /ab7756 10
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4.2. LD/LD phase

This phase is governed by the following condition,

6eff
q/r

a < , o< Qg, (32)

Qeff < —==,  Qleff < Q. 33
q/r (59)
In this phase, the bulk density in L; (pp1) and Lo (pp2) is determined by the entry site
occupation of the left sub-lattice and the right sub-lattice, respectively. Utilizing the
current continuity condition, p, is obtained by equating the current at the entrance of
the left sub-lattice to that in the bulk of L; for known value of «, yielding
2 3 2
Yiz +qyy Frayiz + g
alzy +qy) = ) 34
(2 2 Py (1 — po,1) G4
where z;, y1 and 2 are obtained from equations (13)—(15) for p = p,;. Furthermore,
using the relation Jeit1 = Joui,1 the density at the exit site of L is given by;

Doy = Jhulk,1 -
k—1 = .
Bete(1 + (r — 1)ppa1) (39)
Now, for the right sub-lattice, the density p; 5 is given by
2 3 2
Y22 + qYy + TTaYaZo + T2y
Qe (22 + qys) = = ? : (36)

Pv2(1 — pp2)

where aeg is still unknown. Hence, we need to compute aerr and e by solving the
system of non-linear equations (24), (25), (35) and (36) for known values of F, ko, kott
and pg. We can also show that the bulk densities in both lattices satisfy equation (27).
The obtained values of . and Segr are used then to determine the boundaries of this
phase from the conditions presented in equations (32) and (33).

4.3. HD/HD phase

The conditions for the existence of this phase are

ﬁeff
a > q/’r” Beff < 507 (37)
Qe > b . B < Be. (38)
\Va/r

In this phase, the dynamics in the two sub-lattices L; and Ly is governed by the exit
sites on the respective lattices. Starting with the known value of 8, and using
Y3zt Qs + Ty + T2y

By + 129) = oL — pra) (39)
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we calculate p, 2. Employing Jentr2 = Jouik2, the density at the entry site of L, is given
by

Jbulk,2
(1 + (g — 1) pp2)’

where aegr is unknown. The bulk density in the left sub-lattice L;, is obtained from

Pr = (40)

2 3 2
Y121 +qyy +raayiz + 2y
B +ray) = , 41

eff(yl 1) Pb,1(1 — Pb,1) (41)
where S is unknown. So, we have a coupled system of equations (24), (25), (40) and
(41) that can be numerically solved to find the rates aeg and [Ser for specific values of
E, kon, kogr and pg. Correspondingly, the HD /HD phase can be obtained for the values
a, B, aerr and [epr satisfying equations (37) and (38).

4.4. LD/HD phase

This phase exists when the following conditions are satisfied,

Beff
a < ,  a < ag,
afr 4
Qe > i, B < Be. (43)
Va/r

The bulk densities in the left and the right sub-lattices (p,; and p,2) are calculated
using equations (34) and (39), respectively, for known values of o and . These param-
eters are further utilized in equations (24), (25), (35) and (40) to compute the effective
rates err and Pegr. Our specific calculations found that there are no parameters («, (3,
aetr and Pegr) that could satisfy equations (42) and (43). Hence, the conditions for the
existence of LD/HD phase are violated, and this phase cannot be realized at all.

4.5. MC/MC phase

In this phase, the bulk densities in each sub-lattice must be equal to 0.5, independently
of the values of a;, 8 and the effective entry and exit rates. The conditions the existence
of this phase are given by

az e Petr 2 P, (44)

Qleff 2 A, 5 P ﬁc' (45)

We found that here also does not exist any set of parameters that could satisfy all the
above conditions simultaneously. This phase can exist only when there is no inhomo-
geneity in the system, i.e. for p* = 0. Thus, for general situations with the defect this
phase also cannot be found at stationary conditions.

Explicitly checking the conditions for existence of all possible phases, we found that
the system can support only 3 stationary phases: LD/LD, HD/LD and HD/HD.
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Figure 3. Density profiles for three different stationary phases. In all cases we
utilized: p;= 0.1, E = —1.6 kgT and § = 0.5. (a) LD/LD phase with k,, = 0.9 and
kote = 0.3; (b) HD/HD phase with k,, = 0.9 and k¢ = 0.3; (¢) HD/LD phase with
kon = 0.2 and ko = 0.6. Solid green lines correspond to numerically exact two-site
CMF calculations and red symbols represent the Monte Carlo simulations.

5. Results and discussions

The dynamics in the system is governed by four main parameters: interaction energy F,
the defect association rate k.., the defect dissociation rate k. and the defect-particle
interaction parameter p,; that specifies how the transition rates of the particle change
if the defect is present at the special site k. Now let us investigate in detail the role of
each of these parameters.

To test the validity of our theoretical method, the approximated results obtained
in the previous section are probed with extensive Monte Carlo simulations. For simu-
lations, the random sequential update rules are followed with lattice length N = 1000
and the simulation is allowed to run for 2 x 10° time steps to attain a steady-state.
The dynamics of defect is considered to be at k= N/2. While simulating, if the site &k
is found to be occupied with both the defect and the particle, we preferred the detach-
ment of the defect rather than the jump of particle. To ensure the occurrence of steady
state, first 5% of the total number of time steps are ignored.

Figure 3 shows the comparison of our theoretical calculations for density profiles
with the results of computer simulations. One can see that that our method describes
reasonably well all different stationary phases. This suggests that we can now specifically
study the role of various factors in the dynamics of interacting particles in the presence
of the dynamic defect.

5.1. Effect of interactions

Interaction energy F is the measure of the tendency to form inter-molecular bonds.
For F < 0, the particles repel each other and they do not like to form the bond. But
for F > 0, the particle clusters are easily formed. We calculated stationary phases for
different interactions energies, and results are presented in figures 4 and 5. One can
see that 3 stationary phases exist for weak repulsions (F'= —1.6 kgT', figure 4(a)), and
increasing the repulsion have a strong effect on the stationary dynamics. Below the
critical value E, ~ —2.6 kgT', the HD/LD phase completely disappears (figure 4(b)). At
the same time, the LD/LD phase significantly increases, while the HD/HD is getting
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Figure 4. Stationary phase diagrams for k., = 0.2, ko = 0.6, p4=0.1, § =0.5
and the interaction energy (a) £ = —1.6 kg7 and (b) £ = —4 kgT. Red symbols
represent simulated results and solid green lines are the results from numerically
exact calculations using two-site CMF.
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Figure 5. Stationary phase diagrams for k., = 0.2, kot = 0.6, pg= 0.1, § = 0.5 and
the interaction energy (a) £ = 1.6 kgT and (b) E = 4 kgT'. Red symbols represent
simulated results and solid green lines are the results from numerically exact
calculations using two-site CMF.

smaller. These observations can be easily explained. Increasing repulsions stimulate
particles to stay far way from each other, which can only be satisfied in LD phases. The
stationary phases for attractive interactions show a slightly different picture. We again
have 3 phases for weak attractions (figure 5(a)), while for strong attractions the LD/
LD phase diminish and the HD/LD and HD/HD phases expand. These observations
are expected since for attractive interactions particles tend to be closer with each other,
which can be satisfied in high-density phases. We can clearly notice that these findings
agree with the current views on mechanisms of interacting particles [31, 32]. One can
also see from figures 4 and 5 that Monte Carlo computer simulations generally agree
with our theoretical calculations for stationary phases.
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Figure 6. The dependence of the particle current J,,,, on the association /dissociation
rates of the defect for £ = —1.6 kg7, ¢ = 0.5 and p;= 0.1; (a) fixed k,, = 0.2 and
0 < koee < 1; (a) fixed ko = 0.9 and 0 < kop < 1. Green lines represent numerical
results whereas symbols correspond to Monte Carlo computer simulations.

5.2. Effect of the defect dynamics

The defect is crucial for understanding the dynamics of particles in the system. When
the defect is siting at the site k, the transition rates of the particles are locally affected.
But the dynamics is normal and homogeneous when the the defect is not present at
the special site. Our theoretical approach allows us to quantify the effect of the defect
dynamics.

Figure 6 shows the dependence of the stationary currents on association and dis-
sociation rates of the defect for weak repulsion (£ = —1.6 kg7T') and for strong defect-
particle interactions (p;= 0.1). One can see that increasing the time when the defect
is at the site k, which happens for smaller k. and larger k,,, decreases the particle
current, as expected. The particles have difficulties to pass through the site k. Our
theoretical method correctly predicts this effect, but it underestimates the effect of the
dissociation rate and slightly overestimates the effect of association rate. This is clearly
a consequence of neglecting the correlations near the special site k.

Varying the defect binding and unbinding rates has a limited effect on the phase
diagrams of interacting particles, as illustrated in figure 7. Three stationary phase are
always observed and only the boundaries between some phases are modified. Increasing
the dissociation rate k. or decreasing k,, generally expands the phase space occu-
pied by the LD /LD phase, while the space for the HD/LD phase shrinks: see figure 7.
Similar effects are observed for changing the defect-particle interactions, which can be
done by varying the parameter p, as presented in figure 8.

5.3. Correlations

One of the most important features of the transport of interacting particles is the
presence of correlations in the system. The CMF method can successfully describe the
TASEP with interacting particles because it takes into account some of these correla-
tions. We can quantify the effect of correlations by considering a function,

Ci = (TiTix1) — (1) (Tit1), (46)
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Figure 7. Stationary phase diagrams for £ = —1.6 kgT', 6 = 0.5 and p;=0.1; (a)
fixed kon = 0.2 and ko = 0.4,0.8; (a) fixed ke = 0.9 and k., = 0.5,0.8. Colored
symbols represent the simulated results and the corresponding colored lines are
numerically exact results using two-site CMF.
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Figure 8. Stationary phase diagram for k., = 0.2, ko = 0.6, F=—1.6 kgT,
6 = 0.5 with varying the parameter p; (py= 0.1 and p; = 0.8 are considered). Red
symbols correspond to simulated results and solid green lines are the results from
numerically exact calculations using two-cluster CMF.

which can be explicitly evaluated in our theoretical approach. This allows us to under-
stand where the presented theoretical method works better and why.

Figure 9 presents the particle density profiles and correlation profiles for the LD/
LD and the HD/HD phases. In both cases, the correlations are relatively weak, and our
theory can describe the dynamics perfectly well. There are only some deviations near
the special site k, but they are quite local. Thus, the defect dynamics essentially does
not affect the system in both these phases. This observation can be easily explained.
In the LD/LD phase the rate-limiting step that determines the overall dynamics is the
entrance into the system, while in the HD/HD phase the rate limiting step is the exit.
Then the defect dynamics cannot influence the system beyond the small region near
the special site.
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Figure 9. Correlations and particle densities for ko, = 0.9, ko =0.1, py=0.1
and 6 = 0.5. (a) LD/LD phase density profile with F = —1.6 kg7, o = 0.05, and
£ =0.9; (b) HD/HD density profile with F = 1.6 kg7 o = 0.5, and 8 = 0.05; (c)
LD/LD correlation profile with £ = —1.6 kg7, a = 0.05, and 5 = 0.9; (d) HD/HD
correlation profile with E = 1.6 kgT «a = 0.5, and 8 = 0.05. Symbols correspond to
Monte Carlo simulations and solid lines are due to our theoretical calculations.

However, as illustrated in figure 10, the situation is drastically different in the HD/
LD phase. Our theory can only semi-quantitatively describe the density profiles in this
phase (figures 10(a)—(c)). The discrepancy between theoretical predictions computer
simulations growths up for larger k., and smaller k., i.e. for longer periods of the
defect sitting at the site k and affecting the particle dynamics. In this phase, the ampl-
itude of correlations is generally larger than in the LD/LD and HD/HD phases (figures
10(d)—(f)).While the correlations are decreasing for more active defect dynamics, our
predictions are mainly quantitative in this case. We believe that the main reason for
this is the mean-field assumption on the coupling between the sub-lattices. These argu-
ments suggest that the defect is significantly influencing the dynamics in the HD /LD
phase because the exit form the left sub-lattice and the entrance to the right sub-lattice
are now rate-limiting steps. But both of them are strongly affected by the presence of
the defect. This explains the role of the defect dynamics in the TASEP model of inter-
acting particles.
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Figure 10. First row gives the density profiles for fixed parameters o = 0.9, 8 = 0.9,
pg=0.1, E=—1.6 kgT and 0 = 0.5 with (a) k., = 0.2 and k. = 0.6; (b) ko, = 0.4
and ko = 0.3; (¢) kon = 0.9 and ko = 0.1. Green lines represent numerical results
whereas red markers symbolize Monte Carlo simulations. Second row provides
the correlation profiles for the same parameters in HD/LD phase where (d) is
corresponding to (a) and (e) is corresponding to (b) and (f) is corresponding to (c).
Yellow lines represent numerical results whereas pink symbols are Monte Carlo
simulations.

6. Summary and conclusions

Stimulated by biological transport phenomena, a theoretical model is developed to
analyse the dynamics of interacting molecular motors in the presence of dynamic defect
that might slow down the particle flux. Our main finding is that the presence of the
reversible dynamic defect does not change the number of possible stationary phases,
although the nature of the dynamics is now different. It is determined by the sign and
the strength of inter-molecular interactions, as well as the way the defect dynamics is
coupled to the flux of translocating particles. In addition, the defect introduces cor-
relations in the system that affect those stationary phases that are rate-limited by the
process of passing the special site where the defect can be found.

More specifically, we generalized 1D totally asymmetric exclusion processes for
interacting particles by including the effect of reversible defect. Since the model can-
not be solved analytically and the simplest mean-field theoretical treatments cannot
be used due to the neglect of correlations, we developed a CMF method to describe
the dynamic processes in the system. The defect site introduces the inhomogeneity on
the lattice, and we mapped our system into two coupled sub-lattices. This allows us to
describe the dynamics of interacting particles at each homogeneous sub-lattice sepa-
rately, and stationary conditions couple the currents between two parts of the system.
Considering the dynamics at steady-state conditions, we determined that there are only
three possible stationary phases found in the system. Two of them are governed by
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the processes at the entrance or at the exit from the lattice, and for this reason they
are not affected by the defect dynamics. However, the third one depends strongly on
the details of binding and unbinding of the defect and also on how the presence of the
defect modifies the flux of particles. Our theoretical predictions generally agree with
results from Monte Carlo simulations, suggesting that our theoretical method correctly
captures the physics of the process. We are also able to explain the deviations between
theoretical calculations and computer simulations by connecting them to the neglect of
correlations between two sub-lattices in the system.

The main goal of our theoretical analysis was to explain the dynamic features of the
motor proteins, and the presented results were able to describe the effect of dynamic
defects. However, our approach is rather oversimplified, and it neglects many fea-
tures of the molecular motors cellular transport. For example, the motor proteins have
extended sizes, there are many other molecules can be found on the protein filaments,
and the cytoskeleton filaments frequently form networks. It will be important to take
into account these more realistic features of the biological transport by employing more
advanced theoretical methods.
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