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Abstract.  Motor proteins or biological molecular motors are special enzyme 
molecules that drive biological transport in living cells by moving cellular 
cargoes along linear protein filaments. The experimental evidences suggest that 
while performing their mechanical work biological molecular motors interact 
with each other, and there are other biological molecules on their tracks that 
influence their progression. Stimulated by these observations, we propose a one-
dimensional totally asymmetric simple exclusion process with nearest-neighbor 
interactions and a dynamic defect that is allowed to reversibly bind and unbind 
at a specific site far away from the boundaries. A theoretical framework based 
on cluster mean-field approximation is adopted to determine the stationary 
properties of the system. The role of interactions and the eect the reversible 
defect associations on the dynamics of the system is discussed. It is found 
that three or less stationary phases can exist in the system, depending on 
the interaction strength, and only one of them is strongly aected by the 
defect association/dissociation dynamics. The theoretical results are validated 
through extensive Monte Carlo simulations.

Keywords: driven diusive systems, exclusion processes, molecular motors, 
trac models
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1.  Introduction

The transportation is a universal phenomenon which occurs in a wide range of physical 
as well as biological processes, and it is currently a subject of intensive investigations 
[1]. Instances of such processes are trac flow, pedestrian motion, cellular transport, 
protein synthesis and many more [1–5]. These processes show non-zero particle cur
rents, which categorizes them as non-equilibrium. In the cellular world, biological 
molecular motors or motor proteins are known to play a special role in supporting the 
major functions such as cell motility, cell locomotion, cell division, and cargo transport 
along the filaments, etc [6–9]. In the intracellular transport, the motion of molecular 
motors carrying cargo is supported by the transformation of chemical energy derived 
from ATP hydrolysis into mechanical energy [2].

Recent in vitro experiments indicated that biological molecular motors that move 
along protein filaments interact with each other [10, 11]. Due to these short-range 
interactions, clusters of motor proteins can be formed, and this might influence their 
collective dynamics. In addition, while diusing on cytoskeleton linear tracks biologi-
cal motors might encounter other protein molecules bound to protein filaments that 
might interfere with their motion [12, 13]. These protein molecules can be viewed as 
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defects, and their eect on the multi-particle transport of molecular motors have been 
studied in recent years [14, 15]. One of the most important features of these defects is 
their dynamic nature, i.e. that they can stochastically bind and unbind from the linear 
tracks, and this should aect the movement of active motors [14]. There are several 
in vivo [16–18] and in vitro [19–22] experiments that observed the trac jams in the 
transport of molecular motors due to the presence of microtubule-associated proteins 
(MAPs). An overview of dierent types of defects and their eects on molecular motor 
movement is represented in tabular form in [14]. In addition, the cytoskeleton motor 
proteins that move along cytoskeleton protein filaments can be divided into two groups 
depending on their processivity [2]. Processive motors, like conventional kinesins and 
myosins-V, can make hundreds of steps before dissociating from the filament tracks, 
while non-processive motors, like NCD kinesins and myosins-II, can make only few 
steps before dissociating back into the solution. In this case, the non-processive motors 
might be viewed as defects for the transport of processive molecular motors.

To explain multi-particle transport phenomena in natural systems, one frequently 
uses a class of non-equilibrium models known as totally asymmetric simple exclusion 
processes (TASEP) [1]. It was originally proposed as a model to describe the kinetics 
of biopolymerization [23]. Later, it was generalized to describe the biological transport 
processes, in particular the motion of molecular motors [1]. The simplest version of 
TASEP considers the active species as point particles that hop unidirectionally and sto-
chastically in one preferred direction on a homogeneous one-dimensional (1D) lattice. 
In contrast to periodic boundary conditions, when the two ends of lattice are connected 
to a reservoir of infinite particles (open boundary conditions (OBC)), which seems to 
be a more realistic description of real dynamic processes, the model reveals interesting 
phenomena such as phase separations, phase segregation and boundary induced phase 
transitions [1, 24–28].

TASEP can be solved exactly only for homogeneous systems without interactions 
[24, 25, 27]. More complex multi-particle non-equilibrium processes are frequently ana-
lysed using simple mean-field approaches that neglect correlations in such systems [1, 
29]. But adding the inter-molecular interactions introduces significant correlations, 
and this leads to the failure of the simple mean-field methods. To resolve this issue, a 
cluster mean-field (CMF) approach that accounts for some correlations has been intro-
duced [30] and successfully utilized for analysing various molecular motors systems [31, 
32]. Furthermore, several generalizations of TASEP have been employed for uncover-
ing collective dynamics of biological molecular motors in more realistic circumstances. 
Examples include the investigation on the role of local inhomogeneity [29], the eect 
of dynamic blockages where the particles are completely blocked from the forward 
motion if the defect is sitting at the specific site [33], the role of association/dissocia-
tion kinetics of defect particles with diusive and non-diusive characteristics [34], and 
the reversible transformation to a local disordered state that can hinder the movement 
of particles [35].

Inspired by the realistic features of the transport of biological molecular motors 
along linear filaments, in this paper we aim to analyse the eect of stochastic bind-
ing and unbinding events of the defect particle on dynamics of interacting molecu-
lar motors. More specifically, we are stimulated by observations that the dynamics 
of processive cytoskeleton motor proteins can be aected by the presence of other 
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non-processive proteins. Our goal is to investigate the coupling between the associa-
tion/dissociation dynamics of the defect and the inter-molecular interactions. Since the 
defect introduces the inhomogeneity in the system, simple mean-field approaches can-
not be utilized here. We generalize a CMF approach that allows us to comprehensively 
describe the stationary properties of the system. It is found that there are only three or 
less possible stationary phases in the system, and one one of them is strongly aected 
by the defect dynamics. Our theoretical calculations are supported by extensive Monte 
Carlo computer simulations.

2. Definition of the model

The main goal of the proposed model is to investigate a TASEP model for interacting 
particles with the addition of binding/unbinding kinetics of the defect particle at the 
specific location. We consider a 1D lattice with N sites, as shown in figure 1, where 
the moving particles obey hard core exclusion principle. The particle are allowed to 
enter the system from the left and the particle leaves the lattice from the last site: see 
figure 1. All particles are identical and move along the lattice in one preferred direction 
(to the right).

It is also assumed that there is another type of particle, called a defect, that is 
allowed to bind to a special site k far away from the boundaries. To simplify the 
analysis, we neglect the interactions between the defect particle and the molecular 
motors because these species are dierent. But the potential interactions between these 
two dierent types of particles can be considered by extending the proposed theor
etical method. For our analysis, we set the special site to be k  =  N/2, and the defect 
binds to the lattice with a rate kon if it is free from the defect and it unbinds with a 
rate koff—see figure 1(C). Although the transition rates of the defect at i  =  k are not  
altered by the presence of particles, the presence of the defect modifies the hopping 
rates of the particles from the site (k − 1) to the site k. The particle jumps with a 
reduced rate pd � 1 from (k − 1)th site to kth site if the defect is present, and otherwise 
the hopping rate is 1. For the case p d  =  0 the eect of the defect is the strongest, while 
for p d  =  1 the particles do not feel the presence of the defect at all. If the particle and 
the defect both are present at the site k, the hopping rate of the particle to (k + 1)th 
site remains 1. Since the particles and the defect are two dierent species, we denote 
τi and σk as their respective occupation numbers. These occupation numbers τi and σk 
takes two values 1 or 0, which represents the presence or absence of a particle at site i 
and defect at the site k, respectively. It should be noted that the parameter p d reflects 
the real structures of the cytoskeleton protein filaments that dier from the simplified 
1D picture presented above [2, 6]. For example, microtubules can be viewed as several 
parallel protofilaments assembled together in a cylindrical fashion. Then the defect pro-
tein can be found at one of the protofilaments, while the molecular motor can be found 
on the neighboring protofilament. In this case, the molecular motor can move forward 
but it should also feel the presence of the defect particle in passing near it.

It has been experimentally observed that the molecular motors interact with each 
other, and these interactions are short-ranged, eectively creating inter-molecular 
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bonds between particles [10, 11]. The formation and breaking of these bonds can be 
described using transition rates q and r, respectively, that depend on the energy E (in 
kBT  units) of inter-molecular interactions. Here, the positive (E  >  0) energy represents 
attractive and the negative (E  <  0) energy depicts repulsive interactions between the 
motors. One could introduce a thermodynamically consistent description of the trans
itions rates q and r [32, 36–38]. Then these rates can be written as

q = exp[θE], r = exp[(θ − 1)E]� (1)
where θ is a splitting factor that lies within the range [0, 1] and it specifies how the 
interaction energy aects separately the formation and breaking the bonds. From this 
point of view, the formation and breaking of the bond is considered as a reversible 
chemical reaction with chemical equilibrium constant given by K  =  q/r [8]. Since the 
interactions are short-ranged, if the hopping of particle leads to the bond formation 
(breaking) with the neighboring particle, the corresponding transition rate is q (r). 
Whereas, if bond formation and breaking occurs simultaneously the hopping rate is 1, 
as illustrated in figure 1(A).

In the presence of the defect at the site k, the transition rate for the particle from 
the site k  −  1 to the site k is modified due to inter-molecular interactions as shown in 
figure 1(B). If the site k  −  2 is occupied (empty) and the site k  +  1 is empty (occupied) 
the particle hops with the rate rpd (qpd). Whereas, if both the neighboring sites are 
occupied or empty simultaneously, the particle hops with the rate p d: see figure 1(B). 
Interactions also change the entry and the exit rates of the particles. The particle 

Figure 1.  (A) A schematic view of the TASEP model for interacting particles 
with a dynamic defect. Circle are particles moving from the left to right. Square 
describes the defect siting at the site k. (B) The transition rates of the particle 
when it moves from the site i = (k − 1) to the site i  =  k with a rate p d  <  1 because 
the defect is at the site k. (C) The binding and unbinding rates for the defect at 
the site k, which is independent of the particle occupation of this site.
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attempts to enter the lattice with a rate qα if the second site (i  =  2) is occupied as it 
leads to the formation of the inter-molecular bond. The entrance rate is α if the second 
site is empty. If the site previous to last site (i  =  N  −  1) is occupied, the particle leaves 
the lattice by breaking the bond with a rate rβ, otherwise the exit rate is β .

To analyse better our inhomogeneous system, we divide the lattice in two homo-
geneous sub-lattices L1 and L2 as shown in figure 2. The left sub-lattice L1 describes 
the lattice segment from the site i  =  1 to the site i  =  k  −  1, and the right sub-lattice 
describes the lattice segment from the site i  =  k to the site i  =  N. The homogeneous 
TASEP for interacting particles has been already extensively studied: see [32, 36–38]. 
In our theoretical framework, one needs to introduce the eective exit rate of the par-
ticles from L1 as βeff and the eective entry rate of the particle to L2 as αeff. These 
quantities are unknown and need to be evaluated. The two sub-lattices are coupled in 
the steady-state regime because the same particle currents must pass each sub-lattice. 
This allows us to calculate αeff and βeff, providing a convenient way of explicitly inves-
tigating the dynamical properties of the TASEP model with interacting particles and 
with the dynamic defect.

3. Mathematical description of the model

Dynamic properties of homogeneous TASEP for the particles with only hard-core exclu-
sions has been well studied using exact and simple mean-field approaches [24, 25, 27]. 
It was found that there exist three distinct stationary phases: low-density (LD), high 
density (HD) and maximal current (MC). Adding short-range interactions to particles 
make the corresponding TASEP models too complex to be solved exactly, and it was 
also argued that simple mean-field approaches fail for these systems. However, the 
CMF methods that take into account some correlations are able to correctly describe 
the complex dynamics in the TASEP model for interacting molecules [32, 36–38]. 
Theoretical calculations show that the original LD, HD and MC stationary phases 

Figure 2.  The division of the original inhomogeneous system into two coupled 
homogeneous segments: the left sub-lattice L1 (i  =  1 to (k − 1)) and the right sub-
lattice L2 (i  =  k to N). The eective exit rate from L1 is βeff and the eective entry 
rate into L2 is αeff.

https://doi.org/10.1088/1742-5468/ab7756
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remain intact, and only the boundaries between phases change with varying the inter-
action energy E. It seems reasonable to apply the CMF method for our system too. Let 
us first review the main results from the CMF theoretical approach.

3.1. Two-site CMF approximation for TASEP with interacting particles

The main assumption of the two-site CMF approximation is that the probability of 
the cluster of n sites P (τi, τi+1, . . . , τn) is proportional to the product of probabilities of 
two-site clusters,

P (τi, τi+1, . . . , τn) ∝ P (τi, τi+1)P (τi+1, τi+2) . . . P (τn−1, τn),� (2)
which undergoes normalization and eventually yields,

P (τi, τi+1, . . . , τn) =
P (τi, τi+1)P (τi+1, τi+2)...P (τn−1, τn)

P (τi+1)P (τi+2) . . . P (τn−1)
.� (3)

The probabilities for four possible states of any two-site cluster are the following: 
P (1, 1) when both sites are occupied by the particles; P (1, 0), P (0, 1) when only one 
site is occupied; and P (0, 0) when both sites are empty. For simplicity we denote 
x ≡ P (1, 1), z ≡ P (0, 0) and due to particle-hole symmetry y ≡ P (1, 0) = P (0, 1). Now, 
we can calculate the bulk particle current in the system,

Jbulk = 〈(1− τi−1)τi(1− τi+1)(1− τi+2)〉+ q〈(1− τi−1)τi(1− τi+1)τi+2〉
+ r〈τi−1τi(1− τi+1)(1− τi+2)〉+ 〈τi−1τi(1− τi+1)(τi+2)〉.� (4)

The currents at the entry and at the exit site are written as

Jentr = α [〈(1− τ1)(1− τ2)〉+ q〈(1− τ1)τ2〉] ,� (5)

Jexit = β [〈(1− τN−1)τN〉+ r〈τN−1τN〉] .� (6)
The average particle density at the site i is denoted as 〈τi〉 ≡ ρi, and since the density 

is uniform for the homogeneous lattice the subscript i can be dropped. Furthermore, 
employing the two-site CMF in the thermodynamic limit N → ∞, equations  (4)–(6) 
reduce to [32],

Jbulk =
y2z + qy3 + rxyz + xy2

ρ(1− ρ)
,� (7)

Jentr = α(z + qy),� (8)

Jexit = β(y + rx).� (9)
To compute the current in the system, we need to calculate x, y  and z which can be 
evaluated by using the Kolmogorov conditions; 

x+ y = ρ,� (10)

y + z = 1− ρ.� (11)
We can also use the master equation for the density of the half-filled clusters, y ≡ P (1, 0), 
leading to [32, 38]

https://doi.org/10.1088/1742-5468/ab7756
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y =

√
rxz

q
.� (12)

Solving equations (10)–(12) gives the explicit expressions for the three probabilities of 
dierent clusters in terms of the particle density and interactions:

x =





1
2

(
2ρ+

r−
√

r(r+4(q−r)ρ(1−ρ))

q−r

)
, q, r �= 1

ρ2, q = r = 1.
� (13)

y =

{
−r+

√
r(r+4(q−r)ρ(1−ρ))

2(q−r)
, q, r �= 1

ρ(1− ρ), q = r = 1.
� (14)

z =





1
2

(
2(1− ρ) +

r−
√

r(r+4(q−r)ρ(1−ρ))

q−r

)
, q, r �= 1

(1− ρ)2, q = r = 1.
� (15)

Substituting these expressions into equations (7)–(9), we can evaluate the bulk densi-
ties in the LD and the HD phases using the current continuity condition Jentr = Jbulk 
and Jexit = Jbulk respectively [32, 36–38]. The bulk density in the MC phase is equal 

0.5, which is obtained from the condition ∂J∂ρ = 0. Moreover, the regions in which the 

dierent phases exist have been calculated [32]. The LD and HD phase exist for param

eters that satisfies α < β√
q/r

, α < αc and α > β√
q/r

, β < βc, respectively. The param

eters αc and βc can be found using the relation JLD = JMC and JHD = JMC. Finally, the 
MC phase is found for α > αc, β > βc.

3.2. Defect dynamics

Now let us consider the dynamics of the defect at the site k. The temporal evolution of 
the defect density at the site k can be presented as

d〈σk〉
dt

= kon〈(1− σk)〉 − koff〈σk〉.
� (16)

Writing 〈σk〉 ≡ ρ∗ (the average occupation fraction of the defect), in steady state condi-
tions equation (16) reduces to

ρ∗ =
kon

kon + koff
.� (17)

For the case when no defect can bind to the protein filament, we have kon = 0 and it 
yields ρ∗ = 0. It reduces the proposed model to the homogeneous interacting molecular 
motors model that have been investigated in detail before [32]. However, due to defect 
the dynamics in our system diers from the fully homogeneous case. The lattice can 
now be divided into two sub-lattices, the current from the site (k − 1) to the site k 
couples the sub-lattices L1 and L2, and it can be written as

https://doi.org/10.1088/1742-5468/ab7756
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Jcoupling = ρ∗Jd + (1− ρ∗)J̄d.� (18)

Here, Jd and J̄d defines the current in the presence and absence of defect at the site 
k, respectively. The parameters ρ∗ and (1− ρ∗) give the probability of the site k being 
occupied by the defect or to be empty, respectively. It can be shown that

J̄d =
(
〈(1− τk−2)τk−1(1− τk)(1− τk+1)〉+ q〈(1− τk−2)τk−1(1− τk)τk+1〉

+ r〈τk−2τk−1(1− τk)(1− τk+1)〉+ 〈τk−2τk−1(1− τk)(τk+1)〉
)
.

�

(19)

To simplify calculations, we ignore all defect-particle and particle–particle interac-
tions for the four consecutive sites i = (k − 2), (k − 1), k and (k + 1). Now, denoting 
〈τk−2〉 ≡ ρb,1 and 〈τk〉 ≡ ρb,2, equation (19) reduces to

J̄d =
(
ρk−1(1− ρk)

)(
(1− ρb,1)(1− ρb,2) + q(1− ρb,1)ρb,2 + rρb,1(1− ρb,2)

+ ρb,1ρb,2

)
,

�

(20)

where ρb,1 and ρb,2 represents bulk density in the left and in the right sub-lattices L1 and 
L2, respectively. In the presence of the defect, the particle current is simply written as

Jd = pdJ̄d.� (21)

When the rate p d  =  1 equation (18) gives Jcoupling = Jd, and the model is identical to 
the fully homogeneous case that was investigated in [31, 32]. Hence, it is interesting to 
investigate when pd �= 1 since this will exhibit the role of the defect at the site k. Under 
the mean-field approximation, the current at the exit site of the left sub-lattice L1 and 
at the entrance site of the right sub-lattice L2 are given by

Jexit,1 = βeffρk−1[1 + (r − 1)ρb,1],� (22)

Jentr,2 = αeff(1− ρk)[1 + (q − 1)ρb,2].� (23)
The expression for βeff can be computed by equating the current leaving the left sub-
lattice L1 to the coupling current Jexit,1 = Jcoupling, producing

βeff = (1 + ( pd − 1)ρ∗)
( ρk−1(1− ρk)

ρk−1(1 + (r − 1)ρb,1)

)(
(1− ρb,1)(1− ρb,2)

+ q(1− ρb,1)ρb,2 + rρb,1(1− ρb,2) + ρb,1ρb,2

)
.

�
(24)

Similarly, αeff is evaluated by equating the entrance current into L2 with the coupling 
current Jentr,2 = Jcoupling,

αeff = (1 + ( pd − 1)ρ∗)
( ρk−1(1− ρk)

(1− ρk)(1 + (q − 1)ρb,2)

)(
(1− ρb,1)(1− ρb,2)

+ q(1− ρb,1)ρb,2 + rρb,1(1− ρb,2) + ρb,1ρb,2

)
.

� (25)

The above expressions will be further utilized to compute the properties of the system 
such as phase diagrams, density profiles and correlations.
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4. Stationary phase diagrams

Because each homogeneous TASEP can have one of three phases (LD, HD or MC), our 
inhomogeneous system consisting of two coupled homogeneous sub-lattices can have 
upto 9 possible stationary phases [32]. At the steady-state conditions, we have

Jbulk,1 = Jbulk,2,� (26)
where Jbulk,1 and Jbulk,2 represent the bulk currents in L1 and L2, respectively, which 
can be explicitly obtained from equation (7) with the corresponding probabilities of the 
clusters xj , y j  and zj  (j   =  1 for L1 and j   =  2 for L2).

The condition in equation (26) implies that

ρb,1 = ρb,2,� (27)

or ρb,1 + ρb,2 = 1.� (28)
Then the possibility of having the MC phase in any of the sub-lattices and the LD or 
the HD phase in the other sub-lattice can be discarded because these phases support 
dierent particle currents. Hence, this leaves only 5 possible stationary phases, namely: 
LD/LD, HD/HD, MC/MC, HD/LD and LD/HD. In this notation, the first term cor-
responds to the state of the segment L1, while the second term describes the segment 
L2. Moreover, equation (27) states that in the case of LD/LD, HD/HD and MC/MC 
phases the density in both sub-lattices will be equal. Now, let us explore the conditions 
for existence of these possible phases.

4.1. HD/LD phase

This phase is determined by the occupation fractions of the exit site on left sub-lattice 
(ρk−1 = ρb,1) and the entry site on the right sub-lattice (ρk = ρb,2). This phase exists if 
the entry and the exit rates satisfy the following conditions:

α >
βeff√
q/r

, βeff � βc,� (29)

αeff <
β√
q/r

, αeff � αc� (30)

where αc and βc are the coordinates of the triple point for the system. The current 
continuity condition at the entrance of the right sub-lattice helps us to calculate the 
bulk density ρb,2,

αeff(z2 + qy2) =
y22z2 + qy32 + rx2y2z2 + x2y

2
2

ρb,2(1− ρb,2)
� (31)

where αeff is unknown. The density ρb,1 is evaluated using equation (34). Utilizing above 
equations along with equations (24) and (25), the eective entrance and exit rates, αeff 
and βeff are explicitly found. It can be also shown that αeff = αc and βeff = βc.
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4.2. LD/LD phase

This phase is governed by the following condition,

α <
βeff√
q/r

, α � αc,� (32)

αeff <
β√
q/r

, αeff � αc.� (33)

In this phase, the bulk density in L1 (ρb,1) and L2 (ρb,2) is determined by the entry site 
occupation of the left sub-lattice and the right sub-lattice, respectively. Utilizing the 
current continuity condition, ρb,1 is obtained by equating the current at the entrance of 
the left sub-lattice to that in the bulk of L1 for known value of α, yielding

α(z1 + qy1) =
y21z1 + qy31 + rx1y1z1 + x1y

2
1

ρb,1(1− ρb,1)
,� (34)

where x1, y 1 and z1 are obtained from equations  (13)–(15) for ρ = ρb,1. Furthermore, 
using the relation Jexit,1 = Jbulk,1 the density at the exit site of L1 is given by; 

ρk−1 =
Jbulk,1

βeff(1 + (r − 1)ρb,1)
.� (35)

Now, for the right sub-lattice, the density ρb,2 is given by

αeff(z2 + qy2) =
y22z2 + qy32 + rx2y2z2 + x2y

2
2

ρb,2(1− ρb,2)
� (36)

where αeff is still unknown. Hence, we need to compute αeff and βeff by solving the 
system of non-linear equations (24), (25), (35) and (36) for known values of E, kon, koff 
and p d. We can also show that the bulk densities in both lattices satisfy equation (27). 
The obtained values of αeff and βeff are used then to determine the boundaries of this 
phase from the conditions presented in equations (32) and (33).

4.3. HD/HD phase

The conditions for the existence of this phase are

α >
βeff√
q/r

, βeff � βc,� (37)

αeff >
β√
q/r

, β � βc.� (38)

In this phase, the dynamics in the two sub-lattices L1 and L2 is governed by the exit 
sites on the respective lattices. Starting with the known value of β , and using

β(y2 + rx2) =
y22z2 + qy32 + rx2y2z2 + x2y

2
2

ρb,2(1− ρb,2)
� (39)
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we calculate ρb,2. Employing Jentr,2 = Jbulk,2, the density at the entry site of L2 is given 
by

ρk =
Jbulk,2

αeff(1 + (q − 1)ρb,2)
,� (40)

where αeff is unknown. The bulk density in the left sub-lattice L1, is obtained from

βeff(y1 + rx1) =
y21z1 + qy31 + rx1y1z1 + x1y

2
1

ρb,1(1− ρb,1)
,� (41)

where βeff is unknown. So, we have a coupled system of equations (24), (25), (40) and 
(41) that can be numerically solved to find the rates αeff and βeff for specific values of 
E, kon, koff and p d. Correspondingly, the HD/HD phase can be obtained for the values 
α, β , αeff and βeff satisfying equations (37) and (38).

4.4. LD/HD phase

This phase exists when the following conditions are satisfied,

α <
βeff√
q/r

, α � αc,� (42)

αeff >
β√
q/r

, β � βc.� (43)

The bulk densities in the left and the right sub-lattices (ρb,1 and ρb,2) are calculated 
using equations (34) and (39), respectively, for known values of α and β . These param
eters are further utilized in equations (24), (25), (35) and (40) to compute the eective 
rates αeff and βeff. Our specific calculations found that there are no parameters (α, β , 
αeff and βeff) that could satisfy equations (42) and (43). Hence, the conditions for the 
existence of LD/HD phase are violated, and this phase cannot be realized at all.

4.5. MC/MC phase

In this phase, the bulk densities in each sub-lattice must be equal to 0.5, independently 
of the values of α, β and the eective entry and exit rates. The conditions the existence 
of this phase are given by

α � αc, βeff � βc,� (44)

αeff � αc, β � βc.� (45)
We found that here also does not exist any set of parameters that could satisfy all the 
above conditions simultaneously. This phase can exist only when there is no inhomo-
geneity in the system, i.e. for ρ∗ = 0. Thus, for general situations with the defect this 
phase also cannot be found at stationary conditions.

Explicitly checking the conditions for existence of all possible phases, we found that 
the system can support only 3 stationary phases: LD/LD, HD/LD and HD/HD.
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5. Results and discussions

The dynamics in the system is governed by four main parameters: interaction energy E, 
the defect association rate kon, the defect dissociation rate koff and the defect-particle 
interaction parameter p d that specifies how the transition rates of the particle change 
if the defect is present at the special site k. Now let us investigate in detail the role of 
each of these parameters.

To test the validity of our theoretical method, the approximated results obtained 
in the previous section are probed with extensive Monte Carlo simulations. For simu-
lations, the random sequential update rules are followed with lattice length N  =  1000 
and the simulation is allowed to run for 2× 109 time steps to attain a steady-state. 
The dynamics of defect is considered to be at k  =  N/2. While simulating, if the site k 
is found to be occupied with both the defect and the particle, we preferred the detach-
ment of the defect rather than the jump of particle. To ensure the occurrence of steady 
state, first 5% of the total number of time steps are ignored.

Figure 3 shows the comparison of our theoretical calculations for density profiles 
with the results of computer simulations. One can see that that our method describes 
reasonably well all dierent stationary phases. This suggests that we can now specifically 
study the role of various factors in the dynamics of interacting particles in the presence 
of the dynamic defect.

5.1. Eect of interactions

Interaction energy E is the measure of the tendency to form inter-molecular bonds. 
For E  <  0, the particles repel each other and they do not like to form the bond. But 
for E  >  0, the particle clusters are easily formed. We calculated stationary phases for 
dierent interactions energies, and results are presented in figures 4 and 5. One can 
see that 3 stationary phases exist for weak repulsions (E  =  −1.6 kBT , figure 4(a)), and 
increasing the repulsion have a strong eect on the stationary dynamics. Below the 
critical value Ec � −2.6 kBT , the HD/LD phase completely disappears (figure 4(b)). At 
the same time, the LD/LD phase significantly increases, while the HD/HD is getting 

Figure 3.  Density profiles for three dierent stationary phases. In all cases we 
utilized: p d  =  0.1, E = −1.6 kBT  and θ = 0.5. (a) LD/LD phase with kon = 0.9 and 
koff = 0.3; (b) HD/HD phase with kon = 0.9 and koff = 0.3; (c) HD/LD phase with 
kon = 0.2 and koff = 0.6. Solid green lines correspond to numerically exact two-site 
CMF calculations and red symbols represent the Monte Carlo simulations.
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particles to stay far way from each other, which can only be satisfied in LD phases. The 
stationary phases for attractive interactions show a slightly dierent picture. We again 
have 3 phases for weak attractions (figure 5(a)), while for strong attractions the LD/
LD phase diminish and the HD/LD and HD/HD phases expand. These observations 
are expected since for attractive interactions particles tend to be closer with each other, 
which can be satisfied in high-density phases. We can clearly notice that these findings 
agree with the current views on mechanisms of interacting particles [31, 32]. One can 
also see from figures 4 and 5 that Monte Carlo computer simulations generally agree 
with our theoretical calculations for stationary phases.

Figure 4.  Stationary phase diagrams for kon = 0.2, koff = 0.6, p d  =  0.1, θ = 0.5 
and the interaction energy (a) E = −1.6 kBT  and (b) E = −4 kBT . Red symbols 
represent simulated results and solid green lines are the results from numerically 
exact calculations using two-site CMF.

Figure 5.  Stationary phase diagrams for kon = 0.2, koff = 0.6, p d  =  0.1, θ = 0.5 and 
the interaction energy (a) E = 1.6 kBT  and (b) E = 4 kBT . Red symbols represent 
simulated results and solid green lines are the results from numerically exact 
calculations using two-site CMF.
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5.2. Eect of the defect dynamics

The defect is crucial for understanding the dynamics of particles in the system. When 
the defect is siting at the site k, the transition rates of the particles are locally aected. 
But the dynamics is normal and homogeneous when the the defect is not present at 
the special site. Our theoretical approach allows us to quantify the eect of the defect 
dynamics.

Figure 6 shows the dependence of the stationary currents on association and dis-
sociation rates of the defect for weak repulsion (E = −1.6 kBT ) and for strong defect-
particle interactions (p d  =  0.1). One can see that increasing the time when the defect 
is at the site k, which happens for smaller koff and larger kon, decreases the particle 
current, as expected. The particles have diculties to pass through the site k. Our 
theoretical method correctly predicts this eect, but it underestimates the eect of the 
dissociation rate and slightly overestimates the eect of association rate. This is clearly 
a consequence of neglecting the correlations near the special site k.

Varying the defect binding and unbinding rates has a limited eect on the phase 
diagrams of interacting particles, as illustrated in figure 7. Three stationary phase are 
always observed and only the boundaries between some phases are modified. Increasing 
the dissociation rate koff or decreasing kon generally expands the phase space occu-
pied by the LD/LD phase, while the space for the HD/LD phase shrinks: see figure 7. 
Similar eects are observed for changing the defect-particle interactions, which can be 
done by varying the parameter p d, as presented in figure 8.

5.3. Correlations

One of the most important features of the transport of interacting particles is the 
presence of correlations in the system. The CMF method can successfully describe the 
TASEP with interacting particles because it takes into account some of these correla-
tions. We can quantify the eect of correlations by considering a function,

Ci = 〈τiτi+1〉 − 〈τi〉〈τi+1〉,� (46)

Figure 6.  The dependence of the particle current Jmax on the association/dissociation 
rates of the defect for E = −1.6 kBT , θ = 0.5 and p d  =  0.1; (a) fixed kon = 0.2 and 
0 � koff � 1; (a) fixed koff = 0.9 and 0 � kon � 1. Green lines represent numerical 
results whereas symbols correspond to Monte Carlo computer simulations.
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which can be explicitly evaluated in our theoretical approach. This allows us to under-
stand where the presented theoretical method works better and why.

Figure 9 presents the particle density profiles and correlation profiles for the LD/
LD and the HD/HD phases. In both cases, the correlations are relatively weak, and our 
theory can describe the dynamics perfectly well. There are only some deviations near 
the special site k, but they are quite local. Thus, the defect dynamics essentially does 
not aect the system in both these phases. This observation can be easily explained. 
In the LD/LD phase the rate-limiting step that determines the overall dynamics is the 
entrance into the system, while in the HD/HD phase the rate limiting step is the exit. 
Then the defect dynamics cannot influence the system beyond the small region near 
the special site.

Figure 7.  Stationary phase diagrams for E = −1.6 kBT , θ = 0.5 and p d  =  0.1; (a) 
fixed kon = 0.2 and koff = 0.4, 0.8; (a) fixed koff = 0.9 and kon = 0.5, 0.8. Colored 
symbols represent the simulated results and the corresponding colored lines are 
numerically exact results using two-site CMF.

Figure 8.  Stationary phase diagram for kon = 0.2, koff = 0.6, E = −1.6 kBT , 
θ = 0.5 with varying the parameter p d (p d  =  0.1 and p d  =  0.8 are considered). Red 
symbols correspond to simulated results and solid green lines are the results from 
numerically exact calculations using two-cluster CMF.
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However, as illustrated in figure 10, the situation is drastically dierent in the HD/
LD phase. Our theory can only semi-quantitatively describe the density profiles in this 
phase (figures 10(a)–(c)). The discrepancy between theoretical predictions computer 
simulations growths up for larger kon and smaller koff, i.e. for longer periods of the 
defect sitting at the site k and aecting the particle dynamics. In this phase, the ampl
itude of correlations is generally larger than in the LD/LD and HD/HD phases (figures 
10(d)–(f)).While the correlations are decreasing for more active defect dynamics, our 
predictions are mainly quantitative in this case. We believe that the main reason for 
this is the mean-field assumption on the coupling between the sub-lattices. These argu-
ments suggest that the defect is significantly influencing the dynamics in the HD/LD 
phase because the exit form the left sub-lattice and the entrance to the right sub-lattice 
are now rate-limiting steps. But both of them are strongly aected by the presence of 
the defect. This explains the role of the defect dynamics in the TASEP model of inter-
acting particles.

Figure 9.  Correlations and particle densities for kon = 0.9, koff = 0.1, p d  =  0.1 
and θ = 0.5. (a) LD/LD phase density profile with E = −1.6 kBT , α = 0.05, and 
β = 0.9; (b) HD/HD density profile with E = 1.6 kBT  α = 0.5, and β = 0.05; (c) 
LD/LD correlation profile with E = −1.6 kBT , α = 0.05, and β = 0.9; (d) HD/HD 
correlation profile with E = 1.6 kBT  α = 0.5, and β = 0.05. Symbols correspond to 
Monte Carlo simulations and solid lines are due to our theoretical calculations.
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6. Summary and conclusions

Stimulated by biological transport phenomena, a theoretical model is developed to 
analyse the dynamics of interacting molecular motors in the presence of dynamic defect 
that might slow down the particle flux. Our main finding is that the presence of the 
reversible dynamic defect does not change the number of possible stationary phases, 
although the nature of the dynamics is now dierent. It is determined by the sign and 
the strength of inter-molecular interactions, as well as the way the defect dynamics is 
coupled to the flux of translocating particles. In addition, the defect introduces cor-
relations in the system that aect those stationary phases that are rate-limited by the 
process of passing the special site where the defect can be found.

More specifically, we generalized 1D totally asymmetric exclusion processes for 
interacting particles by including the eect of reversible defect. Since the model can-
not be solved analytically and the simplest mean-field theoretical treatments cannot 
be used due to the neglect of correlations, we developed a CMF method to describe 
the dynamic processes in the system. The defect site introduces the inhomogeneity on 
the lattice, and we mapped our system into two coupled sub-lattices. This allows us to 
describe the dynamics of interacting particles at each homogeneous sub-lattice sepa-
rately, and stationary conditions couple the currents between two parts of the system. 
Considering the dynamics at steady-state conditions, we determined that there are only 
three possible stationary phases found in the system. Two of them are governed by 

Figure 10.  First row gives the density profiles for fixed parameters α = 0.9, β = 0.9, 
p d  =  0.1, E = −1.6 kBT  and θ = 0.5 with (a) kon = 0.2 and koff = 0.6; (b) kon = 0.4 
and koff = 0.3; (c) kon = 0.9 and koff = 0.1. Green lines represent numerical results 
whereas red markers symbolize Monte Carlo simulations. Second row provides 
the correlation profiles for the same parameters in HD/LD phase where (d) is 
corresponding to (a) and (e) is corresponding to (b) and (f) is corresponding to (c). 
Yellow lines represent numerical results whereas pink symbols are Monte Carlo 
simulations.

https://doi.org/10.1088/1742-5468/ab7756


The role of dynamic defects in transport of interacting molecular motors

19https://doi.org/10.1088/1742-5468/ab7756

J. S
tat. M

ech. (2020) 043206

the processes at the entrance or at the exit from the lattice, and for this reason they 
are not aected by the defect dynamics. However, the third one depends strongly on 
the details of binding and unbinding of the defect and also on how the presence of the 
defect modifies the flux of particles. Our theoretical predictions generally agree with 
results from Monte Carlo simulations, suggesting that our theoretical method correctly 
captures the physics of the process. We are also able to explain the deviations between 
theoretical calculations and computer simulations by connecting them to the neglect of 
correlations between two sub-lattices in the system.

The main goal of our theoretical analysis was to explain the dynamic features of the 
motor proteins, and the presented results were able to describe the eect of dynamic 
defects. However, our approach is rather oversimplified, and it neglects many fea-
tures of the molecular motors cellular transport. For example, the motor proteins have 
extended sizes, there are many other molecules can be found on the protein filaments, 
and the cytoskeleton filaments frequently form networks. It will be important to take 
into account these more realistic features of the biological transport by employing more 
advanced theoretical methods.
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