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Direct detection of molecular intermediates  
from first-passage times
Alice L. Thorneywork1*, Jannes Gladrow1, Yujia Qing2, Marc Rico-Pasto3, Felix Ritort3,4, 
Hagan Bayley2, Anatoly B. Kolomeisky5, Ulrich F. Keyser1

All natural phenomena are governed by energy landscapes. However, the direct measurement of this fundamen-
tal quantity remains challenging, particularly in complex systems involving intermediate states. Here, we uncover 
key details of the energy landscapes that underpin a range of experimental systems through quantitative analysis 
of first-passage time distributions. By combined study of colloidal dynamics in confinement, transport through a 
biological pore, and the folding kinetics of DNA hairpins, we demonstrate conclusively how a short-time, power-law 
regime of the first-passage time distribution reflects the number of intermediate states associated with each of 
these processes, despite their differing length scales, time scales, and interactions. We thereby establish a powerful 
method for investigating the underlying mechanisms of complex molecular processes.

INTRODUCTION
The concept of an energy landscape is a powerful tool in providing 
a description of complex natural phenomena. In chemical kinetics, 
reaction profiles have long been used to qualitatively rationalize the 
outcomes of chemical reactions, casting light upon preferred mecha-
nisms and the effects of catalysis (1, 2). In biology, energy landscapes 
are central to understanding the microscopic origins of processes, 
including protein folding (3–8) and selective transport through 
membrane channels (9–14). Elucidating the factors governing the 
dynamics of stochastic processes may be central to even more diverse 
problems, such as understanding electron transport (15) or the 
changing stock prices in financial markets (16–18). Despite this, 
quantitatively resolving the energy landscape that governs an arbitrary 
process is, in general, very difficult and requires measurements 
of transition path times (3, 4, 19–21). Hence, uncovering energy land-
scapes represents a fundamental problem in understanding complex 
systems.

The question of how a system explores a known energy landscape 
has been extensively debated, and multiple computational methods 
to evaluate the resulting dynamic properties have been proposed 
(22, 23). By contrast, the inverse problem—that of determining fea-
tures of an unknown energy landscape, such as the depth of potential 
minima or number of intermediate states, from knowledge of the 
dynamic features of the system—is much more challenging. Recently, 
however, quantitative links between dynamics and the energy land-
scape have been proposed from theoretical analysis of complex networks 
of states (24) where the dynamics were quantified by the first-passage 
time distribution. Yet, to analyze systems with unknown energy 
landscapes, the applicability of these theoretical relationships must 
be tested experimentally. This can only be achieved with detailed 
knowledge of both the potential energy landscape and dynamics of 
the process to allow for the quantitative mapping between these two 
parameters to be probed. Such detailed information is often not 

available for molecular or nanoscale systems where only certain as-
pects of the dynamics can be obtained or where the energy landscape 
is unknown or can be assessed only indirectly. In contrast, mesoscale 
colloidal model systems represent an ideal test bed for understanding 
and developing these proposed fundamental connections. Here, it is 
possible to manipulate and control the free energy landscape (25–30) 
while resolving the dynamics with no unknown or hidden degrees 
of freedom.

In this work, we establish a powerful general method to reveal key 
details of energy landscapes in experimental systems ranging from 
the mesoscale to the microscale through quantitative analysis of 
first-passage time distributions. We first develop our method by 
studying the diffusion of colloidal particles in microfluidic channels 
with controlled potential energy landscapes. Here, we observe charac-
teristic behavior in the short-time regime of the first-passage time 
distributions, which sensitively reflects the number and depth of 
potential minima crossed by a particle as it escapes the channel 
(Fig. 1A), consistent with theory (24). We then demonstrate the wider 
relevance of our method by analyzing the dynamics of, first, the 
chemical ratcheting of a DNA oligonucleotide through a nanoscale 
pore (31) and, second, the folding and unfolding of DNA hairpins 
(32). Just as with our colloidal system, we find that, in both cases, 
the first-passage time distributions show a power-law regime with 
integer exponent at short times, from which it is possible to infer the 
number of intermediates associated with the process. Hence, we 
demonstrate that a purely dynamic measurement of the full first-
passage time distribution can be used to uncover quantitative features 
of an underlying potential energy landscape.

RESULTS
First-passage time behavior in a colloidal system
Colloidal particles are loaded into microfluidic chips designed to 
include an array of channels linking two three-dimensional (3D) 
reservoirs. Channel dimensions are chosen to confine the colloidal 
particle to display quasi-1D diffusion, and the sample is imaged using 
a custom-built, inverted optical microscope (see Fig. 1B). Holographic 
optical tweezers are used to modulate the potential landscape expe-
rienced by the particles by introducing into the channel multiple 
optical traps. These are designed to be sufficiently weak (depths of 
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2 to 5 kBT) to allow for escape of the particle from the associated 
potential minima in observable periods of time. Optical tweezers are 
also used to automate the data acquisition process (28). For each 
first-passage time measurement, a colloidal particle is trapped within 
the bulk, moved to the center of the channel, i.e., the boundary be-
tween L1 and L2 in Fig. 1D, released, and allowed to diffuse over the 
applied potential landscape until it escapes the channel to either the 
left or right reservoir. This automation allows for the acquisition of 
large datasets (500 to 4000 trajectories corresponding to more than 
105 particle positions). Videos are recorded at 60 Hz, with particle 
trajectories extracted using standard image analysis techniques.

To quantify the imposed potential landscape, we first obtain the 
joint probability distribution of particle positions, P(x, y). In Fig. 1C, 
P(x, y) is plotted in 2D for a system with four potential minima of 
depth U ~ 3 kBT. Here, the data show the enhanced probability of 
a particle residing in the four optical traps. The distribution of particle 
positions is directly related to the potential of mean force along the 
x axis, U(x), as U(x) ~ -kBT ln P(x), with P(x) the average over y of 
P(x, y). This resulting potential landscape for the same four-trap system 
is shown in Fig. 1D.

For every position in a trajectory, xi (ti), the first-passage time is 
calculated as tFPT = texit – ti, with texit the first time a particle attains 
a position outside of the channel. Hence, while at the start of every 
measurement the particle is positioned in the center of the channel, 
the distribution of times to exit from any position within the channel 
can be measured by assuming the motion of the particle to be Markovian 
and taking every subsequent position in the trajectory as a new starting 
point in the analysis. To probe the effect of exit from the channel by 
crossing an increasing number of intermediate minima, first-passage 
time distributions are determined for data split into subsets with 
starting positions, xi, in different regions of the potential landscape 
(see Fig. 1D). Initially, separate distributions are obtained for particles 
exiting to the left (L) or right (R) reservoir before being combined 
into a single set of distribution functions. For example, in Fig. 1D, 
combining data from L1 and R1 would form the full m = 1 distribu-
tion. The value of m indicates the lowest number of minima that 
must be crossed by the particle, from its initial position (a minimum 
in the channel) to its final position (a reservoir), i.e., m = 0 corre-
sponds to crossing no intermediate minima or one boundary in 
Fig. 1D, m = 1 to crossing one intermediate minimum or two 
boundaries, etc. Typical trajectories for m = 0, 1, 2, and 3 are shown 
in fig. S1. For all distributions, error bars are obtained via the boot-
strap method.

Figure 2 (A and B) shows the first-passage time distributions, 
P(tFPT), on a linear and log-log scale for colloidal particles diffusing 
across the potential landscape shown in Fig. 1D. Distributions for 
m = 1, 2, and 3 are shown, corresponding to the particle starting 
from a minimum for which exit to a reservoir involves crossing at 
least 1, 2, or 3 intermediate minima of depth ~3 kBT, respectively. 
For clarity, we do not plot P(tFPT) for m = 0, which show only the 
expected exponential decay in all cases. On a linear scale, as m in-
creases, the distributions exhibit the expected qualitative behavior 
for diffusion over increasingly large distances, namely, a broadening 
and a shift in the peak to larger times. When plotted on a log-log scale 
in Fig. 2B, however, the distributions display a distinct linear behavior 
at short times, with a slope that increases with increasing number of 
minima that must be crossed. The distributions in Fig. 2B are quali-
tatively different to those of a system with no imposed potential minima 
(free diffusion), which lack this linear short-time regime (see fig. S2).

Theoretical results have suggested that the structure of a 1D net-
work of discrete states can be coupled to a short-time scaling of the 
first-passage time distribution of events starting in a state A and 
finishing in a state B (B > A) via

	​ ln P(​t​ FPT​​ ) ≃ (B − A − 1) ln ​t​ FPT​​ + C​	 (1)

where C is a system-dependent constant and the expression is asymp-
totically equal in the limit of short times (24). Here, this simple 
quantitative relation is valid because the short-time regime of the 
distribution for events starting at state A and finishing at state B is 
dominated by the shortest trajectories, i.e., those that move directly 
from B to A and that do not dwell in any one state for a prolonged 
time (24). If a minimum in our continuous landscape is mapped to 
a “state” in the network description, the linear distortion in the 
shape of the experimental distributions is exactly consistent with this 
prediction of a power-law scaling with increasing integer exponent—
on a log scale, a linear regime with increasing integer slopes—at 
short times. To highlight this, dashed lines in Fig. 2 (C and D) indi-
cate the short-time tm behavior with, on a log-log scale, the linear 
regime exhibiting an integer increase in slope with increasing number 
of minima crossed, exactly as predicted by Eq. 1. We can therefore 
infer directly from the short-time regime of the first-passage time 
distribution the number of intermediate potential minima, or 
equivalently, the number of states, associated with the shortest 
pathway of the particle to the exit. Note that all experimental trajec-
tories in a dataset are used to build each distribution; trajectories for 
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Fig. 1. Transport in controlled potential landscapes. (A) Illustration of the proposed link between first-passage time distributions and a particle moving across a 
potential landscape. (B) Typical experimental image. (C) Experimental 2D probability distribution of particle positions for a channel with four optical traps. The color bar 
indicates the total number of times a particle is observed at a position within the channel. (D) 1D potential landscape, U(x), calculated from the probability distribution in 
(C) with potential minima depth U ~ 3 kBT. Channel exits are indicated by solid lines and the boundaries between minima as dashed lines. Minima labels L(R) 0 to 3 indi-
cate the lowest number of minima that must be crossed to exit to the left (right) reservoir, for a particle starting in this minimum.
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which the particle has moved back and forth across the landscape 
fall in the long-time regime of the distribution and so do not affect 
the slope of the distribution at short times.

At very short times, however, clear deviations from the linear 
scaling are seen in P(tFPT) for m = 1 and 2 (light-colored points in 
Fig. 2B). The time resolution in the colloidal experiment is ~16 ms, 
while the shortest events in the distributions in Fig. 2B are ~ 0.2 s, 
corresponding to a shortest relevant trajectory of at least 10 positions. 
Hence, it is unlikely that this very short time deviation is due to our 
finite time resolution. Instead, the deviations arise from a small 
number of trajectories in which the particle moves directly toward 
the channel exit without a detectable effect on the trajectory from 
the potential minima. We discuss these results in more depth in 
section S4. To further explore the effect on the distributions of such 
details of a continuous landscape, Fig. 2C shows P(tFPT) for m = 2 
with varying minima depth, U, as indicated. On a log-log scale, a 
linear fit is applied to the linear regime of each distribution and is 
shown as a dashed black line. In all cases, the slope is close to 2, 
consistent with the prediction of Eq. 1 for particles that must cross 
at least two minima to exit the channel. As the potential minima 
become deeper, however, the linear power-law regime becomes in-
creasingly pronounced, and we observe a reduction in the deviation 
from the linear regime at very short times. Our observation of fast 
trajectories in our colloidal system that lead to deviations from the 
linear regime at very short times indicates the importance of potential 
minima significant relative to kBT to observe a clear power-law regime. 

This is a consequence of the fact that the Markov jump model, implied 
by Eq. 1, is a good approximation to the dynamics in our experi-
mental system only when there is a separation of time scales, with 
the time spent within minima much longer than the time necessary 
to move between them. We note, however, that even the distribu-
tion for a colloidal system with potential depth of ~2 kBT shows a 
change in the slope of the short-time regime when compared to the 
distribution for free diffusion (see fig. S2B.)

A comparison between the data and the linear fit in Fig. 2C allows 
for determination of the length of the linear power-law regime, t, 
as indicated by the vertical dashed lines. In Fig. 2D, we plot this 
length of the power-law regime for m = 1, 2, and 3 as a function of 
U. For all data, we observe that t scales with exp(U/kBT) with a 
gradient that increases with m. Figure 2D thus shows that the short-
time regime provides not only information on the number of 
underlying intermediate potential minima, from the slope of the 
linear regime, but also the depth of the minima, from t. This 
behavior can be rationalized by considering the time necessary 
to move across the potential landscape (the Supplementary Materials).

Inferring molecular intermediates from first-passage times
Turning to nanoscale and molecular systems, we now explore the 
general applicability of our findings to the more complex dynamic 
phenomena found at these length scales. In particular, we exploit 
the same analysis to understand two different dynamic processes: first, 
transport in a nanoscale pore—the “molecular hopper” system—and 
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second, the folding and unfolding kinetics of DNA hairpins. Details 
of the molecular hopper system have been previously reported (31). 
Specifically, the small-molecule hopper carries a single-stranded DNA 
(ssDNA) cargo along a multicysteine track by consecutive thiol-
disulfide interchanges. The track is built on a  strand facing the 
lumen of an -hemolysin nanopore. Under an applied potential, the 
ionic current passing through the pore changes as the ssDNA is 
ratcheted from one cysteine foothold to another, from which the 
position of the hopper can be determined (see Fig. 3B).

To apply Eq. 1, we map each foothold, or possible position of the 
cargo, to a state in the discrete network description. First-passage 
time distributions are then calculated by identifying regions of the 
current trace in which the cargo has crossed one (m = 1) or two 
(m = 2) intermediate states equivalent to making two or three hops 
within the pore, respectively. For example, in Fig. 3B, hopping from 
position 0 to position 2 involves crossing a single state (position 1) 
and would thus contribute to the m = 1 distribution. All positions 
within the pore are assumed to be equivalent, such that transitions 
between any pair of states that are separated by the correct number 
of intermediate states are combined into a single distribution. From 
this procedure, we obtain 161 realizations of the two-hop m = 1 
process and 87 realizations of the three-hop m = 2 process. The re-

sulting first-passage time distributions are shown in Fig. 3B. These 
distributions exhibit a short-time linear regime on a log-log scale, 
with a slope very close to that predicted from Eq. 1 for systems 
crossing one or two states. In contrast to the colloidal experiment, 
the hopper generally moves in only one direction, demonstrating 
the applicability of our approach to a system with more directed 
motion. Hence, we note that, for the hopper, the long-time regime 
of the distribution is made up of trajectories that have dwelled for 
longer in a relevant state before moving to the exit rather than those 
that have moved back and forth. While it is possible for the cargo to 
make the four hops required for the m = 3 distribution, there were 
only 35 available realizations of this process, and it was not possible 
to resolve this distribution with sufficient accuracy to unambiguously 
determine the initial slope. The length of the linear regime for the 
m = 2 state is approximately twice that of the m = 1 state, which 
agrees with our findings from the colloidal system. Furthermore, if 
the much shorter time and length scales inherent to the nanopore 
system are accounted for, then the scaling in Fig. 2D can be used to 
obtain U ~ 17 kBT for the nanopore system (the Supplementary 
Materials). This is in good agreement with previous estimates (31). 
These results demonstrate that our approach is well suited to charac-
terizing details of transport in nanopore systems.
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Force spectroscopy measurements of DNA hairpin systems have 
also been previously described (32, 33). In these experiments, a mole-
cule of interest is tethered to two beads that can be maneuvered using 
optical traps to unfold the DNA duplex into single strands. Here, a 
“hopping” or passive mode protocol is adopted. Changes in the posi-
tions of the beads with respect to fixed optical traps are monitored as a 
function of time. The relative change in bead positions can be directly 
related to changes in the force exerted upon the bead by the DNA 
hairpin, with the force exerted varying according to the precise struc-
tural configuration of the molecule. Each structural configuration of the 
hairpin corresponds to a different minimum, in the underlying energy 
landscape for the molecule. From this, the force serves as a proxy for the 
different structural configurations, linked to different energy minima, 
and different force values can thus be associated with the different 
“states” in Eq. 1. Notably, however, direct analysis of the force versus 
time trace using step fitting is more challenging because of the sub-
stantial fluctuations (see Fig. 3C), which makes it less straightforward 
to directly determine the number of states, and their associated force 
ranges directly from the trace. These experimental systems thus test 
the applicability of our approach to molecular systems with lower 
signal-to-noise ratios, for example, processes that have a well-defined 
start and end point but where all intermediate states cannot be resolved.

As we can now only consider transitions between the extremes 
of high and low force, to probe passage over different numbers of 
states, we consider two different DNA hairpin structures that can 
adopt different numbers of intermediate configurations (intermediate 
force states) between the folded and unfolded states. To calculate 
the first-passage time distributions, we define a certain force range 
as the initial state (below the blue line in Fig. 3C) and consider the 
time necessary to first reach a small percentage (< 0.5%) of points in 
the trace at the opposite extreme of force (indicated by the orange line). 
The first-passage time distributions calculated in this way for the folding 
of the two different DNA hairpin molecules are shown in Fig. 3C. Again, 
both distributions show a clear linear regime on a log-log scale at short 
times with (i) exhibiting a slope close to 1 and (ii) a slope close to 2.

Interpretation of the initial scaling of the distributions requires 
the structure of the two DNA hairpins to be considered. Data used 
to build the first-passage time distribution plotted in Fig. 3C(i) is 
taken from a short (20 base pairs) DNA hairpin that can transition 
from a folded (high force) state to an unfolded (low force) state via 
one intermediate (32). In transitioning between the folded and 
unfolded states, the system therefore crosses only one intermediate 
state, i.e., it represents an m = 1 process, and this is consistent with 
our finding that the observed slope in the distribution is equal to 1. 
Data in (ii) is taken from a longer DNA hairpin with a more complex 
structure and thus free energy landscape designed to adopt four dif-
ferent configurational states: an initial configuration, final configuration, 
and two intermediates. Hence, in moving from the initial to final con-
figurational state, two intermediate states will be crossed, resulting 
in an m = 2 distribution with initial slope equal to 2 in Fig. 3C. This 
demonstrates that our analysis can distinguish between the different 
energy landscapes associated with the possible configurations of these 
two different DNA hairpins and demonstrates the ability of our ap-
proach to elucidate details of the energy landscape in a molecular system.

DISCUSSION
We have established a powerful and general protocol that uncovers 
details of an underlying potential energy landscape by explicitly 

analyzing system dynamics as quantified by first-passage time dis-
tributions. Our approach was first rigorously explored in a mesoscale 
colloidal model system that allows for the resolution of detailed dynamic 
information in an experimentally controlled potential energy landscape. 
Here, we observe a characteristic power-law scaling with integer expo-
nent in the short-time regime of the distribution that directly reflects 
the number and depth of potential minima experienced by the particle. 
This demonstrates the applicability of theoretical results for a discrete 
1D network of states (24) to systems with well-defined but continuous 
potential energy landscapes with sufficiently deep minima.

Having fully detailed the applicability of this approach to our 
colloidal model system, we broadly applied our method to dynamic 
processes occurring in nanoscale and molecular systems. More 
specifically, we calculate the first-passage time distributions for both 
transport of a molecule through a nanoscale pore (31) and for the 
folding and unfolding of DNA hairpins (32). In both cases, the dis-
tributions show a power-law regime at short times from which it 
is possible to infer the number of intermediate minima in the energy 
landscapes associated with the process. Hence, our approach can 
be applied not only to systems from the mesoscale to the microscale 
but also to data acquired by a range of different experimental techniques.

The main finding of our work is the experimental exploration 
across multiple length scales of a simple, analytic relationship between 
the dynamics of a process and key underlying aspects of the free-energy 
landscape that drives it. Consequently, for phenomena where only 
dynamic information is accessible, calculation of the first-passage 
time distribution can be reliably used to reveal details of the under-
lying energy landscape. While we note that our method does not 
allow for a full restoration of the underlying landscape, the two fea-
tures obtained from the distributions, namely, depth and number of 
potential minima, are those most important to understanding the 
dynamics of a process. Regarding the application of our approach to 
other experimental systems, the results presented here do indicate 
some practical requirements that must be satisfied by the data. First, 
to observe the linear regime, the system must have a fixed and 
well-defined potential landscape, i.e., one that does not vary in time, 
with potential minima that are significant compared to kBT. This is 
suggested by our findings for the colloidal system where deviations 
from the predicted scaling of the distribution at very short times 
become more significant as the potential minima become shallower. 
Hence, in observing a particular integer slope, this can be interpreted 
as the minimum number of states relevant to the process but does 
not exclude the possibility of additional much shallower minima in 
the landscape. Second, it is crucial that the time resolution of the 
experiment is sufficiently high that the first passage time distribu-
tion presents a maximum with a short time regime that can be well 
resolved. Furthermore, we note that, while observation of a power-law 
scaling allows for the determination of details of the landscape, the 
absence of a linear regime is rather more difficult to interpret. Here, 
while this may indicate that there are no intermediate states associ-
ated with the process, it could also be a consequence of phenomena 
with dynamics that are not well approximated by a Markov jump 
model, e.g., movement through complex potential landscapes composed 
of many shallow minima with no dominant shortest pathway through 
the landscape. However, theoretical predictions corresponding to those 
in this work exist for multidimensional networks of states (24, 34, 35), 
and this is discussed more extensively in the Supplementary 
Materials. It will now be important to explore processes with these 
more complex free-energy landscapes.
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MATERIALS AND METHODS
Microfluidic chips are fabricated using replica molding in poly
dimethylsiloxane (PDMS), before plasma bonding of the PDMS 
component to a glass slide that has been cleaned with isopropanol. The 
microfluidic device is designed to include to 3D reservoirs with a depth 
of 12 m connected by an array of channels with a length of ~4.8 m 
and a width and height of ~0.9 m. To fabricate the mold, focused 
ion beam deposition is used to create the negative of the channel 
array with standard photolithography used as a second step to produce 
the reservoirs. Colloidal suspensions consist of polystyrene particles 
with a diameter of ~510 nm (Polysciences Inc.) in a 5 mM solution 
of KCl. For data acquisition, the system is imaged at a rate of 60 fps 
using a Mikrotron MC1362 camera. Holographic optical tweezers are 
used both to impose potential landscapes and to automate the data 
acquisition as described in detail in (28). Full materials and methods 
for the molecular hopper are described in (31) and for the DNA 
hairpin system in (32), with the exception of the DNA sequence for the 
longer hairpin, which can be found in the Supplementary Materials.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/18/eaaz4642/DC1

REFERENCES AND NOTES
	 1.	 J. H. Espenson, Chemical Kinetics and Reaction Mechanism (McGraw-Hill Companies, ed. 2, 2002).
	 2.	 P. L. Houston, Chemical Kinetics And Reaction Dynamics (Courier Corporation, 2012).
	 3.	 H. S. Chung, K. McHale, J. M. Louis, W. A. Eaton, Single-molecule fluorescence experiments 

determine protein folding transition path times. Science 335, 981–984 (2012).
	 4.	 K. Neupane, D. A. N. Foster, D. R. Dee, H. Yu, F. Wang, M. T. Woodside, Direct observation 

of transition paths during the folding of proteins and nucleic acids. Science 352, 239–242 (2016).
	 5.	 M. A. Micheelsen, C. Rischel, J. Ferkinghoff-Borg, R. Guerois, L. Serrano, Mean first-passage 

time analysis reveals rate-limiting steps, parallel pathways and dead ends in a simple 
model of protein folding. Europhys. Lett. 61, 561–566 (2003).

	 6.	 P. G. Wolynes, J. N. Onuchic, D. Thirumalai, Navigating the folding routes. Science 267, 
1619–1620 (1995).

	 7.	 M. Karplus, Behind the folding funnel diagram. Nat. Chem. Biol. 7, 401–404 (2011).
	 8.	 K. A. Dill, J. L. MacCallum, The protein-folding problem, 50 years on. Science 338, 

1042–1046 (2012).
	 9.	 T. Chou, Kinetics and thermodynamics across single-file pores: Solute permeability 

and rectified osmosis. J. Chem. Phys. 110, 606–615 (1999).
	 10.	 A. M. Berezhkovskii, M. A. Pustovoit, S. M. Bezrukov, Channel-facilitated membrane transport: 

Transit probability and interaction with the channel. J. Chem. Phys. 116, 9952–9956 (2002).
	 11.	 W. R. Bauer, W. Nadler, Thermodynamics of competitive molecular channel transport: 

Application to artificial nuclear pores. PLOS ONE 5, e15160 (2010).
	 12.	 A. Zilman, Effects of multiple occupancy and interparticle interactions on selective transport 

through narrow channels: Theory versus experiment. Biophys. J. 96, 1235–1248 (2009).
	 13.	 S. Agah, M. Pasquali, A. B. Kolomeisky, Theoretical analysis of selectivity mechanisms 

in molecular transport through channels and nanopores. J. Chem. Phys. 142, 044705 (2015).
	 14.	 A. B. Kolomeisky, Channel-facilitated molecular transport across membranes: Attraction, 

repulsion, and asymmetry. Phys. Rev. Lett. 98, 048105 (2007).
	 15.	 S. Singh, P. Menczel, D. S. Golubev, I. M. Khaymovich, J. T. Peltonen, C. Flindt, K. Saito, 

É. Roldán, J. P. Pekola, Universal first-passage-time distribution of non-gaussian currents. 
Phys. Rev. Lett. 122, 230602 (2019).

	 16.	 J.-P. Bouchaud, R. Cont, A Langevin approach to stock market fluctuations and crashes. 
Eur. Phys. J. B. 6, 543–550 (1998).

	 17.	 R. Chicheportiche, J.-P. Bouchaud, in First-passage Phenomena and their Applications, 
R. Metzler, S. Redner, G. Oshanin, Eds. (World Scientific, 2014), chap. 18, p. 447.

	 18.	 J. Jurczyk, T. Rehberg, A. Eckrot, I. Morgenstern, Measuring critical transitions in financial 
markets. Sci. Rep. 7, 11564 (2017).

	 19.	 H. Yu, A. N. Gupta, X. Liu, K. Neupane, A. M. Brigley, I. Sosova, M. T. Woodside, Energy 
landscape analysis of native folding of the prion protein yields the diffusion constant, 
transition path time, and rates. Proc. Natl. Acad. Sci. U.S.A. 109, 14452–14457 (2012).

	 20.	 H. S. Chung, W. A. Eaton, Protein folding transition path times from single molecule FRET. 
Curr. Opin. Struc. Biol. 48, 30–39 (2018).

	 21.	 N. Q. Hoffer, M. T. Woodside, Probing microscopic conformational dynamics in folding 
reactions by measuring transition paths. Curr. Opin. Chem. Biol. 53, 68–74 (2019).

	 22.	 D. E. Makarov, Single Molecule Science: Physical Principles and Models (CRC Press, 2015).

	 23.	 D. J. Wales, Exploring energy landscapes. Annu. Rev. Phys. Chem. 69, 401–425 (2018).
	 24.	 X. Li, A. B. Kolomeisky, Mechanisms and topology determination of complex chemical and biological 

network systems from first-passage theoretical approach. J. Chem. Phys. 139, 144106 (2013).
	 25.	 Q. H. Wei, C. Bechinger, P. Leiderer, Single-file diffusion of colloids in one-dimensional 

channels. Science 287, 625–627 (2000).
	 26.	 E. Wonder, B. Lin, S. A. Rice, Single-particle diffusion in dense inhomogeneous colloid 

suspensions in ribbon channels. Phys. Rev. E 84, 041403 (2011).
	 27.	 X. Yang, C. Liu, Y. Li, F. Marchesoni, P. Hänggi, H. P. Zhang, Hydrodynamic and entropic effects 

on colloidal diffusion in corrugated channels. Proc. Natl. Acad. Sci. U.S.A. 114, 9564–9569 (2017).
	 28.	 J. Gladrow, M. Ribezzi-Crivellari, F. Ritort, U. F. Keyser, Experimental evidence of symmetry 

breaking of transition-path times. Nat. Commun. 10, 55 (2019).
	 29.	 R. D. L. Hanes, C. Dalle-Ferrier, M. Schmiedeberg, M. C. Jenkins, S. U. Egelhaaf, Colloids 

in one dimensional random energy landscapes. Soft Matter 8, 2714–2723 (2012).
	 30.	 M. P. N. Juniper, A. V. Straube, R. Besseling, D. G. A. L. Aarts, R. P. A. Dullens, Microscopic 

dynamics of synchronization in driven colloids. Nat. Commun. 6, 7187 (2015).
	 31.	 Y. Qing, S. A. Ionescu, G. S. Pulcu, H. Bayley, Directional control of a processive molecular 

hopper. Science 361, 908–912 (2018).
	 32.	 N. Forns, S. D. Lorenzo, M. Manosas, K. Hayashi, J. M. Huguet, F. Ritort, Improving signal/

noise resolution in single-molecule experiments using molecular constructs with short 
handles. Biophys. J. 100, 1765–1774 (2011).

	 33.	 J. M. Huguet, C. V. Bizarro, N. Forns, S. B. Smith, C. Bustamante, F. Ritort, Single molecule 
derivation of salt dependent base-pair free energies in DNA. Proc. Natl. Acad. Sci. U.S.A. 
107, 15431–15436 (2010).

	 34.	 X. Li, A. B. Kolomeisky, A. Valleriani, Pathway structure determination in complex 
stochastic networks with non-exponential dwell times. J. Chem. Phys. 140, 184102 (2014).

	 35.	 A. Valleriani, X. Li, A. B. Kolomeisky, Unveiling the hidden structure of complex stochastic 
biochemical networks. J. Chem. Phys. 140, 064101 (2014).

	 36.	 J. M. Huguet, N. Forns, F. Ritort, Statistical properties of metastable intermediates in DNA 
unzipping. Phys. Rev. Lett. 103, 248106 (2009).

	 37.	 M. Rico-Pasto, I. Pastor, F. Ritort, Force feedback effects on single molecule hopping 
and pulling experiments. J. Chem. Phys. 148, 123327 (2018).

	 38.	 J. Crocker, D. Grier, Methods of digital video microscopy for colloidal studies. J. Colloid 
Interface Sci. 179, 298–310 (1996).

	 39.	 Y. Tan, J. Gladrow, U. F. Keyser, L. Dagdug, S. Pagliara, Particle transport across a channel 
via an oscillating potential. Phys. Rev. E 96, 052401 (2017).

	 40.	 A. Godec, R. Metzler, Universal proximity effect in target search kinetics in the few- 
encounter limit. Phys. Rev. X 6, 041037 (2016).

	 41.	 D. Hartich, A. Godec, Duality between relaxation and first passage in reversible Markov 
dynamics: Rugged energy landscapes disentangled. New J. Phys. 20, 112002 (2018).

	 42.	 D. Hartich, A. Godec, Interlacing relaxation and first-passage phenomena in reversible discrete 
and continuous space Markovian dynamics. J. Stat. Mech.: Theory Exp 2019, 034002 (2019).

	 43.	 G. Maglia, M. R. Restrepo, E. Mikhailova, H. Bayley, Enhanced translocation of single DNA 
molecules through alpha-hemolysin nanopores by manipulation of internal charge.  
Proc. Natl. Acad. Sci. U.S.A. 105, 19720–19725 (2008).

Acknowledgments: A.L.T. and U.F.K. acknowledge Y. Tan for help with preliminary colloidal 
experiments. Funding: A.L.T. and U.F.K. acknowledge funding from an ERC Consolidator Grant 
(DesignerPores 647144). J.G. was supported by a European Union Horizon 2020 research and 
innovation program under European Training Network (ETN) grant no. 674979-NANOTRANS. H.B. 
acknowledges an ERC Advanced Grant (COSIMO 294443). Y.Q. acknowledges a China Scholarship 
Council–University of Oxford Scholarship. F.R. and M.R.-P. acknowledge financial support from 
grants Proseqo (FP7 EU program) and FIS2016-80458-P (Spanish Research Council), and ICREA 
Academica prizes 2013 and 2018 (Catalan Government). A.B.K. acknowledges the support from 
the Welch Foundation (C-1559), from the NSF (CHE-1664218), and by the Center for Theoretical 
Biological Physics sponsored by the NSF (PHY-1427654). Author contributions: A.L.T., A.B.K., and 
U.F.K. conceived the experiments. A.L.T. collected the colloidal data and performed data analysis 
on all systems. J.G. built the holographic optical tweezers setup. F.R. and M.R.-P. performed the 
DNA hairpin experiments. H.B. and Y.Q. performed the molecular hopper experiments. All 
authors contributed to writing the manuscript. Competing interests: The authors declare that 
they have no competing interests. Data and materials availability: All data needed to evaluate 
the conclusions in the paper are present in the paper and/or the Supplementary Materials. All 
other data are available upon reasonable request from the authors.

Submitted 11 September 2019
Accepted 4 February 2020
Published 1 May 2020
10.1126/sciadv.aaz4642

Citation: A. L. Thorneywork, J. Gladrow, Y. Qing, M. Rico-Pasto, F. Ritort, H. Bayley, A. B. Kolomeisky, 
U. F. Keyser, Direct detection of molecular intermediates from first-passage times. Sci. Adv. 6, 
eaaz4642 (2020).

 on M
ay 21, 2020

http://advances.sciencem
ag.org/

D
ow

nloaded from
 

http://advances.sciencemag.org/cgi/content/full/6/18/eaaz4642/DC1
http://advances.sciencemag.org/cgi/content/full/6/18/eaaz4642/DC1
http://advances.sciencemag.org/


Direct detection of molecular intermediates from first-passage times

Ulrich F. Keyser
Alice L. Thorneywork, Jannes Gladrow, Yujia Qing, Marc Rico-Pasto, Felix Ritort, Hagan Bayley, Anatoly B. Kolomeisky and

DOI: 10.1126/sciadv.aaz4642
 (18), eaaz4642.6Sci Adv 

ARTICLE TOOLS http://advances.sciencemag.org/content/6/18/eaaz4642

MATERIALS
SUPPLEMENTARY http://advances.sciencemag.org/content/suppl/2020/04/27/6.18.eaaz4642.DC1

REFERENCES

http://advances.sciencemag.org/content/6/18/eaaz4642#BIBL
This article cites 39 articles, 10 of which you can access for free

PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions

Terms of ServiceUse of this article is subject to the 

 is a registered trademark of AAAS.Science AdvancesYork Avenue NW, Washington, DC 20005. The title 
(ISSN 2375-2548) is published by the American Association for the Advancement of Science, 1200 NewScience Advances 

BY).
Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC 
Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of

 on M
ay 21, 2020

http://advances.sciencem
ag.org/

D
ow

nloaded from
 

http://advances.sciencemag.org/content/6/18/eaaz4642
http://advances.sciencemag.org/content/suppl/2020/04/27/6.18.eaaz4642.DC1
http://advances.sciencemag.org/content/6/18/eaaz4642#BIBL
http://www.sciencemag.org/help/reprints-and-permissions
http://www.sciencemag.org/about/terms-service
http://advances.sciencemag.org/

