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Abstract

We place the first constraints on the obliquity of a planetary-mass companion outside of the solar system. Our target is
the directly imaged system 2MASS J01225093–2439505 (2M0122), which consists of a 120Myr 0.4Me star hosting a
12–27MJ companion at 50 au. We constrain all three of the system’s angular-momentum vectors: how the companion
spin axis, the stellar spin axis, and the orbit normal are inclined relative to our line of sight. To accomplish this, we
measure projected rotation rates (v sin i) for both the star and the companion using new near-infrared high-resolution
spectra with NIRSPEC at Keck Observatory. We combine these with a new stellar photometric rotation period from
TESS and a published companion rotation period from Hubble Space Telescope to obtain spin-axis inclinations for both
objects. We also fitted multiple epochs of astrometry, including a new observation with NIRC2/Keck, to measure
2M0122b’s orbital inclination. The three line-of-sight inclinations place limits on the true de-projected companion
obliquity and stellar obliquity. We find that while the stellar obliquity marginally prefers alignment, the companion
obliquity tentatively favors misalignment. We evaluate possible origin scenarios. While collisions, secular spin–orbit
resonances, and Kozai–Lidov oscillations are unlikely, formation by gravitational instability in a gravito-turbulent disk
—the scenario favored for brown dwarf companions to stars—appears promising.

Unified Astronomy Thesaurus concepts: Exoplanet systems (484); High resolution spectroscopy (2096); Direct
imaging (387); Photometry (1234)

1. Introduction

The obliquity of a planet reflects its formative and subsequent
dynamical history (e.g., Lissauer 1993). For the terrestrial and ice
giant planets in the solar system, spin rate and direction are
affected by the accretion of planetesimals and giant impacts (e.g.,
Lissauer & Kary 1991; Schlichting & Sari 2007; Reinhardt et al.
2020), long-term gravitational forcing by other bodies (e.g., Laskar
& Robutel 1993; Touma & Wisdom 1993), and dissipative effects
associated with atmospheric tides and the core-mantle boundary
(e.g., Dobrovolskis 1980; Correia 2006). Gas giant spins may
begin aligned with the orbit normals of their parent circumstellar
gas disks (by conservation of vorticity) but can be torqued out of
alignment by sweeping secular spin–orbit resonances driven by
orbital migration (e.g., Ward & Hamilton 2004). All of these
processes may play out for extrasolar planets (e.g., Auclair-
Desrotour et al. 2017; Millholland & Laughlin 2019).

A full specification of a planet–star system’s 3D angular-
momentum architecture includes the star’s spin, the planet’s spin,
and the mutual orbit. Radial velocity measurements of the
Rossiter–McLaughlin effect in transiting exoplanet systems can
probe two of these and constrain the stellar obliquity: the angle
between the stellar spin vector and the orbit normal. Famously
large stellar obliquities in hot Jupiter systems suggest, e.g., planet–
planet gravitational interactions that can raise orbital inclinations
dramatically (e.g., Naoz et al. 2011; Dawson & Johnson 2018).

At higher companion masses, measurements of the projected
rotation speeds vsini in very-low-mass (VLM) binaries with
comparable spectral types showed that if their components
have comparable true rotation rates, then spin axes in some
systems must be mutually inclined, and by extension at least

one spin axis must be inclined relative to the orbital plane
(Konopacky et al. 2012). At the same time, a detailed study of
the tight L-dwarf binary 2MASSW J0746425+200032AB
found spin equator planes and the orbit plane to be aligned
(Harding et al. 2013).
As yet, no measurement has been made of an exoplanetary

obliquity. How can we get at this, or at least start to? If we can
measure the planet’s radius R (say its effective blackbody radius,
derived from its intrinsic luminosity and effective temperature), its
rotation period Prot from photometry, and its projected rotation
speed v isin from spectral line broadening, then the inclination of
the spin axis relative to our line of sight can be calculated as

p
=

´
i

P v i

R
arcsin

sin

2
. 1

rot⎡

⎣⎢
⎤

⎦⎥
( )

( )

Directly imaged “planetary-mass companions” (PMCs), many

of which have inferred masses straddling the deuterium burning

limit, are excellent targets for carrying out such a procedure.

Bowler (2016) catalogs 25 wide-separation (1″) PMCs that

are young (100 Myr) and, therefore, relatively bright at near-

infrared (NIR) wavelengths. For now, we label these objects

PMCs and not “planets” or “brown dwarfs” in recognition of

their a priori unknown formation mechanism, whether by core

accretion on the one hand, or gravitational instability/turbulent
fragmentation on the other. By the time this paper concludes,

however, we will have made a case for one and not the other.
Here, we present the first constraints on an extrasolar PMC

obliquity. We measure line-of-sight inclinations of all three
angular-momentum vectors in the directly imaged system
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2MASS J01225093–2439505 (hereafter 2M0122). The system
consists of a 0.4Me star orbited by an L3.5±1.0 PMC of
mass 12–27MJ at a projected separation of 50 au (Bowler et al.
2013; Hinkley et al. 2015). As a member of the AB Dor
association, 2M0122 has an age of 120±10Myr (Bowler
et al. 2013; Malo et al. 2013).

The rest of this paper is organized as follows. In Section 2, we
describe our observations, including NIR high-resolution
spectroscopy with NIRSPEC/Keck, high-contrast imaging with
NIRC2/Keck, and photometry with TESS. In Section 3, we detail
our measurements of the three line-of-sight inclinations for the
companion and host star spins and the orbit normal, and establish
what constraints we can put on the PMC obliquity and the stellar
obliquity. In Section 4, we discuss and evaluate origin scenarios
for these obliquities. We conclude in Section 5.

2. Observations

2.1. Keck/NIRSPEC High-resolution Spectroscopy

On UT 2017 November 3, we observed the host star 2M0122
and companion 2M0122b in K band (2.03–2.38 um) using the
high-resolution near-infrared spectrograph NIRSPEC at the Keck
II telescope, which (pre-upgrade) had a resolution of ∼25,000 at
the time of these observations (McLean et al. 1998). We carried
out the observations in adaptive optics (AO) mode using the
0 041×2 26 slit, to minimize contaminating light from the star
at the location of the companion (1 45 separation). We obtained
spectra for the star and companion separately. We observed the
mK=9.2 mag host star with a single ABBA nod using an
exposure time of 60 s for each image. Subsequently, we observed
the mK=14.0 mag companion with eight AB nods using an
exposure time of 600 s for the first three AB nods, and an
exposure time of 900 s for the final five AB nods.

2.2. Keck/NIRC2 AO Imaging

On UT 2019 June 18 we observed the 2M0122 system in Ks
band using the near-infrared imager NIRC2 (PI: Keith Matthews)
on the Keck II telescope. We used natural guide-star AO imaging
and the narrow camera setting to achieve better contrast and
spatial resolution. We read out the full 1024×1024 pixel NIRC2
array and used a three-point dither pattern to avoid the NIRC2
quadrant with elevated noise. We obtained four usable images
each with an integration time of 60 s. We calibrate and remove
artifacts using the dome flat fields and dark frames.

2.3. TESS Time-series Photometry

2M0122 was observed with the Transiting Exoplanet Survey
Satellite (Ricker et al. 2015) in Sector 3 of the two-year
primary mission between 2018 September 24 UT and 2018
October 14 UT (spacecraft orbits 13 and 14). This star was
included in the TESS input catalog (TIC ID 11614485; Stassun
et al. 2018) as part of the Cool Dwarf Sample (Muirhead et al.
2018). 2M0122 fell on CCD4 in Camera 2, and short-cadence
science data with two-minute sampling were collected
continuously for 20.4 days except during the central 1.1 days
when the data were downlinked during perigee.

3. Analysis

Here, we measure inclinations of all three angular-momentum
vectors in the 2M0122 system relative to the sky plane: the stellar
spin angular-momentum vector, the orbital angular-momentum

vector, and the PMC spin angular-momentum vector. These
measurements yield the stellar spin-axis inclination i

å
, the orbital

inclination io, and the PMC spin-axis inclination ip. (See Figure 1
for a schematic representation.) To obtain these inclinations,
five quantities are needed: the projected rotation rate  v isin for
the star, the projected rotation rate v isinp p for the companion, the
rotation period Prot, for the star, the rotation period P prot, for
the companion, and an astrometric orbit for the companion. We
describe each of these five measurements below.

3.1. Measuring vsini for 2M0122 and 2M0122b

Following the methodology outlined in Bryan et al. (2018), we
extract 1D spectra from our NIRSPEC images using a Python
pipeline modeled after Boogert et al. (2002). We first flat-field,
dark subtract, and then difference each AB pair. For each of the six
orders, we then stack and align the differenced images to combine
them into a single image. To correct the modest curvature of the
2D spectrum along the x (dispersion) axis, we fit the spectral trace
for each order with a third-order polynomial. We use the fit to the
trace of the host star to rectify the 2D spectrum of both the star and
the companion. This allows us to leverage the high signal-to-noise
of the stellar trace and provide better constraints on the shape of the
significantly fainter trace of the companion. While the star and the
companion were not in the slit at the same time, the small 1 45
nod from the star to the companion did not significantly change the
shape of the trace.
We note that the pre-upgrade NIRSPEC detector occasion-

ally produced one or more sets of every eight rows whose
values were systematically off by a constant value. This value
was tied to one of the two quadrants on the left half of the
detector. These offsets are likely due to variations in bias
voltages (Bryan et al. 2018). While this effect is not significant
when the signal-to-noise ratio (S/N) of the trace is high, such
as that of the host star 2M0122, it does become important when
the traces are faint, as is the case for the companion 2M0122b.
For images of 2M0122b, we correct for this effect by
calculating the median value of unaffected rows and subse-
quently adding or subtracting a constant value from the bad
rows to match the median pixel value. Unfortunately, while this
correction improved the noise in the left half of the detector, we
find, in subsequent analyses, that including the left (blue) half
of the companion spectrum degrades the significance of the
cross-correlation function and resulting spin measurement,
which we detail later in this section. We thus do not consider
the left (blue) half of the spectra for both companion and host
star once their 1D spectra are extracted.
1D spectra are then optimally extracted from 2D rectified

spectra for each of the six orders (see Figure 2 for an example
2D rectified order for 2M0122b). For each positive and
negative trace, we calculate an empirical PSF profile along the
y (cross-dispersion) axis of the 2D order. We use this profile to
combine the flux along each column, collapsing the 2D
rectified order into a 1D spectrum in pixel space.
After producing 1D spectra in pixel space for both the host star

and companion, we wavelength-calibrated each spectral order. We
first calculate the wavelength solution for the star by fitting the
positions of the telluric lines in the spectrum with a third-order
polynomial wavelength solution l = + + +ax bx cx d3 2 ,
where λ is the wavelength and x is the pixel number. While the
1D spectra for the companion have S/Ns that are too low to
confidently fit a third-order polynomial wavelength solution, we
note that because we maintained the same instrument configuration

2

The Astronomical Journal, 159:181 (15pp), 2020 April Bryan et al.



(filter, rotator angle, etc.) throughout the night, the wavelength
solution should remain constant between the star and companion,
aside from a linear offset due to the fact that the companion and
star might have been placed at different positions in the slit. To
determine this linear offset, we apply the stellar wavelength
solution to the companion spectrum and then cross correlate the
2M0122b spectrum with a telluric model.

To remove telluric features from the stellar spectrum, we use the
molecfit routine, which simultaneously fits a telluric model and
an instrumental profile defined by a single Gaussian kernel to the
spectrum (Kausch et al. 2015; Smette et al. 2015). In addition,
molecfit iteratively fits the continuum with a third-order
polynomial before dividing out the telluric model. We use the
best-fit telluric model for the host star 2M0122 to telluric-correct
the companion spectrum, dividing this model from the data. We
note that these telluric corrections leave significant artifacts in the
spectra predominantly at the location of strong telluric lines, where
the line cores are difficult to fit well. We thus remove these artifacts
at the locations of the strongest telluric absorption. Figure 3 shows
an example 1D wavelength-calibrated and spectrum for order 2 of
2M0122 as well as the best-fit telluric model.

We note that for subsequent analyses, we only use orders 1
and 2 (wavelength ranges 2.34–2.38 μm and 2.27–2.31 μm
respectively) out of the full six orders for both the star and
companion. We utilize these two orders because they have the
most accurate wavelength calibrations and telluric corrections,
and they contain strong and numerous absorption lines from
both water and CO, including two strong CO bandheads.

With these 1D wavelength-calibrated and telluric-corrected
spectra, we sought to measure rotational line broadening in
those spectra, which yields the projected rotation rate v sin i.
For both the star and companion, we measure v sin i and the
radial velocity offset by calculating the cross-correlation
function (CCF) between each observed spectrum and a model
atmosphere, where the model atmosphere has been broadened
to the instrumental resolution. We use an atmospheric model
from the Sonora model grid for the companion (Marley et al.
2018, M. Marley et al. 2020, in preparation; C. Morley et al.
2020, in preparation); these models are calculated assuming
that the atmosphere is in radiative–convective and chemical

equilibrium, following the approach of Marley et al. (1999),

Saumon & Marley (2008), and Morley et al. (2012), with

updated chemistry and opacities as described in Marley et al.

(2018) and M. Marley et al. (2020, in preparation). We use a

model with Teff=1600 K and log(g)=4.5 for 2M0122b.

These values were obtained from model fits to a low-resolution

SPHERE spectrum of 2M0122b (Hinkley et al. 2015). We

assume solar metallicity and solar C/O ratio, and include

silicate, iron, and corundum clouds with a sedimentation

efficiency fsed=2 as described in Ackerman & Marley (2001).
For the star, we use a BT Settl model with Teff=2500K and

log(g)=5.0, where we determined these Teff and log(g) parameters
from BT Settl isochrones corresponding to the measured age of the

system, 120±10Myr, and the measured bolometric luminosity

of the star, = - L Llog 1.72 0.11bol( ) dex (Bowler et al.

2013). We note that the stellar mass corresponding to these

L Llog bol( ) and age parameters is 0.4Me, which we use later in

the analysis.
We then compare this “data” CCF to a series of “model” CCFs,

where each “model” CCF was calculated by cross correlating a

model atmosphere broadened to the instrumental resolution, with

that same model additionally broadened by a rotation rate and

offset by a radial velocity (RV). We carry out this comparison in a

Bayesian framework using MCMC to fit for three free parameters:

v sin i, RV, and instrumental resolution. While we use uniform

priors on v sin i and RV, we use a Gaussian prior for the

instrumental resolution, with a peak location and width defined as

24,800 and 1000, respectively, in order to properly incorporate

Figure 1. The 3D geometry of the 2M0122 system is described by three angular-momentum vectors: Lo for the orbit, L for the stellar spin, and Lp for the PMC spin.

From our observations, we measure these vectors’ line-of-sight inclinations: io, iå, and ip.

Figure 2. 2D rectified spectrum for 2M0122b order 2, wavelength range
2.27–2.31 μm. Note that the left half of the order is noisier because of the
imperfect correction of the every-eighth-row effect, which is likely due to bias
voltage offsets.

Figure 3. Order 2 positive trace 1D wavelength-calibrated spectrum of
2M0122 (orange), and the best-fit molecfit telluric model (red).
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uncertainties on the measured instrumental resolution given the
degeneracy between broadening due to instrumental resolution
and rotational line broadening. The measured instrumental
resolution and corresponding uncertainty originate from a robust
measurement of the instrumental resolution for NIRSPEC on the
night that these observations were taken, from the same observing
program and identical instrumental set-up, described in Xuan et al.
(2020). In Xuan et al. (2020), the authors used a previously
published v sin i value for DH Tau to determine the broadening in
the stellar spectrum due to the instrumental resolution, and
confirmed that the measurement matched their measurement of
instrumental resolution from telluric line fits. We also note that
while we use a uniform prior on v sin i in this analysis, we test
whether this choice could bias our resulting rotation rate
measurement by instead separating v and i into two separate
parameters that are varied in the MCMC, using a uniform prior on
v and a prior that is uniform in cos i for i. We find that the
resulting rotation rate is consistent with that determined just by
varying v sin i with a uniform prior at the <0.2σ level.

The log likelihood function used in our MCMC framework
is given by

å s
= -

-

=

L
m d

log 0.5 , 2
i

n
i i

i1

2⎛

⎝
⎜

⎞

⎠
⎟ ( )

where d is the “data” CCF calculated by cross correlating the

observed spectrum with a model atmosphere broadened to the

instrumental resolution, and m is the “model” CCF calculated

by cross correlating a model atmosphere broadened by the

instrumental resolution with that same model additionally

broadened by a v sin i value and offset by some radial velocity.

We calculate uncertainties on the “data” CCF using the

jackknife resampling technique. In this case, uncertainties are

given by

ås =
-

-
=

n

n
x x

1
, 3

i

n

ijackknife
2

1

2( )
( ) ( )

where n is the total number of samples, here defined as the total

number of AB pairs—eight for 2M0122b and two for

2M0122—xi is the “data” CCF calculated using all AB pairs

but the ith AB pair, and x is the “data” CCF calculated using all

AB pairs.
We next consider what assumptions on both the observa-

tional and the modeling side could impact measured rotation
rates. First, we investigate whether offsets in the relative
positions of spectra from individual AB nod pairs could inflate
the measured rotation rate. To test this, we reduce each AB pair
spectrum for 2M0122b and 2M0122 separately, and treated
each positive and negative trace separately. We compare the
location of the CCF peaks in wavelength space. We find that
for the companion, CCF peak locations could differ by more
than 10 km s−1 between AB pairs, and by more than 18 km s−1

between positive and negative traces. Similarly, for the star, we
find that CCF peak locations could differ by as much as
6 km s−1, and by as much as 8 km s−1 between positive and
negative traces. Treating each positive and negative trace
separately, we thus shift the wavelengths of each individual AB
pair spectrum according to the measured CCF peak offsets. We
then combine these shifted individual AB pair spectra
separately for each positive and negative trace prior to
implementing these spectra in the MCMC framework. We

note that by treating the positive and negative traces separately,

we get independent estimates of v sin i. In addition, we fit for

v sin i separately for orders 1 and 2. Unfortunately, for

2M0122b, we found that the order 1 “data” CCF did not

contain a significant peak with which we could measure a

robust rotation rate, due to the low S/N of the order 1

spectrum. Thus, for the companion, we only fit the positive and

negative traces of order 2, whereas for the star, we fit positive

and negative traces for both orders 1 and 2. We find that the

measured values are consistent within the uncertainties, and we

compute their error-weighted averages. For 2M0122b, the

measured projected rotation rate v sin i= -
+13.4 1.2
1.4 km s−1

(Figures 4, 6, and 7). For 2M0122, v sin i= -
+18.2 0.4
0.5 km s−1

(Figures 5 and 8).
To test our assumptions on the modeling side, we first

investigate our choice of Teff and glog( ) that we assume to

generate the models. We take the published values Teff=1600±
100 K and = glog 4.5 0.5( ) for 2M0122b from Hinkley et al.

(2015) and compute models with the following four combinations

of parameters: (1700 K, 4.0 dex), (1700 K, 5.0 dex), (1500K,

4.0 dex), (1500K, 5.0 dex). To test the impact of the uncertainties

Figure 4. Order 2 negative trace spectrum of 2M0122b (red). Model
atmosphere broadened by the instrumental resolution as well as the best-fit
rotation rate, and shifted by the best-fit radial velocity offset (teal). Note the
strong CO bandhead at ∼2.294 um.

Figure 5. Order 2 positive trace of 2M0122 (red). Model atmosphere
broadened by the instrumental resolution as well as the best-fit rotation rate,
and shifted by the best-fit radial velocity offset (teal).
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on Teff and glog( ) on our measured rotation rate, we rerun our
MCMC fits to the companion spectra using models calculated
with these alternate sets of parameters. We find that in all cases,
the measured v sin i values from these new fits differ from the
original v sin i value by less than 0.7σ.

We next test whether variations in the atmospheric C/O ratio
adopted in the model used to measure rotation rates could impact
the final v sin i measurement. We generate models with the
following C/O ratios: 0.25×solar, 0.5×solar, and 1.5×solar,
where the original model we used has a solar (0.54) C/O ratio.
We repeat our MCMC analysis to calculate new projected rotation
rates with each of these models and find that the resulting v sin i
values differ from the original by less than 0.8σ.

Finally, we test the effect of pressure-broadening uncertainties
on derived rotation rates by running additional models with
modified molecular opacities. Two models were run using
molecular cross sections that were 10×and 0.1×the actual
pressure for the whole profile, simulating a scenario where the
pressure-broadening parameters used to create the cross sections
are wrong by an order of magnitude. Another model used cross
sections with minimal pressure broadening, assuming P=10−6

bar for the molecular cross sections for the whole profile, to
determine how including the pressure-broadened cross sections

affects the derived rotation rate for this object. Collision-induced
opacity of hydrogen and helium was treated separately for all
models, using the standard pressure for each layer. We find that
the resulting v sin i values differ from the original by less
than 0.6σ.

3.2. Measuring Prot, for 2M0122

We downloaded the high-cadence light curve using the
lightkurve v.1.0.1 Python package (Lightkurve Collabora-
tion, 2018), which interfaces with the TESS data archive at the
Mikulski Archive for Space Telescopes (MAST). Data with
quality flags indicating potential anomalies have been removed,
leaving 13,520 photometric points. The light curve of 2M0122
exhibits periodic modulations with a peak-to-peak amplitude of
about 3%. Twelve full-period modulations are evident, and
about a dozen flares are visible with a characteristic rise and
exponential decay (Figure 9). Flares are removed by first
identifying >5σ local positive outliers in the light curve and
then removing deviates in the residuals of a boxcar-smoothed
and subtracted light curve. A Lomb–Scargle periodogram
(Lomb 1976; Scargle 1982) is used to assess the periodic signal
in the normalized (flare-free) light curve. The strongest power
(reaching 0.735) is at 1.492 days, with the next highest peak at
1.348 days (reaching a power of 0.073). To determine whether
this periodic signal depends on the number of period cycles
sampled, we repeated this experiment sequentially for progres-
sively smaller portions of the light curve following Bowler
et al. (2017). The primary signal remained near 1.5 days even
using only 10% of the data, implying the measured period is
robust against changes to the observational baseline. The
phase-folded light curve does not show significant spot
evolution over the 20 day timescale of the observations
(Figure 9).
Differential rotation complicates the interpretation of rotationally

modulated light curves because the latitude of the dominant
starspots can bias the disk-integrated signal to shorter or longer
periods. We adopt a similar approach to that taken in Bowler et al.
(2017) to estimate the uncertainty in the rotation period based on
measurements of the pole-to-equatorial shear (ΔΩ) from Reinhold
& Gizon (2015), where ΔΩ= 2π(1/Pmin–1/Pmax). If we assume
the dominant spots are located at intermediate latitudes, we can
estimate the uncertainty in the period (σP) as Pmin=Pmeasured—σP

Figure 8. Cross-correlation function between the order 2 positive trace
spectrum of 2M0122 with a model atmosphere broadened to the instrumental
resolution (black points), shown with 1σ uncertainties shaded in gray. The
cross-correlation function between a model atmosphere broadened to the
instrumental resolution and that same model additionally broadened by the
best-fit rotation rate and shifted by the best-fit velocity offset are shown in teal.

Figure 6. Cross-correlation function between the order 2 negative trace
spectrum of 2M0122b with a model atmosphere broadened to the instrumental
resolution (black points), shown with 1σ uncertainties shaded in gray. The
cross-correlation functions between a model atmosphere broadened to the
instrumental resolution, and that same model additionally broadened by a series
of rotation rates (0, 5, 10, 15, 20, 25, 30 km s−1

) are shown in color.

Figure 7. Cross-correlation function between the order 2 negative trace spectrum
of 2M0122b with a model atmosphere broadened to the instrumental resolution
(black points), shown with 1σ uncertainties shaded in gray. The cross-correlation
function between a model atmosphere broadened to the instrumental resolution and
that same model additionally broadened by the best-fit rotation rate and shifted by
the best-fit velocity offset are shown in teal.
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and Pmax=Pmeasured + σP. Solving for σP and adopting the
maximum shear value of ΔΩ≈0.1 rad day−1 found by Reinhold
& Gizon (2015) for M dwarfs gives σP= 0.02 days. Our final
measurement for the rotation period of 2M0122 is 1.49±
0.02 days.

3.3. Measuring P prot, for 2M0122b

The photometric rotation period for 2M0122b was published
by Zhou et al. (2019). In this paper, the authors use HST Wide
Field Camera 3 near-IR time-resolved photometry to measure
photometric modulations in the light curve of 2M0122b. These

photometric modulations could come from either cloud patchiness

or variability introduced by longitudinal bands, analogous to those

seen on Jupiter. By implementing techniques such as two-roll

differential imaging and hybrid point-spread function modeling,

the authors achieve a sub-percent photometric precision for this

observation. Using a Lomb–Scargle periodogram, the authors

determine that the rotation period for 2M0122b is -
+6.0 1.0
2.6 hr.

Fitting the light curve with a sinusoid of period 6.0 hr, the best-fit

modulation amplitude is 0.52%±0.11%.
The authors note several caveats to the rotation rate measure-

ment. First, the 6.0 hr period detection has a significance of only

Figure 9. TESS light curve of 2M0122 A. Upper panels: extracted light curve (left) and the same data phase folded to the highest Lomb–Scargle periodogram power
(right). Several flares are visible in the data. Middle panels: light curve of 2M0122 A removing flares through the outlier rejection process described in the main text.
Our final period of 1.49 days is derived from the flare-free light curve using a Lomb–Scargle periodogram (bottom right). The phase-folded diagram shows little
differential spot evolution. Following Bowler et al. (2017), we test whether smaller fractional light-curve coverage influences the inferred period (bottom right); the
peak periodogam power returns similar periods after iteratively removing up to 80% of the data, implying the inferred period is robust against the timeframe of the
observations.
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2.7σ. In addition, given the low significance of the detection, it is
not possible to constrain whether the companion light curve
deviates from a single sinusoid or whether it could have multiple
peaks. A previous study by Apai et al. (2017) found that for high-
S/N light curves with extremely long baselines (>1 yr) for 3 L/T
transition brown dwarfs, the power spectra of their light curves
produced peaks at both the full rotation period of the object as well
as half the rotation period. However, even though the 2M0122b
light curve has a low S/N, both theoretical and higher-quality light
curves of brown dwarfs show that the full rotation periods are the
dominant signal in the power spectrum of a given light curve (Apai
et al. 2017; Zhang & Showman 2014). In addition, observations of
Neptune and Jupiter show that the periodicity in their light curves
corresponds to their full rotation periods (Karalidi et al. 2015;
Simon et al. 2016; Ge et al. 2019). In this paper, we thus proceed
with the assumption that the 6.0 hr measured rotation period
reflects the full rotation period.

3.4. Measuring Astrometry for 2M0122b

For each NIRC2 image of 2M0122b, we apply the NIRC2
detector dewarping solution(Service et al. 2016) and then fit
for the pixel position of each source. We do this with a
simultaneous fit on both sources’ point-spread functions using
a combined Moffat and Gaussian functional form as described
in Ngo et al. (2015). We then use the Service et al. (2016) plate
scale (9.971±0.004±0.001 mas per pixel) and the north-
alignment derotation correction (see footnote 13 in Bowler
et al. 2018) to compute the separation and position angle of the
companion in each frame, relative to the primary star. Finally,
we report the median of all four frames and the standard error
on the median as the uncertainty. We find that the separation
is 1451.3±2.9±1.6 mas (total uncertainty: 3.3 mas) and
the position angle is 215.44 deg±0.12±0.06 deg (total
uncertainty 0.13 deg). For both values, the reported uncertain-
ties are measurement uncertainty and the Service et al. (2016)
NIRC2 distortion solution uncertainty, respectively.

3.5. Measuring io

We use the open-source Python package orbitize!
7

(Blunt et al. 2020) to perform an orbit fit to the assembled
astrometric measurements (summarized in Table 1). We ran the
orbitize! implementation of the Orbits for the Impatient

(OFTI) algorithm (Blunt et al. 2017) until 105 orbits had been
accepted. Briefly, OFTI is a modified rejection-sampling
algorithm that generates independent sets of orbital parameters
from a posterior distribution. It is more efficient than many
MCMC implementations for orbits with small fractional orbit
coverage.
We parameterized the Keplerian orbit as: semimajor axis (a),

eccentricity, inclination angle, argument of periastron (ω), position
angle of nodes (Ω), and time of periastron passage (expressed as a
fraction of the orbital period past MJD=58849; τ). Parallax (π)
and total mass (MT) were also included as free parameters in the
fit. We placed uniform priors on alog , eccentricity, cos i, ω, Ω,
and τ, and Gaussian priors on π and MT. Our prior on π was

constructed using the Gaia DR2 parallax and uncertainty for
2M0122 (Gaia Collaboration et al. 2018), and our total mass prior
was taken to be a Gaussian with μ=0.41Me and σ=0.08Me

(Bowler et al. 2013).
2M0122b exhibits approximately linear orbital motion in

separation (ρ) and position angle (θ), which translates into a

relatively narrow inclination angle constraint ( = -
+i 103 6
16 deg).

Figure 10 illustrates how this orbital inclination distribution
compares to a random inclination distribution with values

drawn from a uniform distribution in cos i. Eccentric, edge-on
orbits are preferred. See Figures 11 and 12 for visualizations of
these orbits.
To bolster our confidence that the preference for high

eccentricities is physical and not an artifact of the fitting
process, we performed the following tests. First, we performed
linear least-squares fits to separation and P.A. as functions of
time, following Bowler et al. (2020). We generally expect

linear evolution in separation and P.A. for the long orbits of
directly imaged objects, but if significant systematics are
present in the data, we would expect a linear fit to yield a large

cn
2. We obtained c <n 12 for both the separation and P.A. fits,

suggesting that unaccounted-for systematics are not driving the
shape of the orbit. Second, we reran the orbit-fit with larger
values of total mass (1.5 and 2.0x the actual mass). An
underestimated total mass can bias the fit toward higher
eccentricities, but we found that the preference for high
eccentricities persisted when using larger values for the total
mass. Furthermore, the orbital inclination was consistent within

Table 1

Epochs of Astrometry

Epoch ρ σρ θ σθ Reference

(yr) (mas) (mas) (deg) (deg)

2012.780 1444 7 216.2 0.2 Bowler et al. (2013)

2013.047 1448.6 0.6 216.14 0.08 Bowler et al. (2013)

2013.047 1449.5 1.5 216.09 0.08 Bowler et al. (2013)

2013.049 1452 5 216.1 0.4 Bowler et al. (2013)

2013.493 1448 4 215.97 0.07 Bowler et al. (2013)

2013.493 1433 10 216.4 0.4 Bowler et al. (2013)

2013.626 1448 3 216.02 0.09 Bowler et al. (2015)

2014.858 1450 1 215.98 0.02 Bryan et al. (2016)

2019.460 1451 3 215.44 0.13 This Work

Note. The listed PA values are 0°. 5 off from published values due to an error in

the published north-alignment correction (Bowler et al. 2018).
Figure 10. Normalized probability distribution of the orbital inclination

(green). The mode and 68% confidence interval of this angle are -
+103 6
16

degrees. This distribution is compared to a random inclination distribution
(black) whose values are drawn from a uniform distribution in cos i.

7
https://github.com/sblunt/orbitize
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1σ for all three fits. Finally, we investigate the impact that a

systematic offset on the final epoch of astrometry would have

on the measured orbital inclination. We increase the position

angle of this final epoch by 0°.4, a value consistent with the

variations in PA among the earlier epochs taken within a short

timespan, and rerun the orbit fit. We find that the posterior on

Figure 11. 100 orbits of 2M0122b randomly drawn from the posterior. Left panel: orbits projected on the sky. The primary, 2M0122, is at (0,0). Orbits are color-
coded by year, with the darkest purple corresponding to the date of the first observation. Right top panel: separation vs. time, with the posterior samples in gray and the
data in dark purple. Right bottom panel: same for position angle. Linear orbital motion is apparent in separation and position angle.

Figure 12. Corner plot showing marginalized one-dimensional posteriors (diagonal panels) and two-dimensional covariances (off-diagonal panels) between fitted
orbital parameters. Eccentric, edge-on orbits are preferred.

8

The Astronomical Journal, 159:181 (15pp), 2020 April Bryan et al.



the inclination angle corresponds to -
+98 4
12 degrees, consistent

with the original value of -
+103 6
16 degrees at <0.4σ.

3.6. Measuring ip and i
å

From Equation (1), our measurements of rotation period Prot

and projected rotation speed v sin i can be combined to measure
the line-of-sight spin-axis inclination. This can be done for both
companion (ip) and star (i

å
). For the radius R in Equation (1),

we employ the effective blackbody radius

ps
=R

L

T4
, 4

b eff
4

( )

where L is the bolometric luminosity, σb is the Stefan–

Boltzmann constant, and Teff is the effective temperature. Then,

we re-write (1) as

s
p

= ´-i
L
P T v isin sin 5

b1
rot eff

2
⎡

⎣⎢
⎤

⎦⎥
( ) ( )

For 2M0122b, we adopt = - L Llog 4.19 0.10bol( ) dex
from Bowler et al. (2013) and Teff=1600±100 K from
model fits to a low-resolution (R∼350) near-infrared
spectrum taken with the SPHERE instrument on the VLT
(Hinkley et al. 2015). From these measurements and
Equation (4), we infer a companion radius of Rp=1.04±
0.16 RJ. For the full calculation of ip using (5), we propagate
uncertainties using the Monte Carlo technique, drawing 106

trials from normal distributions defined by the best-fit values
and uncertainties for each parameter. We remove unphysical
values for which sin i>1. Figure 13 shows the resulting
posterior distribution for ip in comparison to a random
inclination distribution drawn from a uniform distribution in
cos i. While the random distribution is broad and peaks at 90
degrees, the bimodal distribution for ip exhibits tighter
constraints, favoring values near 33 and 147 degrees. This
distribution is symmetric about 90 degrees because we do not
know whether the companion spin angular-momentum vector
is pointing toward us (at an angle of 33 degrees) or away from
us (at an angle of 147 degrees). For ip<90°, the mode and
68% confidence interval are = -

+i 33p 9
17 degrees.

We can make a quick consistency check on these results by
noting that ip=90° yields a lower bound on the companion
radius of p= ´R P v i i Rmin sin 2 sin 0.6p p p prot,p J( ) ( )  . This
is consistently smaller than the value of Rp;1 RJ computed
using L and Teff.
For the host star 2M0122, the measured bolometric

luminosity is = - L Llog 1.72 0.11bol( ) dex from Bowler
et al. (2013). The effective temperature of the star is taken from
Herczeg & Hillenbrand (2014), who derived empirical
calibrations between spectral type and effective temperature
for pre-main sequence stars. Given the previously determined
spectral type of M3.5±0.5 for 2M0122 (Riaz et al. 2006), we
find that the spectral type falls between the M3.0 conversion to
Teff=3410 K, and the M4.0 conversion to Teff=3190 K. We
take the midpoint of these two values 3300 K to be the effective
temperature of 2M0122, with uncertainties 110 K given the
±0.5 dex uncertainty on the stellar spectral type.
We propagate uncertainties using the Monte Carlo techni-

que, drawing 106 values from normal distributions defined by
the best-fit values and uncertainties on those values for each
parameter. We remove unphysical values for which >isin 1.
Figure 14 shows the resulting posterior distribution for i

å

(again, symmetric about 90°), and compares this to a random
inclination distribution. We find that the mode and 68%
confidence interval are = i 75 8 degrees.

3.7. Measuring the 3D Spin–orbit Architecture of the 2M0122
System

Ultimately, we want to measure true de-projected companion
and stellar obliquities Ψp and Ψ

å
:

lY = +- i i i icos cos cos sin sin cos 6p p o p o p
1( ) ( )

lY = +-
   i i i icos cos cos sin sin cos 7o o

1( ) ( )

where λp is the longitude of ascending node of the companion’s

spin equatorial plane on its orbital plane (also known as the sky-

projected spin–orbit angle) and λ
å
is the analogous angle for the

stellar spin. Neither λp nor λ
å
is known. Nevertheless, from the

above equations, we see that the absolute difference between the

line-of-sight spin-axis inclination and orbital inclination yields a

lower limit on the true de-projected obliquity (i.e., the value of Ψ

Figure 13. Normalized probability distribution of the line-of-sight inclination
of the companion spin axis (blue). Putting aside the formally allowed values of

ip>90°, the mode and 68% confidence interval of ip are -
+33 9
17 degrees. This

distribution is compared to a random inclination distribution (black) whose
values are drawn from a uniform distribution in cos i.

Figure 14. Normalized posterior distribution of the line-of-sight inclination of
the stellar spin axis. Putting aside the formally allowed values of i

å
>90°, the

mode and 68% confidence interval of i
å
are 75 8 degrees. This distribution is

compared to a random inclination distribution (black) whose values are drawn
from a uniform distribution in cos i.
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when λ=0; e.g., Bowler et al. 2017):

Y > -i i 8p p o∣ ∣ ( )

Y > - i i . 9o∣ ∣ ( )

In Figure 15, we show the probability distributions for -i ip o∣ ∣

(a.k.a. the line-of-sight companion obliquity), -i io∣ ∣ (the

line-of-sight stellar obliquity), and for completeness -i ip∣ ∣

(see Table 2 for a list of all measured parameters). Each of

these is compared against random distributions of line-of-sight

inclination differences computed by drawing i
å
, ip, and io from

distributions uniform in cos i.
We find that the line-of-sight companion obliquity - =i ip o∣ ∣

-
+48 21
28 degrees—this inclination difference prefers to be large,

more so than in a random distribution, as can be seen from
Figure 15. By contrast, we find that the line-of-sight stellar

obliquity - = -
+

i i 1o 1
28∣ ∣ degrees—this inclination difference

prefers to be small, more so than in a random distribution.
Finally, the relative angle between line-of-sight companion and

stellar spin axes is - = -
+

i i 44p 16
32∣ ∣ degrees; our data favor

greater misalignment between these spin vectors than if they
were distributed isotropically.
Taking stock of our findings so far: we have found evidence

that the lower limit on Ψ
å
is small, and that the lower limit on

Ψp is large. We can also compute probability distributions for
Ψ
å
and Ψp directly using Equations (6) and (7), assuming

a priori uniform distributions for λ
å
and λp, respectively. The

resulting posteriors are shown in Figures 16 and 17, together
with their random counterparts. Clearly not knowing λp and λ

å

opens up a wide range of possibilities for Ψp and Ψ
å
, and our

posteriors for these obliquities are roughly similar to random
distributions; in particular, they all have modes near 90° as
there is simply more phase space there (it is for the same reason
that edge-on orbits are more commonplace than face-on orbits).
Nevertheless Figures 16 and 17 also reveal notable

differences between our posteriors and the random distribu-
tions. We may ask, given our data, how probable is it that the
true companion obliquity is misaligned rather than aligned? We
calculate a Bayesian odds ratio to answer this question,
defining “aligned” obliquities to be between 0 and 20 degrees,
and “misaligned” obliquities to be between 20 and 180 degrees.
The probability of misalignment given our measurements is
determined by integrating the posterior obliquity distribution
from 20–180 degrees, while the prior on a misaligned obliquity
is found by integrating the random obliquity distribution over

Figure 15. Top panel: posterior distribution of the line-of-sight companion

obliquity (blue), whose value is most probably -
+48 21
28 degrees (all intervals are

quoted at the 68% confidence interval). Middle panel: posterior distribution of

the line-of-sight stellar obliquity (purple), whose value is most probably -
+1 1
28

degrees. Bottom panel: posterior distribution of the relative inclination between

line-of-sight stellar and PMC spin axes (green), most probably equal to -
+44 16
32

degrees. In each panel, we show a random obliquity distribution for
comparison (black). Note that all of these line-of-sight mutual inclinations
are lower limits to the true de-projected mutual inclinations.

Table 2

Measured Parameters

Parameter Measured Value Ref

v isinp p -
+13.4 1.2
1.4 km s−1 This work

 v isin -
+18.2 0.4
0.5 km s−1 This work

P prot, -
+6.0 1.0
2.6 hrs Zhou et al. (2019)

Prot, 1.49±0.02 days This work

Astrometry see Table 1 This work; Bowler et al. (2013);

Bryan et al. (2016)

ip -
+

-
+33 or 1479

17
17
9 deg This work

i
å

 75 8 or 105 8 deg This work

io -
+103 6
16 deg This work

-i io p∣ ∣ -
+48 21
28 deg This work

- i io∣ ∣ -
+1 1
28 deg This work

-i ip∣ ∣ -
+44 16
32 deg This work

Note. The angles ip and i
å
are both symmetric about 90 degrees due to the fact

that we do not know whether these spin angular-momentum vectors are

pointing toward us or away from us. The angles presented here are all line-of-

sight inclinations. As described in Section 3.7, the line-of-sight obliquities

-i io p∣ ∣ and - i io∣ ∣ are lower limits on the true de-projected obliquities Ψp

and Ψ
å
.
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the same range of angles. Aligned probabilities are calculated
in the same fashion, replacing the integration ranges with 0–20
degrees. The odds ratio of misaligned-to-aligned true compa-
nion obliquities is 2.4:1; companion misalignment is preferred
at 1.1σ significance. The same clacultion for Ψ

å
yields an odds

ratio of 1:1.6; stellar alignment is preferred at 0.9σ significance.

4. Discussion: Possible Formation Histories

We assess possible origin scenarios for the 2M0122 system.
In Section 3.7, we presented evidence that the obliquity of the
companion 2M0122b is large and that the obliquity of the host
star 2M0122 is small. That evidence is, at present, marginal.
Nonetheless, to focus our discussion, we assume a large
companion obliquity and a small stellar obliquity and ask what
dynamical histories are compatible.

4.1. Physical Collision

Might 2M0122b have suffered a collision that knocked it on
its side, as has been speculated for Uranus (e.g., Kegerreis et al.
2018)? We think that scenario is unlikely. The escape velocity

from the surface of 2M0122b is

=
-

v GM R

M M R R

2

270 20 km s

esc,p p p

p J
1 2

J p
1 2 1( ) ( )

where Mp and Rp are the companion mass and radius,

respectively, and G is the gravitational constant. This is

considerably larger than the escape velocity from the star at the

orbital semimajor axis of 2M0122b,

=
-

 



v GM a

M M a

2

4 0.4 50 au km s

esc, p

1 2
p
1 2 1( ) ( ) 

where M
å
is the host stellar mass and ap is the orbital distance.

Since the ratio (a.k.a., the square root of the Safronov number)

~v v 70 1, 10esc,p esc, ( )

2M0122b is more likely to have ejected a neighboring body out of

the system than to have collided with it; i.e., unless the geometry

of the encounter were fine-tuned, any object interacting

gravitationally with 2M0122b would have its velocity excited to

> vesc, and be ejected before it could physically collide. (We note

in passing that v vesc,p esc, evaluates to 2 for Uranus.)

4.2. Secular Spin–Orbit Resonance Induced by a Perturber

A secular spin–orbit resonance is a commensurability
between the frequencies of the planet’s spin-axis precession
and its orbital precession, the latter of which may arise from
interactions with an as-yet-undetected planetary perturber.
Secular spin–orbit resonances can excite planetary obliquities
to large values during the system’s formation. These
resonances are common in the solar system. For instance,
Saturn’s 27° obliquity may be due to a secular spin–orbit
resonance with Neptune (Hamilton & Ward 2004; Ward &
Hamilton 2004). The obliquities of Jupiter (Ward &
Canup 2006) and possibly Uranus and Neptune (Rogoszinski
& Hamilton 2020) are also thought to be affected by this
mechanism. Moreover, all of the terrestrial planets likely
experienced chaotic obliquity variations in their past due to the
overlap of multiple secular spin–orbit resonances (Laskar &
Robutel 1993). Mars’ obliquity is still in a chaotic state for this
reason (Touma & Wisdom 1993).
Among extrasolar planets, secular spin–orbit resonances are

also thought to be common. Kepler multi-planet systems—
which are composed of short-period, compact, nearly coplanar
planets within P  100 days—are in a regime of parameter
space that makes them intrinsically susceptible to these
resonances, suggesting that they may frequently have large
obliquities (Millholland & Laughlin 2019). Secular spin–orbit
resonances have not yet been investigated for exoplanets with
semimajor axes as large as several tens of au. Here, we examine
whether this resonance is possible for 2M0122b.
We start by defining the frequencies of spin-axis precession

and orbital precession. The torque from the host star on the
rotationally flattened figure of 2M0122b causes the planet’s
spin axis to precess about its orbital angular-momentum vector.
The period of this precession is

p a= YaT 2 cos , 11p( ) ( )

where α is the spin-axis precession constant and Ψp is the

companion obliquity. In the absence of satellites orbiting

Figure 16. Normalized posterior distribution of the true de-projected PMC
obliquity Ψp (blue), compared with a random distribution (black). The data
marginally prefer companion obliquities that are more misaligned.

Figure 17. Normalized posterior distribution of the true de-projected stellar
obliquity Ψ

å
(purple), compared with a random distribution (black). The former

tentatively favor more aligned stellar obliquities as compared with the latter.
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2M0122b, α=α0 is given by (Neron de Surgy & Laskar 1997;

Correia et al. 2003)

a
w

=
-

M

M

R

a

k

C e

1

2 1
. 12

p

p p

p

p
0

3
2,

2 3 2

⎛

⎝
⎜

⎞

⎠
⎟

( )
( )

Here, k p2, is the planet’s Love number, a dimensionless value

related to the planet’s central concentration and its deformation

response to tidal disturbance. The quantity Cp is the planet’s

moment of inertia normalized by M Rp p
2. Finally, w p= P2p prot,

is the spin angular frequency.
If 2M0122b is accompanied by one or more satellites, its

spin-axis precession frequency may be enhanced as a result of
the adiabatic gravitational coupling between the satellite(s) and the
oblate planet (Goldreich 1965). We define fα=α/α0 as the
enhancement factor of the spin-axis precession frequency over
the satellite-free case. For a satellite having a mass ratio with
respect to the planet of = -m M 10s p

3 and occupying a circular
orbit at the greatest possible separation for adiabatic gravitational
coupling, ~a R 220s p , the maximum value of the frequency
enhancement is fα∼104 (Millholland & Batygin 2019, see their
Figure 2).

In addition to the spin-axis precession frequency, the other
relevant frequency for secular spin–orbit resonance is the orbit
nodal recession frequency. If there is another planet in the 2M0122
system, secular planet–planet interactions will drive nodal recession
with a frequency, = Wg ∣ ∣ , where Ω is the longitude of the
ascending node. This frequency may be calculated using Laplace–
Lagrange theory if the eccentricities and mutual inclination are
small. This is not adequate in our context given the preference for
high-eccentricity orbits shown in Section 3.5. We adopt the
hierarchical three-body secular approximation and use the octupole-
order expansion from Naoz et al. (2013). The equations of motion

for W may be found in their Appendix B, or alternatively, in Naoz
(2016), and it is suitable for both the interior perturber and exterior
perturber cases.

A secular spin–orbit resonance is an instance of a Cassini state,
an equilibrium configuration of the planet’s spin vector in a
uniformly precessing orbit frame (Colombo 1966; Peale 1969).
Up to four Cassini states may exist depending on the ratio of g/α;
Cassini state 2 is the most favorable for obtaining a large obliquity
with prograde rotation. Cassini states obey the equilibrium
relation

aY - - Y Y =g Isin cos sin 0 13p p p( ) ( )

where I is the orbital inclination with respect to the invariable

plane.
To determine the possibility of secular spin–orbit resonance

for 2M0122b, we apply a Monte Carlo procedure that explores
the allowable parameter space. We begin by sampling all
system parameters according to their observational constraints
or theoretical allowances. We sampled 2M0122b’s semimajor
axis, ab, and eccentricity, eb, from the posterior obtained in the
orbit fit from Section 3.5. The remainder of the parameters are
listed in Table 3. The parameter imut is the mutual orbital
inclination between 2M0122b and the perturber. For each
sample, we calculated the obliquity that 2M0122b would
require that criterion (13) is satisfied and be in Cassini state 2.
Finally, we discarded samples for which the calculated
obliquity was not in the observed range.

The results of this Monte Carlo investigation are shown in
Figure 18. In both panels, the plotted points are samples in ab—ac

space. We see that the perturber would need to be fairly distant

from 2M0122b, ac  10 au or ac  100 au. Simultaneously,

2M0122b must be orbited by a satellite that is large enough to

substantially enhance the spin-axis precession frequency. This can

Table 3

Parameters and Their Ranges Used for the Monte Carlo Investigation of
Secular Spin–Orbit Resonance

2M0122b parameters

Parameter Range

Mb (MJ) (12, 14), (23, 27)

Rb (RJ) (0.86, 1.22)

P prot, (hr) (5.0, 8.6)

k p2, (0.05, 0.6)

Cp (0.1, 0.3)

fα (1, 104)

ab (AU) MCMC from Section 3.5

eb MCMC from Section 3.5

Perturber parameters

Parameter Range

Mc (MJ) (0.1, 7)

ac (AU) (1, 400)

ec (0, 1)

imut (0°, 90°)

Figure 18. Results of the Monte Carlo investigation of a secular spin–orbit
resonance for 2M0122b. The plotted points are samples in ab—ac space for
which the planet obliquity satisfying Cassini state 2 was within the range
obtained from our measurements. Top panel:the colorbar is the mutual orbital
inclination, imut. Bottom panel:restricted to samples with imut<30°. The
colorbar indicates fα, the satellite-induced enhancement of α. The solid black
line in both panels is ab=ac, dividing the domain between interior and
exterior perturbers.
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be seen in the bottom panel with imut<30°, where the colorbar
indicates that the frequency enhancement must be fα∼104. These
restrictive requirements are due to 2M0122b’s distant orbit. The
semimajor axis is so large that the spin-axis precession period is
naturally very long (α very small). The resonant commensur-
ability g∼α is, thus, only possible through wide perturber
separations (which decreases g) and the presence of a satellite
(which increases α).

Given the extreme and fine-tuned nature of these parameter
constraints, it appears unlikely that a secular spin–orbit
resonance is the cause of 2M0122b’s obliquity excitation.

4.3. Kozai–Lidov Oscillations from an External Perturber

The Kozai–Lidov (KL) effect involves orbital inclination and
eccentricity oscillations driven by an external perturber. The
mechanism can also excite planetary obliquities. The orbital
inclination oscillations induced by the perturber will inevitably
produce large values of the planetary obliquity as long as the KL
oscillation period is shorter than the planet’s spin precession
period Tα (Equation (11)). Applying KL oscillations to the
2M0122 system could explain both the observed nonzero
obliquity and the high orbital eccentricity. This picture would
further predict that the stellar obliquity is large. It has been shown
that a planet undergoing KL oscillations may induce chaotic
variations in the stellar spin axis, with a vanishingly small
probability of observing the stellar spin aligned with the orbit
normal (e.g., Storch et al. 2014, their Figure 1, bottom panel).
While a large stellar obliquity is allowed by our data (Figure 17),
alignment is tentatively preferred at the 0.9σ level (Figure 15).

Perhaps the primary objection to this scenario is the obvious
one: the lack of an observed external perturber to 2M0122b.
Deep imaging of the system rules out a companion more
massive than 7 MJ between 30 and 200 au (Bryan et al. 2016).
This upper limit is constraining, as KL oscillations require an
external companion having more orbital angular momentum
than 2M0122b, which has a mass ∼12–27MJ and resides at an
orbital distance of ∼50 au.

4.4. “Twisting” the Orbit But Not the Spin

The Kozai–Lidov mechanism considered in Section 4.3 is
just one way in which an external torque can “twist” (change
the direction of) a planet’s orbital angular-momentum vector
(Tremaine 1991). For a twist of whatever cause to also change
the obliquity, it must occur quickly, on a timescale shorter than
the planet’s spin precession period Tα (Equation (11));
otherwise, for slow twists, the spin vector adiabatically tracks
the orbit normal, and the obliquity does not change.

The most favorable case for obliquity changes would seem
to be when 2M0122b’s spin precession is controlled only by
the host stellar torque; then ~aT 1011 yr, long enough that any
external agent acting within the 108 yr system age could
provide a fast enough twist. However, if we believe that the
stellar obliquity is small (and again, the evidence for this is
marginal), then we must select for those processes that do not
alter it from its presumed primordially small value. Continuing
to assume that 2M0122b is the only companion to the star, we
find the stellar spin–orbit coupling to be even weaker than the
companion spin–orbit coupling; the stellar spin axis precesses
about the orbit normal over ~a T 10,

12 yr. It would seem that
no twist can both excite the companion obliquity and preserve

the stellar obliquity while the 2M0122 system is in its current
configuration.
Tremaine (1991) arrived at an analogous conclusion for the

solar system. He argued that any twist scenario to explain the
obliquities of the outer planets while also keeping the solar
obliquity at its present modest (7°) value cannot be staged after
the solar system’s formation but must take place during it,
while infall from the parent molecular cloud and disk accretion
are still ongoing. The external torque that tilts a planet’s orbit
may be exerted by “inhomogeneities” in the cloud or disk;
these same “mass concentrations,” carrying anomalous angular
momentum, may ultimately be accreted by the proto-Sun and
help to re-align its spin axis with the disk axis. Re-alignment
would also be effected by gravitational forces between the disk
and young Sun, which, owing to its faster primordial spin,
would have a larger rotational bulge for stronger gravitational
coupling.
The large obliquity of 2M0122b also seems most easily

understood in the context of its formation within an accreting
circumstellar disk. This idea is supported by the considerations of
this subsection, and of preceding subsections Sections 4.1–4.3, all
of which point to difficulties in generating the large obliquity after
the companion’s formation, in a disk-less setting. We turn now to
what that formation environment might look like.

4.5. Formation Within a Gravito-turbulent Disk

Nielsen et al. (2019) found evidence that the demographics
of objects with masses >12MJ (“brown dwarfs”) are distinct
from those of less massive objects (“giant planets”). Specifi-
cally, brown dwarfs exhibit a top-heavy mass function, an
orbital distance distribution weighted toward large separations
(∼100 au), and no preference for host stellar spectral type—and
in particular, no preference for massive host stars. All of these
trends reverse for objects less massive than 12MJ. While their
study lacked the statistics to determine with confidence the
exact dividing mass between brown dwarfs and giant planets, it
appears increasingly clear that high-mass PMCs and low-mass
PMCs form differently. Nielsen et al. (2019) described how the
demographic trends exhibited by brown dwarfs are correctly
predicted by top-down formation by gravitational instability,
while those of giant planets are consistent with bottom-up
formation by core accretion (their Section 6.3; see also Wagner
et al. 2019).
On the face of it, with a mass >12MJ, an orbital separation

of ∼50 au, and a low-mass stellar host, the PMC 2M0122b
possesses all of the properties of a brown dwarf as defined and
characterized by Nielsen et al. (2019). We consider the
possibility that 2M0122b formed by gravitational instability
and ask whether such a scenario can accommodate large
companion obliquities.
The criteria for gravitational collapse (a Toomre Q parameter

2, and a disk cooling time shorter than the orbital time;
(Gammie 2001)) are typically satisfied at large stellocentric
distances in young disks still being fed by their natal clouds
(Kratter & Lodato 2016). These are dynamically active
environments; in addition to continued infall, overdensities in
the disk spontaneously form and shear away. Fluid random
motions in “gravito-turbulent” disks are vigorous—they are
trans-sonic when cooling times approach orbital times, and
fully three-dimensional. See Figure 7 and, in particular, Figure
9 of Shi & Chiang (2014), which shows a meridional flow
where gas that is compressed radially from self-gravity is
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directed vertically out of the midplane and accelerated
back down.

An overdensity that cools fast enough to break off from the
background turbulence and become self-bound—the clump
that in this scenario eventually becomes 2M0122b—will be
gravitationally torqued by surrounding overdensities, both
unbound and bound. Overdensities off the disk midplane may
not only twist a bound clump’s orbit (Section 4.4) but may also
directly change the clump’s spin vector by gravitationally
coupling to its rotational bulge. That bulge may take the form
of a fully rotationally supported, “circumplanetary disk” (CPD)
on the scale of the proto-brown dwarf’s Hill or Bondi radius.
The CPD may “wobble” in response to stochastic gravitational
forcing. Direct accretion of gas from the circumstellar disk onto
the proto-brown dwarf will also change its obliquity, as the
gravito-turbulent gas will arrive onto the clump from a variety
of angles—probably mostly from out-of-midplane directions
(e.g., Fung et al. 2019).

Disk overdensities, including flocculent spiral arms that come
and go, are also expected to gravitationally perturb the nascent
PMC onto an eccentric orbit. This is qualitatively consistent with
the observational evidence presented in Section 3.5 for 2M0122b
having a large orbital eccentricity. The eccentricity may also grow
via interactions between the PMC and disk at the outer 1:3
Lindblad resonance, a mechanism shown to apply only to objects
 5–20MJ orbiting Sun-like stars (Papaloizou et al. 2001; Kley &
Dirksen 2006; Bitsch et al. 2013; Dunhill et al. 2013).

The overall picture is of the young 2M0122b immersed in a
fully 3D disk filled with strong density fluctuations that
randomly force its obliquity. The star’s obliquity is presumably
maintained at a primordially small value, as the disk in the
vicinity of the star has a scale height smaller than the stellar
radius and, therefore, behaves as a 2D sheet; any misalignment
between the disk and the stellar rotational bulge would be
zeroed out by their mutual gravity.

This picture needs to be fleshed out quantitatively. In
addition to exerting stochastic gravitational torques on the
CPD, the circumstellar disk also exerts a mean gravitational
torque. The mean torque may bring the CPD into alignment
with itself and zero out the companion obliquity, although
interestingly, there is another possibility: if the CPD is
sufficiently inclined to the circumstellar disk, the inclination
(obliquity) may be driven to Kozai’s critical angle of 39° (e.g.,
Martin et al. 2014). Magnetic fields generated within 2M0122b
may also play a role. A case has been made that magnetic
coupling of a PMC’s magnetosphere to its CPD is essential for
explaining the spin periods of both brown dwarfs and giant
planets, observed to be 5%–20% of break-up (Bryan et al.
2018; Batygin 2018; Ginzburg & Chiang 2020). The spin
period of 2M0122b falls squarely in this range and presumably
reflects the same magnetospheric regulation. Again, to explain
a large obliquity, the CPD would have to be tilted out of the
circumstellar disk plane.

5. Conclusions

In this study, we constrained, for the first time, all three
angular-momentum vectors in a substellar system. The host
star, 2M0122, has a mass of 0.4Me and hosts a directly imaged
12–27MJ companion at 50 au. We measured how the stellar
spin angular-momentum vector, the companion spin angular-
momentum vector, and the orbital angular-momentum vector
are inclined relative to the sky plane (Figure 1). Underlying

these measurements are five direct observables: projected
rotation rates (v sin i) for both companion and star, rotation
periods (Prot) for both companion and star, and the astrometric
orbit of the companion.
The projected rotation speeds for the star and companion

were obtained from near-infrared high-resolution NIRSPEC/
Keck spectra. To the published photometric rotation period for
the companion 2M0122b measured using HST (Zhou et al.
2019), we added the photometric rotation period for the star
using TESS. We found that while the stellar spin axis is nearly
perpendicular to our line of sight— = i 75 8 degrees—the

companion spin axis is decidedly not: = -
+i 33p 9
17 degrees. Note

that the posterior probability distributions for ip and i
å
are

symmetric about 90 degrees (Figures 13 and 14).
We fitted nine epochs of astrometry, including one new

epoch from NIRC2/Keck that doubled the astrometric base-

line. The orbital inclination io relative to the sky plane is -
+103 6
16

degrees (Figure 10): we are viewing the orbit nearly edge on.
From the posterior probability distributions of io, ip, and i

å
, we

computed posteriors for -i ip o∣ ∣ and -i io∣ ∣. These “line-of-
sight obliquities” for companion and star are lower limits on the
true de-projected obliquities Ψp and Ψ

å
. We found that while the

line-of-sight stellar obliquity is small, - = -
+

i i 1o 1
28∣ ∣ degrees,

the line-of-sight companion obliquity is large, - = -
+i i 48p o 21
28∣ ∣

degrees. Moreover, these preferences for a small lower bound on
the stellar obliquity and a large lower bound on the companion
obliquity are each stronger than for a random distribution of spin
and orbit vectors (Figure 15).
We also computed posteriors for the true 3D obliquities Ψp

and Ψ
å
by assuming a uniform prior on the unknown spin–orbit

angle λ (the node of the spin equatorial plane on the orbit
plane). Although these posteriors admit a wide range of values,
they still deviate from a purely random distribution in
suggestive ways: compared to a (data-free) distribution that is
uniform in cos Ψ, our posteriors tentatively favor spin–orbit
alignment for the star at the 0.9σ level and spin–orbit
misalignment for the companion at the 1.1σ level.
For the parameters of the 2M0122 system, a large companion

obliquity and a small stellar obliquity are perhaps most readily
understood if the companion formed by disk gravitational
instability. Other possibilities for explaining such obliquities—
collisions, secular spin–orbit resonance, and Kozai–Lidov oscilla-
tions—are disfavored. In a 3D gravito-turbulent circumstellar
disk, fragments that break off and become self-bound should have
a wide dispersion of spin vectors, reflecting the strongly turbulent
velocity field from which they were drawn and interact, either by
accretion or stochastic gravitational forcing. Note that formation
of 2M0122b by gravitational instability is favored on independent
grounds, as this PMC shares the same properties of brown dwarfs
as measured by Nielsen et al. (2019), who explained how brown
dwarf demographics could be reproduced by top-down gravita-
tional collapse. Because these multiple lines of evidence point to
formation via gravitational instability, we believe 2M0122b is
more appropriately classified a “brown dwarf” rather than a
“planet.” Future theoretical work should examine the evolution of
fragment spins, including the orientation of rotationally supported
“circumplanetary disks,” and their magnetic regulation, within
self-gravitating circumstellar disks.
This work presents the first constraints on a PMC obliquity

outside the solar system. As a new observable, obliquity
presents an exciting and unique window into formation history.
The limitation of our study imposed by sky projection (i.e., our
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ignorance of the spin–orbit node λ) should be removed as more
system obliquities are measured—this will enable much more
constraining statistical studies.
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