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Modeling and Analysis of Leaky Deception using
Signaling Games with Evidence

Jeffrey Pawlick, Edward Colbert, and Quanyan Zhu

Abstract—Deception plays critical roles in economics and
technology, especially in emerging interactions in cyberspace.
Holistic models of deception are needed in order to analyze
interactions and to design mechanisms that improve them. Game
theory provides such models. In particular, existing work models
deception using signaling games. But signaling games inherently
model deception that is undetectable. In this paper, we extend
signaling games by including a detector that gives off probabilistic
warnings when the sender acts deceptively. Then we derive
pooling and partially-separating equilibria of the game. We find
that 1) high-quality detectors eliminate some pure-strategy equi-
libria, 2) detectors with high true-positive rates encourage more
honest signaling than detectors with low false-positive rates, 3)
receivers obtain optimal outcomes for equal-error-rate detectors,
and 4) surprisingly, deceptive senders sometimes benefit from
highly accurate deception detectors. We illustrate these results
with an application to defensive deception for network security.
Our results provide a quantitative and rigorous analysis of the
fundamental aspects of detectable deception.

Index Terms—Deception, game theory, signaling game, trust
management, strategic communication

I. INTRODUCTION

Deception is a fundamental facet of interactions ranging
from biology [5] to criminology [27] and from economics
[8] to the Internet of Things (IoT) [23]. Cyberspace creates
particular opportunities for deception, since information lacks
permanence, imputing responsibility is difficult [12], and some
agents lack repeated interactions [18]. For instance, online
interactions are vulnerable to identify theft and spear phishing,
and authentication in the IoT suffers from a lack of infrastruc-
ture and local computational resources [1].

Defenders also implement deception. Traditional security
approaches such as firewalls and role-based access control
(RBAC) have proved insufficient against insider attacks and
advanced persistent threats (APTs). Hence, defenders in the
security and privacy domains have proposed, e.g., honeynets
[3], moving target defense [30], and mix networks [29]. Using
these techniques, defenders can obscure valuable information
such as personally identifiable information or the configuration
of a network. They can also send false information to attackers
in order to waste their resources or attract them away from
critical assets. Both malicious and defensive deception have
innumerable implications for cybersecurity.

A. Quantifying Deception using Signaling Games

Modeling deceptive interactions online and in the IoT would
allow government policymakers, technological entrepreneurs,
and vendors of cyber-insurance to predict changes in these

interactions due to legislation, new technology, or risk mitiga-
tion. While deception is studied in each of these domains indi-
vidually, a general, quantitative, and systematic understanding
of deception seems to be lacking.

What commonalities underlie all forms of deception? De-
ception is 1) information asymmetric, 2) dynamic, and 3)
strategic. In deceptive interactions, one party (hereafter, the
sender) possesses private information unknown to the other
party (hereafter, the receiver). Based on her private informa-
tion, the sender communicates a possibly-untruthful message
to the receiver. Then the receiver forms a belief about the
private information of the sender, and chooses an action. The
players act strategically, in the sense that they each seek a
result that corresponds to their individual incentives.

Non-cooperative game theory provides a set of tools to
study interactions between multiple, strategic agents. In the
equilibrium of a game, agents adapt their strategies to counter
the strategies of the other agents. This rationality models the
sophisticated behavior characteristic of deception. In partic-
ular, cheap-talk signaling games [6] model interactions that
are strategic, dynamic, and information-asymmetric. In cheap-
talk signaling games, a sender S with private information
communicates a message to a receiver R, who acts upon
it. Then both players receive utility based on the private
information of S and the action of R. Recently, signaling games
have been used to model deceptive interactions in resource
allocation [31], network defense [3], [22], and cyber-physical
systems [21].

B. Cost and Detection in Signaling Games

The phrase cheap talk signifies that the utility of both
players is independent of the message that S communicates
to R. In cheap-talk signaling games, therefore, there is no
cost or risk of lying per se. Truth-telling sometimes emerges
in equilibrium, but not through the penalization or detection
of lying. We can say that cheap-talk signaling games model
deception that is undetectable and costless.

In economics literature, Navin Kartik has proposed a sig-
naling game model that rejects the second of these two
assumptions [14]. In Kartik’s model, S pays an explicit cost to
send a message that does not truthfully represent her private
information. This cost could represent the effort required,
e.g., to obfuscate data, to suppress a revealing signal, or
to fabricate misleading data. In equilibrium, the degree of
deception depends on the lying cost. Contrary to cheap-talk
games, Kartik’s model studies deception that has a cost. Yet
the deception is still undetectable.
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In many scenarios, however, deception can be detected
with some probability. Consider the issue of so-called fake
news in social media. Fake news stories about the 2016 U.S.
Presidential Election reportedly received more engagement
on Facebook than news from real media outlets [25]. In the
wake of the election, Facebook announced its own program to
detect fake news and alert users about suspicious articles. As
another example, consider deceptive product reviews in online
marketplaces. Linguistic analysis has been used to detect this
deceptive opinion spam [20]. Finally, consider deployment of
honeypots as a technology for defensive deception. Attackers
have developed tools that detect the virtual machines often
used to host honeypots.

Therefore, we propose a model of signaling games in
which a detector emits probabilistic evidence of deception.
The detector can be interpreted in two equally valid ways.
It can be understood as a technology that R uses to detect
deception, such as a phishing detector in an email client.
Alternatively, it can be understood as the inherent tendency
of S to emit cues to deception when she misrepresents her
private information. For instance, in interpersonal deception,
lying is cognitively demanding, and sometimes liars give off
cues from these cognitive processes [27]. R uses the evidence
from the detector to form a belief about whether S’s message
honestly conveys her private information.

Naturally, several questions arise. What is the equilibrium
of the game? How, if at all, is the equilibrium different than
that of a traditional cheap-talk signaling game? Is detection
always harmful for the sender? Finally, how does the design
of the detector affect the equilibrium? Our paper addresses
each of these questions.

C. Contributions

We present the following contributions:
1) We describe a model for deception based on cheap-talk

signaling games with a probabilistic deception detector.
2) We find all pure-strategy equilibria of the game, and we

derive mixed-strategy equilibria in regimes that do not
support pure-strategy equilibria.

3) We prove that detectors that prioritize high true-positive
rates encourage more honest equilibrium behavior than
detectors that prioritize low false-positive rates.

4) Numerical results suggest that the sender (deceptive
agent) benefits from an accurate detector in some pa-
rameter regimes. The receiver (agent being deceived)
benefits from an accurate detector, and preferably one
with an equal error rate.

5) We apply our analytical results to a case study in
defensive deception for network security.

D. Related Work

Signaling games with evidence are related to hypothesis
testing, inspection games, and trust management. Hypothesis
testing evaluates the truthfulness of claims based on probabilis-
tic evidence [15]. Inspection games embed a hypothesis testing
problem inside of a two-player game [2]. An inspector designs
an inspection technique in order to motivate an inspectee to

follow a rule or regulation. The inspector chooses a probability
with which to execute an inspection, and chooses whether to
trust the inspectee based on the result. Our work adds the
concept of signaling to the framework of inspection games.
Finally, our model of deception can be seen as a dual to
models for trust management [18], which quantify technical
and behavioral influences on the transparency and reliability
of agents in distributed systems.

Economics literature includes several classic contributions
to signaling games. Crawford and Sobel’s seminal paper is the
foundation of cheap-talk signaling games [6]. In this paper, a
sender can just as easily misrepresent her private information
as truthfully represent it. From the opposite vantage point,
models from Milgrom [17], Grossman [9], and Grossman
and Heart [10] study games of verifiable disclosure. In these
models, a sender can choose to remain silent or to disclose
information. But if the sender chooses to disclose information,
then she must do so truthfully.

One way of unifying cheap-talk games and games of verifi-
able disclosure is to assign an explicit cost to misrepresenting
the truth. This idea is due to Kartik [14]. Cheap-talk games
are a special case of this model in which the cost of lying
zero, and games of verifiable disclosure are a special case
in which the cost is infinite. Our model also bridges cheap-
talk games and games of verifiable disclosure. But we do this
using detection rather than lying cost. Cheap-talk games are a
special case in which the detector gives alarms randomly, and
games of verifiable disclosure are a special case in which the
detector is perfect.

The rest of the paper proceeds as follows. Section II de-
scribes our model and equilibrium concept. In Section III, we
find pure-strategy and mixed-strategy equilibria. Then Section
IV evaluates the sensitivity of the equilibria to changes in
detector characteristics. Section V describes the application.
Finally, we discuss the implications of our results in Section
VI.

II. MODEL

Signaling games are two-player games between a sender
(S) and a receiver (R). These games are information asymmet-
ric, because S possesses information that is unknown to R.
They are also dynamic, because the players’ actions are not
simultaneous. S transmits a message to R, and then R acts
upon the message. Generally, signaling games can be non-
zero-sum, which means that the objectives of S and R are not
direct negations of each other’s objectives. Figure 1 depicts
the traditional signaling game between S and R, augmented
by a detector block. We call this augmented signaling game a
signaling game with evidence.

A. Types, Messages, Evidence, Actions, and Beliefs

We consider binary information and action spaces in order
to simplify analysis1. Table I summarizes the notation. Let
θ ∈Θ = {0,1} denote the private information of S. Signaling

1Future work can consider continuous spaces for each quantity, perhaps
building upon the continuous space model due to Crawford and Sobel [6].
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R: 𝜎𝑅 𝑎 𝑚, 𝑒 )S: 𝜎𝑆 𝑚 𝜃)

𝜆 𝑒 𝜃,𝑚)

type 𝜃 message 𝑚 action 𝑎

∈ {0,1} ∈ {0,1} ∈ {0,1}

evidence 𝑒

∈ {0,1}

Figure 1. Signaling games with evidence add the red detector block to the S
and R blocks. The probability λ (e |θ ,m) of emitting evidence e depends on
S’s type θ and the message m that she transmits.

Table I
SUMMARY OF NOTATION

Notation Meaning
S, R Sender and Receiver

θ ∈Θ, m ∈M, a ∈ A Types, Messages, Actions
uX (θ ,m,a) Utility Functions of Player X ∈ {S,R}

p(θ) Prior Probability of θ

σS (m |θ) Mixed Strategy of S of Type θ

λ (e |θ ,m) Probability of e for Type θ & Message m
σR (a |m,e) Mixed Strategy of R given m, e
µR (θ |m,e) Belief of R that S is of Type θ

ūS (σS,σR |θ
)

Expected Utility for S of Type θ

ūR (σR |θ ,m,e
)

Expected Utility for R given θ , m, e
α ∈ [0,1] “Size” of Detector (False Positive Rate)
β ∈[α,1] “Power” of Detector (True Positive Rate)

games refer to θ as a type. The type could represent e.g.,
whether the sender is a malicious or benign actor, whether she
has one set of preferences over another, or whether a given
event observable to S but not to R has occurred. The type is
drawn2 from a probability distribution p, where ∑θ∈Θ p(θ) =
1 and ∀θ ∈Θ, p(θ)≥ 0.

Based on θ , S chooses a message m∈M = {0,1} . She may
use mixed strategies, i.e., she may select each m with some
probability. Let σS ∈ ΓS denote the strategy of S, such that
σS(m |θ) gives the probability with which S sends message m
given that she is of type θ . The space of strategies satisfies

Γ
S =

{
σ

S |∀θ , ∑
m∈M

σ
S (m |θ) = 1; ∀θ ,m, σ

S (m |θ)≥ 0
}
.

Since Θ and M are identical, a natural interpretation of an
honest message is m = θ , while a deceptive message is
represented by m 6= θ .

Next, the detector emits evidence based on whether the mes-
sage m is equal to the type θ . The detector emits e∈E = {0,1}
by the probability λ (e |θ ,m) . Let e = 1 denote an alarm and
e = 0 no alarm. The probability with which a detector records
a true positive is called the power β ∈ [0,1] of the detector.
For simplicity, we set both true-positive rates to be equal:
β = λ (1 |0,1) = λ (1 |1,0). Similarly, let α denote the size of
the detector, which refers to the false-positive rate. We have
α = λ (1 |0,0) = λ (1 |1,1). A valid detector has β ≥ α. This
is without loss of generality, because otherwise α and β can
be relabeled.

After receiving both m and e, R chooses an action a ∈ A =
{0,1} . R may also use mixed strategies. Let σR ∈ ΓR denote

2Harsanyi conceptualized type selection as a randomized move by a non-
strategic player called nature (in order to map an incomplete information game
to one of complete information) [11].

the strategy of R such that his mixed-strategy probability
of playing action a given message m and evidence e is
σR(a |m,e). The space of strategies is ΓR ={

σ
R |∀m,e, ∑

a∈A
σ

R (a |m,e) = 1; ∀e,m,a, σ
R (a |m,e)≥ 0

}
.

Based on m and e, R forms a belief3 about the type θ of S.
For all θ , m, and e, define µR : Θ→ [0,1] such that µR(θ |m,e)
gives the likelihood with which R believes that S is of type θ

given message m and evidence e. R uses belief µR to decide
which action to chose.

B. Utility Functions

Let uS : Θ×M×A→R denote a utility function for S such
that uS (θ ,m,a) gives the utility that she receives when her type
is θ , she sends message m, and R plays action a. Similarly, let
uR : Θ×M×A denote R’s utility function so that uR (θ ,m,a)
gives his payoff under the same scenario.

Only a few assumptions are necessary to characterize a
deceptive interaction. Assumption 1 is that uS and uR do not
depend (exogenously) on m, i.e., the interaction is a cheap-talk
game. Assumptions 2-3 state that R receives higher utility if
he correctly chooses a= θ than if he chooses a 6= θ . Formally,

uR (0,m,0)> uR (0,m,1) , uR (1,m,0)< uR (1,m,1) .

Finally, Assumptions 4-5 state that S receives higher utility if
R chooses a 6= θ than if he chooses a = θ . That is,

uS (0,m,0)< uS (0,m,1) , uS (1,m,0)> uS (1,m,1) .

Together, Assumptions 1-5 characterize a cheap-talk signaling
game with evidence.

Define an expected utility function ūS : ΓS×ΓR→ R such
that ūS

(
σS,σR |θ

)
gives the expected utility to S when she

plays strategy σS, given that she is of type θ . This expected
utility is given by

ūS (
σ

S,σR |θ
)
= ∑

a∈A
∑
e∈E

∑
m∈M

σ
R (a |m,e)λ (e |θ ,m)σ

S (m |θ)uS (θ ,m,a) .

Next define ūR : ΓR → R such that ūR(σR |θ ,m,e) gives the
expected utility to R when he plays strategy σR given message
m, evidence e, and sender type θ . The expected utility function
is given by

ūR(σR |θ ,m,e) = ∑
a∈A

σ
R (a |m,e)uR (θ ,m,a) .

C. Equilibrium Concept

In two-player games, Nash equilibrium defines a strategy
profile in which each player best responds to the optimal strate-
gies of the other player [19]. Signaling games motivate the
extension of Nash equilibrium in two ways. First, information
asymmetry requires R to maximize his expected utility over

3The Stanford Encyclopedia of Philosophy lists among several definitions
of deception: “to intentionally cause to have a false belief that is known and
believed to be false” [16]. This suggests that belief formation is an important
aspect of deception.
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the possible types of S. An equilibrium in which S and R
best respond to each other’s strategies given some belief µR

is called a Bayesian Nash equilibrium [11]. We also require
R to update µR rationally. Perfect Bayesian Nash equilibrium
(PBNE) captures this constraint. Definition 1 applies PBNE to
our game.

Definition 1. (Perfect Bayesian Nash Equilibrium [7]) A
PBNE of a cheap-talk signaling game with evidence is a
strategy profile (σS∗,σR∗) and posterior beliefs µR(θ |m,e)
such that

∀θ ∈Θ, σ
S∗ ∈ argmax

σS∈ΓS
ūS (

σ
S,σR∗ |θ

)
, (1)

∀m ∈M, ∀e ∈ E,

σ
R∗ ∈ argmax

σR∈ΓR
∑

θ∈Θ

µ
R (θ |m,e) ūR(σR |θ ,m,e), (2)

and if ∑
θ̃∈Θ

λ (e | θ̃ ,m)σS(m | θ̃)p(θ̃)> 0, then

µ
R (θ |m,e) =

λ (e |θ ,m)µR (θ |m)

∑
θ̃∈Θ

λ
(
e | θ̃ ,m

)
µR
(
θ̃ |m

) , (3)

where

µ
R (θ |m) =

σS (m |θ) p(θ)

∑

θ̂∈Θ

σS
(
m | θ̂

)
p
(
θ̂
) . (4)

If ∑
θ̃∈Θ

λ (e | θ̃ ,m)σS(m | θ̃)p(θ̃) = 0, then µR (θ |m,e) may be

set to any probability distribution over Θ.

Equations (3)-(4) require the belief to be set according to
Bayes’ Law. First, R updates her belief according to m using
Eq. (4). Then R updates her belief according to e using Eq. (3).
This step is not present in the traditional definition of PBNE
for signaling games.

There are three categories of PBNE: separating, pooling,
and partially-separating equilibria. These are defined based on
the strategy of S. In separating PBNE, the two types of S trans-
mit opposite messages. This allows R to infer S’s type with cer-
tainty. In pooling PBNE, both types of S send messages with
identical probabilities. That is, ∀m ∈M, σS(m |0) = σS(m |1).
This makes m useless to R. R updates his belief based only
on the evidence e. Equations (3)-(4) yield

µ
R (θ |m,e) =

λ (e |θ ,m) p(θ)

∑
θ̃∈Θ

λ
(
e | θ̃ ,m

)
p
(
θ̃
) . (5)

In partially-separating PBNE, the two types of S transmit
messages with different, but not completely opposite, proba-
bilities. In other words, ∀m ∈ M, σS(m |0) 6= σS(m |1), and
σS(m |0) 6= 1−σS(m |1). Equations (3)-(4) allow R to update
his belief, but the belief remains uncertain.

III. EQUILIBRIUM RESULTS

In this section, we find the PBNE of the cheap-talk signaling
game with evidence. We present the analysis in four steps.
In Subsection III-A, we solve the optimality condition for R,
which determines the structure of the results. In Subsection

III-B, we solve the optimality condition for S, which deter-
mines the equilibrium beliefs µR. We present the pooling
equilibria of the game in Subsection III-C. Some parame-
ter regimes do not admit any pooling equilibria. For those
regimes, we derive partially-separating equilibria in Subsection
III-D.

First, Lemma 1 notes that one class of equilibria is not
supported.

Lemma 1. Under Assumptions 1-5, the game admits no
separating PBNE.

The proof is straightforward, so we omit it here. Lemma 1
results from the opposing utility functions of S and R. S wants
to deceive R, and R wants to correctly guess the type. It is not
incentive-compatible for S to fully reveal the type by choosing
a separating strategy.

A. Prior Probability Regimes

Next, we look for pooling PBNE. Consider R’s optimal
strategies σR∗ in this equilibrium class. Note that if the sender
uses a pooling strategy on message m (i.e., if S with both
θ = 0 and θ = 1 send message m), then σR∗(1 |m,e) gives
R’s optimal action a after observing evidence e. Messages do
not reveal anything about the type θ , and R updates his belief
using Eq. (5). For brevity, define the following notations:

∆
R
0 , uR (θ = 0,m,a = 0)−uR (θ = 0,m,a = 1) , (6)

∆
R
1 , uR (θ = 1,m,a = 1)−uR (θ = 1,m,a = 0) . (7)

∆R
0 gives the benefit to R for correctly guessing the type when

θ = 0, and ∆R
1 gives the benefit to R for correctly guessing

the type when θ = 1. Since the game is a cheap-talk game,
these benefits are independent of m. Lemmas 2-3 solve for
σR∗ within five regimes of the prior probability p(θ) of each
type θ ∈ {0,1}. Recall that p(θ) represents R’s belief that S
has type θ before R observes m or e.

Lemma 2. For pooling PBNE, R’s optimal actions σR∗ for
evidence e and messages m on the equilibrium path4 vary
within five regimes of p(θ). The top half of Fig. 2 lists the
boundaries of these regimes for detectors in which β < 1−α,
and the bottom half of Fig. 2 lists the boundaries of these
regimes for detectors in which β > 1−α.

Proof: See Appendix A.

Remark 1. Boundaries of the equilibrium regimes differ de-
pending on the relationship between β and 1 − α. β is
the true-positive rate and 1− α is the true-negative rate.
Let us call detectors with β < 1−α conservative detectors,
detectors with β > 1−α aggressive detectors, and detectors
with β = 1−α equal-error-rate (EER) detectors. Aggressive
detectors have high true-positive rates but also high false-
positive rates. Conservative detectors have low false-positive

4In pooling PBNE, the message “on the equilibrium path” is the one that
is sent by both types of S. Messages “off the equilibrium path” are never
sent in equilibrium, although determining the actions that R would play if S
were to transmit a message off the path is necessary in order to determine
the existence of equilibria.
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𝑝(1) = 0 𝑝(1) = 1

(1 − 𝛽)Δ0
𝑅

1 − 𝛽 Δ0
𝑅 + 1 − 𝛼 Δ1

𝑅

𝛼Δ0
𝑅

𝛼Δ0
𝑅 + 𝛽Δ1

𝑅

𝛽Δ0
𝑅

𝛽Δ0
𝑅 + 𝛼Δ1

𝑅

(1 − 𝛼)Δ0
𝑅

1 − 𝛼 Δ0
𝑅 + 1 − 𝛽 Δ1

𝑅

Zero-Dominant Zero-Heavy Middle One-Heavy One-Dominant

𝛼Δ0
𝑅

𝛼Δ0
𝑅 + 𝛽Δ1

𝑅

(1 − 𝛽)Δ0
𝑅

(1 − 𝛽)Δ0
𝑅 + 1 − 𝛼 Δ1

𝑅

(1 − 𝛼)Δ0
𝑅

(1 − 𝛼)Δ0
𝑅 + (1 − 𝛽)Δ1

𝑅

𝛽Δ0
𝑅

𝛽Δ0
𝑅 + 𝛼Δ1

𝑅

𝛽 < 1 − 𝛼
(Conservative)

𝛽 > 1 − 𝛼
(Aggressive)

Figure 2. PBNE differ within five prior probability regimes. In the Zero-Dominant regime, p(θ = 1)≈ 0, i.e., type 0 dominates. In the Zero-Heavy regime,
p(θ = 1) is slightly higher, but still low. In the Middle regime, the types are mixed almost evenly. The One-Heavy regime has a higher p(θ = 1), and the
One-Dominant regime has p(θ = 1)≈ 1. The definitions of the regime boundaries depend on whether the detector is conservative or aggressive.

Table II
σR∗(1 |m,e) IN POOLING PBNE WITH β < 1−α

σR∗(1 |0,0) σR∗(1 |0,1) σR∗(1 |1,0) σR∗(1 |1,1)
0-D 0 0 0 0
0-H 0 1 0 0

Middle 0 1 1 0
1-H 1 1 1 0
1-D 1 1 1 1

Table III
σR∗(1 |m,e) IN POOLING PBNE WITH β > 1−α

σR∗(1 |0,0) σR∗(1 |0,1) σR∗(1 |1,0) σR∗(1 |1,1)
0-D 0 0 0 0
0-H 0 0 1 0

Middle 0 1 1 0
1-H 0 1 1 1
1-D 1 1 1 1

rates but also low true-positive rates. Equal-error-rate detectors
have an equal rate of false-positives and false-negatives.

Remark 2. The regimes in Fig. 2 shift towards the right as ∆R
0

increases. Intuitively, a higher p(1) is necessary to balance out
the benefit to R for correctly identifying a type θ = 0 as ∆R

0
increases. The regimes shift towards the left as ∆R

1 increases
for the opposite reason.

Lemma 3 gives the optimal strategies of R in response to
pooling behavior within each of the five parameter regimes.

Lemma 3. For each regime, σR∗ on the equilibrium path is
listed in Table II if β < 1−α and in Table III if β > 1−α.
The row labels correspond to the Zero-Dominant (O-D), Zero-
Heavy (0-H), Middle, One-Heavy (1-H), and One-Dominant
(1-D) regimes.

Proof: See Appendix A.

Remark 3. In the Zero-Dominant and One-Dominant regimes
of all detector classes, R determines σR∗ based only on the
overwhelming prior probability of one type over the other5.
In the Zero-Dominant regime, R chooses σR∗(1 |m,e) = 0 for

5For instance, consider an application to product reviews in an online
marketplace. A product may be low (θ = 0) or high (θ = 1) quality. A review
may describe the product as poor (m = 0) or as good (m = 1). Based on the
wording of the review, R may be suspicious (e = 1) that the review is fake,
or he may not be suspicious (e = 0). He can then buy (a = 1) or to not buy
(a = 0) the product. According to Remark 3, if R has a strong prior belief that
the product is high quality (p(1)≈ 1), then he will ignore both the review m
and the evidence e, and he will always buy the product (a = 1).

all m and e, and in the One-Dominant regime, R chooses
σR∗(1 |m,e) = 1 for all m and e.
Remark 4. In the Middle regime of both detector classes, R
chooses6 σR∗(1 |m,0) = m and σR∗(1 |m,1) = 1−m. In other
words, R believes the message of S if e = 0 and does not
believe the message of S if e = 1.

B. Optimality Condition for S

Next, we must check to see whether each possible pooling
strategy is optimal for S. This depends on what R would do if
S were to deviate and send a message off the equilibrium path.
R’s action in that case depends on his beliefs for messages off
the path. In PBNE, these beliefs can be set arbitrarily. The
challenge is to see whether beliefs µR exist such that each
pooling strategy is optimal for both types of S. Lemmas 4-5
give conditions under which such beliefs exist.

Lemma 4. Let m be the message on the equilibrium path. If
σR∗(1 |m,0) = σR∗(1 |m,1), then there exists a µR such that
pooling on message m is optimal for both types of S. For
brevity, let a∗ , σR∗(1 |m,0) = σR∗(1 |m,1). Then µR is given
by,

∀e ∈ E, µ
R (θ = a∗ |1−m,e)≥

∆R
1−a∗

∆R
1−a∗ +∆R

a∗
.

Lemma 5. If σR∗(1 |m,0) = 1−σR∗(1 |m,1) and β 6= 1−α,
then there does not exist a µR such that pooling on message
m is optimal for both types of S.

Proof: See Appendix B for the proofs of Lemmas 4-5.
The implications of these lemmas can be seen in the pooling

PBNE results that are presented next.

C. Pooling PBNE

Theorem 1 gives the pooling PBNE of the game.

Theorem 1. (Pooling PBNE) The pooling PBNE are summa-
rized by Fig. 3.

Proof: The theorem results from combining Lemmas 2-5,
which give the equilibrium σS∗, σR∗, and µR.

Remark 5. For β < 1− α, the Zero-Heavy regime admits
only a pooling PBNE on m = 1, and the One-Heavy regime

6For the same application to online marketplaces as in Footnote 5, if R
does not have a strong prior belief about the quality of the product (e.g.,
p(1)≈ 0.5), then he will trust the review (play a = m) if e = 0, and he will
not trust the review (he will play a = 1−m) if e = 1.
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𝑝(1) = 0 𝑝(1) = 1

Zero-Dominant Zero-Heavy Middle One-Heavy One-Dominant

𝛽 < 1 − 𝛼
(Conservative)

𝛽 > 1 − 𝛼
(Aggressive)

S Pool on 0  R Plays 0
S Pool on 1  R Plays 0

S Pool on 0  R Plays 0
S Pool on 1  R Plays 0

S Pool on 0  R Plays 1
S Pool on 1  R Plays 1

S Pool on 0  R Plays 1
S Pool on 1  R Plays 1

–
S Pool on 1  R Plays 0

S Pool on 0  R Plays 0
–

–
–

–
–

S Pool on 0  R Plays 1
–

–
S Pool on 1  R Plays 1

Figure 3. PBNE in each of the parameter regimes defined in Fig. 2. For m ∈ {0,1}, “S Pool on m” signifies σS∗(m |0) = σS∗(m |1) = 1. For a ∈ {0,1}, “R
Plays a” signifies σR∗(a |0,0) = σR∗(a |0,1) = σR∗(a |1,0) = σR∗(a |1,1) = 1. Lemma 4 gives µR. The Dominant regimes support pooling PBNE on both
messages. The Heavy regimes support pooling PBNE on only one message. The Middle regime does not support any pooling PBNE.

admits only a pooling PBNE on m = 0. We call this situation
(in which, typically, m 6= θ ) a falsification convention. (See
Section IV.) For β > 1−α, the Zero-Heavy regime admits
only a pooling PBNE on m = 0, and the One-Heavy regime
admits only a pooling PBNE on m = 1. We call this situation
(in which, typically, m = θ ) a truth-telling convention.
Remark 6. For β 6= 1−α, the Middle regime does not admit
any pooling PBNE. This occurs because R’s responses to
message m depends on e, i.e., σR∗(1 |0,0) = 1−σR∗(1 |0,1)
and σR∗(1 |1,0) = 1− σR∗(1 |1,1). One of the types of S
prefers to deviate to the message off the equilibrium path.
Intuitively, for a conservative detector, S with type θ = m
prefers to deviate to message 1−m, because his deception is
unlikely to be detected. On the other hand, for an aggressive
detector, S with type θ = 1−m prefers to deviate to message
1−m, because his honesty is likely to produce a false-positive
alarm, which will lead R to guess a = m. Appendix B includes
a formal derivation of this result.

D. Partially-Separating PBNE

For β 6= 1−α, since the Middle regime does not support
pooling PBNE, we search for partially-separating PBNE. In
these PBNE, S and R play mixed strategies. In mixed-strategy
equilibria in general, each player chooses a mixed strategy
that makes the other players indifferent between the actions
that they play with positive probability. Theorems 2-3 give
the results.

Theorem 2. (Partially-Separating PBNE for Conservative
Detectors) For β < 1−α, within the Middle Regime, there
exists an equilibrium in which the sender strategies are

σ
S∗ (m = 1 |θ = 0) =

β 2

β 2−α2 −
αβ∆R

1
(β 2−α2)∆R

0

(
p

1− p

)
,

σ
S∗ (m = 1 |θ = 1) =

αβ∆R
0

(β 2−α2)∆R
1

(
1− p

p

)
− α2

β 2−α2 ,

the receiver strategies are

σ
R∗(a = 1 |m = 0,e = 0) =

1−α−β

2−α−β
,

σ
R∗(a = 1 |m = 0,e = 1) =1,

σ
R∗(a = 1 |m = 1,e = 0) =

1
2−a−b

,

σ
R∗(a = 1 |m = 1,e = 1) =0,

and the beliefs are computed by Bayes’ Law in all cases.

Theorem 3. (Partially-Separating PBNE for Aggressive De-
tectors) For any g∈ [0,1], let ḡ , 1−g. For β > 1−α, within
the Middle Regime, there exists an equilibrium in which the
sender strategies are

σ
S∗ (m = 1 |θ = 0) =

ᾱβ̄∆R
1(

ᾱ2− β̄ 2
)

∆R
0

(
p

1− p

)
− β̄ 2

ᾱ2− β̄ 2
,

σ
S∗ (m = 1 |θ = 1) =

ᾱ2

ᾱ2− β̄ 2
−

ᾱβ̄∆R
0(

ᾱ2− β̄ 2
)

∆R
1

(
1− p

p

)
,

the receiver strategies are

σ
R∗(a = 1 |m = 0,e = 0) =0,

σ
R∗(a = 1 |m = 0,e = 1) =

1
α +β

,

σ
R∗(a = 1 |m = 1,e = 0) =1,

σ
R∗(a = 1 |m = 1,e = 1) =

α +β −1
α +β

,

and the beliefs are computed by Bayes’ Law in all cases.

Proof: See Appendix C for the proofs of Theorems 2-3.

Remark 7. In Theorem 2, S chooses the σS∗ that makes R
indifferent between a = 0 and a = 1 when he observes the
pairs (m= 0,e= 0) and (m= 1,e= 0). This allows R to choose
mixed strategies for σR∗(1 |0,0) and σR∗(1 |1,0). Similarly, R
chooses σR∗(1 |0,0) and σR∗(1 |1,0) that make both types of S
indifferent between sending m= 0 and m= 1. This allows S to
choose mixed strategies. A similar pattern follows in Theorem
3 for σS∗, σR∗(1 |0,1), and σR∗(1 |1,1).
Remark 8. Note that none of the strategies are functions of
the sender utility uS. As shown in Section IV, this gives the
sender’s expected utility a surprising relationship with the
properties of the detector.

Figure 4-5 depict the equilibrium strategies for S and R, re-
spectively, for an aggressive detector. Note that the horizontal
axis is the same as the horizontal axis in Fig. 2 and Fig. 3.

The Zero-Dominant and One-Dominant regimes feature two
pooling equilibria. In Fig. 4, the sender strategies for the first
equilibrium are depicted by the red and blue curves, and the
sender strategies for the second equilibrium are depicted by
the green and black curves. These are pure strategies, because
they occur with probabilities of zero or one. The Zero-Heavy
and One-Heavy regimes support only one pooling equilibria
in each case.
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Sender Strategies J=0.6, G=0.2

1st S*(m=1| =0)
1st S*(m=1| =1)

2nd S*(m=1| =0)
2nd S*(m=1| =1)

X: 0.28
Y: 0.4675

X: 0.28
Y: 0.08889

Figure 4. Equilibrium sender strategies for β = 0.9, α = 0.3, ∆R
0 = 15, and

∆R
1 = 22. The Dominant regimes of p(1) support both pooling on m = 0 and

m = 1. The Heavy regimes (0.09 < p < 0.19 and 0.67 < p < 0.83) support
only pooling on m = 0 and m = 1, respectively. The Middle regime does not
support any pooling PBNE, but does support a partially-separating PBNE.
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Receiver Strategies J=0.6, G=0.2
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Figure 5. Equilibrium receiver strategies for β = 0.9, α = 0.3, ∆R
0 = 15, and

∆R
1 = 22. R plays pure strategies in both the Dominant and Heavy regimes.

In the Middle regime, two strategy components are pure, and two are mixed.

The Middle regime of p(1) features the partially-separating
PBNE given in Theorem 3. In this regime, Fig. 5 shows that R
plays a pure strategy when e = 0 and a mixed strategy when7

e = 1. The next section investigates the relationships between
these equilibrium results and the parameters of the game.

IV. COMPARATIVE STATICS

In this section, we define quantities that we call the quality
and aggressiveness of the detector. Then we define a quantity
called truth-induction, and we examine the variation of truth-
induction with the quality and aggressiveness of the detector.

A. Equilibrium Strategies versus Detector Characteristics

Consider an alternative parameterization of the detector
by the pair J and G, where J = β −α ∈ [−1,1], and G =
β − (1−α) ∈ [−1,1]. J is called Youden’s J Statistic [28].
Since an ideal detector has high β and low α, J parameterizes
the quality of the detector. G parameterizes the aggressiveness
of the detector, since an aggressive detector has β > 1−α

and a conservative detector has β < 1−α. Figure 6 depicts
the transformation of the axes. Note that the pair (J,G) fully
specifies the pair (α,β ).

Figure 7 depicts the influences of J and G on S’s equilibrium
strategy. The red (solid) curves give σS∗(m= 1 |θ = 0), and the
blue (dashed) curves represent σS∗(m = 1 |θ = 1). Although
the Zero-Dominant and One-Dominant regimes support two

7On the other hand, for conservative detectors R plays a pure strategy when
e = 1 and a mixed strategy when e = 0.
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False-positive rate 𝛼(𝛼 = 0, 𝛽 = 0)

Figure 6. The detector characteristics can be plotted in ROC-space, with α

on the horizontal axis and β on the vertical axis. We also parameterize the
detector characteristics by the orthogonal qualities J ∈ [−1,1] and G∈ [−1,1].
The dashed line gives a sample ROC-curve.

pooling equilibria, Fig. 7 only plots one pooling equilibrium
for the sake of clarity8.

In Column 1, J is fixed and G decreases from top to bottom.
The top two plots have G> 0, and the bottom two have G< 0.
There is a regime change at exactly G = 0. At that point, the
equilibrium σS∗(1 |0) and σS∗(1 |1) flip to their complements.
Here a small perturbation in the characteristics of the detector
leads to a large change in the equilibrium strategies.

Column 2 features a conservative detector: G = −0.1. J
decreases from top to bottom. Note that a large J leads to a
large Middle regime, i.e., a large range of p(1) for which S
plays mixed strategies in equilibrium. The detector in Column
3 is aggressive: G = 0.1. Again, a large J leads to a large
Middle regime in which S plays mixed strategies.

B. Truth-Induction

Consider the Middle regimes of the games plotted in
Columns 2 and 3. Note that in the Middle regime of Column
2, the probabilities with which both types of S send m = 1
decrease as p(1) increases, while in the Middle regime of
Column 3, the probabilities with which both types of S
send m = 1 increases as p(1) increases. This suggests that
S is somehow more “honest” for the aggressive detectors in
Column 3, because θ and m are more correlated for aggressive
detectors than for conservative detectors.

In order to formalize this result, let σS∗(m |θ ; p) parameter-
ize the sender’s equilibrium strategy by the prior probability
p , p(1). Then define a mapping τ : [−1,1]2× [0,1]→ [0,1],
such that τ(J,G, p) gives the truth-induction rate of the
detector parameterized by (J,G) at the prior probability9 p.
We have

τ (J,G, p) = ∑
θ∈{0,1}

pσ
S∗ (m = θ |θ ; p) . (8)

The quantity τ gives the proportion of messages sent by S
for which m = θ , i.e., for which S tells the truth. From this
definition, we have Theorem 4.

8We chose the pooling equilibrium in which σS∗(1 |0) and σS∗(1 |1) are
continuous with the partially-separating σS∗(1 |0) and σS∗(1 |1) that are
supported in the Middle regime.

9Feasible detectors have J ≤ 1−|G| . In addition, we only analyze detectors
in which β > α, which gives J > 0.
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Figure 7. Sender equilibrium strategies σS∗ and truth-induction rates τ. Column 1: Detector quality J is fixed and aggressiveness G decreases from top to
bottom. Columns 2 and 3: G is fixed and J decreases from top to bottom. Column 2 is for a conservative detector, and Column 3 is for an aggressive detector.
The sender equilibrium strategies are mixed within the Middle regime, and constant within the other regimes.

Theorem 4. (Detectors and Truth Induction Rates) Set ∆R
0 =

∆R
1 . Then, within prior probability regimes that feature unique

PBNE (i.e., the Zero-Heavy, Middle, and One-Heavy Regimes),
for all J ∈ [0,1] and ∀p ∈ [0,1], we have that

τ (J,G, p)≤ 1
2

for G ∈ (−1,0] ,

τ (J,G, p)≥ 1
2

for G ∈ [0,1) .

Proof: See Appendix D.

Remark 9. We can summarize Theorem 4 by stating that
aggressive detectors induce a truth-telling convention, while
conservative detectors induce a falsification convention.

The black curves in Fig. 7 plot τ(p) for each of the
equilibrium strategies of S. In the regimes with only one pair
of equilibrium strategies for S, τ(p) < 1/2 in Column 2 and
τ(p)> 1/2 in Column 3. In the Middle regime of Column 3,
τ(p) is largest for detectors with high quality J.

C. Equilibrium Utility
The a priori expected equilibrium utilities of S and R are

are the utilities that the players expect before θ is drawn.
Denote these utilities by ŨS ∈ R and ŨR ∈ R, respectively.
For X ∈ {S,R}, the utilities are given by

ŨX = ∑
θ∈Θ

∑
m∈M

∑
e∈E

∑
a∈A

p(θ)

σ
S∗ (m |θ)λ (e |θ ,m)σ

R∗ (a |m,e)uX (θ ,m,a) .

Based on numerical experiments, we offer two propositions,
leaving formal proofs for future work.

Proposition 1. Fix an aggressiveness G. Then, for all p ∈
[0,1], ŨR is monotonically non-decreasing in J.

Figure 8 illustrates Proposition 1. The proposition claims
that R’s utility improves as detector quality improves. In the
Middle regime of this example, R’s expected utility increases
from J = 0.2 to J = 0.8. Intuitively, as his detection abil-
ity improves, his belief µR becomes more certain. In the
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Figure 8. R’s a priori expected utility for varying J. Towards the extremes of
p(1), R’s a priori expected utility does not depend on J, because R ignores
e. But in the middle regime, R’s expected utility increases with J.
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Figure 9. R’s a priori expected utility for varying G. Towards the extremes of
p(1), R’s a priori expected utility does not depend on G, because R ignores
e. But in the middle regime, R’s expected utility decreases with |G|.

Zero-Dominant, Zero-Heavy, One-Heavy, and One-Dominant
regimes, R’s equilibrium utility is not affected, because he
ignores e and chooses a based only on prior probability.

Proposition 2. Fix a detector quality J. Then, for all p∈ [0,1],
ŨR is monotonically non-increasing in |G|.

For a fixed detector quality, Proposition 2 suggests that it
is optimal for R to use an EER detector. Figure 9 plots R’s
expected a priori equilibrium utility for various G given a fixed
value of J. In the example, the same color is used for each
detector with aggressiveness G and its opposite −G. Detectors
with G≥ 0 are plotted using circles, and detectors with G < 0
are plotted using dashed lines. The utilities are the same for
detectors with G and −G. In the Middle regime, expected
utility increases as |G| decreases from 0.5 to 0.

V. CASE STUDY

In this section, we apply signaling games with evidence to
the use of defensive deception for network security. We illus-
trate the physical meanings of the action sets and equilibrium
outcomes of the game for this application. We also present
several results based on numerical experiments.

A. Motivation

Traditional cybersecurity technologies such as firewalls,
cryptography, and role-based access control (RBAC) are in-
sufficient against new generations of sophisticated and well-
resourced adversaries. Attackers capable of advanced persis-
tent threats (APTs) use techniques such as social engineering
and hardware exploits to circumvent defenses and gain insider
access. Stealthy and evasive maneuvers are crucial elements

Type 𝜃
𝜃 = 0: Production 
𝜃 = 1: Honeypot

Action 𝑎
𝑎 = 0: Attack
𝑎 = 1: Withdraw

Attacker
Message 𝑚
𝑚 = 0: Active
𝑚 = 1: Inactive

Network Defender

Evidence 𝑒
𝑒 = 0: No alarm
𝑒 = 1: Alarm

Deception 
Program

Figure 10. A defender adds either a production system or a honeypot to a
network. Without any deception, the activity level of the system is m = θ .
The defender can run a deception program in order to set m = 1− θ , but
the attacker can detect this program (e = 1) with some probability. Then the
defender decides whether to attack.

of APTs. Often, attackers are able to remain within a network
for several months or years before they are detected by
network defenders [4]. This gives the attackers an advantage
of information asymmetry.

To counteract this information asymmetry, defenders have
developed various technologies that detect attackers and pro-
vide attackers with false information. In fact, honeypots are
classical mechanisms that achieve both goals. Honeypots are
systems placed within a network in such a manner that the
systems are never accessed by legitimate users. Any activity
on the honeypots is evidence that the network has been
breached by an attacker. Sophisticated research honeypots run
real services such as a file transfer protocol (FTP) server in
order to allow interaction. In this way, the honeypots gather
extensive information about the attacker’s techniques, tools,
and procedures (TTP) [26].

To some extent, honeypots mimic production systems in
order to appear attractive to attackers. One way of making
honeypots appear attractive is to run programs that simulate
user activity. This is a form of defensive deception. At the
same time, attackers may be able to detect that a deceptive
program is running. Hence, honeypot deployment is the de-
tectable deception that can be captured by our model.

B. Model Description

1) Players and Types: Figure 10 casts the honeypot inter-
action as a signaling game with evidence. The players are
the network defender (the sender, S) and the attacker (the
receiver, R). The private information of the sender is the type
of the system, θ ∈ {0,1}, where θ = 0 represents a production
system, and θ = 1 represents a honeypot.

2) Messages: Typically, production systems have high ac-
tivity (since they are accessed by real users) and honeypots
have low activity (since they are not accessed by real users).
Let m = 0 denote that the system is active, and let m = 1
denote that the system is inactive. In order to deceive R, S
can manipulate the activity level of the system. For instance,
with a honeypot, S can send packets from some other source to
the honeypot, create a program to simulate mouse movement
on the honeypot, and create icons on the desktop. All of these
make the honeypot appear active: m = 0. Similarly, with a
production system, S can write programs or create user policies
that decrease incoming traffic or limit mouse movement and
the number of visible desktop icons. All of these make the
production system appear to be inactive: m = 1.
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3) Evidence: With some probability, R can detect the use
of programs that manipulate the activity level of the system.
For instance, if S makes a honeypot (θ = 1) appear active
(m = 0), R may observe that incoming traffic comes from
a single automated source rather than from multiple human
sources. He may also observe that simulated mouse movement
follows patterns different from normal mouse movement, or
that desktop icons are never used. These constitute an alarm:
e = 1. If R does not notice these suspicious signals, then
there is no alarm: e = 0. Similarly, if S creates programs
or user policies for a production system (θ = 0) that limit
the incoming traffic and user activity (m = 1), R may observe
evidence that user behaviors are being artificially manipulated,
which constitutes an alarm: e = 1. If R does not notice this
manipulation, then there is no alarm: e = 0.

4) Actions: After observing the activity level m and leaked
evidence e, R chooses an action a ∈ {0,1}. Let a = 0 denote
attack, and let a = 1 denote withdraw. Notice that R prefers
to choose a = θ , while S prefers that R choose a 6= θ . Hence,
Assumptions 2-5 are satisfied. If the cost of running the
deceptive program is negligible, then Assumption 1 is also
satisfied10.

C. Equilibrium Results

We set the utility functions according to [3], [22]. Consider
a detector with a true-positive rate β = 0.9 and a false-positive
rate α = 0.3. This detector has β > 1−α, so it is an aggressive
detector, and the boundaries of the equilibrium regimes are
given in the bottom half of Fig. 2. For this application, the
Zero-Dominant and Zero-Heavy regimes can be called the
Production-Dominant and Production-Heavy regimes, since
type θ = 0 represents a production system. Similarly, the
One-Heavy and One-Dominant regimes can be called the
Honeypot-Heavy and Honeypot-Dominant regimes.

We have plotted the equilibrium strategies for these param-
eters in Fig. 4-5 in Section III. In the Production-Dominant
regime (p(θ = 1) < 0.09), there are very few honeypots. In
equilibrium, S can set both types of systems to a high activity
level (m= 0) or set both types of systems to a low activity level
(m = 1). In both cases, regardless of the evidence e, R attacks.
Next, for the Production-Heavy regime (0.09 < p(1)< 0.19),
the only equilibrium strategy for S is a pooling strategy in
which she leaves production systems (θ = 0) active (m = 0)
and runs a program on honeypots (θ = 1) in order to make
them appear active (m = 1) as well. R is able to detect (e = 1)
the deceptive program on honeypots with probability β = 0.9,
yet the prior probability p(1) is low enough that it is optimal
for R to ignore the evidence and attack (a = 1).

The Middle regime covers prior probabilities 0.19 < p(1)<
0.67. The figures display the players’ mixed strategies at
p(1) = 0.28. For honeypots, S’s optimal strategy is to leave
the activity level low with approximately 50% probability
(σS∗(1 |1) ≈ 0.47) and to simulate a high activity level with
approximately 50% probability. For production systems, S’s
optimal strategy is to decrease the activity level with a low

10This is reasonable if the programs are created once and deployed multiple
times.
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Figure 11. S’s a priori expected utility for varying J. From least accurate
detector to most accurate detector, the curves are colored red, blue, and black.
Suprisingly, for some p, S does better with more accurate detectors than with
less accurate detectors.
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Figure 12. S’s a priori expected utility for playing her equilibrium strategy
against 1) R’s equilibrium strategy (in blue crosses), and 2) sub-optimal
strategies of R (in red circles). Deviations from R’s equilibrium strategy almost
always increase the expected utility of S.

probability (σS∗(1 |0) ≈ 0.09) and to leave the activity level
high with the remaining probability.

In the Middle regime, the receiver plays according to the
activity level—i.e., trusts S’s message—if e = 0. If e = 1 when
m= 0, then most of the time, R does not trust S (σR∗(1 |0,1)≈
0.83). Similarly, if e = 1 when m = 1, then most of the time, R
does not trust S (σR∗(1 |1,1)≈ 0.17). The pattern of equilibria
in the Honeypot-Heavy and Honeypot-Dominant regimes is
similar to the pattern of equilibria in the Production-Heavy
and Production-Dominant regimes.

D. Numerical Experiments and Insights

1) Equilibrium Utility of the Sender: Next, Corollary 1
considers the relationship between S’s a priori equilibrium
utility and the quality J of the detector.

Corollary 1. Fix an aggressiveness G and prior probability
p(1). S’s a priori expected utility ŨS is not necessarily a
decreasing function of the detector quality J.

Proof: Figure 11 provides a counter-example.
Corollary 1 is counter-intuitive, because it seems that the

player who attempts deception (S) should prefer poor de-
ception detectors. Surprisingly, this is not always the case.
Figure 11 displays the equilibrium utility for S in the honeypot
example for three different J. At p(1) = 0.4, S receives
the highest expected utility for the lowest quality deception
detector. But at p(1) = 0.1, S receives the highest expected
utility for the highest quality deception detector. In general,
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this is possible because the equilibrium regimes and strategies
(e.g., in Theorems 1-3) depend on the utility parameters of R,
not S.

In particular, this occurs because of an asymmetry between
the types. S does very poorly if for a production system (θ =
0), she fails to deceive R, so R attacks (a = 0). On the other
hand, S does not do very poorly if for a honeypot (θ = 1), she
fails to deceive R, who simply withdraws11 (a = 1).

2) Robustness of the Equilibrium Strategies: Finally, we
investigate the performance of these strategies against sub-
optimal strategies of the other player. Figure 12 shows the
expected utility for S when R acts optimally in blue, and the
expected utility for S when R occasionally acts sub-optimally
in red. In almost all cases, S earns higher expected utility if
R plays sub-optimally than if R plays optimally.

It can also be shown that R’s strategy is robust against a
sub-optimal S. In fact, R’s equilibrium utility remains exactly
the same if S plays sub-optimally.

Corollary 2. For all σS ∈ ΓS, the a priori expected utility of
R for a fixed σR∗ does not vary with σS.

Proof: See Appendix E.
Corollary 2 states that R’s equilibrium utility is not affected

at all by deviations in the strategy of S. This is a result of the
structure of the partially-separating equilibrium. It suggests
that R’s equilibrium strategy performs well even if S is not
fully rational.

VI. DISCUSSION

We have proposed a holistic and quantitative model of
detectable deception called signaling games with evidence.
The detector mechanism can be conceptualized in two ways.
It can be seen as a technology that the receiver uses to detect
deception. For instance, technology for a GPS receiver can
detect spoofed position data based on a lack of variance in the
carrier phase of the signal [24]. Alternatively, the detector can
be seen as the inherent tendency of the information sender to
emit cues during deceptive behavior. One example of this can
be found in deceptive opinion spam in online marketplaces;
fake reviews in these marketplaces tend to lack sensorial and
concrete language such as spatial information [20]. Of course,
both viewpoints are complementary, because cues of deceptive
behavior are necessary in order for technology to be able to
detect deception.

Our equilibrium results include a regime in which the
receiver should chose whether to trust the sender based on
the detector evidence (i.e., the Middle regime), and regimes in
which the receiver should ignore the message and evidence and
guess the private information using only the prior probabili-
ties (the Zero-Dominant, Zero-Heavy, One-Heavy, and One-
Dominant regimes). For the sender, our results indicate that

11For example, consider p = 0.1. If R has access to a low-quality detector,
then p = 0.1 is within the Zero-Heavy regime. Therefore, R ignores e and
always chooses a = 0. This is a “reckless” strategy that is highly damaging to
S. On the other hand, if R has access to a high-quality detector, then p = 0.1
is within the Middle regime. In that case, R chooses a based on e. This “less
reckless” strategy actually improves S’s expected utility, because R chooses
a = 0 less often.

it is optimal to partially reveal the private information in the
former regime, while pooling behavior is optimal in the latter
regimes. The analytical bounds that we have obtained on these
regimes can be used to implement policies online, since they
do not require iterative numerical computation.

We have also presented several contributions that are rel-
evant for mechanism design. For instance, the mechanism
designer can maximize the receiver utility by choosing an EER
detector. Practically, designing the detector involves setting
a threshold within a continuous space in order to classify
an observation as an “Alarm” or “No Alarm.” For an EER
detector, the designer chooses a threshold that obtains equal
false-positive and false-negative error rates.

At the same time, we have shown that aggressive detectors
induce a truth-telling convention, while conservative detectors
of the same quality induce a falsification convention. This
is important if truthful communication is considered to be a
design objective in itself. One area in which this applies is
trust management. In both human and autonomous behavior,
an agent is trustworthy if it is open and honest, if “its
capabilities and limitations [are] made clear; its style and
content of interactions [do] not misleadingly suggest that it is
competent where it is really not” [13]. Well-designed detectors
can incentivize such truthful revelation of private information.

Additionally, even deceivers occasionally prefer to reveal
some true information. Our numerical results have shown that
the deceiver (the sender) sometimes receives a higher utility
for a high quality detector than for a low quality detector.
This result suggests that cybersecurity techniques that use
defensive deception should not always strive to eliminate
leakage. Sometimes, revealing cues to deception serves as a
deterrent. Finally, the strategies of the sender and receiver
are robust to non-equilibrium actions by the other player.
This emerges from the strong misalignment between their
objectives.

Future work could focus on the application of signaling
games with evidence to specific technical domains. These
domains often require adaptations of the model. For instance,
problems with continuous type and message spaces can be ad-
dressed by applying a filter that maps the types and messages
into binary spaces (c.f., Section VI of [23]). Computational
methods can also be used to address large, discrete action
spaces. Finally, signaling games with evidence can be embed-
ded within larger frameworks in order to study deception in
cyber-physical systems or deception across multiple links in
a network. The present work provides theoretical foundations
and fundamental insights that serve as a foundation for these
further developments.

APPENDIX A
OPTIMAL ACTIONS OF R IN POOLING PBNE

Consider the case in which both types of S send m =
0. On the equilibrium path, Eq. (5) yields µR(0 |0,0) =
(1−α)p(0)/((1−α)p(0) + (1− β )p(1)) and µR(0 |0,1) =
α p(0)/(α p(0)+β p(1)), while off the equilibrium path, the
beliefs can be set arbitrarily. From Eq. (2), R chooses action
a= 0 (e.g., R believes the signal of S) when evidence e= 0 and
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p(0)≥ ∆R
1 (1−β )/(∆R

0 (1−α)+∆R
1 (1−β )), or when evidence

e = 1 and p(0)≥ ∆R
1 β/(∆R

0 α +∆R
1 β ).

Next, consider the case in which both types of S send
m = 1. Equation (5) yields µR(0 |1,0) = (1− β )p(0)/((1−
β )p(0) + (1 − α)p(1)) and µR(0 |1,1) = β p(0)/(β p(0) +
α p(1)), which leads R to choose action a = 1 (e.g. to believe
the signal of S) if e = 0 and p(0)≤ ∆R

1 (1−α)/(∆R
0 (1−β )+

∆R
1 (1−α)), or if e = 1 and p(0) ≤ ∆R

1 α/(∆R
0 β +∆R

1 α). The
order of these probabilities depends on whether β > 1−α.

APPENDIX B
OPTIMAL ACTIONS OF S IN POOLING PBNE

Let S pool on a message m. Consider the case that
σR∗(1 |m,0) = σR∗(1 |m,1), and let a∗ , σR∗(1 |m,0) =
σR∗(1 |m,1). Then S of type θ = 1− a∗ always successfully
deceives R. Clearly, that type of S does not have an incentive
to deviate. But type S of type θ = a∗ never deceives R.
We must set the off-equilibrium beliefs such that S of type
θ = a∗ also would not deceive R if she were to deviate to the
other message. This is the case if ∀e ∈ E, µR(a∗ |1−m,e)≥
∆R

1−a∗/(∆
R
1−a∗ +∆R

a∗). In that case, both types of S meet their
optimality conditions, and we have a pooling PBNE.

But consider the case if σR∗(1 |m,0) = 1− σR∗(1 |m,1),
(i.e., if R’s response depends on evidence e). On the equi-
librium path, S of type m receives utility

uS (m,m,m)(1−α)+uS (m,m,1−m)α, (9)

and S of type 1−m receives utility

uS (1−m,m,1−m)β +uS (1−m,m,m)(1−β ) . (10)

Now we consider R’s possible response to messages off the
equilibrium path.

First, there cannot be a PBNE if R were to play the same
action with both e = 0 and e = 1 off the equilibrium path. In
that case, one of the S types could guarantee deception by
deviating to message 1−m. Second, there cannot be a PBNE
if R were to play action a = m in response to message 1−m
with evidence 0 but action a = 1−m in response to message
1−m with evidence 1. It can be shown that both types of
S would deviate. The third possibility is that R plays action
a = 1−m in response to message 1−m if e = 0 but action
a = m in response to message 1−m if e = 1. In that case, for
deviating to message 1−m, S of type m would receive utility

uS (m,1−m,m)β +uS (m,1−m,1−m)(1−β ) , (11)

and S of type 1−m would receive utility

uS (1−m,1−m,1−m)(1−α)

+uS (1−m,1−m,m)α. (12)

Combining Eq. (9-11), S of type m has an incentive to deviate
if β < 1−α. On the other hand, combining Eq. (10-12), S of
type 1−m has an incentive to deviate if β > 1−α. Therefore,
if β 6= 1−α, one type of S always has an incentive to deviate,
and a pooling PBNE is not supported.

APPENDIX C
DERIVATION OF PARTIALLY-SEPARATING EQUILIBRIA

For brevity, define the notation q, σS∗(1 |0), r , σS∗(1 |1),
w , σR∗(1 |0,0), x , σR∗(1 |0,1), y , σR∗(1 |1,0), z ,
σR∗(1 |1,1), and K , ∆R

1/(∆
R
0 +∆R

1 ).
We prove Theorem 2. First, assume the receiver’s pure

strategies x = 1 and z = 0. Second, R must choose w and y to
make both types of S indifferent. This requires[

ᾱ −β̄

β̄ −ᾱ

][
w
y

]
=

[
−α

−β

]
,

where w,y ∈ [0,1]. Valid solutions require β ≤ 1−α.
Third, S must choose q and r to make R indifferent for

(m,e) = (0,0) and (m,e) = (1,0), which are the pairs that
pertain to the strategies w and y. S must satisfy[

−ᾱ p̄K̄ β̄ pK
−β̄ p̄K̄ ᾱ pK

][
q
r

]
=

[
−ᾱ p̄K̄ + β̄ pK

0

]
.

Valid solutions require p to be within the Middle regime for
β ≤ 1−α.

Fourth, we must verify that the pure strategies x = 1 and
z = 0 are optimal. This requires

α r̄p
α r̄p+β q̄p̄

≤ K̄ ≤ β rp
β rp+αqp̄

.

It can be shown that, after substitution for q and r, this always
holds. Fifth, the beliefs must be set everywhere according to
Bayes’ Law. We have proved Theorem 2.

Now we prove Theorem 3. First, assume the receiver’s pure
strategies w = 0 and y = 1. Second, R must choose x and z to
make both types of S indifferent. This requires[

α −β

β −α

][
x
z

]
=

[
β̄

ᾱ

]
,

where x,y ∈ [0,1]. Valid solutions require β ≥ 1−α.
Third, S must choose q and r to make R indifferent for

(m,e) = (0,1) and (m,e) = (1,1), which are the pairs that
pertain to the strategies x and z. S must satisfy[

−α p̄K̄ β pK
−β p̄K̄ α pK

][
q
r

]
=

[
−α p̄K̄ +β pK

0

]
.

Valid solutions require p to be within the Middle regime for
β ≥ 1−α.

Fourth, we must verify that the pure strategies w = 0 and
y = 1 are optimal. This requires

α r̄p
α r̄p+β q̄p̄

≤ K̄ ≤ β rp
β rp+αqp̄

.

It can be shown that, after substitution for q and r, this always
holds. Fifth, the beliefs must be set everywhere according to
Bayes’ Law. We have proved Theorem 3.

APPENDIX D
TRUTH-INDUCTION PROOF

We prove the theorem in two steps: first for the Mid-
dle regime and second for the Zero-Heavy and One-Heavy
regimes.
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For conservative detectors in the Middle regime, substituting
the equations of Theorem 2 into Eq. (8) gives

τ (J,G, p) =
ᾱβ̄ − β̄ 2

ᾱ2− β̄ 2
=

1
2

(
1− J

1−G

)
≤ 1

2
.

For aggressive detectors in the Middle regime, substituting the
equations of Theorem 3 into Eq. (8) gives

τ (J,G, p) =
β 2−αβ

β 2−α2 =
1
2

(
1+

J
1+G

)
≥ 1

2
.

This proves the theorem for the Middle regime.
Now we prove the theorem for the Zero-Heavy and One-

Heavy regimes. Since ∆R
0 = ∆R

1 , all of the Zero-Heavy regime
has p(1)≤ 1/2, and all of the One-Heavy regime has p(1)≥
1/2. For conservative detectors in the Zero-Heavy regime, both
types of S transmit m= 1. S of type θ = 0 are lying, while type
θ = 1 are telling the truth. Since p(1)≤ 1/2, we have τ ≤ 1/2.
Similarly, in the One-Heavy regime, both types of S transmit
m = 0. S of type θ = 0 are telling the truth, while S of type
θ = 1 are lying. Since p(1)≥ 1/2, we have τ ≤ 1/2. On the
other hand, for aggressive detectors, both types of S transmit
m = 0 in the Zero-Heavy regime and m = 1 in the One-Heavy
regime. This yields τ ≥ 1/2 in both cases. This proves the
theorem for the Zero-Heavy and One-Heavy regimes.

APPENDIX E
ROBUSTNESS PROOF

Corollary 2 is obvious in the pooling regimes. In those
regimes, σR∗(1 |m,e) has the same value for all m ∈ M and
e∈ E, so if S plays the message off the equilibrium path, then
there is no change in R’s action. In the mixed strategy regimes,
using the expressions for σR∗ from Theorems 2-3, it can be
shown that, ∀θ ∈Θ, m ∈M, a ∈ A,

∑
e∈E

λ (e |θ ,m)σ
R∗ (a |m,0) =

∑
e∈E

λ (e |θ ,1−m)σ
R∗ (a |1−m,0) .

In other words, for both types of S, choosing either message
results in the same probability that R plays each actions. Since
uR does not depend on m, both messages result in the same
utility for R.
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