
82

A Game-theoretic Taxonomy and Survey of Defensive

Deception for Cybersecurity and Privacy

JEFFREY PAWLICK, NYU Tandon School of Engineering and U.S. Army Research Laboratory

EDWARD COLBERT, Virginia Tech Intelligent Systems Lab, Hume Center for National Security and

Technology, and U.S. Army Research Laboratory

QUANYAN ZHU, New York University Tandon School of Engineering

Cyberattacks on both databases and critical infrastructure have threatened public and private sectors. Ubiqui-
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proposed using defensive deception as a means to leverage the information asymmetry typically enjoyed by

attackers as a tool for defenders. The term deception, however, has been employed broadly and with a variety

of meanings. In this article, we survey 24 articles from 2008 to 2018 that use game theory to model defensive

deception for cybersecurity and privacy. Then, we propose a taxonomy that defines six types of deception:

perturbation, moving target defense, obfuscation, mixing, honey-x, and attacker engagement. These types

are delineated by their information structures, agents, actions, and duration: precisely concepts captured by

game theory. Our aims are to rigorously define types of defensive deception, to capture a snapshot of the state

of the literature, to provide a menu of models that can be used for applied research, and to identify promising

areas for future work. Our taxonomy provides a systematic foundation for understanding different types of
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1 INTRODUCTION

“All warfare is based on deception. Hence, when we are able to attack, we must
seem unable; when using our forces, we must appear inactive; when we are near,
we must make the enemy believe we are far away; when far away, we must make
him believe we are near.”—Sun Tzu, The Art of War

Deception has played an important role in the history of military combat. More generally, decep-
tion is commonplace in adversarial or strategic interactions in which one party possesses infor-
mation unknown to the other. In this article, we are motivated by recent deception research in
psychology, criminology, economics, and behavioral sciences.

1.1 Deception Across Disciplines

1.1.1 Military Applications. Deception and secrecy demanded significant attention during
World War II and the Cold War (Whaley 2016; Bell andWhaley 2017). But increasing globalization
and the proliferation of communication technologies have recently created further challenges for
mitigating deception. Increasing availability of information has led not only to more knowledge
but also to worse confusion (Godson and Wirtz 2011). National defense requires detailed study
of military-relevant deceptions such as advanced persistent threats carried out by state actors
(Bodmer et al. 2012).

1.1.2 Psychology and Criminology. Research in psychology and criminology suggests that hu-
mans have poor abilities to detect deception (Bond Jr and DePaulo 2008; Vrij et al. 2008). One
approach to address this shortcoming focuses on interview techniques. It has been shown that
detection rates can be improved by tools that increase cognitive load by asking suspects to recall
events in reverse order, to maintain eye contact, or to answer unexpected questions. Some of these
have been incorporated into the investigative protocol known as the Cognitive Interview for Sus-
pects (CIS) (Geiselman 2012). A second approach uses physiological indicators. For instance, the
Guilty Knowledge Test (GKT) prompts a suspect with a list of items—for example, a set of articles
found at the scene of a crime—and measures the suspect’s physiological responses to each item
(Lykken 1959). Signs of arousal in a suspect suggest that the suspect possesses guilty knowledge,
because the articles are irrelevant to an innocent person.

1.1.3 Cybersecurity. Deception is used in cyberspace interactions for both defense and attack.
Examples of malicious deception include email phishing, man-in-the-middle attacks, and deploy-
ment of sybil nodes (nodes with forged identities) in a social network. Cybersecurity professionals
have developed various defenses against these deceptions. For instance, the field of adversarial
machine learning protects data analysis algorithms against injection or manipulation of data by
attackers (Zhang and Zhu 2015, 2017), and the field of trust management evaluates whether dis-
tributed nodes should trust possibly malicious signals (Pawlick et al. 2015; Pawlick and Zhu 2017b).
Examples of defensive deception include moving target defense (Zhu and Başar 2013), honeypot
deployment (Carroll and Grosu 2011), and the use of mix networks (Zhang et al. 2010).

1.1.4 Privacy Advocacy. Recently, privacy advocates have designed technologies for Internet
users to obfuscate the trails of their digital activity against ubiquitous tracking. Privacy advocates
argue that developments such as third-party tracking and persistent cookies have not been suffi-
ciently regulated by law. Therefore, there is a need for user-side technologies to provide proactive
privacy protection. One example is TrackMeNot, a browser extension that periodically issues ran-
dom search queries to undermine search engine tracking algorithms (Howe andNissenbaum 2009).
Another example is CacheCloak, which protects location privacy by retrieving location-based ser-
vices on multiple possible paths of a user. An adversary tracking the requests is not able to infer
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the actual user location (Meyerowitz and Roy Choudhury 2009). These are instances of deception
that are designed for benign purposes.

1.1.5 Behavioral Economics. In economics, the area of strategic communication quantifies the
amount of information that can be transmitted between two parties when communication is un-
verifiable (Crawford and Sobel 1982; Kartik 2009). Communication can be evaluated both strategi-
cally and physiologically. One recent paper analyzes patterns of eye movement and pupil dilation
during strategic deception (Astyk et al. 2010). At the same time, research in behavioral economics
finds that sometimes economic agents choose not to deceive, even when it is incentive-compatible
(Gneezy 2005; Hurkens and Kartik 2009; Fischbacher and Föllmi-Heusi 2013). Subjects that exhibit
so-called lying aversion choose to maximize their payoffs less frequently when it requires a lie
than when it requires a simple choice. This points toward the influences of morality and ethics on
deception.

1.1.6 Economic Markets. In broader economics literature, Akerlof and Shiller (2015) argue that
many markets admit equilibria in which deceivers exploit those who are vulnerable. Akerlof and
Shiller describe these interactions in politics, pharmaceuticals, finance, and advertising. They use
email phishing as an analogy for any kind of deception in which an informed “phisherman” ex-
ploits the lack of knowledge or the psychological vulnerabilities of a group of “phools.” The es-
sential insight is that opportunities for deception will be exploited in equilibrium. Across all six
disciplines, deception involves interaction, conflict, rationality, and uncertainty.

1.2 Cybersecurity and Privacy

Major cybersecurity incidents in the past 10 years include breaches of Home Depot in 2014, in-
surance company Anthem Inc., in February of 2015, and the U.S. Office of Personnel Management
later that year. The ten years from 2005 to 2015 featured over 4,000 (publicized) data breaches
(Edwards et al. 2016). During the same 10 years, cyber attacks also affected physical space. The
power grid in Ukraine, Iranian nuclear centrifuges, and an American water dam 20 miles north of
New York were all infiltrated. Since then, new attack vectors such as the Mirai botnet have high-
lighted the potential to turn Internet of things (IoT) devices into domestic cyber weapons. At the
same time, IoT devices have raised new privacy concerns. Smartphones and wearable electronics
combine to collect sensitive data that can predict “a user’s mood; stress levels; personality type;
bipolar disorder; demographics” (Peppet 2014). Advocates have responded by designing innova-
tive privacy enhancing technologies and trying to formalize and defend appropriate definitions of
privacy (Nissenbaum 2004).

1.3 Defensive Deception

Firewalls, cryptography, and role-based access control, although essential components of any secu-
rity strategy, are unable to fully address these new cybersecurity and privacy threats. Adversaries
often gain undetected, insider access to network systems. They obtain information about networks
through reconnaissance, while defenders lack an understanding of the threats that they face.
Deception is crucial to counteract this information asymmetry. Consider the following definition

(Mahon 2016):

To deceive
def
= to intentionally cause another person to acquire or continue to have

a false belief, or to be prevented from acquiring or cease to have a true belief.

This definition is broad, which matches the diversity of applications of defensive deception to
cybersecurity and privacy. However, the breadth of the term deception limits its depth. Finer-
resolution definitions are necessary to design deception techniques for specific purposes.
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While affirming the breadth and variety of types of deception in our area, we aim to tease out the
distinctions between these types. To some extent, this is already present in the literature; authors
use specific terms such as moving target defense, perturbation, and obfuscation to refer to different
types of deception. Nevertheless, the meaning of these terms is not completely clear. For instance,
what is the difference between perturbation and obfuscation?We attempt to answer this and other
questions by proposing a taxonomy of defensive deception for cybersecurity and privacy.

1.4 Game-Theoretic Taxonomy

We are interested in understanding the question “What are the various types of deception?” from
the viewpoint of quantitative science. Since deceptive interactions are strategic confrontations be-
tween rational agents, an appropriate quantitative science is game theory. Game theory “can be
defined as the study of mathematical models of conflict and cooperation between intelligent ratio-
nal decision-makers” (Myerson 1991). Each player in a game makes decisions that may influence
the welfare of the other players. Game theory applies naturally to strategic and adversarial in-
teractions in cybersecurity and privacy.1 It has been used in a variety of cybersecurity contexts.
A few application areas include intrusion detection systems (Alpcan and Basar 2003), adversarial
machine learning (Zhang and Zhu 2015), and communications jamming (Basar 1983). Applications
in physical security include the ARMOR system for Los Angeles airport security (Pita et al. 2008)
and the PROTECT system for patrol routes in the port of Boston (Shieh et al. 2012).
Game theory offers a quantitative framework that can model the information structure, actors,

actions, and duration of the various types of defensive deception. As a systems science, it models
the essential, transferable, and universal aspects of defensive deception. In doing so, it attempts to
build up a science of security.
Of course, game-theoretic models are useful only insofar as they capture real features of cy-

berspace phenomena. Therefore, we need to apply appropriate models to each type of deception.
This is precisely the motivation to develop a game-theoretic taxonomy of deception: to identify the
features of the various types of deception that must be captured by game-theoretic models.

1.5 Contributions and Related Work

Figure 1 gives a conceptual outline of the article. We present the following principle contributions:

(1) We review the game-theoretic models most commonly used to study cybersecurity and
privacy (Section 2).

(2) We survey the contributions of 24 recent (2008–2018) articles to the field of game-theoretic
models of defensive deception (Section 3).

(3) We develop a taxonomy that defines specific types of deception, including moving target
defense, perturbation, mixing, obfuscation, honey-x, and attacker engagement. We also
show how the game-theoretic concepts of private information, actors, actions, and dura-
tion capture the essential differences between types of deception (Section 4).

(4) We discuss promising areas for future research. These include mimetic deception, theo-
retical advances, practical implementations, and interdisciplinary security (Section 5).

All of the literature that we review (1) studies cybersecurity or privacy, (2) employs defensive
deception, and (3) uses game theory. This strictly constrains the scope of the article. Notably, we

1All of the works surveyed in this article use “non-cooperative game theory.” In non-cooperative games, “the players’

choices are based only on their perceived self-interest, in contrast to the theory of cooperative games” in which groups of

players make decisions together in coalitions. Still, “non-cooperative players, motivated solely by self-interest, can exhibit

‘cooperative’ behavior in some settings” (Fudenberg and Tirole 1991).
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Fig. 1. We begin by discussing deception across several different disciplines, and then we focus on defensive

deception in cybersecurity and privacy. Then, we describe a set of game-theoretic principles that are utilized

in literature in this area, and we review the literature. Finally, we create a taxonomy that defines each type

of deception, and we identify areas for future work.

have excluded papers that use deception for physical security (e.g., (Pita et al. 2008; Shieh et al.
2012), etc.). We have also excluded studies of malicious deception and the defensive methods that
aim to mitigate it.
Surveys of game theory and cybersecurity can be found in Roy et al. (2010), Manshaei et al.

(2013), and Do et al. (2017), but these do not focus on deception in particular. Deception in the
context of military applications has been well studied by Barton Whaley and coauthors (Bell and
Whaley 2017; Rothstein andWhaley 2013;Whaley 2016). Some of these works include taxonomies.
Specifically, Rothstein andWhaley (2013) make a distinction between “hiding the real” and “show-
ing the false,” which we build upon in our taxonomy. Gerwehr and Glenn add that some deceivers
aim to inject noise: randomness or intense activity that slows an adversary’s ability to act. We find
analogous aims in perturbation or obfuscation for the purposes of privacy. They also distinguish
between static and dynamic deception. We adopt this distinction, since it motivates modeling ef-
forts using one-shot or multiple-interaction games (Bennett and Waltz 2007).
Our work is also related to Rowe and Rrushi (2016), which categorizes methods of deception ac-

cording to techniques such as impersonation, delays, fakes, camouflage, false excuses, and social
engineering. Finally, the present taxonomy can be compared and contrasted to those developed by
Heckman et al. (2015). One of these taxonomies breaks down malicious deception by stages, in-
cluding design of a cover story, planning, execution, monitoring, and so on. Another distinguishes
between defensive deceptions based onwhether they enable defensive visibility or restrict attacker
visibility.2 To the best of our knowledge, however, none of the related works develops a taxonomy
based on game-theoretic distinctions. Our taxonomy distinguishes between different types of decep-
tion precisely to enable accurate game-theoretic modeling of each type.

2 REVIEW OF GAME-THEORETIC MODELS

In this section, we introduce some of the most common game-theoretic models used in defen-
sive deception for cybersecurity and privacy: Stackelberg, Nash, and signaling games. Table 1

2Several other works contribute to the effort to create a taxonomy of deception. Michael Handel makes a distinction be-

tween deceptions targeted against capabilities and those against intentions (Bennett and Waltz 2007), which we do not

explore in the present work. Oltramari and coauthors define an ontology of cybersecurity based on human factors (2014),

but this is more focused on trust than deception. Finally, Neil Rowe (2006) describes a taxonomy of deception in cyberspace

based on linguistic theory.
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Table 1. Players, Types, Actions, and Utility Functions for Three Games

Players P Types Θ Actions A UtilityU Duration T
Stackelberg game Typically L : aL ∈ AL L :UL (aL,aF ) One-shot
between leader L uniform F : aF ∈ AF F :UF (aL,aF ) leader-follower
and follower F structure
Nash game Typically V : aV ∈ AV V :UV (aV ,aW ) Simultaneous

between semetric uniform W : aW ∈ AW W :UW (aV ,aW ) move structure
players V andW
Signaling game S has S : aS ∈ AS S of each type One-shot

between sender S multiple R : aR ∈ AR θ ∈ Θ :U θ

S
(aS ,aR ) sender-receiver

and receiver R types θ ∈ Θ R :UR (θ ,aS ,aR ) structure

Fig. 2. Stackelberg games consist of a leader L and a follower F . L chooses an action aL , and F chooses a

best response BRF (aL ). L takes this best response into account when choosing aL . Stackelberg cybersecurity
models often consider the defender to be a leader, and the attacker to be a follower, based on the assumption

that the attacker will observe and react to strategies chosen by the defender.

summarizes the components of the games.3 These components define the structure of the
taxonomy that we develop in Section 4.

2.1 Stackelberg Game

Stackelberg games (1934) are perhaps the most fundamental game-theoretic interactions. They are
characterized by the following details.

(1) Players: P = {L, F }, where L is a leader and F is a follower.
(2) Actions: The actions for player L are given by aL ∈ AL . Figure 2 shows a 2 × 2 game in

which A = {u,d }, and u denotes moving up, while d denotes moving down. Player F has
actions aF ∈ AF = {t ,b}, where t denotes top and b denotes bottom.

(3) Utilities: After both players move, L receives utility UL (aL,aF ), and F receives utility
UF (aL,aF ).

In Stackelberg games, the follower moves after observing the leader’s action. Often, cybersecurity
models take the defender as L and the attacker as F , assuming that the attacker will observe and
react to defensive strategies.
Stackelberg games are solved backwards in time. Let P (S) denote the power set of the set S.

Then, let BRF : AL → P (AF ) define a best response function of the follower to the leader’s action.

3All three games are static games (where we take one-shot interactions to be static, although they are not simultaneous).

In addition, while Stackelberg and Nash games typically do not include multiple types, Bayesian Stackelberg and Bayesian

Nash games do allow multiple types.
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Fig. 3. Nash games are interactions with prior commitment. In this case, the dashed line indicates thatW
does not know which node describes the game, because she does not know which move V has chosen.

BRF (aL ) gives the optimal aF to respond to aL . The best response function could also include a set
of equally good actions. This is the reason for the power set. The best response function is defined
by

BRF (aL ) = argmax
aF ∈AF

UF (aL,aF ). (1)

Based on anticipating F ’s best response, L chooses optimal action a∗
L
, which satisfies

a∗
L
∈ argmax

aL ∈AL

UL (aL,BRF (aL )). (2)

Then, in equilibrium, the players’ actions are (a∗
L
,a∗

F
), where a∗

F
∈ BRF (a∗L ).

2.2 Nash Game

While in Stackelberg games players move at different times, in Nash games (1950) players move
simultaneously. More precisely, Nash games are games of prior commitment, in which each player
commits to his or her strategy before knowing the other player’s move. Typically, two-player
games of prior commitment are shown in matrix form. Figure 3, however, gives a tree diagram of
a two-player game to show the difference between this game and a Stackelberg game. Players V
andW act simultaneously, or at least without knowing the other player’s action. The dashed line
connecting the two nodes forW denotes thatW does not know which node the game has reached,
because she does not know which move V has chosen.
The concept of Nash equilibrium requires each player to choose a strategy that is optimal given

the other player’s strategy. Let BRV : AW → P (AV ) be defined such that BRV (aW ) gives the set
of actions for V that optimally respond toW ’s action aW . Let BRW be defined similarly. Then a
pure strategy Nash equilibrium (1950) is given by a pair (a∗

V
,a∗

W
) such that

a∗
V
∈ BRV (a∗W ), (3)

a∗
W
∈ BRW (a∗

V
). (4)

Nash equilibrium often requires players to choose actions according to probability distributions.
These strategies are called mixed strategies. Mixed strategies implement the basic idea of random-
izing allocations of defense assets to avoid leaving vulnerabilities open to an attacker.

2.3 Signaling Game

Signaling games, like Stackelberg games, are two-player dynamic interactions (Figure 4). Signal-
ing games typically label the players as sender S and receiver R. The sender has access to some
information unknown to the receiver. This is called the sender’s type θ ∈ Θ. The receiver only
learns about the type based on the sender’s action. For this reason, the sender’s action (here aS ) is
referred to as a message. The message need not correspond to the sender’s type.
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Fig. 4. The figure depicts a signaling game in which a sender S,who has access to private information, trans-

mits a message to a receiver R. The message is not verifiable, so R does not know the underlying information

with certainty. In separating and partially separating equilibria, however, it is incentive-compatible for S to

transmit a message that at least partially reveals his private information.

In this example, the set of types of S is Θ = {θB ,θM }, where θB represents a benign sender, and
θM represents a malicious sender. Let p (θ ) denote the prior probability with which S has each
type θ ∈ Θ. The utility functions depend on type. UM

S
(aS ,aR ) and U B

S
(aS ,aR ) give the utility

functions for malicious and benign senders, respectively. UR (θ ,aS ,aR ) gives the utility function
for the receiver when the type of S is θ , the sender message is aS , and the follower action is aR . R
forms a belief γ (θ | aS ) that S has type θ given that he sends message aS ∈ AS . To be consistent,
this belief should be updated in accord with Bayes’ law. A strategy pair in which S and R maximize
their own utilities, togetherwith a belief that is consistent, form a perfect BayesianNash equilibrium
(PBNE) (cf. Fudenberg and Tirole (1991)). In some PBNE, S can causeR to form a specific false belief.

3 LITERATURE SURVEY

In this section, we survey existing literature in game-theoretic approaches to defensive deception
for cybersecurity and privacy. Tables 3 and 4 in the Appendix list the papers, which we now discuss
from top to bottom.

3.1 Perturbation

The first set of papers study privacy that is obtained by perturbing sensitive data. Chessa et al.
(2015) model the interaction between a set of users who contribute data to identify mechanisms
by which the learning agent can improve the quality of its estimation. The users have two strategic
variables: whether to contribute at all, and the level of precision to use if they do contribute. They
face a trade-off between privacy and the benefit of contributing to data analysis. The paper takes
this benefit—although possibly difficult to quantify—to be a non-monetary interest in data as a
public good. Chessa et al. study both homogeneous and heterogeneous populations of users. The
interactions between these populations of users are modeled as Nash games. After finding that the
equilibrium in these games is worse than the population-optimal behavior due to the selfishness
of the agents, the authors consider a mechanism for the data collector to improve the equilibrium.
They find that an analyst can shift the equilibrium of the game toward more accurate estimation
by imposing a minimum level of precision in the strategy space of the users. The paper studies
computation of the average of a data set as a foundation for more complex statistics (Chessa et al.
2015).
Shokri (2015) also addresses the issue of data privacy for users who send private information

to an untrusted source. Shorki’s work concerns two types of privacy, differential privacy and
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Fig. 5. In the Information Sharing Framework from Shorki (2015), a user hides a secret s by releasing an

observable o according to the channel probability σL (o | s ). The adversary uses inference σF (ŝ | o) to obtain

estimate ŝ . This is a Stackelberg game, because the adversary knows the perturbation mechanism when he

designs an inference attack.

distortion privacy. Differential privacy obtains a guaranteed limit on the amount of information
that users leak to an attacker, but does not tell the user the actual level of privacy achieved.
Distortion privacy is a measure of the actual error of the attacker’s inferences based on the
information that is leaked. The calculation of this metric, however, requires that the attacker have
prior knowledge before making an observation. Using a non-zero-sum Stackelberg game, Shokri
develops a model for joint distortion-differential privacy. Figure 5 depicts the interaction. The user
leads by choosing a protectionmechanism. The attacker follows, designing an inference attack and
aiming to minimize user privacy. The inference attack is the best response to the user’s protection
mechanism. The author develops a linear program to obtain the equilibrium (Shokri 2015).
Alvim et al. (2017) study information privacy within the setting of information theory. Specifi-

cally, their paper formulates information transmission and leakage using quantitative information
flow. A sender possesses a secret, which a defender only knows with some prior probability. The
sender transmits the secret through a channel, and the channel leaks some information to the
adversary. Using this information, the adversary forms an a posteriori belief about the secret. A
quantity called the posterior vulnerability of the secret quantifies the degree of the adversary’s
knowledge. The quantification can be the entropy of the posterior distributions, although a gen-
eral convex function can also be used. Alvim et al. observe that the expected utility becomes con-
vex, rather than linear, in the mixed-strategy probabilities. For this reason, they call the game an
information leakage game (Alvim et al. 2017). This formulation makes useful connections to the
abundant tools available in information theory.
Theodorakopoulos et al. (2014) address the issue of privacy for location-based services (LBS).

The authors emphasize that human locations are not found at discrete spatial-temporal points, but
rather follow a trajectory. Theodorakopoulos et al. propose user-centric location privacy preserv-
ing mechanisms (LPPMs) that send LBS pseudolocations to protect not only the privacy of past
and future locations but also transitions between locations and locations between LBS queries. As
a Bayesian Stackelberg game leader, the LPPM strategically sends a perturbed pseudolocation to
the LBS to protect its exact real location. Privacy provided by the LPPM is measured by the error
with which an adversary deduces the real location of the target. Quality is determined by how
much the altered location data from the LPPM affects the functionality of the LBS. Both privacy
and quality values are computed for users that prioritize (1) protecting past locations or (2) protect-
ing future locations. The authors’ contribution is to improve upon “trajectory-oblivious” LPPMs.
They evaluate the LPPM using a set of mobility traces for taxi cabs in the San Francisco Bay area
(Theodorakopoulos et al. 2014).
Of course, a large body of literature studies the use of perturbation to protect privacy (especially

as quantified by differential privacy).We have only focused on the subset of this literature that uses
game theory. We also note that perturbation is very similar to obfuscation, which we survey in
Section 3.3. Section 4 defines the difference between the two types and explains why we have
categorized some papers as perturbation but others as obfuscation.
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Fig. 6. The moving target defense designed in Zhu and Başar (2013) updates the configuration of a system

each round based on learning the risk of attack that the system faces.

3.2 Moving Target Defense

Next, we discuss papers that study moving target defense. Moving target defense invokes concepts
of agility, changing attack surfaces, and random configurations. Two different game-theoretic con-
cepts are often used to model moving target defense. They differ in whether time is considered
explicitly. One approach is to model randomness using mixed strategies, with the implicit under-
standing that new realizations from a random variable will be performed over time. A recent paper
by Rass et al. notes a shortcoming of this approach: utility functions based on mixed strategies do
not inherently capture the cost of switching from one pure strategy to another over time (Rass
et al. 2017). The second approach to moving target defense is to use Markov decision processes.
In Markov decision processes for moving target defense, the defense configuration is considered
a state, and switching costs can be modeled explicitly.
Sengupta et al. (2018) consider the placement of intrusion detection systems (IDS) in a cloud-

based architecture. Two cloud servers and a cloud controller are connected to the Internet via a
physical router. An attacker who may be located either outside or inside the network attempts to
gain access. The network designer is able to place a limited number of IDS. The design problem
is where to place them. To limit the knowledge of the attacker, these placements are performed
probabilistically. Hence, this is a moving target defense. First the defender chooses a probability
distribution for the locations of the IDS. Then the attacker observes this distribution and he chooses
which system to attack. The interaction is modeled by a Stackelberg game with mixed strategies.
The game can be solved by a mixed-integer linear program, although ultimately the most efficient
formulation is as a mixed-integer quadratic program, using a branch-and-cut algorithm. One inter-
esting contribution of this paper is that the authors include a concise taxonomy of moving target
defense. They break moving target defense into four categories: shifting the exploration surface,
detection surface, attack surface, or prevention surface. This could be useful to add a layer to the
taxonomy proposed in the present article.
Zhu and Başar (2013) useMarkov decision processes tomodelmoving target defense for network

security. An attacker and defender play a series of zero-sum Nash games in which the defender
chooses the arrangement of systems with various vulnerabilities, and the attacker selects an attack
path that depends for its success on the arrangement of the vulnerabilities. See Figure 6. Tools from
control theory are used to analyze the dynamics of the multiple-round interaction. Zhu and Başar
show that the steady states of the learning dynamics correspond to equilibrium points in the Nash
games. The authors illustrate the game and resulting dynamics with a numerical example. This
work points toward modeling the interaction between the attacker and defender as a stochastic
game in which the defender would attempt to minimize the total risk over the whole game, rather
than optimizing his risk at each individual stage (Zhu and Başar 2013).
Feng et al. (2017) study moving target defense using a combination of a Markov decision process

and a Stackelberg game between an attacker and a defender of an abstract resource such as a

ACM Computing Surveys, Vol. 52, No. 4, Article 82. Publication date: August 2019.



Defensive Deception for Cybersecurity and Privacy 82:11

Fig. 7. Deceptive routing (Clark et al. 2012) protects traffic routed from source s1 to sink k1 and source s2 to
sink k2 from jamming attacks. Player 1 sends real traffic with volume aR1 to legitimate node sR1 but also sends

decoy traffic with volume aD1 to deceptive node sD1 . Player 2 has a similar strategy. With some probability,

the adversary attacks the deceptive rather than the real traffic.

network asset. The defender begins each turn by claiming a moving target defense strategy, which
lasts for T periods. The defender controls a Markov decision process in which the states represent
security configurations of the system. Then the attacker follows by choosing one state to attack.
If the attack is successful, then the attacker obtains a reward. The problem can be expressed in
min-max form, which the authors show can be reduced to simply a minimization problem. They
obtain an algorithm that has O ( |V |2 log |V |) complexity, where |V | is the number of valid states.
One insight from the paper is that the defender’s cost can be reduced more easily by increasing
the degree of the switching graph than by reducing the costs of switching (Feng et al. 2017).

3.3 Obfuscation

The third set of papers relates to hiding valuable information using external noise. Clark et al.
(2012) model a network in which information is sent from a source to a destination over multiple
nodes. See Figure 7. The interaction is modeled using a Stackelberg game in which the defender
leads by choosing the flow rates of deceptive and real traffic. The attacker observes these flows,
and then follows by choosing a path to attack. The authors consider situations in which sources do
and do not cooperate to obfuscate their traffic. They model the compounded pathway congestion
that comes with the addition of fake data, and the possibility that information sources may take
into account the delays being experienced by other nodes in the network when determining their
own data pathways and flow rates. A simulation illustrates that altruistic sources improve node
functionality. Clark et al. suggest that future work can study other measurements of the efficacy of
deception and an incomplete information model in which nodes are only partially informed about
the attacker’s cost and utility functions (2012).
Zhu et al. (2012) build upon this idea to consider both (1) deceptive routing, and (2) strate-

gic choices of flow rates. To model both of these conflicts, the authors formulate multiple-player
Stackelberg games in which the defender leads and the attackers follow. The routing game requires
an extension to Stackelberg games to allowN + 3 players, whereN is the number of attackers. Zhu
et al. quantify the effectiveness of the mechanism using a metric called value of deception, a ratio of
the utility achievedwith andwithout the use of deception. Simulations illustrate that defender util-
ity decreases approximately asymptotically in the attacker’s budget, and increases approximately
linearly in the number of hops. Future work could include the introduction of learning to similar
algorithms, as well as the application of the model to multiple routing pathways (Zhu et al. 2012).
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While Clark et al. (2012) and Zhu et al. (2012) apply obfuscation to security, this type of decep-
tion also applies directly to privacy. Two recent papers by Pawlick and Zhu (2016, 2017a) model the
long-run impact of obfuscation technologies such as TrackMeNot (Howe and Nissenbaum 2009) (a
browser add-on that issues randomized search engine queries to obfuscate a user’s search profile)
and ScareMail (Grosser 2014) (which appends security-sensitive words to the end of every email
in an effort to undermine mass surveillance). These tools add irrelevant data (e.g., randomized
browser searches) to relevant data (e.g., real browser searches). The first paper develops a Stackel-
berg game in which the leader is a machine learning or tracking agent and the follower is a user.
The learning agent has the option to promise a level of differential privacy protection. The user
reacts to this level and chooses whether to obfuscate the data himself. Under certain conditions, it
is incentive-compatible for the learning agent to promise some level of privacy protection to avoid
user obfuscation (Pawlick and Zhu 2016). The second paper extends this scenario to multiple users
through a mean-field game model. In a mean-field game, each user responds to the average obfus-
cation of the field of other users. This extended model predicts a threshold of perturbation beyond
which users will adopt obfuscation in a cascading manner. The paper also identifies conditions
under which obfuscation does not motivate privacy protection from the learner but only results
in data pollution (Pawlick and Zhu 2017a). These papers could benefit from future measurements
of users’ preferences in experimental or empirical settings.

3.4 Mixing

Techniques for both security and privacy use the idea of mixing to prevent linkability. Zhang
et al. (2010) study anonymity of the Tor network. When information is sent over Tor, it passes
through three nodes before reaching its destination, in an attempt to make the entry and exit nodes
unlinkable. Zhang et al. point out that since connectivity on Tor is volunteer-based, attackers could
collude to link the entry and exit nodes. They propose gPath, which operates on three principles:
(1) an exit-eligible node should not be considered for the entry, (2) the middle node should have
equal or greater bandwidth than the entry node, and (3) the exit node should be chosen based on
the bandwidths of the entry and middle nodes. The authors construct utility functions for the user
and attacker. The players use these functions to compute best responses to each other’s strategies
in four rounds. This is different from Nash equilibrium, since the strategies do not necessarily
converge to mutual best responses. Simulations performed on a snapshot of the Tor network from
2010 suggest that gPath reduces the probability of a successful attack (Zhang et al. 2010).

The idea ofmixing can also be applied to cyber-physical systems such as vehicle ad hoc networks
(VANETs). Freudiger et al. (2009) use locations called mix zones for location privacy in VANETs.
Vehicles in these networks communicate using pseudonyms to achieve anonymity. Nevertheless,
a constant trace of communications from a single pseudonym creates a link between a vehicle’s
origin and destination. One technology proposed to overcome this linkability is pseudonym swap
in mix zones (Figure 8). At locations such as intersections, multiple vehicles simultaneously ex-
change their pseudonyms, so that the identities of vehicles that enter the swap zone can only be
linked with the identities of vehicles that exit the swap zone with some probability. Freudiger et al.
note that this is a strategic interaction, because swapping involves some cost. Selfish actors may
decline to swap. Nash equilibrium is used, since pseudonym swapping is a simultaneous interac-
tion. Freudiger et al. consider both complete and incomplete information games. In the incomplete
information games, each player is unaware of the privacy loss that the other players have incurred
since their last pseudonym swap (and thus their willingness to swap again). Interestingly, VANET
nodes tend to swap pseudonyms more often when pseudonym swapping is expensive than when
it is cheap (Freudiger et al. 2009). One challenge is that swap locations are presumably those in
which communication is most necessary and should not be interrupted (such as at an intersection).
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Fig. 8. Freudiger et al. (2009) study pseudonym swapping for location privacy in vehicle ad hoc networks.

As Vehicle 1 turns left at its first intersection, it can swap pseudonyms with Vehicles 2 and 3. At its second

intersection, it can swap with Vehicles 4, 5, and 6. If these other vehicles have recently swapped, however,

then they have little incentive to swap again. Thus, the interactions become multiple-player, simultaneous-

move games.

Lu et al. (2012) address this dilemma by proposing pseudonym changes at social spots, where
many vehicles often stop for a period of time. Small social spots, e.g., stoplights, are places where
vehicles stay briefly. Large social spots, such as parking lots, are places where vehicles remain
for longer duration. A privacy mechanism—Key-insulated Pseudonym Self-Delegation (KPSD)—
is proposed. Authorized keys (pseudonyms) for each vehicle are kept in a secure location by a
Trusted Authority (TA), usually at the car owner’s home. The TA loads onto the OnBoard Unit
(OBU) a set of temporary keys before each new trip. As in Freudiger et al. (2009), the adversary
is global (i.e., has full access to radio network safety messages that provide vehicle time, location,
speed, content and pseudonym) and external (only listening in on conversations, not engaging in
vehicle sabotage), with access to the vehicle’s OBU. This KPSD model is also unique compared to
other models because of its ability to prevent theft. Since pseudonyms are changed at social spots
and since the keys are not kept with the vehicle but instead with the TA, a thief cannot generate
temporary keys needed for vehicle operation. Lu et al. incorporate a game-theoretic argument
(based on Nash equilibrium) to discuss the scenarios under which KPSD is incentive-compatible
(Lu et al. 2012).

3.5 Honey-X

By honey-x, we refer to deception that uses techniques named with the prefix honey (e.g., hon-
eypot, honeynet, honeybot, etc.). In many implementations of these techniques, defenders have a
limited capacity to monitor honeypots, and attackers have constrained time and available tech-
nologies to detect honeypots. Therefore, game-theoretic trade-offs arise. Carroll and Grosu (2011)
study a network in which a defender can disguise honeypots as real systems (or reveal them as
honeypots) and real systems as honeypots (or reveal them as real systems). The goal is to make at-
tackers waste resources attacking honeypots and avoiding real systems. In the proposed signaling
game, the defender is the sender and the attacker is the receiver. The equilibrium concept is PBNE.
Because the defender never wants to reveal the system type to the attacker, the game does not
support any separating equilibria. Carroll and Grosu analyze both pooling and hybrid (partially
separating) equilibria. Hybrid equilibria demonstrate cases in which the defender has an incentive
to partially reveal the actual system type (Carroll and Grosu 2011).
This work by Carroll andGrosu has inspired several other papers. Çeker et al. (2016) build on this

model for honeypot deployment in the setting of distributed denial-of-service attacks. This paper
features onemajor difference: in Çeker et al. (2016), messages are costly, while in Carroll and Grosu
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Fig. 9. Mohammadi et al. (2016) use signaling games to model the use of fake avatars as a type of honey-x.

The avatars observe suspicious or non-suspicious activity from other user accounts in the network and must

form a belief about whether the other users are legitimate accounts or compromised accounts. The goal of

the avatars is to correctly report compromised accounts, while avoiding false positives.

(2011) they are costless. In other words, defenders in Çeker et al. (2016) must pay a cost to make
normal systems appear to be honeypots or honeypots appear to be normal systems. Because of
this cost, separating equilibria emerge in some parameter regimes. Another feature of Çeker et al.
(2016) is that the authors propose a parameter valuation method to obtain the utility functions
using existing security evaluations. The authors derive a complete set of closed form solutions.
Mohammadi et al. (2016) use signaling games to model the decision processes of a fake avatar

that is defending a social network from attack. Figure 9 depicts the model using the signaling game
formulated in Figure 4. A user in the network may be normal or compromised. It interacts with
an avatar in suspicious or not suspicious ways, and this interaction is taken to be a signaling-
game message. The fake avatar observes this interaction, and forms a belief about the real type
of the user. The avatar then decides whether to raise an alert. Mohammadi et al. (2016) is not a
cheap-talk game, because raising an alert is assumed to be more costly than not raising an alert.
But this extra cost of raising an alert applies regardless of the actual user type, so it does not take
the form of a “lying cost,” as is the case in Çeker et al. (2016). Due to this different structure, the
game in Mohammadi et al. (2016) does not support separating equilibria. In the pooling equilibria,
the fake avatar alerts the system of an attack if the prior probability that the user is an attacker is
sufficiently high (Mohammadi et al. 2016).
Pawlick and Zhu present a final perspective on honeypot deployment using signaling games

(2018). They use a cheap-talk game with binary type, message, and action spaces. The unique ele-
ment, however, is a “detector” that gives off probabilistic evidence when the sender misrepresents
his type. They call this model a signaling game with evidence (2015, 2018). This model is capable of
nesting cheap-talk signaling games (cf. Crawford and Sobel (1982)) and games of verifiable disclo-
sure (cf. Milgrom (1981)) as special cases. The relevant equilibrium concept is an extended version
of PBNE. The authors find that the ability to detect honeypots always improves the utility of the
attacker, but surprisingly sometimes also improves the utility of the defender. This suggests that
in certain parameter regions, it is advantageous for the defender to use imperfect deception. They
also find that detectors that prioritize high true-positive rates over low false-positive rates encour-
age truthful signaling. Finally, they show that receivers prefer equal-error-rate detectors (Pawlick
et al. 2018).
Píbil et al. (2012) and Kiekintveld et al. (2015) create a different type of imperfect information

model called a honeypot selection game. The honeypot selection game classifies targets into differ-
ent levels of importance. These are assigned corresponding utility values for the attacker, and the
defender plays to minimize the attacker value. The defender disguises the honeypots by choosing
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the utility value that they appear to have. A configuration of the network is represented by a vector
of the real values of each real machine, and the simulated values of the honeypots. The Bayesian
Nash equilibrium can be found using a linear program. The authors examine the defender’s op-
timal strategy and equilibrium utility as a function of the number of honeypots that he deploys.
Keintveld et al. also study an extension of the game that allows attackers to probe potential targets
before choosing whether to attack. The probe returns accurate or inaccurate responses with some
probability. The game is again zero-sum, and the analysis proceeds using a linear program (Píbil
et al. 2012; Kiekintveld et al. 2015).

3.6 Attacker Engagement

Most game-theoretic models of deception are either static games (such as simultaneous move Nash
games) or single-shot dynamic games (such as Stackelberg games or signaling games). But some
initial work has investigated multiple-period games. We use “dynamic” to refer to games having
multiple periods, and we call these interactions attacker engagement.
Zhuang et al. (2010) create a multiple-period signaling game that concerns deception and re-

source allocation. This paper is about homeland security, in general, and only briefly mentions
computer security. Still, it is interesting due to its technical setup and insights. In each period,
the defender chooses to invest in either short term “expense” or long term “capital” investments.
In addition, the defender chooses how much of this to reveal to the attacker using a signal. The
defender may signal truthfully or deceptively, or she may act secretively, i.e., not reveal any in-
formation. The attacker observes the defender’s signal, updates his belief, and chooses whether
to attack. Games are constructed in which the attacker can and cannot observe previous defender
investment strategies. The games are solved through backwards induction. In several cases, the
defender can deceive the attacker, often by mimicking the strategy of the opposite defender type.
For example, when the attacker cannot observe previous defender strategies and has a high cost
of attack, the defender can deter an attack by choosing an expensive short term defense rather
than long term investment. Zhuang et al. also discuss remaining challenges involved in the area
of equilibrium selection (2010).
Durkota et al. (2015) use attack graphs to represent attacker strategies and develop network-

hardening methods to increase security. They propose a Stackelberg game in which the defender
leads by placing honeypots in the network. The attacker follows and has knowledge of the number
of honeypots (not their identities). Attack graphs are used to capture the adversary’s multiple-
round strategies. Durkota et al. argue that vulnerability databases can be used to construct a menu
of possible attack graphs that the adversary can employ, assuming that the defender knows which
systems, software, and so on, are present in the network. The defense strategy is obtained using
Markov decision processes. One contribution of the paper is an efficient algorithm to solve the
Markov decision process using policy search with pruning (Durkota et al. 2015). For the purposes
of the classification in Section 4, it is interesting to note that the paper builds upon the foundation
of honeypot deployment, but adds the dynamic element of multiple-round attack graphs.
Horák et al. (2017) model the penetration of an attacker into a network using a one-sided par-

tially observable stochastic game. Unlike most approaches to network security, Horák et al. con-
sider the defender rather than the attacker to be the informed player. Instead of ejecting an at-
tacker immediately, the defender decides how long to observe the attacker to gather information.
Figure 10 depicts the set of states and transitions. The attacker compromises the network in layers
and chooses when to exfiltrate data without knowing for sure whether she has been detected. In
equilibrium, the defender’s optimal strategy is to keep the attacker inside the network while the
attacker is confident that he has not yet been detected and to eject the attacker from the network
otherwise. The authors also evaluate the robustness of the solution if the attacker does not know
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Fig. 10. Horák et al. (2017) model attacker engagement using a one-sided partially observable stochastic

game. From left to right, states correspond to layers of a network. In the states at the top of the figure, the

attacker is undetected. When the IDS detects the attacker, the state moves to the bottom of the figure. De-

fender actions are shown in italics. The defender decides when to engage the attacker and gather information

rather than eject the attacker.

the capabilities of the IDS. While this paper studies a simplified network structure, it offers an
uncommon analysis of the optimal strategies for a powerful and observant defender (Horák et al.
2017).

4 TAXONOMY

The U.S. Department of Defense has highlighted the need for “the construction of a common lan-
guage and a set of basic concepts about which the security community can develop a shared un-
derstanding” (MITRE 2010). More specifically, the term deception has been employed broadly and
with a variety of meanings. A “common language and a shared set of basic concepts” would allow
deception researchers to better collaborate. It would also further the development of cybersecurity
and privacy as a science. Finally, a precise taxonomywould allow game theorists to carefully select
models that capture the unique features of each different type of deception.
In Section 3, we sorted deception into six different types: perturbation, moving target defense,

obfuscation, mixing, honey-x, and attacker engagement. In this section, we first give general de-
scriptions of the six types. Then, we construct a taxonomy that precisely defines each of the types
using game-theoretic principles.

(1) In the area of privacy, deception can limit leakage of sensitive information through the
use of noise. This type of deception is often called perturbation (Section 3.1).

(2) Deception can limit the effectiveness of attacker reconnaissance through techniques such
as randomization and reconfiguration of networks, assets, and defense tools. This is called
moving target defense (Section 3.2).

(3) Deception can waste effort and resources of attackers by directing them to decoy targets
rather than real assets and can protect privacy by revealing useless information aside real
information. This is called obfuscation (Section 3.3).

(4) Deception can use exchange systems, such as mix networks and mix zones, to prevent
linkability. We call this type of deception mixing (Section 3.4).

(5) Deception can draw attackers toward specific systems (such as honeypots) by disguising
these systems as valuable network assets. To include honeynets, honey-users, and so on,
we call this type of deception honey-x (Section 3.5).
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Fig. 11. We use the term mimesis to signify the creation of a specific false belief. In this example, a defender

makes an adversary believe that a database exists when, in fact, it does not exist.

Fig. 12. We use the term crypsis to refer to preventing an adversary from acquiring a true belief. In this

example, a defender hides the true existence of a database from an adversary.

(6) Deception can use feedback to dynamically influence attackers over an extended period
of time, to waste their resources and gather intelligence about them. We call this attacker
engagement (Section 3.6).

4.1 Detailed Definition of Each Type of Deception

A taxonomy is “a collection of controlled vocabulary terms organized into a hierarchical structure”
in which each term “is in one or more parent/child (broader/narrower) relationships to other terms
in the taxonomy” (NISO 2005). Traditionally, each parent is called a genus, and each child is called
a species (Chisholm 1911). Each species is demarcated from other members of its genus by a specific
difference. The most fine-grained species in a taxonomy are sometimes called the infimae species.
In our taxonomy, we can now identify the “types” of deception more formally as infimae species.
Since the purpose of our taxonomy is to identify appropriate game-theoretic models for each

infima species of deception, the specific differences that we use are related to game theory (see Ta-
ble 1). These are the principles of private information Θ, players P, actionsA, and time-horizon T .

4.1.1 Private Information. One of these principles is the private information. To deceive is to
intentionally cause another agent either “to acquire or continue to have a false belief” or “to be
prevented from acquiring or cease to have a true belief” (Mahon 2016). These two categories are
quite different. Figures 11 and 12 depict both categories. The first category involves instilling in
another a specific falsity (Figure 11). In the language of game theory, this requires the creation of a
belief. In signaling games or partially observable stochastic games, agents maintain beliefs over the
private information Θ of other agents. Deceptive actions manipulate these beliefs to create traps
or decoys. However, the second category of deception involves hiding a true belief (Figure 12).
This could be employed in cybersecurity to hide a weakness, or it could be deployed in privacy
to protect sensitive information. In either case, the defender maximizes her utility function by
causing attackers to obtain noisy or uncertain information about the state of reality.
Rothstein andWhaley have distinguished between these two categories as simulation (or “show-

ing the false”) and dissimulation (or “hiding the real”) (2013). Under simulation, they include sub-
categories called masking, repackaging, and dazzling. Under dissimulation, they include mimick-
ing, inventing, and decoying. While the distinction between hiding the real and showing the false
is appropriate for our purposes, we prefer not to adopt the same subcategories for several reasons.
In particular, Rothstein and Whaley (2013) includes decoying as a type of “showing the false.” But,
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Fig. 13. Intensive deception. The defender alters the same object that is being hidden. In this example, the

defender adds noise to private data.

Fig. 14. Extensive deception. The defender hides an object using other objects in the environment. In this

example, the defender dynamically changes the location of the private data.

we prefer to label it as “hiding the real.” In the literature that we review, decoys are simulated
entities, but they are used mostly to hide the presence of the real entity.4

Therefore, we prefer a new terminology. Biologists distinguish hiding the real and showing the
false using the terms crypsis andmimesis. “In the former . . . an animal resembles some object which
is of no interest to its enemy, and in doing so is concealed; in the latter . . . an animal resembles an
object which is well known . . . and in so doing becomes conspicuous” (Cott 1940). We adopt these
terms to signify the corresponding categories of cybersecurity deception.

4.1.2 Actors. The next specific difference is the set of actors or players P involved in decep-
tion. Based on the actors involved, cryptic deception can be divided into intensive and extensive
deception (see Figures 13 and 14). Intensive deception modifies an actor (or its own representation)
to hide it (Figure 13). For example, some privacy techniques add noise to data about a user before
publishing it. The user’s own data is modified. By contrast, extensive deception is that category of
deception that hides an actor by using outside actors (Figure 14). In cyberspace, examples include
mix networks for anonymity. Many messages enter a network, where they are mixed in a chain of
proxy servers before leaving the network. Any given message is hidden because of the presence
of the other messages.

4.1.3 Actions. Deceivers can act in a number of ways, or actionsA.Within cryptic deception,
we distinguish between deception that uses information and deception that uses motion. Decep-
tion that uses information tends to manipulate the data released about agents’ properties, while
deception that uses motion either modifies these properties over time or realizes these properties
from a random variable. In other words, the first category is associated with creating noise, while
the second category is associated with concepts such as agility and randomization.

4.1.4 Duration. Within mimetic deception, we distinguish between static and dynamic scenar-
ios. Dynamic games feature multiple interactions, while static games consist of only one interac-
tion.5 Currently, the majority of game-theoretic defensive deceptions use static models. The most

4The use of decoys pertains to obfuscation (Section 3.3). We place technologies such as honeypots (Section 3.5) in a separate

category, because they are designed to attract attacker attention, not simply to hide the presence of real systems.
5Here, we consider one-shot games to be static even if they are not simultaneous-move games.
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Fig. 15. Tree diagram breakdown of deception into various species. The specific differences correspond to

the game-theoretic notions of private information, actors, actions, and duration. We describe a set of infimae

species called perturbation, moving target defense, obfuscation, mixing, honey-x, and attacker engagement.

Table 2. Infimae Species and Definition

Infima Species Definition

Perturbation Cryptic, intensive, informational deception
Moving Target Defense Cryptic, intensive, motive deception

Obfuscation Cryptic, extensive, informational deception
Mixing Cryptic, extensive, motive deception
Honey-X Mimetic, static deception

Attacker Engagement Mimetic, dynamic deception

popular set of mimetic deceptions that are static are honeypots, honeynets, and honeytokens, to
which we refer generically using the term honey-x. We use the name attacker engagement to denote
all forms of mimetic deception that are dynamic.

4.2 Synthesizing the Taxonomy

Figure 15 uses the specific differences of private information, actors, actions, and duration to cre-
ate a taxonomy that breaks the genus of deception into multiple levels of species, ending with the
infimae species of perturbation, moving target defense, obfuscation, and so on. Based on the tax-
onomy, Table 2 lists the definitions of each of the infimae species. The definitions are unambiguous
as long as the specific differences are clearly defined. They are also mutually exclusive, because
we have used mutually exclusive specific differences. Finally, note that the order of application of
the specific differences does not matter. This implies that the taxonomy could be also represented
using a binary lattice in four dimensions, one dimension for each of the specific differences.

4.2.1 Classification of Literature. In the Appendix, Tables 3 and 4 justify the classification of
each paper into its infimae species based on the value of its specific differences. Most classifications
are straightforward. To evaluate the structure of the taxonomy, however, consider several border
cases.
First, Shokri (2015) uses the term “obfuscation,” but we have classified the deception in this paper

as perturbation. Noise is applied to the valuable information itself, so our taxonomy categorizes it
as intrinsic rather than extrinsic. Nevertheless, obfuscation and perturbation are closely related. If
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Fig. 16. The game-theoretic model is listed for each paper in cryptic deception, to compare and contrast the

models used for each infimae species. Parenthetical remarks give reasons for the chosen models.

Fig. 17. Several trends are apparent in the mapping between infimae species and game-theoretic models.

we view each specific difference of an infimae species as a bit, then we can say that obfuscation
and perturbation have a Hamming distance of one.
Second, consider Zhu et al. (2012). The main idea of the paper is to protect valuable network

traffic by sending external decoy traffic. Therefore, the infimae species is obfuscation. But the
paper also considers mixed strategies, which implement the agility or motion that is characteristic
of moving target defense. Again, obfuscation and moving target defense have a Hamming distance
of one.
A third border case is Zhang et al. (2010), which studies protection of traffic in the Tor network.

This application is similar to the deceptive routing problems in Clark et al. (2012) and Zhu et al.
(2012), which we have classified as obfuscation. Still, we have classified (Zhang et al. 2010) as
mixing, because Tor requires the participation of other users in the mix network; therefore, it is
extrinsic.

4.2.2 Observed Relationships Between Models and Infimae Species. Since our taxonomy differ-
entiates species of deception based on game theory, it is interesting to see which games were used
to model each species. Figure 16 lists the papers from Section 3 that study crypsis. Most papers
use Nash games and Stackelberg games. The papers that use Nash games (or related concepts)
are listed on an orange background, and the papers that use Stackelberg games are listed on a
blue background. The figure reveals that authors do not concur on a one-to-one mapping between
species and games. This is to be expected, since (1) different games capture different aspects of
the same interaction, (2) modeling approaches are still evolving in this nascent field, and (3) the
cybersecurity landscape itself is evolving.
Nevertheless, some trends are evident. These are depicted in Figure 17. First, all of the papers

on mixing use Nash games or related concepts. (Zhang et al. (2010) use several rounds of
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Fig. 18. The game-theoretic model is listed for each paper in mimetic deception, to compare and contrast

the models used for each infimae species.

Fig. 19. Trends are indicated in each species of mimesis.

best-response, which is based on the idea of Nash equilibrium.) This is logical, because each user
in a mix network or a mix zone simultaneously decides whether to participate. A second trend
spans both perturbation and obfuscation. Papers that study user-user interactions are modeled
using Nash games (or in one case, a mean-field game), and papers that study user-adversary
interactions are generally modeled using Stackelberg games. Finally, moving target defense tends
to be modeled in two different ways. One way is to use mixed strategies to model randomness in
defensive configurations. The second way is to use Markov decision processes to explicitly model
the temporal component of changing defensive characterizations.
Figures 18 and 19 list the papers that study mimesis. Papers on the left-hand side study honey-x

(static mimesis), and papers on the right-hand side study attacker engagement (dynamic mimesis).
The mapping between deception species and games is not one-to-one. Honey-x is modeled using
two different approaches. One approach uses signaling games, to emphasize the formation of the
attacker’s belief about whether systems are normal systems or honeypots. The other approach
uses Bayesian Nash games. This approach follows along the lines of resource allocation problems,
and obtains an overall network configuration that is optimal for the defender.
The right-hand sides of Figures 18 and 19 list three approaches to attacker engagement. Zhuang

et al. (2010) use a multiple-period game that has a state that reflects information from past periods.
The solution is obtained using dynamic programming. Durkota et al. (2015) represent a dynamic
network attack using a Markov decision process. The attacker deploys the whole Markov decision
process as a Stackelberg follower, and the defender places honeypots as a Stackelberg leader. Fi-
nally, Horák et al. (2017) use a one-sided partially observable Markov decision process. This model
is perhaps the closest of the three to a general competitive Markov decision process, in which a de-
fender and an attacker choose dynamic policies to optimize long-term utility functions (Filar and
Vrieze 2012).

4.2.3 Preferred Relationships Between Models and Infimae Species. Within these trends, certain
modeling approaches best capture the essential elements of each species of deception. Figure 20
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Fig. 20. Taxonomy with promising modeling approaches overlaid in a hierarchical fashion. For instance,

cryptic, intensive, and motive deception (i.e., moving target defense) can be modeled by non-cooperative,

complete-information, two-player games with mixed strategies. Each of the modeling approaches is shown

in a blurred shape to indicate that alternate approaches are possible.

depicts these approaches. The root node is non-cooperative games.6 Within non-cooperative
games, games with incomplete information are well suited for mimetic deception, since they can
explicitly model the false attacker beliefs that defenders attempt to inculcate. One-shot models
such as signaling games model honey-x, while dynamic models such as partially observable
stochastic games are necessary to effectively study attacker engagement.
Within cryptic deception, two players are often sufficient to study intensive deception, in which

a single defender attempts to directly deceive an attacker. By contrast, extensive deception involves
multiple defenders who compete against each other in addition to competing against an attacker.
In perturbation and obfuscation, actions often consist of choosing the variance of noise to add
to published data. In mixing and moving target defense, actions often consist of choosing mixed
strategies. Through these mixed strategies, defenders probabilistically choose routing paths or
network configurations.

5 DISCUSSION AND FUTURE DIRECTIONS

Our taxonomy and literature survey suggest a number of open challenges and promising future
directions.

5.1 Mimesis

In the papers that we survey, cryptic deception predominates over mimetic deception. One
explanation is that crypsis is the goal of all privacy research. Another explanation is that
the straight-forward technique of randomization falls within the category of crypsis. Finally,
research in mimesis may face greater ethical concerns than in crypsis. For instance, ought a Chief
Information Officer to publish a document that falsely states the number of data servers that the
company runs in order mislead an adversary? Clearly, there are some aspects of deception that
could infringe on other values such as trustworthiness. These caveats notwithstanding, more
opportunity remains in mimetic deception.

6Future research can consider cooperative games, but most current studies use non-cooperative models.

ACM Computing Surveys, Vol. 52, No. 4, Article 82. Publication date: August 2019.



Defensive Deception for Cybersecurity and Privacy 82:23

5.2 Theoretical Advances

The vast majority of the papers that we have surveyed use Stackelberg games and Nash games.
Many combine these with rich non-strategic models. For example, Feng et al. (2017) combines a
Stackelberg game with a Markov decision process, and Zhu and Başar (2013) combines a Stackel-
berg game with dynamic systems analysis. Few papers, though, include advanced game-theoretic
models. For instance, the literature that we surveyed did not include any cooperative games. In
addition, dynamic games were not often considered, partly because general stochastic games are
fundamentally difficult to analyze. This may also reflect the relative newness of research in defen-
sive deception for cybersecurity and privacy—and the application of game theory to this area.

5.3 Practical Implementations

Game theory has been successfully deployed for physical security in several applications. For in-
stance, Pita et al. (2008) describes the ARMOR system, which is a game-theoretic protocol deployed
at Los Angeles International Airport. This protocol uses Stackelberg games. Similarly, Jain et al.
(2010) uses Stackelberg games to optimize the assignment of Federal Air Marshals to U.S. commer-
cial flights. Yet it is difficult to identify successful implementations of game-theoretic concepts to
cybersecurity. Of course, it is possible that commercial endeavors use game-theoretic defenses, but
prefer not to publish the results. Still, several challenges frustrate the deployment of game theory
in cybersecurity.
One obstacle is that some cybersecurity professionals may be wary of so-called security through

obscurity, i.e., deceptive security mechanisms that rely only on an attacker’s lack of information. It
is true that deceptive mechanisms should be combined with traditional approaches such as cryp-
tography and access control. In our opinion, though, game theory provides precisely the right set
of tools to offer security professionals provable guarantees on what can be achieved by deception.
Many game theory models assume that the adversary has full access to the strategy of the de-
fender. Hence, they obtain worst-case guarantees and are not undermined if an attacker learns the
defender’s strategy. Indeed, some government organizations have enthusiastically adopted decep-
tion for cybersecurity. For example, researchers at the American National Security Agency (NSA)
recently conducted a series of observed red-team exercises involving deception. Data collectors
monitored the actions and rationale of the attackers and defenders (Ferguson-Walter et al. 2017).
Such exercises are invaluable in making sure that game-theoretic models accurately capture ele-
ments of human psychology.
A second obstacle is, paradoxically, the high demand for technical network security profession-

als. Since industry and government organizations have a high demand for security analysts, and
since these analysts need to constantly monitor network traffic, it is challenging to establish col-
laborations between the analysts and academic researchers with backgrounds in game theory. This
collaboration is crucial to ensure that game theorists solve relevant problems. However, work in
game theory also offers the possibility to relieve the burden on analysts. For example, game the-
ory can be used to optimally design IDS alerts to limit the number of false positives that must be
analyzed.

5.4 Interdisciplinary Security

Our article has analyzed deception as a quantitative science. Deception, however, is interdisci-
plinary. Economics research offers well-developed game-theoretic models. Often, however, the
challenge is to apply these models in accurate, domain-specific ways. Work in experimental eco-
nomics emphasizes behavioral or sub-rational aspects of deception. These aspects are critical for
applications in which the attacker does not play the theoretically optimal strategy. Additionally,
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psychology can be employed to analyze attacker preferences and develop accurate threat models.
Finally, criminology can be useful to detect signs of deception by humans. As attacks become in-
creasingly automated, though, the effectiveness of both psychology and criminology will have to
be reevaluated.

5.5 Conclusion

The next generation of cybersecurity and privacy techniques will leverage tools commonly em-
ployed by attackers for the purpose of defense. For applications ranging from protection of civil
liberties to network security to defense of the Internet of Battle Things, defensive deception will
play a principal role. We have developed a taxonomy of defensive deception for cybersecurity and
privacy viewed through the lens of game theory. This taxonomy provides a scientific foundation
for future defensive deception research and a common language that can be used to conceptualize
defensive deception. This work also provides a menu of game-theoretic models and defensive de-
ception techniques that can be leveraged for future research. Finally, we have summarized many
of the contributions of game theory to the various species of deception over the past ten years. We
hope that these will provide a conceptual basis for the next stage of research in defensive deception
in cybersecurity and privacy.

APPENDIX

Tables 3 and 4 list our classification justifications for papers in cryptic and mimetic deception,
respectively.

Table 3. Classification Justification for Papers in Cryptic Deception

Authors and Year Category Justification

Chessa et al. (2015) Cryptic The objective is to hide private data.

Intrinsic The private data itself is modified.

Informational Noise is added to a quantity.

Shokri (2015) Cryptic The objective is to hide private data.

Intrinsic The private data itself is modified.

Informational Noise is added to a quantity.

Alvim et al. (2017) Cryptic The objective is to hide private data.

Intrinsic The private data itself is modified.

Informational Noise is added to a quantity.

Theodorakopoulos

et al. (2014)

Cryptic The objective is to hide location.

Intrinsic The location itself is modified.

Informational Noise is added to the location.

Rass et al. (2017) Cryptic The goal is to hide configuration.

Intrinsic The configuration is centrally controlled.

Motive The configuration is varied over time.

Sengupta et al. (2018) Cryptic The goal is to hide IDS locations.

Intrinsic The locations are chosen centrally.

Motive The locations are is realized randomly.

Zhu and Başar (2013) Cryptic The goal is to hide vulnerability locations.

Intrinsic The configuration is centrally controlled.

Motive The configuration is varied over time.

(Continued)
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Table 3. Continued

Authors and Year Category Justification

Feng et al. (2017) Cryptic The goal is to hide a resource configuration.

Intrinsic The configuration is centrally controlled.

Motive The configuration is varied over time.

Clark et al. (2012) Cryptic The goal is to hide the network traffic path.

Extrinsic Traffic is hidden using other useless traffic.

Informational This uses uncertainty rather than motion.

Zhu et al. (2012) Cryptic The goal is to hide the network traffic path.

Extrinsic Traffic is hidden using other useless traffic.

Informational This uses uncertainty rather than motion.

Pawlick and Zhu (2016) Cryptic The goal is to hide true user behavior.

Extrinsic True behavior is hidden in distracting actions.

Informational This uses uncertainty rather than motion.

Pawlick and Zhu

(2017a)

Cryptic The goal is to hide true user behavior.

Extrinsic True behavior is hidden in distracting actions.

Informational This uses uncertainty rather than motion.

Zhang et al. (2010) Cryptic The goal is to hide entry-exit node pairings.

Extrinsic The mix network relies on other nodes.

Motive Exit and entry nodes are realized randomly.

Freudiger et al. (2009) Cryptic The goal is to hide user-pseudonym links.

Extrinsic Swaps require multiple participants.

Motive Hiding links depends on multiple exchanges.

Lu et al. (2012) Cryptic The goal is to hide user-pseudonym links.

Extrinsic Swaps require multiple participants.

Motive Hiding links depends on multiple exchanges.

Table 4. Classification Justification for Papers in Mimetic Deception

Authors and Year Category Justification

Carroll and Grosu

(2011)

Mimetic Honeypots appear to be normal systems.

Static The interaction is a one-shot game.

Çeker et al. (2016) Mimetic Honeypots appear to be normal systems.

Static The interaction is a one-shot game.

Mohammadi et al.

(2016)

Mimetic Honeypots appear to be normal systems.

Static The interaction is a one-shot game.

Pawlick and Zhu (2018) Mimetic Honeypots appear to be normal systems.

Static The interaction is a one-shot game.

Píbil et al. (2012) Mimetic Honeypots appear to be normal systems.

Static The interaction is a one-shot game.

Kiekintveld et al. (2015) Mimetic Honeypots appear to be normal systems.

Static The interaction is a one-shot game.

Zhuang et al. (2010) Mimetic Defender types can signal the opposite type.

Dynamic The game occurs over multiple periods.

Durkota et al. (2015) Mimetic Honeypots appear to be normal systems.

Dynamic Attacks are multi-stage.

Horák et al. (2017) Mimetic The attacker believes he is undetected.

Dynamic The game is infinite-horizon.
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