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Abstract

A novel method for real-time solar generation
forecast using weather data, while exploiting both
spatial and temporal structural dependencies is
proposed. The network observed over time is projected
to a lower-dimensional representation where a variety
of weather measurements are used to train a
structured regression model while weather forecast is
used at the inference stage. Experiments were
conducted at 288 locations in the San Antonio, TX
area on obtained from the National Solar Radiation
Database. The model predicts solar irradiance with a
good accuracy (R? 0.91 for the summer, 0.85 for the
winter, and 0.89 for the global model). The best
accuracy was obtained by the Random Forest
Regressor. Multiple experiments were conducted to
characterize influence of missing data and different
time horizons providing evidence that the new
algorithm is robust for data missing not only
completely at random but also when the mechanism is
spatial, and temporal.

1. Introduction

Due to technological advances of solar power
lowering the price of the photovoltaic (PV) panels and
the push for cleaner energy, solar power has seen a
tremendous growth worldwide. During the last decade
the installed capacity for the number of OECD
countries, all around the world has grown from 34% to
82% [1]. In 2017, renewables accounted for 55% of
the 21 GW of U.S. capacity additions. Solar
technology showed record 40% growth in power
generation in 2017 [4]. As of February 2018,
renewables accounted for 22% of total currently
operating U.S. electricity generating capacity [2]. The
tremendous growth in the U.S. solar industry is
helping to pave the way to a cleaner, more sustainable
energy future [3]. Furthermore, more solar plants are
projected to be added to the power generation mix in
the next few years.
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With the rapid growth of the solar industry, the
variability and intermittency of this renewable source
of energy brings about major challenges in energy
balancing which may affect the system reliability and
flexibility. Since it can have a direct impact on
consumers and businesses, it is very important to have
an accurate real-time forecast of the solar generation
so that both higher system operation efficiency and
maximum solar utilization can be achieved [5].

Solar generation prediction techniques have been a
research interest in the past few years. Type-1 and
interval type-2 Takagi-Sugeno-Kang (TSK) fuzzy
systems were proposed for the prediction of generation
of solar power plants [6]. A multi-step scheme is
developed to predict solar irradiance using weather
data. A hybrid of the Autoregressive and Moving
Average (ARMA) and the Time Delay Neural
Network (TDNN) is applied in [7]. Numerical values
of the atmospheric transparency index and the surface
albedo from the NASA SSE database were used to
develop the model for estimation of amount of solar
radiation arriving at the arbitrarily oriented surface [8].
A promising model based on a vector autoregressive
(VAR) framework fitted with two alternative methods
(Recursive Least Squares and Gradient Boosting) is
introduced [9]. An approach that uses classification,
training, and forecasting stages is also proposed for 1-
day ahead hourly forecasting of PV power output in
[10]. First, the classification stage provides a self-
organizing map (SOM) and learning vector
quantization (LVQ) networks that classify the
collected historical data. Then, the training stage
employs the support vector regression (SVR) to train
the input/output data sets for temperature, probability
of precipitation, and solar irradiance of defined similar
hours. Finally, in the forecasting stage, the fuzzy
inference method is used to select an adequately
trained model for accurate forecast. The multilayer
perceptron (MLP), random forests (RF), k-nearest
neighbors (kNN), and linear regression (LR),
algorithms were used for solar irradiance forecasting

[11].
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Researchers started exploiting recently spatial
correlations among geographically spread solar PV
power plants, which led to improvements in the
prediction accuracy [12-14]. In our previous study
Gaussian Conditional Random Fields (GCRF) was
used to forecast the solar power in electricity grids [5].
The introduced forecasting technique is capable of
modeling both the spatial and temporal correlations of
various solar generation stations.

Our paper introduces a novel prediction algorithm
that combines the spatial and temporal embeddings
and makes accurate predictions on multiple temporal
horizons. The proposed method demonstrates good
prediction accuracy, where R? of 0.91 is obtained for
the summer model, 0.85 for the winter model, and 0.89
for the global model. Out of all the types of models
that were tested (Linear Regression, Normalized
Linear Regression, Support Vector Regression,
Random Forest Regression, and Neural Networks), the
best accuracy was achieved by Random Forest model.
The robustness of the proposed algorithm was tested
for different types of missing data cases (completely at
random, spatial, and temporal) and the high accuracy
is obtained in all of these instances.

The rest of the paper is organized as follows.
Section 2 describes the background about solar
generation forecast. Section 3 focuses on the
prediction methodology. The results are presented in
Section 4. The discussion and future work
recommendations are in Section 5. Finally, Section 6
concludes the paper.

2. Background

Solar irradiance Islr is the power per unit area
received from the Sun in the form of electromagnetic
radiation in the wavelength range of the measuring
instrument [14]. In solar power systems, the
relationship between the solar power generation Psofar
and the solar irradiance /solr for a given material can
be assumed as a linear relationship:

Pootar = Lsotar X S X7 Q)

where Il is in (kWh/m?); S is the area of the solar
panel in m?; and # is the generation efficiency of the
solar panel material.

The high proliferation of PV generation in an
electricity grid is challenging due to two main factors:
variability and uncertainty [1]. Since it is highly
dependent on weather conditions that are variable in
nature, it can be hard to predict. This introduces a new
challenge to the electric industry [15] compared with
conventional power plants that are deterministically
adjusted to the expected load profiles.

The amount of solar irradiance arriving at the solar
panel depends on a variety of factors [8]. Some of the
factors are deterministic and can be calculated using
geometry, such as geographical location (latitude and
longitude), and orientation angles of the solar panel
relative to the Sun (declination angle, the hour angle,
the zenith angle, the elevation angle, and the azimuth
angle). Other types of factors are stochastic in nature.
These include factors affecting the air between the
solar panel and the Sun, such as concentration of
atmospheric gases, dust, aerosols and water vapor
suspended in the air, humidity, the nature of cloud
cover, etc. While deterministic factors can be
calculated for any location and any moment in time,
stochastic parameters are obtained from the weather
forecast for the future date and time.

Solar Zenith Angle (SZA) represents the angle
between the Zenith and the center of the Sun's disc,
where the Zenith represents an imaginary point
directly over a particular location [16]. It has a high
correlation with Global Horizontal Irradiation (GHI).
The SZA is an important predictor of GHI and during
the sunny days (without any clouds), SZA alone can
be used to accurately estimate the solar irradiance. The
SZA is a mathematically calculated value, it will be
useful in any prediction model since it can be obtained
without special equipment.

During the cloudy days, and especially during the
days with high variability between sunny and cloudy
intervals, the SZA is no longer enough for the accurate
prediction of solar irradiance. In this case the
stochastic parameters mentioned before have a major
impact. Since these parameters are not deterministic,
it is more challenging to provide accurate solar
radiation forecast in the case of cloudy days.

In this paper we develop a data based prediction
model for the forecast of the output power of the PV
system using GHI, for a set of aggregated areas of a
size 3 x 3 km. We use the National Solar radiation
Database [17], and National Digital Forecast Database
[18] to train and test the model.

We looked at different temporal horizons of PV
forecast used in the industry [1]:

o The day ahead (DA) forecast. In this case the model
based results are submitted the day before the
operating day. The prediction is made for 24 hours,
typically starting at midnight. Different utilities
reported different times when the forecast is made,
some make a forecast at 7 am the previous day and
submit it at 9 am, others may submit the forecast at
the end of a day shift at 5:30 pm. The last time point
of forecast in this case could be larger than 24 hours
in advance, sometimes up to 42 hours in advance.
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The value of improvements in day-ahead
forecasting is outlined in [19].

o The hour ahead (HA) forecast. This type of forecast
is submitted 105 minutes prior to each operating
hour. In some utilities it also contains an additional
forecast for the next 8 hours of operation. We can
conclude that this type of forecast predicts for a time
horizon of 1.75 to 8.75 hours ahead. This type of
forecast is a primary target of this paper.

o Sub hourly forecast. Utilities are also in the process
of integrating the intra-hour forecast, going down to
5 minutes ahead. While our model is capable of
addressing such forecast horizon as well, we are not
focusing on this problem at this time.

PV forecast methods have different accuracy
depending on the time horizon of forecast. Some
methods perform better in a short term and some are
better for a day-ahead forecast. Fig. 1 shows
comparison of performance of different methods for a
range of time horizons [20]. We can observe from Fig.
1 that cloud motion forecasts based on satellite (yellow
and white lines) perform better than numerical weather
prediction based on National Digital Forecast
Database (NDFD) up to 5 hours ahead. Numerical
weather prediction demonstrates similar forecast
accuracy for time horizons going from 1 hour to 3 days
ahead [1].

3. Methodology

In this section we describe the proposed data
model used in the study. This model leverages the
correlation between the locations where the data is
collected with temporal weather data. This section first

discusses the dataset used, and then introduces the
proposed model.

3.1 Data

This research focuses on the problem how to
leverage the correlations between spatial and temporal
weather data to predict solar irradiation. As a result,
the collected data has two parts: a network that
represents spatial locations for the collected weather
data, and temporal weather data.

3.1.1 Spatial Data. A set of locations (L) are used in
this paper. Fig. 2 shows the 288 locations in the San
Antonio, TX area where the data is collected. Each
location [; in L represents a 3 X 3 km area where solar
irradiation is determined. For each location, the
longitude and latitude are known which allows us to
measure the distances between all the locations and
build a spatial network. The built spatial network will
be combined with the collected temporal data to make
predictions for solar irradiation. This model is
extracting the information that represents how
different locations are affecting each other.

3.1.2 Temporal Weather Data. For each of the 288
locations discussed earlier, weather measurements are
collected for the year (2017). In this data collection,
weather measurements are collected every 30 minutes.
In addition, solar irradiance collected by the National
Solar Radiation Data Base [17] is spatiotemporally
correlated with the weather measurements. The solar
irradiance data also represents a measurement every
30 minutes for the same locations in San Antonio, TX.
For each timestamp and in each location, the following
weather measurements are collected: Dew Point, Solar
Zenith Angle, Wind Speed, Precipitable Water, Wind
Direction, Relative Humidity and Temperature. Since
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Figure 1. Root mean square error (RMSE) of different solar forecasting techniques obtained over a year at
seven SURFRAD ground measurement sites [20]. The red line shows the satellite nowcast for reference, i.e.
the satellite ‘forecast’ for the time when the satellite image was taken.
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there is data each 30 minutes for 288 locations, the
total number of data records is around 5 million.

3.1.3 Target Variable: Global Horizontal
Irradiance (GHI). Solar irradiance is represented by
the Global Horizontal Irradiance (GHI) variable. This
variable is collected every 30 minutes for all locations.
For each of the 7 weather variables mentioned in
Section 3.1.2, there is a GHI value corresponding to it.
3.1.4 Correlation between Weather Variables and
GHLI. There is significant correlation between some of
the weather parameters and GHI. Table 1 shows the
values of correlation. We can see that some of the
parameters have high correlation, such as Solar Zenith
Angle, and we expect those to be highly influential in
the regression model.

3.2 Proposed Model

There are several methods of leveraging temporal

and spatial data. In this model, we combine the
temporal and spatial data by embedding the spatial
information using Node2Vec [21], where the spatial
correlations information is embedded to a new feature
space (S). The temporal correlations are embedded by
creating new features that represent the temporal
correlations.
3.2.1 Spatial Embedding. This study considers
spatial and temporal dependencies among 288
locations. Spatial dependencies of a certain site on
remaining sites at a specific time can be represented as
574 variables corresponding to longitude and latitude
for 287 locations. Data dimensionality is much larger
when also considering temporal dependencies. Data
sparsity in such a high high-dimensional
representation is a major challenge for predictive
modeling.

Another serious challenge is effective integration
of relevant long-range spatial dependencies with local
spatial information. A fusion of all available
information can result in large data volume and large
noise causing course of dimensionality and /O
problems, while too aggressive summarization can
result in loss of important dependencies. One approach
to address this challenge is to summarize the graph by
aggregating locations of interest into “supernodes”
representing larger regions. This can help reducing
data dimensionality, but requires feature engineering
which could cause additional challenges. Alternative
methods, such as geographically weighted regression,
were proposed to capture spatial interactions, but this
is a serious challenge since a large spatial lag is
problematic as it accounts for many irrelevant
locations, while a small spatial lag ignores longer-
range influences.
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Figure 2. Map showing the 288 locations where the
temporal weather data is collected.

Table 1. Correlation coefficient between each
weather parameter and GHI

Number Feature Name Correlation with
GHI
1 Dew Point -0.039
2 Solar Zenith -0.816
Angle
3 Wind Speed 0.296
4 Precipitable Water 0.017
5 Wind Direction -0.107
6 Relative Humidity -0.734
7 Pressure -0.105

Regression methods based on a naturally
embedded spatial information (locations) typically
assume  spatial  stationarity. For  example,
Autoregressive Statistical Methods adopt a spatial lag
term to consider the autocorrelation of a neighborhood
while geostatistical methods use semi-variograms to
characterize the spatial heterogeneity. This
assumption is another limitation since in practice
relationships between variables vary at different
locations.

An alternative and more flexible approach is to
represent spatial data as a graph. This approach is
appealing, but graphs can also add complexity to any
learning model. Recently, progress was made in the
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representation learning field by embedding nodes of a
graph or even entire graphs in a lower-dimensional
space where standard machine learning methods could
be used easier. The embeddings are learned and
extracted by various algorithms. Such algorithms aim
at conserving the graph structure and simplifying the
learning models by moving away from graph
representations. An advantage of using such
methodologies is that they can potentially uncover
more complex spatial dependencies that include some
long-range interactions in addition to influences of the
local neighborhood. An additional very useful
property of using such approaches is that they can use
jointly Euclidean spatial information and non-
Euclidian variables.

The node embedding process represents the
original graph in a new feature space S, where S best-
describes the spatial relationships of the nodes in the
original graph. For instance, if two nodes a, b depend
on each other in the original graph (i.e.: geographically
close, or longer-range dependent), this relationship
will be retained when a, b are represented in S. Hence
a and b will be close in the new space S. This
characteristic of the node embedding aims to capture
essential relationships of the original graph structure
while simplifying representation to a lower-
dimensional list of feature vectors.

There are several algorithms to obtain such an
embedding, two commonly used algorithms are
DeepWalk [24] and Node2Vec [21]. Both algorithms
rely on local information obtained by random walks
used to learn latent space representations. A random
walk (which is rooted at a vertex vy) is a stochastic

process with random variables Wvlk, W;,Zk,...,W;Jk,

where W;,’;l is a vertex chosen randomly from the set
of neighbors of vertex v,. DeepWalk uses a stream of
short random walks as the basis for extracting
information from a graph by treating walks as the
equivalent of sentences. DeepWalk is a generalization
of a language model aimed to explore the graph
through walks. In this analogy, the walks can be
considered phrases in a special language.

In addition to the ability of DeepWalk to capture
community information, DeepWalk is able to perform
local exploration efficiently and is able to
accommodate small changes in the graph structure
without global recomputation. DeepWalk has two
main steps: random walk generator and update
procedure. In the random walk, a vertex vy is
uniformly sampled from the graph and set as the root
of the random walk. Then a walk uniformly samples
from the neighbors of the last visited vertex until the
maximum length of the walk is reached. In the second
step, the update procedure called SkipGram updates

the representations in accordance to the defined
objective function. SkipGram is a language model that
maximizes the co-occurrence probability among the
word within a window in a sentence. Since the random
walks of a graph can be considered phrases in a
sentence, SkipGram will maximize the probability of
its neighbors in the walk. The final representation is
obtained through a hierarchical softmax process.
DeepWalk includes optimization and parallelizability
features, which allows to obtain a good performing
representation (against a target function) though 32-64
random walks of a window width of 40.

Node2Vec is an algorithmic framework that
generalizes DeepWalk process to provide a flexible
notion of a node’s neighborhood which allows
learning richer representations by effectively
exploring diverse neighborhoods. Node2Vec achieves
better representations by introducing a search bias a to
its random walks. This allows Node2Vec to explore
different types of network neighborhoods. a allows
discovering short and long distances by incorporating
two parameters p, g which guide the walk. The return
parameter p controls the likelihood of immediately
revisiting a node in the walk while g, the in-out
parameter, allows the search to differentiate between
inward and outward nodes. Unlike DeepWalk,
Node2Vec is sensitive to neighborhood connectivity
patterns in networks.

In Node2Vec, as well as DeepWalk, the number of
output dimensions is a hyperparameter and must be
predefined. Using low setting for the number of
dimensions (<16) can affect the stability of the
generated space [24]. The literature shows the values
for the dimensions to be the most effective if set
between 32 and 128, in integer increments to the
power of 2.

To convert the dataset in Fig. 2 using Node2Vec, a
connected graph is created from the 288 locations. In
order to achieve this, distances between locations are
used as edge weights in a fully connected graph. Then,
Node2Vec is used to convert Fig. 2 to the new feature
space S, where each location /i in L is mapped to a
vector s; in the embedding space S. The final
conversion is a matrix of size 288 X D where D is the
number of dimensions for S. In Node2Vec, D is a
hyper-parameter that needs to be determined in
advance.

3.2.2 Temporal Embedding. In order to preserve the
temporal relationship included in the collected data,
temporal embeddings (Tz) are used. Temporal
embeddings can be useful in modeling temporal data,
but one must be careful not to over-embed the data.
This might cause the model to rely on the temporal
aspect to learn the target variable, and this might lead
to over-fitting. In this model, two embeddings are
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created for the time period T and used in the model:
Hour of the day and Season. For hour of the day, it is
a simple 0 to 23 value of the hours in the day. For the
season (winter, spring, summer and fall), it is
determined from the date of each measurement taking
in consideration the leap years.

Fig. 3 shows the shape of the dataset after the

embeddings. Spatial embeddings S are added in
addition to the temporal embeddings and weather
attributes. The final embedded data E is a
concatenation of , weather attributes and Tj.
3.2.3 Data Aggregation and Model Flow. Fig. 3
represents how the data is aggregated and used in
training the regressor. The ID column represents the
location ID. Time is a sequential counter. ID and Time
are not used in any learning and are shown here for
demonstration purposes only. One can see that for
each location and each reading, spatial and temporal
embeddings are appended. In the original dataset, a
very small number of records (< 0:001%) had missing
values, and those records were dropped from the
dataset. The dataset is temporally split for training and
testing. Section 4.1 discusses how the data is split for
training and testing purposes.

3.2.4 Regression Model. After data is transformed to
the shape showed in Fig. 3, a regression model that
predicts a value for GHI based on the input (E) is built.
In this study, several regression models were tested,
including Linear Regression, Normalized Linear
Regression  (Ridge, Lasso), Support Vector
Regression (rBf kernel, linear kernel), Random Forest
Regression, and Neural Networks.

The best accuracy was obtained by the Random Forest
(RF) Regression [22]. RF is an ensemble of tree
predictors, where each tree depends on an independent
and randomly sampled vector with the same
distribution as all the other trees in the forest. RF is an
ensemble of B trees {T;(X), ..., Tg(X)}, where X =
{x1, ..., xp} are independent and randomly sampled
vectors with the same distribution. The ensemble of B
trees produces B outputs {¥; =T, (X),.., V5 =
Tg(X )} where Y, is the prediction of the bth tree. The
final aggregation of the regression is an average of the
individual tree predictions.

4. Results

4.1 Temporal Data Split

The dataset described earlier has a strong temporal
factor embedded in it. Thus, we utilized temporal
hold-out validation is reserved for validation instead
of relying on k-fold cross-validation. Following
models were trained and tested:

1. Winter model: using October and November data for
training and using December data for testing.

2. Summer model: using June and July data for training
and using August data for testing.

3. Global model: using December and August data for
testing and the remaining months for training.

The rationale behind this split is the following: for
Summer and Winter models, we expect to have close
correlation for these specific months, since the
weather is somehow similar; for example, during the
summer months we expect a large number of sunny
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Figure 3. Shape of the dataset after the embedding process

Page 2976



days, while during the winter months we expect higher
number of cloudy and variable days. For the global
model, the idea is to test a generalized model using all
data, and see if combination of the Winter and Summer
models produces a good performing global model.

4.2 Test Data

The three models described in section 4.1 use
weather measurements for training, which means that
all months of the year except August and December
are actual weather measurements. In order to have a
realistic test data, the testing months (August and
December) are using weather predictions made 3
hours in advance before the timestamp of the GHI
measurements. This experimental setup ensures that
the model is testing a scenario that is very similar to a
real-world application.

4.3 Data Preprocessing

Original weather data contains a very minimal set
of missing values (0.01%). The records having
missing values are removed since the dataset is large
and the amount of missing data is insignificant. After
removing missing values, the embedded dataset E is
constructed. Spatial embedding S is constructed using
D = 32. Furthermore, temporal embeddings Ty are
constructed. Since temporal embeddings introduces a
categorical variable, 1-hot encoding is used to encode
the categorical variables into a bit-vector where a
single digit is 1 corresponding to a specific category.
The last step is to scale E to a [0, 1] scale using a min-
max scaler. This is necessary to remove the effects of
different data scales for different variables. Both
operations were conducted using Scikit-learn
preprocessing module [23].

4.4 Model Training and Results

Model test results were evaluated by using

coefficient of determination denoted as R?, mean
absolute error (MAE), and root mean squared error
(RMSE). Best performing regressors was Random
Forest Regressor, with R?> = 0.91, MAE = 42.76,
RMSE =92.8.
4.4.1 Summer Model. In this model, weather
measurements from June and July of 2017 are used for
training while weather predictions for August 2017 are
used for testing. Table 2 shows the results for the
summer model. As expected, the summer model has
good performance, since summer months usually have
lower wvariation in the weather, hence more
predictability of GHI. Fig. 4 shows the predicted GHI
using the summer model for 100 readings.

4.4.2 Winter Model. In this model weather
measurements from October and November of 2017
are used for training. The weather predictions for
December 2017 are used for testing. The summer
model performs better than the winter model. This is
expected due to the higher number of clear sunny days
in the summer when the correlation between SZA and
GHI is very high as explained in Sec. 2. Table 3 shows
the results for the winter model.

4.4.3 Global Model. In this model weather
measurements from December and August of 2017 are
used for testing and the rest of the months of 2017 are
used for training. As expected, this model performs
better than the winter model. Table 4 shows the results
for the global model.

Table 2. Predictions 3 hours ahead by the summer

model
Metric R? MAE RMSE
Value 091 42.76 92.8

Table 3. Predictions 3 hours ahead by the winter

model
Metric R? MAE RMSE
Value 0.85 27.3 71.49

Table 4. Predictions 3 hours ahead by the global

model
Metric R? MAE RMSE
Value 0.89 334 85.2

4.5 Spatial Embedding Sensitivity Study

There is one hyper parameter D which represents
the number of dimensions in the spatial embedding.
Typically, in embedding dimensions several values of
the power of 2 are tested (32, 64, etc.). In this
experiment 32, 64 and the default Node2Vec 128 are
tested. There were no significant differences between
the dimensions, and this can be interpreted as the graph
being a symmetrical static grid. Also, another variation
of the graph is embedded, which was created by
dropping the top 10% of the links (distance-wise). This
variation didn't make a difference in the results, and it
was similar to the results reported earlier.

4.6 Handling Missing Data

Missing data is one of the common problems seen
in this domain. In the following set of experiments,
few scenarios of missing data are simulated and tested.
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Figure 4. GHI vs. GHI predicted 3 hours ahead for 100 readings using the summer model.

.Random Missing Data: in this experiment data is

dropped from the dataset completely at randomly.
An experiment to drop 30%, 50%, 70%, 90% and
95% of the training data. Given that the training set
has 3.2 million records, it is expected that dropping
data randomly will not be highly effective. All
models performed almost the same. Even the model
running on 99% performed similarly since 99% is
around 33K rows of data, which seems to be enough
to train this model. This will be discussed more in
Section 5.

. Spatial Missing Data: in this experiment, random

locations are dropped completely from the training

data. In this experiment, 10, 20, 30, 50, 75, 100 and

150 locations are dropped completely from the

training dataset. We still used those locations in the

testing dataset (testing data didn't change). Similar
to point 1, the model performed similarly. This
might be due to proximity of the locations. This will

also be discussed more in Section 5.

Missing Data: This experiment is

conducted in the following ways:

e Removing a season from the training data (in the
global model, example: dropping all data from the
Spring season): this didn't affect the model. The
model behaved similarly.

e Lowering the resolution of the training data: the
original training dataset has readings every 30
minutes. In this experiment, the resolution of the

data is lowered to 1, 2, 4, and 8 hours. The model
behaved similarly with some slight decline.

The results reported in this section provide
evidence that the model robust to data missing at
various mechanisms. Extending the cases of missing
values is out of scope of this research. Again, more
discussion is given in Section 5.

4.7 Weather Feature Importance

One advantage of using Decision Tree Regressor is
that it produces (by default) feature importance for the
features used, which could be used as feature ranking
[23]. Fig. 5 shows feature importance for the top 15
parameters extracted from the Decision Tree
Regressor trained in the embedded representation. As
expected, Solar Zenith Angle is the most important
feature, then humidity and perceptible water are the
next important features. As we discussed earlier, this
is expected as Solar Zenith Angle is directly related to
the amount of solar radiation for the sunny days
without clouds. In addition, humidity and perceptible
water can directly affect how the Sun radiation affects
an area, which has a strong relation to GHI.

4.8 Evaluating Longer Prediction Horizon
Results reported in previous sections were for a 3-

hour horizon. Figure 6 shows prediction accuracy of
the proposed method predicting 3, 6, and 9 hours
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ahead. The results are reported for winter, summer and
global models. All 3 models show good stability over
the longer horizons. Global model has mean values of
(R?>=0.87, MAE=45.7, RMSE=100.6). In comparison,
summer model has mean values of R?=0.86,
MAE=62.2, RMSE=122.1 and winter model has mean
values of R?=0.83, MAE=36.7, RMSE=87.1). This
shows that the results are consistent across different
time horizons. A slight improvement in RMSE was
observed for the winter model at 9-hour horizon since
predicting GHI is less complex near the end of the
daytime.

5. Discussion and Future Experiments

Several aspects about the data generation process
and results deserve a discussion. The dataset is
constructed as a combination of satellite data, radar
data, and mathematical models. This might explain the

trained on a small data subset. On the other hand, GHI
has temporal patterns (low in the morning, peak during
the day, and then declines, and goes to 0 at night). This
is one of the factors that can help in improving the
performance of the model. Also, this study uses a large
dataset, and this helped improve the results. Another
factor is that in conducted experiments locations were
not far from each other. From Fig. 2, the width of the
grid is less than 35 miles, which makes the weather
pattern similar in these locations. Temporal
embeddings are helping the model and not over-fitting
the data. An experiment conducted without 'time of
day' embedding showed that the model is not learning
the GHI by time only.

6. Conclusion

Following are the contributions of the paper:
e A novel approach to solar radiation forecast is

strong performance of the proposed model even when developed based on spatial and temporal
.
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embeddings using Node2Vec model for graph
data. This approach simplifies the learning
models by moving away from complex graphs.
The model was developed for the forecast ranging
from 3 to 12 hours ahead.

e The performance was tested for multiple
regression  algorithms: Linear Regression,
Normalized Linear Regression, Support Vector
Regression, Random Forest Regression, and
Neural Networks. The Random Forest Regression
has shown the best results.

e Variability of prediction accuracy for different
seasons was explored. As expected, the algorithm
performed with a very high accuracy in the
summer when there are more clear sky days.
During the winter months, the accuracy had a
slight drop, but was still good and robust even
when data was missing spatially and temporally.
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