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characterization of hybrid nanomaterials: safer
and efficient design perspective†

Alicja Mikolajczyk, *a Natalia Sizochenko, a,c Ewa Mulkiewicz, b
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In this study, photocatalytic properties and in vitro cytotoxicity of 29 TiO2-based multi-component nano-

materials (i.e., hybrids of more than two composition types of nanoparticles) were evaluated using a com-

bination of the experimental testing and supervised machine learning modeling. TiO2-based multi-com-

ponent nanomaterials with metal clusters of silver, and their mixtures with gold, palladium, and platinum

were successfully synthesized. Two activities, photocatalytic activity and cytotoxicity, were studied. A

novel cheminformatic approach was developed and applied for the computational representation of the

photocatalytic activity and cytotoxicity effect. In this approach, features of investigated TiO2-based

hybrid nanomaterials were reflected by a series of novel additive descriptors for hybrid and hybrid nano-

structures (denoted as “hybrid nanosctructure descriptors”). These descriptors are based on quantum

chemical calculations and the Smoluchowski equation. The obtained experimental data and calculated

hybrid-nanostructure descriptors were used to develop novel predictive Quantitative Structure–Activity

Relationship computational models (called “nano-QSARmix”). The proposed modeling approach is an

initial step in the understanding of the relationships between physicochemical properties of hybrid nano-

particles, their toxicity, and photochemical activity under UV-vis irradiation. Acquired knowledge supports

the safe-by-design approaches relevant to the development of efficient hybrid nanomaterials with

reduced hazardous effects.

1. Introduction

Pristine titania nanoparticles (TiO2 NPs) have been widely
studied because of their promising applications as environ-
mentally friendly nanomaterials.1 TiO2 NPs could be used for
photodegradation of organic pollutants, photocatalytic split-
ting of water for hydrogen production, conversion of solar
energy into electric energy, and reduction of CO2 in organic
fuels.1 Notwithstanding the rising interest, the homogeneous

TiO2 NPs demonstrate photocatalytic activity only at UV
irradiation that only is a 5% share of the natural solar energy.
Propagating the usability of TiO2 NPs to solar light may lead to
the expansion of nanomaterial’s applicability in the fields of
nanoscience and technology. One of the potential ways to
improve photocatalytic properties of TiO2 NPs in visible light
is to design modified hybrid/multicomponent TiO2-based
nanomaterials that contain specific surface/structure modifi-
cation and/or functionalization (so-called 2nd generation
NPs).1–4 At the same time, these new physicochemical pro-
perties of modified TiO2 NPs may result in increased hazar-
dous effects to the human body or to the environment. To
guarantee that only safe TiO2-based nanomaterials would be
further synthesized,5,6 safer-by-design approaches should be
developed and applied. To date, there are no standardized
methods for the evaluation of potential hazard effects of
hybrid nanomaterials. The literature survey indicates that the
amount of experimental data grows every year.7 In order to
effectively interpret and transfer the experimental data,
research methods could include computational modeling,
enabling the relationships between nanomaterials’ physico-
chemical characteristics and their hazard (safety) profiles.2
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One of the best time-efficient computational methods is a
Quantitative Structure–Activity/Property Relationship (QSAR/
QSPR) approach.8 During the last ten years, various nano-
particles’ properties have been modeled and predicted using
this approach (known as “nano-QSAR/QSPR models”). The
term “nano-QSAR” refers to the search of quantitative links
between features of nanoparticles and target activity.
Structural features are typically represented by a variety of
numeric parameters (also known as “descriptors”).1,4,8–11 The
successful application of the Nano-QSAR/QSPR methodology
has been already demonstrated for homogeneous NPs, such as
metal oxides, silver clusters, carbon nanotubes and fullerenes.
For example Luan et al.12 applied computational modeling to
describe the cytotoxicity of 41 pairs of metal/metal oxide NPs
against several mammalian cell lines, based on the chemical
composition of nanoparticles, size, conditions under which
the size was measured, and shape. While Kleandrova et al.13,14

presented QSTR-perturbation models to simultaneously probe
ecotoxicity and cytotoxicity of 5520 NP pairs under different
experimental conditions, including diverse measures of toxici-
ties (CC50, EC50, IC50, TC50, LC50), compositions, sizes and con-
ditions to measure those sizes, shapes, times during which the
biological targets were exposed to NPs, and coating agents.
Chemoinformatic methods, including Nano-QSAR/QSPR
models, have been also applied to carbon nanomaterials
(CNTs) as predictive nanotoxicological tools that at the same
time have allowed the classification with greater clarity of their
toxic impact on human and environmental health.15–18 For
instance, recently, Gonzáles-Díaz et al.15 have applied artificial
neural network (ANN) classification models based on fractal
SEM nanodescriptors for predicting the mitochondrial nano-
toxicity on F0-ATPase subunit inhibition (ATP-hydrolysis inhi-
bition) induced by CNTs.17 Another vacancy quantitative struc-
ture-binding relationship (V-QSBR) model was developed for
the prediction of the strength of docking interactions between
CNT nanotubes with a specific topological vacancy and

hVDAC1.18 Thus a series of specific descriptors for nano-
particles were ultimately developed, but the majority of cur-
rently available nano-descriptors are unable to reflect the
structural complexity of hybrid nanoparticles.1,4,8–11 This
makes nano-QSAR modeling of hybrid TiO2-based nano-
materials a challenging task, as no proven modeling method-
ology is available.

This paper reports the development schema for predictive
nano-QSAR modeling of the photocatalysis and cytotoxicity for
hybrid TiO2-based nanomaterials (so called here nano-
QSARmix). The ultimate aim of this project is to develop
efficient TiO2 photocatalysts with reduced cytotoxicity against
eukaryotic cells. For this purpose, we investigated photo-
catalytic and cytotoxic effects of TiO2-supported hybrid nano-
materials using a combination of experimental and compu-
tational techniques. Here we present a quantitative description
of the photocatalytic activity in visible and UV-visible light and
discuss the cytotoxicity against Chinese hamster ovary
(CHO-K1) with the focus on concentration-dependent effects
(Fig. 1).

2. Materials and methods
2.1 Preparation and characterization of hybrid/TiO2-based
nanomaterials

A set of 29 TiO2-based nanomaterials was synthesized by the
sol–gel method. TiO2 NPs modified with Au, Ag, Pt and Pd
nanoclusters (further denoted as Memix-TiO2) were prepared by
the hydrolysis reaction of titanium isopropoxide (TIP) with
water. In the first step, 25 cm3 TIP was dispersed in 25 cm3

ethanol at room temperature followed by 30 min solution
mixing. After that, 14.2 cm3 of water was added to the alkoxide
solution and a white precipitate was formed. Finally, 0.1 or
0.5mol% of either HAuCl4, K2PtCl4, or PdCl2, and 0.1, 0.5, 1.5,
2.5, or 4.5mol% of AgNO3 were dissolved in deionized water

Fig. 1 The general schema of the proposed chemoinformatics-supported modeling strategy for hybrid nanomaterials. Term DFT here denotes
Density Functional Theory.
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and mixed with TiO2 gel for 1 h. All the samples were obtained
by the sequential addition of metal precursors to the TiO2 gel.
The obtained photocatalysts were dried at 80 °C and then cal-
cined in air at 400 °C for 3 h. To see more technical details,
please refer to the ESI (ESI, Table S1†).

2.1.1 Measurement of photocatalytic activity under visible
light and UV-vis light. The photocatalytic activity of prepared
hybrid TiO2-based samples was estimated by the decompo-
sition rate of a 0.21 mM phenol aqueous solution in the pres-
ence of visible UV-vis radiation. The aqueous phase contained
125 mg of the photocatalyst, 24 cm3 of deionized water and
1 cm3 of phenol (Co = 500 mg dm−3). The prepared suspension
was stirred and aerated in the dark, and the content of the
reactor was then photo-irradiated with a 1000 W xenon lamp
(Oriel). The optical path included a water filter and a glass
filter (GG 420) that blocked wavelengths shorter than 420 nm.
The phenol concentration was estimated by a colorimetric
method using a UV-vis spectrophotometer (DU-7, Beckman).
The photocatalytic activity of Memix-TiO2 nanoparticles was
determined in the process of cleaning volatile organic com-
pounds (VOC) from air under 25 mixed LEDs (5 LEDs, λmax =
375 nm and 20 LEDs, λmax = 415 nm) as the irradiation source.
Toluene (Co = 200 ppm) was used as a model air contaminant.
The suspension of the photocatalyst in water was loaded as a
thick film onto a glass plate using the painting technique and
subsequently dried. A flat stainless-steel reactor (V = 30 cm3)
was equipped with a quartz window, two valves, and a septum.
After the valves were closed, the reactor was kept in the dark
for 15 min and the contents of the reactor were photo-
irradiated. The toluene concentration in the gas phase was
measured using gas chromatography (Clarus 500,
PerkinElmer).

2.1.2 Measurement of cytotoxicity. The cytotoxicity of the
Memix-TiO2 was experimentally tested using epithelial cells
obtained from Chinese hamster ovary (CHO-K1 cell line,
ATCC® CCL-61™). For the experiment, investigated nano-
materials were prepared by grinding the powder for 5 min,
then dissolved in a cell medium to a concentration of
1 mg mL−1 (F12 medium supplemented with 2 mM
L-glutamine, 1% antibiotic solution (penicillin/streptomycin)
and 10% heat-inactivated FBS with 0.1% Pluronic added to
prevent aggregation/agglomeration, and then sonicated in a
water bath for 30 min at 37 °C. Cell viability was tested using a
colorimetric assay with the WST-8 reagent. For the cytotoxicity
assays, cells were seeded in 24-well plates at an initial density
of 1 × 105 cells per mL of culture medium and incubated for
24 h. Cells were exposed to nine different concentrations of
NPs (from 300 to 1.56 µg mL−1) for 24 h. Next, the WST-8
reagent was added and incubated for 2 h. As Au NPs absorb
light in the visible spectrum, the plates were centrifuged to
avoid interference with the assay. Finally, 100 µl of the
medium from each well was transferred to a respective well in
a 96-well plate, and the absorbance at 450 nm was measured
in the plate reader. Cell viability was calculated as the
percentage of the viability of exposed cells vs. controls.
Concentration–response curves were fitted using the nonlinear

least-squares method employing the logistic model of the
relationship between cell viability and the tested concen-
trations. The final values of the cytotoxicity were expressed as
the logarithm of 50% inhibition of the cell viability (pEC50).
Calculations were carried out with the R programming
language.32

2.2 Quantum-chemical calculations

To characterize hybrid TiO2-based nanomaterials computation-
ally, a series of quantum-mechanical (QM) properties (viz.
basic descriptors) were calculated.33 The calculations of basic
quantum-chemical descriptors were performed in the frame-
work of Density Functional Theory (DFT) using the Gaussian
09 package and Vienna ab initio Simulation Package
(VASP).34–36 The calculations were conducted as a two-step pro-
tocol: (i) the first step included investigation of 5 × 5 × 5 Å
metal clusters in a gas phase using the B3LYP functional and
LANL2DZ basis set implemented into Gaussian 09 and (ii)
solid state systems of Memix-TiO2, using the plane-wave based
method in VASP, implementing spin-polarized DFT and the
generalized gradient approximation (GGA) by Perdew–Burke–
Ernzerhof (PBE) with an intra-site Coulomb interactions
between Ti-3d electrons in Dudarev’s approach, so-called
PBE+U.37,38 The core electrons for Au-[Xe]4f,14 O-1s2 and Ti-
[Ne]3s2 were described by projector augmented wave potential
(PAW). As a result, an energy of the highest occupied molecular
orbital (EHOMO), energy of the lowest unoccupied molecular
orbital (ELUMO), ionization potential (IP), electron affinity (A),
absolute electronegativity (μ), absolute hardness (η), total
energy of the system (Etot) and adsorption energy of metals
(Eads) were calculated (ESI, Table S5†). As stated above, the con-
ventional descriptors derived from quantum-mechanical calcu-
lations can be adapted to adequately represent surface-modi-
fied metal oxide nanoparticles.4 Basic quantum chemical
descriptors were unable to reflect either the variety of noble
metal concentrations or synergistic effects of different metals
in a hybrid mixture. At the same time, the quantum-chemical
calculations of large and complex nano-sized systems are
difficult and time-consuming. One of the possible ways to over-
come that obstacle is to present hybrid nanomaterials as an
additive mixture of homogeneous NPs of the defined concen-
tration (expressed by novel additive descriptors for the hybrid
nanostructure). The simple additive scheme is already success-
fully applied for preliminary modeling of toxicity of conven-
tional multiple chemicals’ mixtures.41–46

2.2.1 Modeling of joint toxicity: general approach. For the
conventional organic compounds, there are four major types
of modes of action in analyzing the joint toxicity of binary mix-
tures, i.e. (i) simply additive, when the ideal additive effects are
observed and the joint toxic response is equal to the sum of
the single chemical toxicity, (ii) more than the additive/syner-
gism effect, when the combined effect will be greater than a
sum of the toxicity of individual chemicals, (iii) less-than-addi-
tive/partial addition, when the overall toxic effect is less than a
sum of the toxicity of individual chemicals, and (iv) no inter-
action/independent, when the joint toxic effect is equal to that
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caused by the component with the greatest toxicity that
depends on the concentration the effect may be less than addi-
tive or antagonistic.39,40,45 According to the results reported in
the literature, the most organic chemicals act jointly by simple
addition.39–42 For example, Xu and Nirmalakhandan39 have
concluded that joint effects of non-reactive chemicals are not
significantly different from simple addition.39 While Chen and
Yeh41 have recommended that simple additivity is appropriate
for preliminary modeling of toxicity of multiple chemical mix-
tures. Berenbaum42 also proposed that simple addition may be
used as a universal reference for the assessment of joint
effects. Based on results reported in the literature in the case
of QSAR modeling for conventional organic mixtures the
descriptors (Cmix) may be expressed by a sum of a dose/concen-
tration of single components (Ci) in a mixture multiplied by a
scaling factor (a) that accounts for the property contribution of

the individual component, i.e. Cmix¼
Pn

i¼1
aCi.

40,45 According to

results reported in the literature integral additive descriptors
(Dmix) of any individual compound may be expressed by a set
of various 2D and 3D descriptors,33 and then expressed as a
mole weighted average using the calculated descriptor(s) value
(s) (Dn) and molar fraction of each component (Rn) as follows:
Dmix = R1D1 + RnDn.

45,46

2.2.2 Additive descriptors for hybrid nanomaterials. In this
study, we have proposed the modification of the methodology
of internal additive descriptors for conventional mixture
systems of organic compounds to express properties of hybrid
nanomaterials.45,46 Thus, we have employed the methodology
that is based on the assumption that the titanium oxide
surface was set as constant (no descriptors), and metal cluster
(s) are represented as an additive mixture of concentration-
weighted descriptors for individual metals in clusters. The pro-
posed additive calculation methodology for mixtures of com-
pounds can be described by the following equation:

Dmix ¼ %molMe1 � D1 þ…þ%molMen � Dn ð1Þ
where Dmix is the additive descriptor, i.e. the information on
structural features of each component in the complex hybrid
nanostructure translated into numerical variables; %molMe1 –

the concentration of a certain metal in the mixture; Dn –

quantum chemical descriptor for the certain metal in the
complex hybrid sample (expressed by a set of various 2D and
3D descriptors).

Interactions of individual chemicals in a mixture can result
in synergistic or antagonistic effects as opposed to the ideal
case of additive behavior i.e., concentration addition (CA) and
independent action (IA). To quantify the similarity degree
between two systems in mixture, it is not suitable to account
only for mutual or dissimilar features, but all the features of
the systems have to be measured in the assessment.47 For eval-
uating the similarity between two complex chemical systems
the Hausdorff-like similarity measure (HS) should be calcu-
lated.47 The Hausdorff-like similarity measure is a function
that includes information on all the elements present in the
compared sets, information that is usually lost by the other

measures. The HS is capable of equally weighing both the exist-
ence of common/comparable elements.47 To quantify the simi-
larity between TiO2-based nanomaterials modified with a
mixture of noble metals, the HS index was calculated (see ESI,
Table S9†).

2.2.2 Smoluchowski equation derived descriptors. In
addition to basic and additive descriptors, the sedimentation
potential for metal clusters was estimated. The basic equation
was derived from the Smoluchowski equation (eqn (2)) and
takes into consideration the particle volume fraction of
nanoparticles:48

φ ¼ ð4=3Þ � π � % molMen
3 � ðρ� ρ0Þ

V
� g ð2Þ

where V – the volume of solution, ρ – the mass density of the
noble metal, ρ0 – the mass density of the solvent, and g – the
gravitation acceleration.

The basic equation was modified to represent complex
nanomaterials: a total concentration in eqn (2) was presented
as a sum of corresponding concentrations of metals in the
hybrid sample. Mass density was presented as a sum of metal
densities weighted in accordance with metal’s concentration
in the hybrid sample.

2.3 Development of nano-QSARmix models

Once a series of basic and additive descriptors for hybrid
materials were generated, we built QSAR models (so-called
nano-QSARmix). These models were built using Multiple Linear
Regression (MLR)8 and Decision Tree (DT) modeling tech-
niques.19,51 Multiple Linear Regression analysis (MLR) is a
commonly used statistical tool for which a dependent variable
(e.g., toxicity (yi)) is expressed as a linear combination of inde-
pendent variables (e.g., physicochemical properties and/or
structural features (x1, x2, …, xn)) with certain coefficients (b0,
b1, b2, …, bn) (eqn (3)). In this study, nano-QSARmix models
were generated for the most relevant independent variables
(i.e., molecular descriptors) selected by a genetic algorithm
(known as MLR-GA modification).49 MLR models were devel-
oped using QSARINS software:50

yi ¼ b0 þ b1x1 þ b2x2 þ bnxn ð3Þ
The Decision Tree (DT) technique is a simple and popular

tool for non-linear modeling.12,49,50 In the present contri-
bution, we used a decision stump technique followed by
regression meta-classifier. Each decision stump was character-
ized by a single attribute (descriptor). The maximal size of the
decision tree was set as 4, and where the size corresponds to a
number of decision stumps. Regression meta-classifier was
applied to enhance the performance of decision stumps.17 To
prevent overfitting, the learning rate (shrinkage rate) was set as
zero. DT modeling was performed using the machine learning
environment Weka and its incorporation into the KNIME
Analytics Platform.52,53

2.3.4 Quality assessment of nano-QSARmix models. All
nanoparticles were split into training and validation sets. The
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training set was used to build an initial model, and the vali-
dation set was used to estimate the model’s predictive ability.
In order to guarantee a balanced distribution, we ranged the
NPs by activity and then pulled each third NP to the test set.4

All models were validated in accordance with recommen-
dations of the Organization for Economic Co-operation and
Development (OECD). Goodness-of-fit was accessed by the
determination coefficient (R2) and the root mean square error
of calibration (RMSEC) based on the prediction for the training
set. Model’s robustness (stability) was verified by internal vali-
dation using the cross-validation leave-one-out algorithm (for
MLR models) or using the bagging algorithm (DF models).50

The robustness was expressed by QCV
2 and Qbagging

2; accord-
ingly, root means square of cross-validation (RMSECV) also was
calculated. Predictive ability of all models was assessed by the
external validation coefficient (QExt

2), the root mean square
error of prediction (RMSEP), and Concordance Correlation
Coefficient (CCC).50 In addition, predictive performance criteria
proposed by the Roy group were calculated for MLR models.54–56

All mentioned statistical characteristics were calculated accord-
ing to the formulas summarized in the ESI (Table S6†).

The applicability domain (AD) that shows the virtual space
in which the model could be applied with the optimal
reliability was also assessed. In the presented work, we used a
new probability-oriented distance-based approach (ADProbDist)
to define the interpolation space where true and reliable pre-

dictions can be expected.57 In addition to that, we have evalu-
ated developed models in terms of causality as was discussed
in our previous studies.58,59

3. Results and discussion
3.1 Cytotoxicity and photocatalytic activity of the synthesized
hybrid TiO2-based nanomaterials

The characterization of newly synthesized TiO2 nanomaterials
modified with mono/hybrid noble metals (i.e. Ag/Au/Pd/Pt) is
summarized in Table 1. The obtained hybrid nanomaterials
demonstrated a high photocatalytic activity (i.e. phenol degra-
dation in aqueous solution in the presence of visible and
UV-vis radiation). At the same time, the obtained TiO2-based
photocatalytic nanomaterials have shown toxic effects
against Chinese hamster ovary (CHO-K1, ATCC® CCL-61™).
Both measured activities are also summarized in Table 1. As
one can see, the developed TiO2-based hybrid nanomaterials
(Memix-TiO2) demonstrated an optimized photocatalytic
activity that increased with the amount of noble metals (i.e.
Au/Ag/Pd/Pt) on the surface (Fig. 2, plots 2a, 2c, 2e). However,
the increasing TiO2-based nanomaterial diversity resulted in
increased cytotoxicity (Fig. 2, plots 2b, 2d, 2f). The relationship
between the efficiency of the TiO2-based photocatalyst, the
amount of noble metals in hybrid samples and their cyto-

Table 1 Hybrid TiO2-based nanomaterial characterization

Sample label

Amount of noble metal
precursor [%mol]

BET surface area
[m2 g−1]

The efficiency of phenol
degradation [%] in UV-vis light

pEC50
[mol mL−1]Ag Pt Au Pd

Pure TiO2 0.0 0.0 0.0 0.0 — 63.6 5.52
0.1Ag 0.1 0.0 0.0 0.0 61.0 61.8 5.60
0.5Ag 0.5 0.0 0.0 0.0 91.0 64.4 5.83
1.5Ag 1.5 0.0 0.0 0.0 89.0 70.3 6.23
2.5Ag 2.5 0.0 0.0 0.0 91.0 73.5 6.76
4.5Ag 4.5 0.0 0.0 0.0 67.5 73.5 7.40
0.1Ag_0.1Au 0.1 0.0 0.1 0.0 106.5 63.0 5.67
0.5Ag_0.1Au 0.5 0.0 0.1 0.0 112.0 52.9 6.25
1.5Ag_0.1Au 1.5 0.0 0.1 0.0 90.2 65.6 6.58
2.5Ag_0.1Au 2.5 0.0 0.1 0.0 79.0 60.0 6.80
0.1Ag_0.5Au 0.1 0.0 0.5 0.0 103.0 51.4 6.05
2.5Ag_0.5Au 2.5 0.0 0.5 0.0 90.4 64.6 7.01
4.5Ag_0.5Au 4.5 0.0 0.5 0.0 111.4 69.5 7.41
0.1Ag_0.1Pt 0.1 0.1 0.0 0.0 92.0 85.4 5.92
0.5Ag_0.1Pt 0.5 0.1 0.0 0.0 94.0 68.4 6.29
1.5Ag_0.1Pt 1.5 0.1 0.0 0.0 145.6 85.6 6.63
2.5Ag_0.1Pt 2.5 0.1 0.0 0.0 86.0 71.1 7.07
0.1Ag_0.5Pt 0.1 0.5 0.0 0.0 112.5 96.8 5.97
2.5Ag_0.5Pt 2.5 0.5 0.0 0.0 119.0 96.1 7.10
0.1Ag_0.1Pd 0.1 0.0 0.0 0.1 79.0 77.4 5.56
0.5Ag_0.1Pd 0.5 0.0 0.0 0.1 77.5 72.1 6.46
1.5Ag_0.1Pd 1.5 0.0 0.0 0.1 98.0 96.0 6.76
2.5Ag_0.1Pd 2.5 0.0 0.0 0.1 98.0 94.9 7.20
0.1Ag_0.5Pd 0.1 0.0 0.0 0.5 115.0 99.2 5.70
2.5Ag_0.5Pd 2.5 0.0 0.0 0.5 107.0 99.5 6.88
0.1Ag_0.1Pt_0.1Au 0.1 0.1 0.1 0.0 94.0 84.4 5.88
0.1Pt_0.1Au_0.1Pd 0.0 0.1 0.1 0.1 92.0 100.0 5.92
0.1Ag_0.1Pt_0.1Pd 0.1 0.1 0.0 0.1 89.0 100.0 5.86
0.1Ag_0.1Au_0.1Pd 0.1 0.0 0.1 0.1 85.0 92.8 5.88
0.1Ag_0.1Pt_0.1Au_0.1Pd 0.1 0.1 0.1 0.1 94.0 100.0 6.02
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toxicity effect is shown in Fig. 2, Table 1. We observed that the
photocatalytic activity (Fig. 2, plots 2a, 2c, 2d) and the cyto-
toxicity (Fig. 2, plots 2b, 2d, 2f) of hybrid TiO2-based nano-
materials grow with an increasing amount of Ag. At the same
time, both cytotoxicity and photocatalytic activity change
depending on the type and concentration of the second Au
metal (Fig. 2). Among tri- and four metallic nanostructures,
the cytotoxicity changed in the row: Ag–Pt–Pd < Ag–Au–Pd ∼
Ag–Pt–Au < Ag–Pt–Au–Pd. The replacement of Pt or Pd with Au
slightly increased the cytotoxicity. At the same time, there was
no statistically significant difference if Au is combined with
either Pt or Pd (Table 1). Interestingly, there was no consider-
able difference in photocatalytic properties of tri- and four
metallic nanostructures (Table 1).

3.1.1 Predictive Nano-QSPRmix models for phenol degra-
dation. In order to design efficient and safe hybrid TiO2-based
nanostructures, we developed predictive models as described
in the Materials and methods section. In the case of photo-

catalytic properties, potential MLR-GA models were statistically
inadequate. In contrast, the nonlinear DT model was of high
quality. This model is characterized with Radj

2 = 0.82, RMSEC =
5.99, Qbagging

2 = 0.81, RMSECV = 8.76, QEXT
2 = 0.80, and

RMSEP = 6.48. Fig. 3 represents the graphical form of the DT
model. The applicability domain (AD) is represented in Fig. 3.
According to the AD, all nanostructures are within the AD
(of ±3σ), four compounds (i.e. 4.5Ag_0.5Au, 2.5Ag_0.5Pt,
1.5Au_0.1Pt, 0.1Ag_0.5Pt) are located in the boundary of the
inner (i.e. orange) confidence ellipse, which corresponds to 99
percent confidence intervals, it appears to be inside the AD
and its model-based prediction should be therefore considered
reliable. The DT model includes four descriptors: the amount
of Pd in the sample (%molPd), sedimentation potential of Pt
clusters (φPt), additive sedimentation potential of samples
(φmix), and BET surface area (BETarea). Values of descriptors
and the decision stumps are summarized in the ESI (Tables
S1, S2 and S6†).

Fig. 2 Concentration-dependent photocatalytic activity and toxicity related to mixed concentration of noble metals, i.e. (a, b) Ag/Au, (c, d) Pt/Ag, (e,
f ) Pd/Ag, respectively.
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3.1.2 Predictive Nano-QSARmix models for cytotoxicity.
Both linear MLR-GA and non-linear DT models successfully
described the cytotoxicity of NPs. Observed-predicted plots, as

well as applicability domain areas of the nano-QSARmix

models for cytotoxicity, are presented in Fig. 4. Statistical
characteristics of developed models are presented in Table 2.

Fig. 3 (a) Observed-predicted diagram of the DT model for photocatalytic activity; (b) applicability domain for the DT model for photocatalytic
activity.

Fig. 4 Observed vs. predicted diagram for developed (a) MLR-GA and (b) DT models of cytotoxicity; and corresponding plots of applicability
domains: (c) for MLR-GA, and (d) for the DT model.
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The MLR-GA model was additionally characterized with the
following statistical parameters: MAEtr = 0.16, CCCC = 0.93,
MAEcv = 0.18, CCCCV = 0.92, MAEEXT = 0.19, CCCEXT = 0.87, k =
0.97, k′ = 1.02, R2Yscr = 0.05, Q2Yscr = −0.18, and F = 124.54.

The developed MLR-GA model (Fig. 4a) utilized the descrip-
tor that represents additive electronegativity (χmix):

pEC50 ¼ 6:37ð+0:07Þ þ 0:56ð+0:02Þ � χmix ð4Þ
The obtained DT model was based on one descriptor that

characterized electron affinity (A). The decision stumps are
summarized in the ESI (Table S3†). Despite the better statisti-
cal characteristics (Fig. 4e), this model has a lower quality than
the MLR-GA model (eqn (4)). As it can be seen from Fig. 4a
and e, the DT model does not properly differentiate activities,
providing discrete predictions. Values of selected descriptors,
predicted, and observed cytotoxicity are presented in
Table S4.† The AD plot for both models (Fig. 4c and d) demon-
strated that two compounds of the training set (i.e. TiO2

loaded with 4.5Ag and 4.5Ag_0.5Au) are located outside of ±3σ
and should be treated with caution as its prediction might
potentially be less accurate whereas a chemical that falls
outside the defined limits of the model’s reliable predictions
(i.e. outside the orange zone).57 Thus, we can assume that
4.5Ag and 4.5Ag_0.5Au NPs are structurally different from the
other training compounds and are, thus, deliberated as out-
liers in the structural domain of the model. Indeed, this con-
clusion becomes obvious considering the fact that these com-
pounds had the highest values of both descriptors (i.e. χmix

and A, ESI, Table S4†) among all compounds in the training
set. However, these were found to have relatively small residual

errors (that did not fall outside the limits of ±3 of the standard
deviations) (ESI, Table S4†). The samples 4.5Ag and
4.5Ag_0.5Au NPs thus might be considered as good high lever-
age points (also called the structurally influential outlier) that
stabilized the model.57 However, its prediction should be
treated with the utmost caution. In addition, the AD has been
verified by the plot of standardized cross-validated residuals
versus leverages (Williams plot) (ESI, Fig. S2†).60 In order to
alleviate chance correlation, and evaluate the significance of
the developed Nano-QSARmix model, the Y-randomization test
(so-called Y-scrambling test) was additionally performed.61 We
built 2000 models (so-called “random models”) utilizing the
same descriptor (χmix) but correlated with cytotoxicity pEC50

data randomly shuffled every time. Based on the calculations
of the R2Yscr and Q2Yscr values for these models we were able to
determine the minimal error that can be calculated without
the presence of any model. Since the values of R2Yscr were
about 17 times lower than those for the Nano-QSARmix model
and the value of Q2Yscr was negative (Table S8, Fig. S1, ESI†),
we have confirmed the significance of the developed Nano-
QSARmix (eqn (4)).

3.2 Interpretation of nano-QSARmix models

In order to understand the relationship between mechanisms
of cytotoxicity and photocatalytic activity of hybrid TiO2-based
nanomaterials, we cross-analyzed the developed nano-QSARmix

models. We suggest that the developed models prove that the
increased cytotoxicity, as well as the photocatalytic activity, is
referred to the h+/e− pair generation (eqn (5)–(11)).3,21,26 As we
demonstrated in our previous studies1,4 the presence of noble
metals may result in increased photocatalytic activity because
of: (i) extended absorption in visible light due to the localized
surface plasmon resonance (LSPR) that causes transfer of
photo-excited electrons (e−) from the noble metal to the con-
duction band of the TiO2 surface; or (ii) charge separation
mechanism in UV-vis light when the noble metal traps photo-
generated charge pairs (i.e. electrons (e−) and holes (h+)) that
results in lengthening of its lifetime and leads to reduced
charge recombination and facilitates the transport of photo-
generated electrons (e−) to the TiO2 surface (Fig. 5).20,22,24,25

Table 2 Statistics for developed nano-QSARmix models for the cyto-
toxicity effect

MLR-GA model DT model

Radj
2 0.87 0.90

RMSEC 0.20 0.17
Qint

2/Qbagging
2 0.84 0.74

RMSECV 0.23 0.22
QEXT

2 0.80 0.90
RMSEP 0.19 0.16

Fig. 5 Schematic illustration of semiconductor excitation by vis and UV-vis light, charge carriers’ generation, ROS production, and cell damage.
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Consequently, in both mechanisms photo-generated h+/e−

pairs cause besides indirect oxidation and reduction processes
that are carried out by reactive oxygen species (ROS), Fig. 5.1,3

At the same time, ROS production is the most common tox-
icity cause as discussed in the literature in the case of
nanoparticles.4,9,11 Based on our previous results we have indi-
cated that the main photogenerated ROS include singlet oxygen
(1O2), superoxide (•O2), hydroxyl radicals (•OH), hydroperoxyl
radical (•O2H) and hydrogen peroxide (H2O2). The high efficiency
of surface modified TiO2-based semiconductors can be attributed
to the involvement of TiO2 band gap (Eg) excitation and absence
of noble metals at the TiO2 surface. It can be expected that noble
metals (i.e. Pd/Pt) because of LSPR may trap holes (h+), at the
same time photo-generated electrons can be then transferred
from the valence band to the conduction band of TiO2 and to its
surface where redox processes were initiated (Fig. 5a).1,3,23 Thus,
observed reduction of the electron–hole pair recombination
influences the reactive oxygen species (ROS) formation and the
photocatalytic redox process initiation (eqn (5)–(11)).3,21,26

Memix‐TiO2 VO
þð Þ ������!hνðUV‐visÞ

Memix LSPR ēð ÞTiO2 VO
þð Þ ð5Þ

Memix LSPRēð ÞTiO2 VO
þð Þ þ 2Hþ

! Memix � TiO2 VO
þð Þ þH2

ð6Þ

Memix‐TiO2 ������!hν UV‐visð Þ
Memix‐TiO2 CB ēð Þ ð7Þ

Memix-TiO2ðCBēÞ ! Memix-TiO2 þH2 ð8Þ
MemixðLSPRēÞTiO2 ! Memix-TiO2ðCBēÞ ð9Þ

Memix-TiO2ðCBēÞ þH2O ! OH• ð10Þ
OH• þ pollutant ! degraded product ð11Þ

Results obtained from developed models (models for both
UV-visdegr and pEC50, eqn (4)) indicated that the mechanisms
of photocatalysis under UV-vis light (UV-visdegr) and the cyto-
toxicity effect (pEC50) share similar causes (Fig. 5). First, the
developed DT model for phenol degradation under UV-vis
light irradiation clearly indicates that the presence of Pd and
Pt at the surface of TiO2 significantly influences the degra-
dation (expressed by %molPd, φPt, φmix, and BETarea descrip-
tors, see Fig. 3, Table S2, ESI†), on comparing with the pres-
ence of Au or Ag on the TiO2 surface. Next, we have shown that
the cytotoxicity of hybrid TiO2-based nanomaterials (eqn (4)) is
related to additive electronegativity (χmix) and electron affinity
(A) of studied nanomaterials (eqn (4)) that are indirectly
related to the electron generation and ROS formation. Since
the electronegativity was positively correlated with the cyto-
toxicity (+0.19χmix, eqn (12)) and increases in the row Au (2.54)
> Pt (2.28) > Pd (2.20) > Ag (1.93), it can be expected that some
ions (in presented case – ions of silver) are released from the
TiO2 surface easier than others (Fig. 5b):

χ � χcation þ 3:36: ð12Þ
This could be directly linked to the observed Ag related con-

centration-dependent increase of toxicity in samples (Fig. 2). A

similar observation was made by Li et al.28,29 and Beer et al.30

who have shown that Ag–TiO2 NPs generally exhibit stronger
cytotoxicity than TiO2 NPs. Next, the cytotoxicity increases as
electron affinity (A) of a sample increases (Fig. 4b). In fact, the
released metal ions may induce the formation of ROS, and
damage the integrity of the cell, as well as structures of pro-
teins or DNA inside the cell (Fig. 5).9,27 Obtained results indi-
cate that cytotoxicity of hybrid TiO2-based nanoparticles line-
arly changes with the concentration, and nonlinearly changes
in terms of additive parameters making individual properties
of each metal in the sample extremely important. In our
earlier work1,31 the influence of the bimetallic structure on
both photocatalytic and cytotoxicity properties was high-
lighted. In this regard, the current report presents an exten-
sion of that study, as bimetallic (hybrid) nanomaterials are
analyzed together with hybrid tri- and tetra-metallic samples.

4. Conclusion

In this work, a series of hybrid nanoparticles was investigated
using experimental and computational modeling techniques.
To improve the photocatalytic performance of TiO2 nano-
materials, surface modifications with noble Au/Ag/Pd/Pt
metals were introduced during the synthesis. We discussed
then hybrid TiO2-based nanostructures in the context of cyto-
toxicity and photocatalysis.

For the first time, the developed additive descriptor meth-
odology was tested for novel two-, tri- and tetra-metallic
hybrid TiO2-based photocatalysts. Based on developed quanti-
tative structure–activity/property relationship models and
experimental evidence we described the contribution of
physicochemical factors of investigated nanoparticles that
influence their photocatalytic properties and environmental
toxicity. We demonstrated that cytotoxicity is related to photo-
catalytic properties of multicomponent TiO2-based samples.
We have found the following parameters that play a crucial
role in the cell damage are: (i) the content of silver vs. gold/pal-
ladium/platinum, (ii) solubility, (iii) the electronic properties
of a sample (band gap and conduction band energy level) and
(iv) photocatalytic activity. Knowledge of physicochemical
characteristics that contribute to toxicity is essential for hybrid
nanomaterial’s safer-by-design development.

The proposed approaches allow the control of features of
electron structure and electron transfer in nanomaterials,
making them suitable for safer-by-design nanomaterials’ devel-
opment. The presented modeling approach is a good starting
point in the design and synthesis of efficient multi-component
TiO2-based photocatalysts with reduced cytotoxicity against
eukaryotic cells.
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