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Abstract—Crowd psychology plays an important role in determining the kind of activities that a person performs. In reality, in a social
network, crowd influence has been observed and it cannot be ignored when considering information diffusion problems. In this paper,
we model crowd influence as a hyperedge e = (H.,,v) with weight 0 < P, < 1, where H, is the head node set and v is the tail node,
means v will be activated by H, with probability P. only after each node in H. is activated. Then, the Social Influence Maximization
Problem in Hypergraph (SIMPH) aims to select k initially-influenced seed users in a directed hypergraph G = (V, E, P). The objective is
to maximize the expected number of eventually-influenced users. We show that SIMPH is NP-hard and the objective function is neither
submodular nor supermodular. We develop a lower bound and an upper bound that are submodular. We prove that maximizing these
two bounds are still NP-hard under IC model. Then, we present a D-SSA algorithm for general weighted social influence maximization
problem preserving (1 — 1/e — ¢)-approximation. We formulate a sandwich approximation framework, which preserves a theoretical
analysis result. Finally, we evaluate our algorithm on real world data sets. The results show the effectiveness and the efficiency of the

proposed algorithm.

Index Terms—Social influence maximization, independent cascade, crowd influence, hyperpraph, sandwich approximation framework

1 INTRODUCTION

INFLUENC maximization problem aims to select k initially-
influenced seed users to maximize the expected number
of eventually-influenced users as it has received tremen-
dous attention in the last few decades. Influence maximi-
zation finds its application in many domains, such as viral
marketing [1], epidemic control and assessing cascading
failures within complex systems. In this paper, we extend
the Social Influence Maximization Problem by considering
the crowd influence in hypergraphs.

It has been shown that individual behavior is heavily
influenced by the crowd [2]. The crowd influence is different
from the combined independent influences of people in the
crowd. It surpasses the combination of the independent
influence from each person in the crowd. Below is a specific
example. Directed edges represent the influence from A or B
to C. The influences C receives from A and B are independent
of each other. According to the crowd psychology, if both
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A and B are active, there should exist a crowd influence in
addition to A’s and B’s influences. A hyperedge is used to
depict such a crowd influence. In this paper, directed hyper-
edge is represented as e = (H,,v) where H, is the head set
and v is the tail. As shown in Fig. 1, e3 is a hyperedge where
H. = {A, B} and C'is tail. The weight of e; means the crowd
influence from {4, B} to C'is 0.7.

This phenomenon leads to non-submodularity when
considering the social influence maximization problem.
The non-submodularity comes from the crowd psychology.
The crowd psychology reveals that the crowd influence
is different from the combined independent influences
of people in the crowd. This phenomenon yields non-
submodularity in social influence propagations, which
are modeled through hypergraphs. In this paper, infor-
mation diffusion is based on independent cascade (IC)
model. As shown in Fig. 1, there are three independent
events: A activate C' with probability 0.5, B activate C'
with probability 0.4 and the crowd influence from A and
B activate C' with probability 0.7. Then the activated
probability of C'is 1 — (1 —0.5)(1 — 0.4)(1 — 0.7) = 0.91.

Note that influences through hypergraphs are not sub-
modular, we cannot adapt existing social influence maximi-
zation methods to solve the SIMPH. Therefore, challenges
are posed to solve the SIMPH. The first challenge is to deal
with the non-submodularity. The problem hardness and
approximability need to be explored. New algorithms are
needed, since a simple greedy algorithm can no longer guar-
antee an approximation ratio. Another challenge is the scal-
ability. Since hyperedges change the scalability, it is difficult
to reduce their complexities.
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Fig. 1. An example of hyperedge.

1.1 Related Works

Kempe et al. [3] were the first to formulate SIMP as an
optimization problem under the IC model. They prove
SIMP to be NP-hard under IC model and design a natural
greedy algorithm that yields (1 — 1/e — €)-approximate sol-
utions for any e > 0. Motivated by this celebrate work, a
fruitful literature for SIMP ([4], [5]) have been developed.
However, most of the existing methods are either too slow
for billion-scale networks such as Facebook, Twitter and
World Wide Web or fail to retain the (1 — 1/e — €)-approxi-
mation guarantees.

TIM/TIM+ [6] and IMM [7] are two scalable methods
with (1 — 1/e — ¢)-approximation guarantee for SIMP. Tang
et al. [6], [7] utilize a novel RIS sampling technique intro-
duced by Borgs et al. [8]. TIM+ and IMM attempt to generate
a (1 — 1/e — ¢)-approximate solution with minimal numbers
of RIS samples. However, they may take days on billion-scale
networks.

Later, Nguyen et al. [9] make a breakthrough and pro-
posed two novel sampling algorithms SSA and D-SSA.
Unlike the previous heuristic algorithms, SSA and D-SSA
are faster than TIM+ and IMM while providing the same
(1 —1/e — ¢)-approximate guarantee. SSA and D-SSA are
the first approximation algorithms that use minimum num-
bers of samples, meeting strict theoretical thresholds charac-
terized for SIMP.

Although there are a large amount of literatures for
SIMP, almost all of SIMP are submodular. Few results [10]
are provided when the influence propagation model even
slightly violates the submodularity. Note that influences
through hypergraphs are not submodular, we cannot adapt
existing social influence maximization methods to solve the
SIMPH. The latest approach is based on the sandwich [11]
approximation strategy, which approximates the objective
function by looking for its lower bound and upper bound.

1.2 Contributions
Our contributions are summarized as follows:

1) Motivated by the crowd influence in the social net-
works, we propose the Social Influence Maximiza-
tion Problem in Hypergraph (SIMPH) that aims to
maximize the expected number of eventually-influ-
enced users under independent cascade model.

2)  We assess the challenges of the proposed maximiza-
tion problem by analyzing computational complexity
and properties of objective function. First, we show
the SIMPH is NP-hard under IC model. Moreover, the

TABLE 1
Frequently Used Notation
Notation Description
G = (V,E, P) A social network, where V is the node

set, I is edge set. Each edge is associated

with an influence probability P.

A social network, where V is the node set,

E is edge set. Each edge is associated with

an influence probability P. C' C Visa
candidate seed set. f is weight function of node.

G = (V.C,E,P.f)

e = (H,v) e is a directed hyperedge when |H,| > 2,
while e is a normal directed edge when
|H.| = 1. H, is called the head and v is
called the tail.

P, influence probability on edge e

m = |E| the number of edges in G

n=|V| the number of nodes in G

k the number of seeds

The expected number of eventually-influenced
nodes with initial seed set S in social network
G under diffusion model.

objective function of this problem is proved neither
submodular nor supermodular.

3) Toachieve practical approximate solution, we develop
a lower bound and upper bound of objective function.
We prove that maximizing these two bounds are still
NP-hard under IC model. However, we also prove
that both lower bound and upper bound are submod-
ular. Motivated by RIS sampling method, we present
a D-SSA algorithm for general weighted social influ-
ence maximization problem. Additionally, D-SSA pre-
serves (1 — 1/e — e)-approximation.

4)  For solving SIMPH, first we develop a randomized
algorithm for estimation of the objective function in
SIMPH. Second, based on influence increment maxi-
mization, a greedy strategy is presented. Finally, We
formulate a sandwich approximation framework,
which preserves a theoretical analysis result.

5) Last, we verify our algorithm on real world data sets.
The results show the effectiveness and the efficiency
of the proposed algorithm.

The rest of this paper is organized as follows. In Section 2,
we formulate the Social Influence Maximization Problem in
Hypergraph. The statement of NP-hardness and properties
of objective function will be given in Section 3. In Section 4,
we develop a lower bound and upper bound. Algorithms
for solving SIMPH are designed in Section 5. Experiment
results are shown in Section 6 and we draw a conclusion in
Section 7. Table 1 summarizes the frequently used symbols
and their meaning.

2 PROBLEM FORMULATION

In this section, we first review independent cascade model,
and then present the statement of the Social Influence Maxi-
mization Problem in Hypergraph.

2.1 Independent Cascade Model

The Independent Cascade model [3] is the most widely used
information diffusion model. The Social Influence Maximi-
zation Problem in Hypergraph is based on IC model.
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Fig. 2. An example of information diffusion process with initial seeds
i, Vel

Given a directed hypergraph G = (V, E, P), where V is a
set of nodes(i.e., users in an OSN), E is a set of directed
hyperedges and P is the weight function on hyperedge set
E. Hyperedges represent influence propagation directions,
including personal and crowd influences. For a hyperedge
e = (H.,v), let H, denote its head set of nodes and v be the
tail node. If H, contains only one node u, it means e is a nor-
mal directed edge and the influence is personal. While H,
contains more than one node, the hyperedge e means there
is crowd influence from H, to v. Let P, denote the weight of
e, representing the influence propagation probability
(0 < P, < 1). Specifically, P, is the probability that v is acti-
vated by H, after each node in H, is activated.

IC model assumes a seed set S C V. Let S; be the nodes
that are activated in step ¢(t =0,1,...) and Sy =S. For
hyperedge e = (H,,v), e is activated for the first time at step
tonlyif H C S;and H, \ S;—1 # 0. The diffusion process is as
follows. At step t, each activated hyperedge e = (H.,v) for
the first time has only one chance to activate the inactivated
node v with the probability of P.. Note that a hyperedge e
could only propagate the influence when all nodes in H, first
become all active. An example is shown in Fig. 2 to explain
the diffusion process for SIMPH, where there are 7 nodes and
the influence probability of each edge is 1. At the beginning,
v1 and vy are selected as initial seeds. At the first time step, v3
will be activated by v;. At the second time step, hyperedge
({va,v3},v4) is activated since v, and vz are both activated,
then v, will will be activated by this hyperedge. At the third
time step, v will be activated by v4. v7 can not be activated
since v is inactive. Finally, {v;, vs, v3, v, v } are activated.

2.2 Influence Maximization in Hypergraph

The Social Influence Maximization Problem in Hypergraph
also considers information diffusion in social network with
crowd influence under the IC model. Given a directed
hypergraph G = (V, E, P), the objective is to select k ini-
tially-influenced seed users to maximize the expected num-
ber of eventually-influenced users

max o(.5) 1)
s.t.|S| < k. 2)

Where S is the initial seed set and o(S) the expected number
of eventually-influenced nodes.

3 PROPERTIES OF INFLUENCE MAXIMIZATION
IN HYPERGRAPH
In this section, we first present statement of the hardness of

the social influence maximization problem in hypergraph.
Then discuss the properties of the objective function o(-).

1 Vi
Vl 1

V2

Fig. 3. Counter example.

3.1 Hardness Results

It is known that any generalization of a NP-hard problem is
also NP-hard. The social influence maximization problem
in a normal graph [3] has been proved NP-hard, which is a
special case of our problem when the head set H. just con-
tains one node. Therefore, the SIMPH is obvious NP-hard.

Theorem 3.1. The Social Influence Maximization Problem in
Hypergraph is NP-hard.

Also, we can get the following result of computing o(5)
since it was proved #P-hard under the IC model in normal
social network without considering crowd influences [3].

Theorem 3.2. Given a seed node set S, computing o(S) is
#P-hard under the IC model.

3.2 Modularity of Objective Function

The objective function of influence maximization is sub-
modular under the IC model. Unfortunately, the objective
function in influence maximization problem in hypergraph
is not submodular. Moreover, we can show that o(-) is not
supermodular as well.

Theorem 3.3. o(-) is not submodular under IC model.

Proof. We prove by a counter example. Consider Fig. 3.
A social network G = (V,E,P) has V = {v1,vs,v3,u4}
E= {(7}1, ’U4), (U37 U4)7({U17 UQ}? UJ)} and {P(l‘l.’U4> = ]-7 P('Ug,v4) =
L, P o} ws) = 1}. Let A=0 and B= {1}, we have
0(A) =0,0(B) = 1. Putting v, into A and B, we have
o({v1}) = 2and o({vs,v1}) = 4. Thus,

o(AUu{n}) —o(4) < o(BU{n}) —o(B).
Therefore, o(-) is not submodular. O

From the proof, we can see the reason why of(-) is not
submodular is the crowd influence from the newly added
node and the existing seed nodes.

Theorem 3.4. o(-) is not supermodular under IC model.

Proof. We prove by a counter example. Consider Fig. 3. Let
A =(and B = {v1},wehaveo(A) = 0,0(B) = 2. Putting v3
into A and B, wehaveo({v3}) = 2and o({v1,v3}) = 3. Thus,

oc(AU{vs}) —o(A) > o(BU{vs}) — o(B).

Therefore, o(-) is not supermodular. 0

4 LoweR BounD AND UPPER BOUND

There is no general method to optimize a non-submodular
function. Lu et al. [11] proposed a sandwich approximation
strategy, which approximates the objective function by
looking for its lower bound and upper bound. In this
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Fig. 4. An example for generation of each pair of nodes for the upper bound.

section, we will give a lower bound and an upper bound on
o(-). Then, we will analysis the properties of the lower
bound and upper bound.

4.1 The Upper Bounds
A straight way to get an upper bound is to duplicate the influ-
ence of hyperedge in order to delete the hyperedges. An auxil-
iary problem Gy = (V, Ey, PV) is generated as follows. V is
the same as nodes in the directed hypergraph G, Ey is a set of
directed edges. For any two nodes v and v, if there exists a
directed hyperedge e = (H.,v) thatu € H,, then u connects to
v in Gy. For each edge (u,v) € Ey, suppose v appears in &
head sets of hyperedges (H1,v), (H2,v) ..., (Hy,v) in G. Then
consider that k events ”H; influence v” are independent
Define a new influence probability of (u,v) to be P
1-T1= lf(l Py, ) Then Gy = (V Ey) is a normal directed
graph with influence probability P ) on each directed edge.
Find £ initially-influenced seed users to maximize the expec-
ted number of eventually-influenced users in this auxiliary
problem under IC model is defined as follows.

max oy (.9) 3)

(uw) —

s.t.]S| < k. (4)

Where S is the initial seed set and oy (S) is the expected
number of eventually-influenced nodes. The following theo-
rem is true.

Theorem 4.1. Given G =
o(-).

Proof. We need to prove oy(S) > o(S) for any SeV.
According to the IC model, assume S; and S; are the acti-
vated nodes in G and Gy respectively at step t. We only
need to prove S; C S at each time step.

When ¢t =0, Sy = S}, = S. First, we will prove S; C 5]
after the first time step. For each inactivated node v, we
will prove that the total influence probability PY(v) in
G is bigger than P(v) in G. Assume v is the tail of [ edges
(Hy,v), (H2,v),...,(H,v) in G. H; will try to activate v
with probability Py, . only if H; C S. Then v can be acti-
vated with the probability P(v) =1 —[[y.cs(1 — P, .))-
On the other hand, for each hyperedge (H;,v), the
influence probability Py, .) is duplicated to every node w
in H; to v according to the formulation process of
upper bound graph. Then, P(v) = 1~ [T,cs(m,um0-um)
(1 — P(m,v))~ For each HL - S, 1- P(H,j.v) > (1 - P(Hl.ﬂ/,))‘Hi‘.
We have PV(v) =1 — Puyy) =1—

(V,E, P), oy(-) is an upper bound of

HquSﬁ(HluHQUmUH])(l -
Hwe(SﬁHl)U(SOHQ)U»~U(SQH,)(1 - P(un,v)) >1- HwEUmgSHZ (1_
Puuw) = 1= Tlies(l = Puray)™ > 1= [ics(1 = Plagay) = P(0).

Wi

oy

W (c)

Fig. 5. An example for generation of directed graph for lower bound
problem.

Then, for each inactivated node v, PY(v) > P(v) means
S1 C S after the first time step.

Second, suppose S; C S, at step t, we will prove
Si+1 € Sy, after one time step. For each inactivated node
v, we will prove that the total influence probability PY(v)
in Gy is bigger than P(v) in G. Assume v is the tail of [
edges (Hy,v), (Hs,v),...,(H;,v) in G. H; will try to acti-
vate v with probability P, ., only if H; CS;. Then v
can be activated with the probability P(v) =1 —[]p g,
(1 = Py, ). On the other hand, for each hyperedge
(Hj,v), the influence probability Py, is duplicated
to every node w in H; to v according to the formula-
tion process of upper bound graph. Then, PY(v) = 1—
H'u,'ES;ﬂ(HluHQU---UH/)(1 — Py,))- Foreach H; C S, 1— P >

H; TN
(1- P(Hz-v))‘ . We have PV (v)=1- HweS;ﬁ(HluHQU--qul)(l_

Puw) =1- Hwe(sfmel)u(S;mHQ)umu(S;mH,) (1 = Py))- Since
Sp C Sj, then PU(v) > 1 - Hwe(StﬂHl)U(StﬁHg)UmU(StﬂHl)(1_
Puw) =2 1 - Hueuﬂ cs, H; (1 = Puy) = 1= Tlycs, (1=
P, ))” i>1— 1, cst(l P,v)) = P(v). Then, for each
inactivated node v, PY(v) > P(v) means S;;1 C S| 41 after
the one time step. 0

Fig. 4 shows an example for node pair « and v. Assume
there are three head node sets Hy, Ho, H3 contain u as shown
in hypergraph (a), then (b) shows the generation process for
directed edge (u,v) with probability P, =1—(1—-P)
(1-=P)(1—P).

4.2 The Lower Bounds

Next, we will formulate a lower bound for SIMPH. The
main idea is to delete some hyperedges from G, and only
keep such hyperedge whose nodes in head set can be acti-
vate at the same time. That means all node in this hyper-
edge’s head set have a same head set. As shown in Fig. 5a,
for hyperedge (H,v)= ({wi,us,us},v), there exist three
hyperedges (W, u;), (W, us2),(W,u3) which have the same
head set W that means wuq,us,u3 will be activated at the
same time. Such hyperedge (H,v) will keep in G, otherwise
will be deleted such as shown in Fig. 5c.

Given an original SIMPH G = (V, E, P), for each hyper-
edge e = (H,,v), suppose H. = {u1,us, ..., u}, if there exist
W e V such that {(W,w), (W, uy),...,(W,w)} belong to E,
then e = (H,,v) is kept. Otherwise, e = (H,,v) is deleted
from G. After all hyperedges are considered, we get a sub-
hypergraph G’ of G. Now an auxiliary graph G = (Vz, Ep)
based on G’ is generated as follows. For each hyperedge
e = (H.,v) in G/, generate two super node h and w represent
head set H. and W respectively, then add directed edges
(w,h) and (h,v). The 1nﬂuence probability of (w,h) and
(h,v) are deflned as P(L B = Hl 1PW 4;) and Ph =Pl
Let V' contain all super nodes. Let the welght of super

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on July 02,2020 at 20:17:17 UTC from IEEE Xplore. Restrictions apply.
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nodes be 0, while weight of the other nodes be 1. Then, we
define a weight function f(-) for node set.

ro={y

The above process can be separated into two phrases.
The first is to delete unsatisfied hyperedges while the sec-
ond phrase is to generate super nodes and add new edges.

Fig. 5 shows how to generate directed graph for the lower
bound. When we consider hyperedge (H, v) with probability
Py in (a), there exists hyperedges (W, u1), (W, ua), (W, us).
Then hyperedge (H,v) can be kept. A hyperedge (H, v) in (c)
will be deleted since u; and uy connect from different head
sets W, and W,. Graph (b) is a directed graph generated
from (a). For head sets H and W, add two super nodes h and
w. v will be activated by super node h with probability
Py = Py, and super node h will be activated by super node
w with probability P(w,h) = P(WJH)P(W:“Q)P(W:“:s) = P1P2P3.
Also, super node w will be activated by node s with proba-
bility Plow) = Plsw) Plswy) = P5Fs.

Then auxiliary problem G = (V UV’ E., Pt f) is to
select k initially-influenced seed users in V' to maximize the
expected weighted number of eventually-influenced users,
where E;, contains all original normal directed edges in G
and new added edges.

veV
ve V.

maxop(S) (5)

s.t.|S| < k. (6)

Where S is the initial seed set and o(S) is the expected
weighted number of eventually-influenced nodes. The influ-
ence probability decreases in the hpyeredge deleting process
and nodes merging process. We have the following theorem.

Theorem 4.2. Given G = (V, E, P), or(-) is an lower bound
of o(-).

Proof. We need to prove o.(S) <o(S) for any SeV.
According to the IC model, assume S; and S, are the acti-
vated nodes in G, and G respectively at step t. Since G-
contains super nodes, S; has two parts: nodes in V' and
nodes in V', where V is the original node set and V' is
the super node set. Meanwhile, o;(-) is the weighted
expected number of activated nodes. Then, we only need
to prove S; NV C S, at each time step.

When t =0, S| =5)=5C V. First, we will prove
S} NV C S after the first time step. For each inactivated
node v € V, we will prove that the total influence proba-
bility PX(v) in G, is less than P(v) in G. Assume v is the
tail of [ edges (Hi,v),(H2,v),...,(H;,v) in G. H;, will
try to activate v with probability P, only if H; C S.
Then v can be activated with the probability P(v) =1—
[#,cs(1 = P v))- On the other hand, some of these !
edges will be deleted after the first phrase of formulating
G'. Suppose (H},v), (Hy,v),. .., (H,,v) are the ¢ < [ edges
which are kept in G. For each hyperedge in these ¢ edges,
generate a new super node. Let {(H},v),(H), v),...,
(H(’I7 v)} = By U Ey, where By = {(wy,v), (wa,v), ..., (wp,v)}
is the normal edge set and E is hyperedge set. Let u € U
be the super node corresponding to hyperedge in E».
Since S € V at the beginning, super nodes are inactivated.

Then, PL(U) =1- HwieSﬂ{uvl,uvz,.,.,wh}(1 - P(wi:l’)) < 1=
[#,cs(1 = P ) = P(v). Then, for each inactivated
nodev € V, PL(v) < P(v) means S, NV C ;.

Second, suppose S; NV C S, at step t, we will prove
S,;.1 NV C Sy, after one time step. For each inactivated
node v € V, we will prove that the total influence proba-
bility P*(v) in G, is less than P(v) in G. Assume v is the
tail of [ edges (Hi,v),(H,v),...,(H;,v) in G. H; will
try to activate v with probability P, only if H; C S;.
Then v can be activated with the probability P(v) =1—
[#,cs,(1 = P, v))- On the other hand, some of these I
edges will be deleted after the first phrase of formulating
G'. Suppose (Hj,v),(Hy,v),...,(H,,v) are the ¢<I
edges which are kept in G'. For each hyperedge in these
g edges, generate a new super node. Let {(H},v),
(Hy,v), ..., (H{;,v)} = EyUE,;, where E; = {(wy,v),
(we,v),...,(wy,v)} is the normal edge set and E, is
hyperedge set. Let u € U be the super node correspond-
ing to hyperedge in E,. Since S; € V UV, super nodes
may be activated. For each activated super node, the cor-
responding hyperedge must be acitvated, that means
all nodes in head set of this hyperedge must be activated
since these nodes are activated by same node set in
last time step. Then, PL(v) =1—]]

Pluio) Huesyor( = Puay) < 1= Tluespov(t = Pu) Hesyow
(1= Py,))- Since S;NV C 5, we have 1 — ], ey (1—

P(wi,v)) Hngsng(l - P(Hi,ff)) <1- Hmzesf(l - P('wi,v)) HH,QSf
(1- P(Hi7v)) <1- HHiQSt(]‘ — P(Hi.gu)) = P(v). Then, for
each inactivated node v € V, PX(v) < P(v) means S),; N
V C S, after one time step. O

4.3 Properties of the Bounds

The above two auxiliary problems are NP-hard since they
are normal SIMP and weighted SIMP respectively. oy (-)
and oy (-) are monotone and submodular under IC model.

5 RIS ALGORITHM METHOD

We will extend Dynamic-Stop-and-Stare(D-SSA) [9] algorithm
to solve general weighted SIMP. Then an randomized algo-
rithm base on greedy strategy is designed for solving SIMPH.
At the end, an sandwich approximation framework will be
proposed for analyzing performance of our algorithms.

In order to solve the lower bound and upper bound, we
define a general weighted SIMP. Let weighted directed
graph G = (V,C,E, P, f) denote a general weighted influ-
ence maximization problem with candidate seed set C C V'
under the IC model, where P is the influence probability
and f is weight function of node. Especially, E is the edge
set in which only contains normal directed edges. Suppose
S is the initial seed set. Let o/(S) = >_ is activated f(v) be
the expected weighted number of eventually-influenced
nodes. Find £ initially-influenced seed users in C' to maxi-
mize o’(S). It is easy to see that ¢’(S) is monotone and
submodular. Since G is random graph, sampling method is
necessary to estimate o’(.5).

5.1 (¢, 5)-approximation

We recall the (¢, §)-approximation in [12] that will be used
in our algorithm. ¢ is absolute error of estimation and
(1 — ) is confidence.
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Fig. 6. An example for generating random WRR sets under IC model.
Ry, Ry, R3 with w(R;) = 3,w(R2) =5, and w(R,;) = 4 are generated. (a)
is the original weighted random graph. (b) contains three WRR sets up
to three sample graphs.

Definition 5.1 ((¢,8)-approximation). Let Zi,Z,,... be
independently and identically distributed samples according to
Z in the interval [0,1] with mean ., and variance O'QZ. A Monte
Carlo estimator of ..,

ﬂZ:TZZi, (7

i=1

is said to be an (e, 8)-approximation of i, if

Pril—euy <piz <(I+euy]>1-36. 8

Define YT =4(e—2)In(2/8)/e® and YT; =1+ (1+¢7,
then the Stopping Rule Algorithm given in [12] has been
proved to be (¢, §)-approximation.

Lemma 5.1. Let Z,, Z,, . .. be independently and identically dis-
tributed samples accordmg to Z in the interval [0,1] with mean
.. Let SumZ = Zt \Zi, iy =3 Y =4(e—2)In
(2/8)/e* and Yy =1+ (1 +€)Y. If N zs the number of sam-
ples when SumZ > Yy, then Pri(l—e)uy <y <(1+

eyl >1—=38and E[N] < YTi/uy.

5.2 RIS Sampling

First, we will introduce reverse influence set(RIS) sampling
method [8]. Given a graph G = (V,C, E, P, f), where C C V
is a candidate seed set. RIS captures the influence landscape
of G through generating a set R of random Weighted Reverse
Reachable(WRR) sets. Each WRR set R; is a subset of V' and
constructed as follows,

Definition 5.2. (Weighted Reverse Reachable set). Given G =
(V.C,E, P, f), a random WRR set R; is generated from G by
(1) selecting a random node v € V; (2) generating a sample
graph g from G; (3) returning R; as the set of nodes that can
reach v in g; and (4) w(R;) = f(v).

For a seed set S, denote the coverage number of set S as
Covg(S)=>_ RjeR min{|S N Rj|,1} and the coverage weight
as WCouvg(S) = ZR cr W(R;)min{[S N R;|,1}. ¢'(S) can be
estimated by computmg weighted coverage of set S. Fig. 6
shows an example of generating a collection of random
WRR sets. Suppose seed set S = {t}, then Covg(S) =2 and
WCovg(S) = 1.

Lemma 5.2. Given G = (V,C, E, P, f), a random WRR set R;
generated from G. For each seed set S C C, where C CV is
candidate seed set,

=Y fw)

veV

Pr[S covers R;].

Proof.
> f)
visactivated

= Z f(v)Privis activated]

veV
= Zf(v)Pr[S covers Rj].

veV

O

Lemma 5.3. The Greedy Weighted Max-Coverage returns an
(1 — 1/e)-approximate seed set Sk.

Algorithm 1. Weighted Max-Coverage Procedure

Input: WRR sets (R), k and weight function w(-).

Output: An (1 — 1/e)-approximation solution S). and its esti-

mated influence o’(Sk).

Sp=10

: fori=1to kdo
¥« arg max,ec (WCoug (S U {v}) —
Add ¥ to Sk

end for .

o' (S) = WCov (Sp) - ey f(0)/ L) w(R))

: return < ék;,&’(gk.) >

WCOUR(§k~))

N AN

In the sampling process, the most important thing is to
determine the number of samples to satisfy the given esti-
mation error. According to Dynamic-Stop-and-Stare algo-
rithm in [9], we can prove the following D-SSA algorithm
preserves the (1 — 1/e — €)-approximation factor.

Theorem 5.1. Give ¢, § and a general weighted SIMP G =
(V,C,E, P, f), Algorithm 2 returns a (1 —1/e — €)-approxi-
mation solution.

Algorithm 2. D-SSA Algorithm for General Weighted
SIMP

Input: Graph G = (V,C,E, P, f),n=1|V|,0 < ¢, < 1and k.
Output An(1l—1/e— e) -approximation solutlon S
1: T —4(e — 2)(1 + €)’In(2/8)(1/€)
2: R — generate I' random RR sets by RIS

3 < S0 () ><—We1ghted Max-Coverage(R, k, f(+))
4. while ‘R' > (8 + 26) ln +11107L do

5:  R'+ generate ' random RR sets by RIS

6: 0L(Sk) — WCovr(Sp) - ey £(0)/ LI w(R))
7: €] — OA‘/(S],»,)/O‘IC(SJ,A,) -1
8: if (¢ <¢) then
9: €2 — 2(51::(11)763 - 2(:611/@)
cwv.R(SL.)eg
10: 81 — e 2F+a)l+e)
_((701;73/(;@;‘.)—1)65
11: 82 — e 2c(1+€3)
12: if 81 + 52 <$§ then
13: return S’k
14: end if
15:  endif

16: R+~ RUR

17: < Sp,0'(S) >« Weighted Max-Coverage(R, k, f(-))
18: end while

19: return gk
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5.3 Greedy Strategy for SIMPH

In this section, (¢,§)-approximation calculation procedure
of ¢(S) on a random hypergraph for a given seed set S is
proposed first. Then, an algorithm based on greedy strategy
for SIMPH will be presented.

5.3.1 Influence Estimation

Given a directed hypergraph G = (V, E, P) with n nodes,
o(S) is the expected number of eventually-influenced nodes
for seed set S. Suppose g = (V; E') is a sample graph of G,
let aq(S) denote the number of eventually-influenced nodes.
Then 222 ) is random variable distributed in interval [0,1].

The (e, 6) approximation calculation procedure of o(S) for a
seed set S is as follows.

Algorithm 3. APP-Calculation Procedure
(V.E,P), n=1|V|, 0<e¢,

Input: A directed hypergraph G =
8 <1, seed set S.
Output: o.(S) such that o.(5) <
(1 — 8)-probability
i T =1+4(1+¢€)(e—2)In(2/8)/e
s SumZ =0
N=0
while SumZ < T; do
g < generate sample graph of G
N=N+1,5=55=S5
while S # () do
S1=851U5,
Sy =10
for each hyperedge e = (H,,v) € Fin gand v is inactive
do
11: if H, C S; then
12: Add vto Sy
13: end if
14: end for
15:  end while
16:  SumZ = SumZ + %
17: end while
18: return o (S) =n -

(14+€)o(S) with at least

Y P N DA RN

—_

SumZ
N

According to Lemma 5.1, we need to generate N graphs
that satisfy the stopping rule >, G‘Jg—fé) >14+4(1+e¢)
(e —2)In(2/8) /€. From Lemma 5.1, we obtain a direct corol-
lary as stated below,

Corollary 5.1. The APP-Calculation procedure returns an esti-
mate o.(S) of o(S) such that

Pr((1—e)o(S) < 0.(S) < (1+e)o(S)] >1-6. (9

5.3.2 Greedy Algorithm

The nodes in the head set of A hyperedge will try to active
the tail node only when they are all active. The reverse tech-
nique in RIS sampling is unsuitable. Then, we design a
greedy algorithm, as shown in Algorithm 4. Starting with
an empty seed set, the greedy strategy iteratively adds a
node that maximizes the marginal gain of ¢(S), until k
nodes are selected.

Algorithm 4. Greedy Strategy for SIMPH
(V.E, P), k

Input: A directed hypergraph G =

Output: A set of seed nodes, S.

1. S=0

2: fori =1tokdo

3: v« arg max,cy (APP-Calculation(G, S U {v})—APP-
Calculation(G, S))

4: Addwvto S

5: end for

6: return S

5.4 Sandwich Approximation Framework

For SIMPH, we have provide a lower bound and an upper
bound for o(-) in Section 4. Then, the sandwich approxima-
tion framework is shown in Algorithm 5.

Algorithm 5. Sandwich Approximation Framework
(V,E,P), k,¢€,6.

Input: A directed hypergraph G =

Output: A set of seed nodes, S.

1: Let S, be the output seed set of solving the auxiliary problem
Gr = (VUV', Er, PL) for lower bound by D-SSA Algorithm
(Algorithm 2).

2: Let Sy be the output seed set of solving the auxiliary prob-
lem Gy = (V, Ey, PY) for upper bound by D-SSA Algorithm
(Algorithm 2).

3: Let Sy be the output seed set of solving G =
Greedy Strategy for SIMPH(Algorithm 4).

4: S =arg maxge(s, 5,5, APP-Calculation(G, Sp)

5: return S

(V. E, P) by

For sandwich approximation framework, we can get the
following result.

Theorem 5.2. Let S be the seed set returned by Algorithm 5,
then we have

o(5) > max{ o(5u) "L(SL)} a —é—e)a( 0

2(S0) o(S") T 15 S*). (10)

Where Sj is the optimal solution to maximize the lower bound
problem and S* is the optimal solution of SIMPH.

Proof. Let S;; be the optimal solution to maximize the upper
bound IM problem Then, we have

o(Sy) = 23 UU(SU) > 28 (1 -1 = ou(Sy)

2 S (L=t = 9ou(s) 2 aU(<S§L3> (-1 a(s)
and
o(S1) > 01(51) > (1~ ar(5}) > ”{f((;z)) 1L 9o

Let Sy = arg maxg,e(s; .s,,5,19(50), then

o)z max{ 20 () 1

e) o(S").

Since VSy € {5, Sy, Sa}, (1 —¢€)o(Sy) < o.(So)
€)a(Sy), we have

(1 + E)G(S) > GC(S) > GC(Smam) >
It follows that

<(1+

(1 —€)o(Smaz)-
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o(S) > 5('I(ST,L,LI)

= l+e
o(Sy) or(Sy) —¢ "
o, T (1 - L - )a(SY) O

> max{

According to Theorem 5.2, the difference between o(5*)
and o(S}) has great influence on the performance of Algo-
rithm 5. Iyer and Bilmes [13] studied the minimization prob-
lem of the difference between submodular function. While
the difference between ¢(S*) and o(S;) may be bounded,
we have the following result.

Theorem 5.3. Let S} be the optimal solution to maximize the
lower bound problem and S* is the optimal solution of SIMPH,
then we have

o(S") —or(S]) < S%E\Lfk(al](s) —o1(9)). (11)
Proof.
o(8") —oL(S) < o(57) —or(S)
<oy(S) —or(57) < ;ﬁl;lgk(av(s) — o (9)).
(]

Additionally, the structure of graph will have signi-
ficantly impact on effectiveness of the lower bound. Accord-
ing to the lower bound formulation, hyperedges will be
deleted if nodes in their head set do not have a same head
set. An extreme case is all hyperedge are deleted, which is
the worst case of lower bound. In reality, this case may not
appear which could be seen in the Experiments. We also do
some small size experiments to evaluate o,(S}) with o(S*).

6 EXPERIMENTS

6.1 Statistics and Information of Datasets

Our experiments are based on the 3 datasets from Forum
on toreopsahl.com which is an online forum network.
Each dataset has both one mode and two mode data which
are preprocessed to give the edges (both simple and hyper-
edges) of the graph on which the experiments are per-
formed. The first dataset is the Facebook-like Forum
Network [14], the second dataset is Newmans scientific col-
laboration network [15] and the third dataset is Norwegian
Interlocking Directorate [16]. The statistics of the data (after
processing to graphs to form hyperedges) are represented
in Table 2. The first dataset logs information of user interac-
tion on different topics discussed in the forum. It contains
three columns namely a time stamp, a user and a topic that
the user had liked. This data is preprocessed to build the
hypergraph with hyperedges (crowd influence) in the form
of (H,,v) where H,>1 and v is the tail node. The second
dataset used for our experiments is in the Newmans scien-
tific collaboration network. This is a network representing
the co-authorship network. The dataset had two columns
namely author and paper ID and the corresponding hyper-
edges are generated based on the relationship between co-
authors and the paper that they have written. The third
dataset is in the Norwegian Interlocking Directorate Net-
work. This data represents the interlinking relationship
among directors and among 384 public limited companies
on the website of the Norwegian business site. The dataset
contains two columns namely company and director and
the interlocking connection among them is derived to form

TABLE 2
Data Statistics
Normal Directed Edges ~ Hyperedges = Nodes
Datasetl 142,760 479 897
Dataset2 95,188 3,668 16,264
Dataset3 7,710 4,977 2,045

the hyperedges of our graph. All the programs are written
in Python 3.6.3 and run on a Linux server with 16 CPUs and
251 GB RAM.

6.2 Pre-Processing of Data and Crowd Influence
Detection

6.2.1 Dataset 1

The first dataset is the Facebook-like Forum Network. It has
both one mode and two mode data. The one mode data
contains relationship among Person A and Person B and the
number of messages that they have shared. This one mode
dataset is used to form direct edges among people (nodes)
in the graph and the number of messages they shared are
assigned as the weight of the edge between A and B. The
two mode network represents 899 users and 522 topics and
describes which user had liked which topic sorted by time.
The hyperedges are built by analyzing the two mode data.
The concept to identify the influence is that if Person A liked
a topic X at time T1 and Person B liked the same topic X at
time T2 and Person C liked the same topic X at time T3 and
if T1< T2 <T3 then we can establish an edge going from
(A,B) to C by assuming that A and B have influenced C in
liking the topic X. The edge weight for this hyperedge is
assigned by calculating how many topics the influencing
entities are interested in. The dataset is sorted according to
times tamp and a sorted list was made of all the people who
have liked/read a topic and based on the time stamp, the
hyperedges of the graph are built and the corresponding
weights are assigned. After pre-processing of the data, the
final graph have 897 nodes, normal edge count of 142,760
and hyperedge count of 479. The graphs below show the
experimental results for dataset 1.

6.2.2 Dataset?2

The second dataset is the Newmans scientific collaboration
network. The one mode data in this dataset records the rela-
tionship between Author A and Author B and the total
number of papers that they have written together. The
directed edges are built from the one mode data and the
total number of papers that the two authors have written is
assigned as the weight of the the edge between them. For
building the hyperedges of the graph, the two mode data is
processed. The two mode data gives the information about
the co-authors of a given paper. The head set for the hyper-
edge is derived by analysing the total number of papers
that each pair of co-authors have written. For example, if
AB and C are three authors who have written paper
1 together, we analyze how many papers (A,B), (B,C) and
(A,C) have written. Whichever pair has written the most
papers is assumed to influence the the other. Let us assume
the number of papers for (A,B) is 5, for (B,C) is 2 and (A,C)
is 3, then we can establish a hyperedge (A,B) to C by
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Fig. 7. Experimental results for Dataset 1.

assuming that as (A,B) had the maximum number of
papers, they must have influenced author C to collaborate
with them. The weight associated with this hyperedge
would the the total number of papers that the influencing
entity have written together. After pre-processing the data,
the final graph have 16,264 nodes, normal edge count of
95188 and hyperedge count is 3668. The graphs below show
the experimental results for dataset 2.

6.2.3 Dataset 3

The third dataset is the Norwegian Interlocking Directorate
network. The one mode data in this dataset depicts the rela-
tionship among directors in a company. The relation among
directors A and B are used to build a simple edge among
them. For the hyperedges, the two mode data is processed.
The two mode data gives the list of directors in a company.
For establishing an influence relation, we analyze the list of
directors in companies through months over three years.
For example, lets assume company C1 has a list L1 = {A,B,
C} of directors in January of 2008, in April of 2008, the list
changes to L2 = {B,C,D,E}, in July of 2008 the list changes to
L3 = {B,CF} and in October of 2008 the list changes to
L4 = {B,F}. By analyzing the lists L1, L2, L3 and L4 we can
see that by April of 2008 director A had left the company,
by July of 2008 directors D and E had left the company and
by October of 2008 director C had left the company. Thus we
can assume that directors A and D had influenced C to leave

2,800 [ -

2,600

—a—Lower Bound | |
—o— Sandwich
—— Upper Bound ||

1
0 20 40 60 80 100

Number of seeds

(a) Sandwich Framework

600 [- ‘ R
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——  Our Gap
—— Heuristic Gap
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(b) Gap Comparison of Upper Bound and
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Fig. 8. Experimental results for Dataset 2.

or directors A and E had influenced C to leave. Thus we can
establish the hyperedges (A,D) to C and (A E) to C. The weight
assigned to these hyperedges is the maximum time difference
of the entity leaving the company. For example, A left in April
and C left in October, then the difference is 10-4 = 6. After pre-
processing the data, the final graph had 2045 nodes, normal
edge count is 7710 and hyperedge count is 4,977.

6.3 Performance and Comparison

Two experiments are performed for each dataset after the
graphs for each dataset is built using the concepts in Section
6.2. The first experiment is performed to obtain o(.S) values
for a given seed set value & (ranging from 0 to 100) for upper
bound, the sandwich framework and lower bound. The sec-
ond experiment is performed to obtain the difference
between upper bound and lower bound for a value of k
ranging between 0 to 100 and compared to a heuristic gap.
All the experiments are plotted on graphs and shown in
Figs. 7,8 and 9.

6.4 Experimental Results

From the graphs in Figs. 7, 8 and 9 it is observed that in the first
experiment the sandwich framework gave o(.S) values lying
in between the o(S) values for the upper bound and lower
bound for all the three datasets and the o(.S) values increased
with increasing values of seed set k. In the second experiment
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Fig. 9. Experimental results for Dataset 3.

it is observed that our gap is significantly less than the
heuristic gap for all the three datasets and also the gap
decreased with the increase in the value of seed set k. While
the lower bound in heuristic gap is the expected number of
influenced nodes without considering any crowd influence.

6.5 Experiments on Small Hypergraphs

In this section, we do experiments on small hypergraphs.
We generate 10 random hypergraphs of 20 nodes and ran-
domly generate its normal edges and hyperedges. We use
these graphs to compare the results of Algorithm 5 with the
optimal solution and also to compare with the value of
lower bound problems. We use the enumerate algorithm to
obtain the optimal solution. The number of seeds k values
used in the experiment are {1, 2, 3} as higher k values would
be time consuming. Two results can be observed from
the experiments on these small hypergraphs. First result
observed is that the output for Algorithm 5 and the optimal
solution are same and the second result observed is that the
lower bound output and the output of Algorithm 5 have a
very small gap. Table 3 shows the average values of these
10 experiments.

7 CONCLUSION

In this paper, we modeled the crowd influence in information
diffusion process by using a hyperedge. Social Influence

TABLE 3
Experiment Results on Small Hypergraphs
Number of Seeds 1 2 3
o for Algorithm 5 18.3849 19.3415 19.6723
o for Optimal Solution 18.3849 19.3415 19.6723
o, for lower bound 16.8842 18.5328 19.3617

Maximization Problem in Hypergraph was formulated to
select initially-influenced seed users under Independent
Cascade model to maximize the expected number of even-
tually-influenced users. We showed SIMPH is NP-hard and
the objective function was neither submodular nor super-
modular. We developed a lower bound and an upper
bound so that the Sandwich framework can applied. We
presented a D-SSA algorithm to solve the lower bound and
upper bound which were general weighted social influence
maximization problem. Then, a greedy strategy based on
influence increment maximization with randomized algo-
rithm for estimation of the objective function in SIMPH
was presented. Finally, we verified our algorithm on real
world data sets. The results showed crowd influence played
an important role in the information diffusion process.
For future research, we are looking for an efficient method
to solve nonsubmodular problems, such as SIMPH and also
to be able to incorporate the effect of crowd influence to for-
mulate new models of social networks.
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