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Abstract—Crowd psychology plays an important role in determining the kind of activities that a person performs. In reality, in a social

network, crowd influence has been observed and it cannot be ignored when considering information diffusion problems. In this paper,

we model crowd influence as a hyperedge e ¼ ðHe; vÞ with weight 0 � Pe � 1, whereHe is the head node set and v is the tail node,

means v will be activated byHe with probability Pe only after each node inHe is activated. Then, the Social Influence Maximization

Problem in Hypergraph (SIMPH) aims to select k initially-influenced seed users in a directed hypergraph G ¼ ðV;E; P Þ. The objective is

to maximize the expected number of eventually-influenced users. We show that SIMPH is NP-hard and the objective function is neither

submodular nor supermodular. We develop a lower bound and an upper bound that are submodular. We prove that maximizing these

two bounds are still NP-hard under IC model. Then, we present a D-SSA algorithm for general weighted social influence maximization

problem preserving ð1� 1=e� �Þ-approximation. We formulate a sandwich approximation framework, which preserves a theoretical

analysis result. Finally, we evaluate our algorithm on real world data sets. The results show the effectiveness and the efficiency of the

proposed algorithm.

Index Terms—Social influence maximization, independent cascade, crowd influence, hyperpraph, sandwich approximation framework

Ç

1 INTRODUCTION

INFLUENC maximization problem aims to select k initially-
influenced seed users to maximize the expected number

of eventually-influenced users as it has received tremen-
dous attention in the last few decades. Influence maximi-
zation finds its application in many domains, such as viral
marketing [1], epidemic control and assessing cascading
failures within complex systems. In this paper, we extend
the Social Influence Maximization Problem by considering
the crowd influence in hypergraphs.

It has been shown that individual behavior is heavily
influenced by the crowd [2]. The crowd influence is different
from the combined independent influences of people in the
crowd. It surpasses the combination of the independent
influence from each person in the crowd. Below is a specific
example. Directed edges represent the influence from A or B
to C. The influences C receives fromAand B are independent
of each other. According to the crowd psychology, if both

A and B are active, there should exist a crowd influence in
addition to A’s and B’s influences. A hyperedge is used to
depict such a crowd influence. In this paper, directed hyper-
edge is represented as e ¼ ðHe; vÞ where He is the head set
and v is the tail. As shown in Fig. 1, e3 is a hyperedge where
He ¼ fA;Bg and C is tail. The weight of e3 means the crowd
influence from fA;Bg toC is 0.7.

This phenomenon leads to non-submodularity when
considering the social influence maximization problem.
The non-submodularity comes from the crowd psychology.
The crowd psychology reveals that the crowd influence
is different from the combined independent influences
of people in the crowd. This phenomenon yields non-
submodularity in social influence propagations, which
are modeled through hypergraphs. In this paper, infor-
mation diffusion is based on independent cascade (IC)
model. As shown in Fig. 1, there are three independent
events: A activate C with probability 0.5, B activate C
with probability 0.4 and the crowd influence from A and
B activate C with probability 0.7. Then the activated
probability of C is 1� ð1� 0:5Þð1� 0:4Þð1� 0:7Þ ¼ 0:91.

Note that influences through hypergraphs are not sub-
modular, we cannot adapt existing social influence maximi-
zation methods to solve the SIMPH. Therefore, challenges
are posed to solve the SIMPH. The first challenge is to deal
with the non-submodularity. The problem hardness and
approximability need to be explored. New algorithms are
needed, since a simple greedy algorithm can no longer guar-
antee an approximation ratio. Another challenge is the scal-
ability. Since hyperedges change the scalability, it is difficult
to reduce their complexities.
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1.1 Related Works

Kempe et al. [3] were the first to formulate SIMP as an
optimization problem under the IC model. They prove
SIMP to be NP-hard under IC model and design a natural
greedy algorithm that yields ð1� 1=e� �Þ-approximate sol-
utions for any � > 0. Motivated by this celebrate work, a
fruitful literature for SIMP ([4], [5]) have been developed.
However, most of the existing methods are either too slow
for billion-scale networks such as Facebook, Twitter and
World Wide Web or fail to retain the ð1� 1=e� �Þ-approxi-
mation guarantees.

TIM/TIM+ [6] and IMM [7] are two scalable methods
with ð1� 1=e� �Þ-approximation guarantee for SIMP. Tang
et al. [6], [7] utilize a novel RIS sampling technique intro-
duced by Borgs et al. [8]. TIM+ and IMM attempt to generate
a ð1� 1=e� �Þ-approximate solution with minimal numbers
of RIS samples.However, theymay take days on billion-scale
networks.

Later, Nguyen et al. [9] make a breakthrough and pro-
posed two novel sampling algorithms SSA and D-SSA.
Unlike the previous heuristic algorithms, SSA and D-SSA
are faster than TIM+ and IMM while providing the same
ð1� 1=e� �Þ-approximate guarantee. SSA and D-SSA are
the first approximation algorithms that use minimum num-
bers of samples, meeting strict theoretical thresholds charac-
terized for SIMP.

Although there are a large amount of literatures for
SIMP, almost all of SIMP are submodular. Few results [10]
are provided when the influence propagation model even
slightly violates the submodularity. Note that influences
through hypergraphs are not submodular, we cannot adapt
existing social influence maximization methods to solve the
SIMPH. The latest approach is based on the sandwich [11]
approximation strategy, which approximates the objective
function by looking for its lower bound and upper bound.

1.2 Contributions

Our contributions are summarized as follows:

1) Motivated by the crowd influence in the social net-
works, we propose the Social Influence Maximiza-
tion Problem in Hypergraph (SIMPH) that aims to
maximize the expected number of eventually-influ-
enced users under independent cascade model.

2) We assess the challenges of the proposed maximiza-
tion problem by analyzing computational complexity
and properties of objective function. First, we show
the SIMPH is NP-hard under ICmodel. Moreover, the

objective function of this problem is proved neither
submodular nor supermodular.

3) To achieve practical approximate solution,we develop
a lower bound and upper bound of objective function.
We prove that maximizing these two bounds are still
NP-hard under IC model. However, we also prove
that both lower bound and upper bound are submod-
ular. Motivated by RIS sampling method, we present
a D-SSA algorithm for general weighted social influ-
encemaximization problem. Additionally, D-SSA pre-
serves ð1� 1=e� �Þ-approximation.

4) For solving SIMPH, first we develop a randomized
algorithm for estimation of the objective function in
SIMPH. Second, based on influence increment maxi-
mization, a greedy strategy is presented. Finally, We
formulate a sandwich approximation framework,
which preserves a theoretical analysis result.

5) Last, we verify our algorithm on real world data sets.
The results show the effectiveness and the efficiency
of the proposed algorithm.

The rest of this paper is organized as follows. In Section 2,
we formulate the Social Influence Maximization Problem in
Hypergraph. The statement of NP-hardness and properties
of objective function will be given in Section 3. In Section 4,
we develop a lower bound and upper bound. Algorithms
for solving SIMPH are designed in Section 5. Experiment
results are shown in Section 6 and we draw a conclusion in
Section 7. Table 1 summarizes the frequently used symbols
and their meaning.

2 PROBLEM FORMULATION

In this section, we first review independent cascade model,
and then present the statement of the Social Influence Maxi-
mization Problem in Hypergraph.

2.1 Independent Cascade Model

The Independent Cascade model [3] is the most widely used
information diffusion model. The Social Influence Maximi-
zation Problem in Hypergraph is based on IC model.

Fig. 1. An example of hyperedge.

TABLE 1
Frequently Used Notation

Notation Description

G ¼ ðV;E; P Þ A social network, where V is the node
set, E is edge set. Each edge is associated
with an influence probability P .

G ¼ ðV; C;E; P; fÞ A social network, where V is the node set,
E is edge set. Each edge is associated with
an influence probability P . C � V is a
candidate seed set. f is weight function of node.

e ¼ ðHe; vÞ e is a directed hyperedge when jHej � 2,
while e is a normal directed edge when
jHej ¼ 1.He is called the head and v is
called the tail.

Pe influence probability on edge e
m ¼ jEj the number of edges in G

n ¼ jV j the number of nodes in G

k the number of seeds
sðSÞ The expected number of eventually-influenced

nodes with initial seed set S in social network
G under diffusion model.
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Given a directed hypergraph G ¼ ðV;E; P Þ, where V is a
set of nodes(i.e., users in an OSN), E is a set of directed
hyperedges and P is the weight function on hyperedge set
E. Hyperedges represent influence propagation directions,
including personal and crowd influences. For a hyperedge
e ¼ ðHe; vÞ, let He denote its head set of nodes and v be the
tail node. IfHe contains only one node u, it means e is a nor-
mal directed edge and the influence is personal. While He

contains more than one node, the hyperedge e means there
is crowd influence from He to v. Let Pe denote the weight of
e, representing the influence propagation probability
(0 � Pe � 1). Specifically, Pe is the probability that v is acti-
vated byHe after each node inHe is activated.

IC model assumes a seed set S � V . Let St be the nodes
that are activated in step tðt ¼ 0; 1; . . .Þ and S0 ¼ S. For
hyperedge e ¼ ðHe; vÞ, e is activated for the first time at step
t only ifHe � St andHe n St�1 6¼ ;. The diffusion process is as
follows. At step t, each activated hyperedge e ¼ ðHe; vÞ for
the first time has only one chance to activate the inactivated
node v with the probability of Pe. Note that a hyperedge e
could only propagate the influence when all nodes inHe first
become all active. An example is shown in Fig. 2 to explain
the diffusion process for SIMPH, where there are 7 nodes and
the influence probability of each edge is 1. At the beginning,
v1 and v2 are selected as initial seeds. At the first time step, v3
will be activated by v1. At the second time step, hyperedge
ðfv2; v3g; v4Þ is activated since v2 and v3 are both activated,
then v4 will will be activated by this hyperedge. At the third
time step, v6 will be activated by v4. v7 can not be activated
since v5 is inactive. Finally, fv1; v2; v3; v4; v6g are activated.

2.2 Influence Maximization in Hypergraph

The Social Influence Maximization Problem in Hypergraph
also considers information diffusion in social network with
crowd influence under the IC model. Given a directed
hypergraph G ¼ ðV;E; P Þ, the objective is to select k ini-
tially-influenced seed users to maximize the expected num-
ber of eventually-influenced users

max sðSÞ (1)

s:t:jSj � k: (2)

Where S is the initial seed set and sðSÞ the expected number
of eventually-influenced nodes.

3 PROPERTIES OF INFLUENCE MAXIMIZATION

IN HYPERGRAPH

In this section, we first present statement of the hardness of
the social influence maximization problem in hypergraph.
Then discuss the properties of the objective function sð�Þ.

3.1 Hardness Results

It is known that any generalization of a NP-hard problem is
also NP-hard. The social influence maximization problem
in a normal graph [3] has been proved NP-hard, which is a
special case of our problem when the head set He just con-
tains one node. Therefore, the SIMPH is obvious NP-hard.

Theorem 3.1. The Social Influence Maximization Problem in
Hypergraph is NP-hard.

Also, we can get the following result of computing sðSÞ
since it was proved #P-hard under the IC model in normal
social network without considering crowd influences [3].

Theorem 3.2. Given a seed node set S, computing sðSÞ is
#P-hard under the IC model.

3.2 Modularity of Objective Function

The objective function of influence maximization is sub-
modular under the IC model. Unfortunately, the objective
function in influence maximization problem in hypergraph
is not submodular. Moreover, we can show that sð�Þ is not
supermodular as well.

Theorem 3.3. sð�Þ is not submodular under IC model.

Proof. We prove by a counter example. Consider Fig. 3.
A social network G ¼ ðV;E; P Þ has V ¼ fv1; v2; v3; v4g
E¼fðv1; v4Þ; ðv3; v4Þ;ðfv1; v2g; v3Þg and fPðv1;v4Þ ¼1; Pðv3;v4Þ ¼
1; Pðfv1;v2g;v3Þ ¼ 1g. Let A ¼ ; and B ¼ fv2g, we have
sðAÞ ¼ 0; sðBÞ ¼ 1. Putting v1 into A and B, we have
sðfv1gÞ ¼ 2 and sðfv2; v1gÞ ¼ 4. Thus,

sðA [ fv1gÞ � sðAÞ < sðB [ fv1gÞ � sðBÞ:
Therefore, sð�Þ is not submodular. tu
From the proof, we can see the reason why sð�Þ is not

submodular is the crowd influence from the newly added
node and the existing seed nodes.

Theorem 3.4. sð�Þ is not supermodular under IC model.

Proof. We prove by a counter example. Consider Fig. 3. Let
A ¼ ; andB ¼ fv1g, we have sðAÞ ¼ 0; sðBÞ ¼ 2. Putting v3
intoA andB, we have sðfv3gÞ ¼ 2 and sðfv1; v3gÞ ¼ 3. Thus,

sðA [ fv3gÞ � sðAÞ > sðB [ fv3gÞ � sðBÞ:
Therefore, sð�Þ is not supermodular. tu

4 LOWER BOUND AND UPPER BOUND

There is no general method to optimize a non-submodular
function. Lu et al. [11] proposed a sandwich approximation
strategy, which approximates the objective function by
looking for its lower bound and upper bound. In this

Fig. 2. An example of information diffusion process with initial seeds
fV1; V2g.

Fig. 3. Counter example.
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section, we will give a lower bound and an upper bound on
sð�Þ. Then, we will analysis the properties of the lower
bound and upper bound.

4.1 The Upper Bounds

A straight way to get an upper bound is to duplicate the influ-
ence of hyperedge in order to delete the hyperedges. An auxil-
iary problem GU ¼ ðV;EU; P

UÞ is generated as follows. V is
the same as nodes in the directed hypergraphG,EU is a set of
directed edges. For any two nodes u and v, if there exists a
directed hyperedge e ¼ ðHe; vÞ that u 2 He, then u connects to
v in GU . For each edge ðu; vÞ 2 EU , suppose u appears in k
head sets of hyperedges ðH1; vÞ; ðH2; vÞ . . . ; ðHk; vÞ inG. Then
consider that k events ”Hi influence v” are independent.
Define a new influence probability of ðu; vÞ to be PU

ðu;vÞ ¼
1�Qi¼k

i¼1ð1� PðHi;vÞÞ. ThenGU ¼ ðV;EUÞ is a normal directed
graph with influence probability PU

ðu;vÞ on each directed edge.
Find k initially-influenced seed users to maximize the expec-
ted number of eventually-influenced users in this auxiliary
problemunder ICmodel is defined as follows.

max sUðSÞ (3)

s:t:jSj � k: (4)

Where S is the initial seed set and sUðSÞ is the expected
number of eventually-influenced nodes. The following theo-
rem is true.

Theorem 4.1. Given G ¼ ðV;E; P Þ, sUð�Þ is an upper bound of
sð�Þ.

Proof. We need to prove sUðSÞ � sðSÞ for any S 2 V .
According to the IC model, assume St and S0t are the acti-
vated nodes in G and GU respectively at step t. We only
need to prove St � S0t at each time step.

When t ¼ 0, S0 ¼ S00 ¼ S. First, we will prove S1 � S01
after the first time step. For each inactivated node v, we
will prove that the total influence probability PUðvÞ in
GU is bigger than P ðvÞ inG. Assume v is the tail of l edges
ðH1; vÞ; ðH2; vÞ; . . . ; ðHl; vÞ in G. Hi will try to activate v
with probability PðHi;vÞ only if Hi � S. Then v can be acti-
vated with the probability P ðvÞ ¼ 1�Q

Hi�Sð1� PðHi;vÞÞ.
On the other hand, for each hyperedge ðHi; vÞ, the
influence probability PðHi;vÞ is duplicated to every node w
in Hi to v according to the formulation process of
upper bound graph. Then, PUðvÞ ¼ 1�Q

w2S\ðH1[H2[���[HlÞ
ð1� Pðw;vÞÞ. For each Hi � S, 1� PðHi;vÞ � ð1� PðHi;vÞÞjHi j.
We have PUðvÞ ¼ 1�Q

w2S\ðH1[H2[���[HlÞð1� Pðw;vÞÞ ¼ 1�Q
w2ðS\H1Þ[ðS\H2Þ[���[ðS\HlÞð1� Pðw;vÞÞ � 1�Q

w2[Hi�SHi
ð1�

Pðw;vÞÞ ¼ 1�Q
Hi�Sð1� PðHi;vÞÞjHij � 1�Q

Hi�Sð1� PðHi;vÞÞ ¼ P ðvÞ.

Then, for each inactivated node v, PUðvÞ � P ðvÞ means
S1 � S01 after the first time step.

Second, suppose St � S0t at step t, we will prove
Stþ1 � S0tþ1 after one time step. For each inactivated node
v, we will prove that the total influence probability PUðvÞ
in GU is bigger than P ðvÞ in G. Assume v is the tail of l
edges ðH1; vÞ; ðH2; vÞ; . . . ; ðHl; vÞ in G. Hi will try to acti-
vate v with probability PðHi;vÞ only if Hi � St. Then v

can be activated with the probability P ðvÞ ¼ 1�Q
Hi�St

ð1� PðHi;vÞÞ. On the other hand, for each hyperedge
ðHi; vÞ, the influence probability PðHi;vÞ is duplicated
to every node w in Hi to v according to the formula-
tion process of upper bound graph. Then, PUðvÞ ¼ 1�Q

w2S0t\ðH1[H2[���[HlÞð1� Pðw;vÞÞ. For eachHi � St, 1� PðHi;vÞ �
ð1� PðHi;vÞÞjHij. We have PUðvÞ ¼ 1�Q

w2S0t\ðH1[H2[���[HlÞð1�
Pðw;vÞÞ ¼ 1�Q

w2ðS0t\H1Þ[ðS0t\H2Þ[���[ðS0t\HlÞ ð1� Pðw;vÞÞ. Since
St � S0t, then PUðvÞ � 1�Q

w2ðSt\H1Þ[ðSt\H2Þ[���[ðSt\HlÞð1�
Pðw;vÞÞ � 1 � Q

w2[Hi�StHi
ð1 � Pðw;vÞÞ ¼ 1�Q

Hi�Stð1�
PðHi;vÞÞjHij �1�Q

Hi�Stð1� PðHi;vÞÞ ¼ P ðvÞ. Then, for each
inactivated node v, PUðvÞ � P ðvÞ means Stþ1 � S0tþ1 after
the one time step. tu
Fig. 4 shows an example for node pair u and v. Assume

there are three head node setsH1; H2; H3 contain u as shown
in hypergraph (a), then (b) shows the generation process for
directed edge ðu; vÞ with probability Pðu;vÞ ¼ 1� ð1� P1Þ
ð1� P2Þð1� P3Þ.

4.2 The Lower Bounds

Next, we will formulate a lower bound for SIMPH. The
main idea is to delete some hyperedges from G, and only
keep such hyperedge whose nodes in head set can be acti-
vate at the same time. That means all node in this hyper-
edge’s head set have a same head set. As shown in Fig. 5a,
for hyperedge ðH; vÞ ¼ ðfu1; u2; u3g; vÞ, there exist three
hyperedges ðW;u1Þ; ðW;u2Þ; ðW;u3Þ which have the same
head set W that means u1; u2; u3 will be activated at the
same time. Such hyperedge ðH; vÞ will keep in G, otherwise
will be deleted such as shown in Fig. 5c.

Given an original SIMPH G ¼ ðV;E; P Þ, for each hyper-
edge e ¼ ðHe; vÞ, suppose He ¼ fu1; u2; . . . ; ulg, if there exist
W 2 V such that fðW;u1Þ; ðW;u2Þ; . . . ; ðW;ulÞg belong to E,
then e ¼ ðHe; vÞ is kept. Otherwise, e ¼ ðHe; vÞ is deleted
from G. After all hyperedges are considered, we get a sub-
hypergraph G0 of G. Now an auxiliary graph GL ¼ ðVL;ELÞ
based on G0 is generated as follows. For each hyperedge
e ¼ ðHe; vÞ inG0, generate two super node h and w represent
head set He and W respectively, then add directed edges
ðw; hÞ and ðh; vÞ. The influence probability of ðw; hÞ and
ðh; vÞ are defined as PL

ðw;hÞ ¼
Qi¼l

i¼1 PðW;uiÞ and PL
ðh;vÞ ¼ PðHe;vÞ.

Let V 0 contain all super nodes. Let the weight of super

Fig. 4. An example for generation of each pair of nodes for the upper bound.

Fig. 5. An example for generation of directed graph for lower bound
problem.
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nodes be 0, while weight of the other nodes be 1. Then, we
define a weight function fð�Þ for node set.

fðvÞ ¼ 1; v 2 V
0; v 2 V 0:

�

The above process can be separated into two phrases.
The first is to delete unsatisfied hyperedges while the sec-
ond phrase is to generate super nodes and add new edges.

Fig. 5 shows how to generate directed graph for the lower
bound. When we consider hyperedge ðH; vÞwith probability
P4 in (a), there exists hyperedges ðW;u1Þ; ðW;u2Þ; ðW;u3Þ.
Then hyperedge ðH; vÞ can be kept. A hyperedge ðH; vÞ in (c)
will be deleted since u1 and u2 connect from different head
sets W1 and W2. Graph (b) is a directed graph generated
from (a). For head setsH andW , add two super nodes h and
w. v will be activated by super node h with probability
P4 ¼ PðH;vÞ and super node hwill be activated by super node
w with probability Pðw;hÞ ¼ PðW;u1ÞPðW;u2ÞPðW;u3Þ ¼ P1P2P3.
Also, super node w will be activated by node s with proba-
bility Pðs;wÞ ¼ Pðs;w1Þ Pðs;w2Þ ¼ P5P6.

Then auxiliary problem GL ¼ ðV [ V 0; EL; P
L; fÞ is to

select k initially-influenced seed users in V to maximize the
expected weighted number of eventually-influenced users,
where EL contains all original normal directed edges in G
and new added edges.

max sLðSÞ (5)

s:t:jSj � k: (6)

Where S is the initial seed set and sLðSÞ is the expected
weighted number of eventually-influenced nodes. The influ-
ence probability decreases in the hpyeredge deleting process
and nodesmerging process.We have the following theorem.

Theorem 4.2. Given G ¼ ðV;E; P Þ, sLð�Þ is an lower bound
of sð�Þ.

Proof. We need to prove sLðSÞ � sðSÞ for any S 2 V .
According to the IC model, assume S0t and St are the acti-
vated nodes in GL and G respectively at step t. Since GL

contains super nodes, S0t has two parts: nodes in V and
nodes in V 0, where V is the original node set and V 0 is
the super node set. Meanwhile, sLð�Þ is the weighted
expected number of activated nodes. Then, we only need
to prove S0t \ V � St at each time step.

When t ¼ 0, S00 ¼ S0 ¼ S � V . First, we will prove
S01 \ V � S1 after the first time step. For each inactivated
node v 2 V , we will prove that the total influence proba-
bility PLðvÞ in GL is less than P ðvÞ in G. Assume v is the
tail of l edges ðH1; vÞ; ðH2; vÞ; . . . ; ðHl; vÞ in G. Hi will
try to activate v with probability PðHi;vÞ only if Hi � S.
Then v can be activated with the probability P ðvÞ ¼ 1�Q

Hi�Sð1� PðHi;vÞÞ. On the other hand, some of these l
edges will be deleted after the first phrase of formulating
G0. Suppose ðH 01; vÞ; ðH 02; vÞ; . . . ; ðH 0q; vÞ are the q � l edges
which are kept inG0. For each hyperedge in these q edges,
generate a new super node. Let fðH 01; vÞ; ðH 02; vÞ; . . . ;
ðH 0q; vÞg ¼ E1 [E2, whereE1 ¼ fðw1; vÞ; ðw2; vÞ; . . . ; ðwh; vÞg
is the normal edge set and E2 is hyperedge set. Let u 2 U
be the super node corresponding to hyperedge in E2.
Since S 2 V at the beginning, super nodes are inactivated.

Then, PLðvÞ ¼ 1 � Q
wi2S\fw1;w2;...;whgð1 � Pðwi;vÞÞ � 1�Q

Hi�Sð1� PðHi;vÞÞ ¼ P ðvÞ. Then, for each inactivated
node v 2 V , PLðvÞ � P ðvÞmeans S01 \ V � S1.

Second, suppose S0t \ V � St at step t, we will prove
S0tþ1 \ V � Stþ1 after one time step. For each inactivated
node v 2 V , we will prove that the total influence proba-
bility PLðvÞ in GL is less than P ðvÞ in G. Assume v is the
tail of l edges ðH1; vÞ; ðH2; vÞ; . . . ; ðHl; vÞ in G. Hi will
try to activate v with probability PðHi;vÞ only if Hi � St.
Then v can be activated with the probability P ðvÞ ¼ 1�Q

Hi�Stð1� PðHi;vÞÞ. On the other hand, some of these l
edges will be deleted after the first phrase of formulating
G0. Suppose ðH 01; vÞ; ðH 02; vÞ; . . . ; ðH 0q; vÞ are the q � l
edges which are kept in G0. For each hyperedge in these
q edges, generate a new super node. Let fðH 01; vÞ;
ðH 02; vÞ; . . . ; ðH 0q; vÞg ¼ E1 [ E2, where E1 ¼ fðw1; vÞ;
ðw2; vÞ; . . . ; ðwh; vÞg is the normal edge set and E2 is
hyperedge set. Let u 2 U be the super node correspond-
ing to hyperedge in E2. Since S0t 2 V [ V 0, super nodes
may be activated. For each activated super node, the cor-
responding hyperedge must be acitvated, that means
all nodes in head set of this hyperedge must be activated
since these nodes are activated by same node set in
last time step. Then, PLðvÞ ¼ 1�Q

wi2S0t\fw1;w2;...;whgð1�
Pðwi;vÞÞ

Q
u2S0t\Uð1� Pðu;vÞÞ � 1�Q

wi2S0t\V ð1� Pðwi;vÞÞ
Q

Hi�S0t\V
ð1� PðHi;vÞÞ. Since S0t \ V � St, we have 1�Q

wi2S0t\V ð1�
Pðwi;vÞÞ

Q
Hi�S0t\V ð1� PðHi;vÞÞ � 1�Q

wi2Stð1� Pðwi;vÞÞ
Q

Hi�St
ð1� PðHi;vÞÞ � 1�Q

Hi�Stð1� PðHi;vÞÞ ¼ P ðvÞ. Then, for

each inactivated node v 2 V , PLðvÞ � P ðvÞ means S0tþ1 \
V � Stþ1 after one time step. tu

4.3 Properties of the Bounds

The above two auxiliary problems are NP-hard since they
are normal SIMP and weighted SIMP respectively. sLð�Þ
and sUð�Þ are monotone and submodular under IC model.

5 RIS ALGORITHM METHOD

Wewill extend Dynamic-Stop-and-Stare(D-SSA) [9] algorithm
to solve general weighted SIMP. Then an randomized algo-
rithm base on greedy strategy is designed for solving SIMPH.
At the end, an sandwich approximation framework will be
proposed for analyzing performance of our algorithms.

In order to solve the lower bound and upper bound, we
define a general weighted SIMP. Let weighted directed
graph G ¼ ðV; C;E; P; fÞ denote a general weighted influ-
ence maximization problem with candidate seed set C � V
under the IC model, where P is the influence probability
and f is weight function of node. Especially, E is the edge
set in which only contains normal directed edges. Suppose
S is the initial seed set. Let s0ðSÞ ¼P

v is activated fðvÞ be
the expected weighted number of eventually-influenced
nodes. Find k initially-influenced seed users in C to maxi-
mize s0ðSÞ. It is easy to see that s0ðSÞ is monotone and
submodular. Since G is random graph, sampling method is
necessary to estimate s0ðSÞ.
5.1 ð�; dÞ-approximation

We recall the ð�; dÞ-approximation in [12] that will be used
in our algorithm. � is absolute error of estimation and
ð1� dÞ is confidence.
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Definition 5.1 (ð�; dÞ-approximation). Let Z1; Z2; . . . be
independently and identically distributed samples according to
Z in the interval [0,1] with mean mz and variance s

2
Z . A Monte

Carlo estimator of mz,

m̂Z ¼
1

T

XT
i¼1

Zi; (7)

is said to be an ð�; dÞ-approximation of mZ if

Pr½ð1� �ÞmZ � m̂Z � ð1þ �ÞmZ � � 1� d: (8)

Define � ¼ 4ðe� 2Þ lnð2=dÞ=�2 and �1 ¼ 1þ ð1þ �Þ�,
then the Stopping Rule Algorithm given in [12] has been
proved to be ð�; dÞ-approximation.

Lemma 5.1. Let Z1; Z2; . . . be independently and identically dis-
tributed samples according to Z in the interval [0,1] with mean
mz. Let SumZ ¼PN

i¼1 Zi, m̂Z ¼ SumZ
N , � ¼ 4ðe� 2Þ ln

ð2=dÞ=�2 and �1 ¼ 1þ ð1þ �Þ�. If N is the number of sam-
ples when SumZ � �1, then Pr½ð1� �ÞmZ � m̂Z � ð1þ
�ÞmZ � � 1� d and E½N � � �1=mZ .

5.2 RIS Sampling

First, we will introduce reverse influence set(RIS) sampling
method [8]. Given a graph G ¼ ðV; C;E; P; fÞ, where C � V
is a candidate seed set. RIS captures the influence landscape
of G through generating a set R of random Weighted Reverse
Reachable(WRR) sets. Each WRR set Rj is a subset of V and
constructed as follows,

Definition 5.2. (Weighted Reverse Reachable set). Given G ¼
ðV;C;E; P; fÞ, a random WRR set Rj is generated from G by
(1) selecting a random node v 2 V ; (2) generating a sample
graph g from G; (3) returning Rj as the set of nodes that can
reach v in g; and (4) wðRjÞ ¼ fðvÞ.
For a seed set S, denote the coverage number of set S as

CovRðSÞ ¼
P

Rj2RminfjS \Rjj; 1g and the coverage weight

as WCovRðSÞ ¼
P

Rj2R wðRjÞminfjS \Rjj; 1g. s0ðSÞ can be

estimated by computing weighted coverage of set S. Fig. 6
shows an example of generating a collection of random
WRR sets. Suppose seed set S ¼ ftg, then CovRðSÞ ¼ 2 and
WCovRðSÞ ¼ 7.

Lemma 5.2. Given G ¼ ðV;C;E; P; fÞ, a random WRR set Rj

generated from G. For each seed set S � C, where C � V is
candidate seed set,

s0ðSÞ ¼
X
v2V

fðvÞPr½S coversRj�:

Proof.

s0ðSÞ ¼ E½
X

v is activated

fðvÞ�

¼
X
v2V

fðvÞPr½v is activated�

¼
X
v2V

fðvÞPr½S covers Rj�:
tu

Lemma 5.3. The Greedy Weighted Max-Coverage returns an
ð1� 1=eÞ-approximate seed set Ŝk.

Algorithm 1.Weighted Max-Coverage Procedure

Input:WRR sets (R), k and weight function wð�Þ.
Output: An (1� 1=e)-approximation solution Ŝk and its esti-

mated influence ŝ0ðŜkÞ.
1: Ŝk ¼ ;
2: for i ¼ 1 to k do
3: v̂ argmaxv2CðWCovRðŜk [ fvgÞ �WCovRðŜkÞÞ
4: Add v̂ to Ŝk

5: end for
6: ŝ0ðŜkÞ ¼WCovRðŜkÞ �

P
v2V fðvÞ=PjRj

j¼1 wðRjÞÞ
7: return < Ŝk; ŝ0ðŜkÞ > .

In the sampling process, the most important thing is to
determine the number of samples to satisfy the given esti-
mation error. According to Dynamic-Stop-and-Stare algo-
rithm in [9], we can prove the following D-SSA algorithm
preserves the ð1� 1=e� �Þ-approximation factor.

Theorem 5.1. Give �, d and a general weighted SIMP G ¼
ðV; C;E; P; fÞ, Algorithm 2 returns a ð1� 1=e� �Þ-approxi-
mation solution.

Algorithm 2. D-SSA Algorithm for General Weighted
SIMP

Input: Graph G ¼ ðV; C;E; P; fÞ, n ¼ jV j, 0 � �; d � 1 and k.
Output: An (1� 1=e� �)-approximation solution Ŝk.
1: G 4ðe� 2Þð1þ �Þ2 lnð2=dÞð1=�2Þ
2: R  generate G random RR sets by RIS

3: < Ŝk; ŝ0ðŜkÞ > Weighted Max-Coverage(R; k; fð�Þ)
4: while jRj � ð8þ 2�Þn � lnð2dÞþlnCk

n

�2
do

5: R0  generate G random RR sets by RIS

6: s0cðŜkÞ  WCovR0ðŜkÞ �
P

v2V fðvÞ=PjR0j
j¼1 wðRjÞ

7: �1  ŝ0ðŜkÞ=s0cðŜkÞ � 1

8: if ð�1 � �Þ then
9: �2  ���1

2ð1þ�1Þ ; �3  
���1

2ð1�1=eÞ

10: d1  e
� CovRðŜkÞ�23
2cð1þ�1Þð1þ�2Þ

11: d2  e
�ðCovR0 ðŜkÞ�1Þ�

2
2

2cð1þ�2Þ

12: if d1 þ d2 � d then

13: return Ŝk

14: end if
15: end if
16: R  R[R0
17: < Ŝk; ŝ0ðŜkÞ > Weighted Max-Coverage(R; k; fð�Þ)
18: end while
19: return Ŝk

Fig. 6. An example for generating random WRR sets under IC model.
R1; R2; R3 with wðR1Þ ¼ 3; wðR2Þ ¼ 5, and wðR1Þ ¼ 4 are generated. (a)
is the original weighted random graph. (b) contains three WRR sets up
to three sample graphs.
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5.3 Greedy Strategy for SIMPH

In this section, ð�; dÞ-approximation calculation procedure
of sðSÞ on a random hypergraph for a given seed set S is
proposed first. Then, an algorithm based on greedy strategy
for SIMPH will be presented.

5.3.1 Influence Estimation

Given a directed hypergraph G ¼ ðV;E; P Þ with n nodes,
sðSÞ is the expected number of eventually-influenced nodes
for seed set S. Suppose g ¼ ðV;E0Þ is a sample graph of G,

let sgðSÞ denote the number of eventually-influenced nodes.

Then
sgðSÞ
n is random variable distributed in interval ½0; 1�.

The ð�; dÞ-approximation calculation procedure of sðSÞ for a
seed set S is as follows.

Algorithm 3. APP-Calculation Procedure

Input: A directed hypergraph G ¼ ðV;E; P Þ, n ¼ jV j, 0 � �;
d � 1, seed set S.

Output: scðSÞ such that scðSÞ � ð1þ �ÞsðSÞ with at least
ð1� dÞ-probability

1: �1 ¼ 1þ 4ð1þ �Þðe� 2Þ lnð2=dÞ=�2
2: SumZ ¼ 0

3: N ¼ 0
4: while SumZ � �1 do

5: g generate sample graph of G

6: N ¼ N þ 1; S1 ¼ S; S2 ¼ S

7: while S2 6¼ ; do
8: S1 ¼ S1 [ S2

9: S2 ¼ ;
10: for each hyperedge e ¼ ðHe; vÞ 2 E in g and v is inactive

do
11: ifHe � S1 then

12: Add v to S2

13: end if
14: end for
15: end while
16: SumZ ¼ SumZ þ jS1jn
17: end while
18: return scðSÞ ¼ n � SumZ

N

According to Lemma 5.1, we need to generate N graphs

that satisfy the stopping rule
PN

i¼1
sgi ðSÞ

n � 1þ 4ð1þ �Þ
ðe� 2Þ lnð2=dÞ=�2. From Lemma 5.1, we obtain a direct corol-
lary as stated below,

Corollary 5.1. The APP-Calculation procedure returns an esti-
mate scðSÞ of sðSÞ such that

Pr½ð1� �ÞsðSÞ � scðSÞ � ð1þ �ÞsðSÞ� � 1� d: (9)

5.3.2 Greedy Algorithm

The nodes in the head set of A hyperedge will try to active
the tail node only when they are all active. The reverse tech-
nique in RIS sampling is unsuitable. Then, we design a
greedy algorithm, as shown in Algorithm 4. Starting with
an empty seed set, the greedy strategy iteratively adds a
node that maximizes the marginal gain of sðSÞ, until k
nodes are selected.

Algorithm 4. Greedy Strategy for SIMPH

Input: A directed hypergraph G ¼ ðV;E; P Þ, k.
Output: A set of seed nodes, S.
1: S ¼ ;
2: for i ¼ 1 to k do
3: v argmaxv2V ðAPP-CalculationðG;S [ fvgÞ�APP-

CalculationðG;SÞÞ
4: Add v to S
5: end for
6: return S

5.4 Sandwich Approximation Framework

For SIMPH, we have provide a lower bound and an upper
bound for sð�Þ in Section 4. Then, the sandwich approxima-
tion framework is shown in Algorithm 5.

Algorithm 5. Sandwich Approximation Framework

Input: A directed hypergraph G ¼ ðV;E; P Þ, k, �; d.
Output: A set of seed nodes, S.
1: Let SL be the output seed set of solving the auxiliary problem

GL ¼ ðV [ V 0; EL; P
LÞ for lower bound by D-SSA Algorithm

(Algorithm 2).
2: Let SU be the output seed set of solving the auxiliary prob-

lem GU ¼ ðV;EU; P
UÞ for upper bound by D-SSA Algorithm

(Algorithm 2).
3: Let SA be the output seed set of solving G ¼ ðV;E; P Þ by

Greedy Strategy for SIMPH(Algorithm 4).
4: S ¼argmaxS02fSL;SU ;SAgAPP-CalculationðG;S0Þ
5: return S

For sandwich approximation framework, we can get the
following result.

Theorem 5.2. Let S be the seed set returned by Algorithm 5,
then we have

sðSÞ � maxf sðSUÞ
sUðSUÞ ;

sLðS	LÞ
sðS	Þ g

1� �

1þ �
ð1� 1

e
� �ÞsðS	Þ: (10)

Where S	L is the optimal solution to maximize the lower bound
problem and S	 is the optimal solution of SIMPH.

Proof. Let S	U be the optimal solution to maximize the upper
bound IM problem. Then, we have

sðSUÞ ¼ sðSU Þ
sU ðSU Þ sUðSUÞ � sðSU Þ

sU ðSU Þ ð1�
1
e � �ÞsUðS	UÞ

� sðSU Þ
sU ðSU Þ ð1�

1
e � �ÞsUðS	Þ � sðSU Þ

sU ðSU Þ ð1�
1
e � �ÞsðS	Þ

and

sðSLÞ � sLðSLÞ � ð1� 1

e
� �ÞsLðS	LÞ �

sLðS	LÞ
sðS	Þ ð1�

1

e
� �ÞsðS	Þ:

Let Smax ¼ argmaxS02fSL;SU ;SAgsðS0Þ, then

sðSmaxÞ � max
sðSUÞ
sUðSUÞ ;

sLðS	LÞ
sðS	Þ

� �
1� 1

e
� �

� �
sðS	Þ:

Since 8S0 2 fSL; SU; SAg, ð1� �ÞsðS0Þ � scðS0Þ � ð1þ
�ÞsðS0Þ, we have

ð1þ �ÞsðSÞ � scðSÞ � scðSmaxÞ � ð1� �ÞsðSmaxÞ:
It follows that
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sðSÞ � 1��
1þ� sðSmaxÞ

� maxf sðSU Þ
sU ðSU Þ ;

sLðS	LÞ
sðS	Þ g 1��1þ� ð1� 1

e � �ÞsðS	Þ tu

According to Theorem 5.2, the difference between sðS	Þ
and sLðS	LÞ has great influence on the performance of Algo-
rithm 5. Iyer and Bilmes [13] studied the minimization prob-
lem of the difference between submodular function. While
the difference between sðS	Þ and sLðS	LÞ may be bounded,
we have the following result.

Theorem 5.3. Let S	L be the optimal solution to maximize the
lower bound problem and S	 is the optimal solution of SIMPH,
then we have

sðS	Þ � sLðS	LÞ � max
S;jSj¼k

ðsUðSÞ � sLðSÞÞ: (11)

Proof.

sðS	Þ � sLðS	LÞ � sðS	Þ � sLðS	Þ
� sUðS	Þ � sLðS	Þ � max

SjjSj¼k
ðsUðSÞ � sLðSÞÞ:

tu
Additionally, the structure of graph will have signi-

ficantly impact on effectiveness of the lower bound. Accord-
ing to the lower bound formulation, hyperedges will be
deleted if nodes in their head set do not have a same head
set. An extreme case is all hyperedge are deleted, which is
the worst case of lower bound. In reality, this case may not
appear which could be seen in the Experiments. We also do
some small size experiments to evaluate sLðS	LÞwith sðS	Þ.

6 EXPERIMENTS

6.1 Statistics and Information of Datasets

Our experiments are based on the 3 datasets from Forum
on toreopsahl.com which is an online forum network.
Each dataset has both one mode and two mode data which
are preprocessed to give the edges (both simple and hyper-
edges) of the graph on which the experiments are per-
formed. The first dataset is the Facebook-like Forum
Network [14], the second dataset is Newmans scientific col-
laboration network [15] and the third dataset is Norwegian
Interlocking Directorate [16]. The statistics of the data (after
processing to graphs to form hyperedges) are represented
in Table 2. The first dataset logs information of user interac-
tion on different topics discussed in the forum. It contains
three columns namely a time stamp, a user and a topic that
the user had liked. This data is preprocessed to build the
hypergraph with hyperedges (crowd influence) in the form
of (He; v) where He51 and v is the tail node. The second
dataset used for our experiments is in the Newmans scien-
tific collaboration network. This is a network representing
the co-authorship network. The dataset had two columns
namely author and paper ID and the corresponding hyper-
edges are generated based on the relationship between co-
authors and the paper that they have written. The third
dataset is in the Norwegian Interlocking Directorate Net-
work. This data represents the interlinking relationship
among directors and among 384 public limited companies
on the website of the Norwegian business site. The dataset
contains two columns namely company and director and
the interlocking connection among them is derived to form

the hyperedges of our graph. All the programs are written
in Python 3.6.3 and run on a Linux server with 16 CPUs and
251 GB RAM.

6.2 Pre-Processing of Data and Crowd Influence
Detection

6.2.1 Dataset 1

The first dataset is the Facebook-like Forum Network. It has
both one mode and two mode data. The one mode data
contains relationship among Person A and Person B and the
number of messages that they have shared. This one mode
dataset is used to form direct edges among people (nodes)
in the graph and the number of messages they shared are
assigned as the weight of the edge between A and B. The
two mode network represents 899 users and 522 topics and
describes which user had liked which topic sorted by time.
The hyperedges are built by analyzing the two mode data.
The concept to identify the influence is that if Person A liked
a topic X at time T1 and Person B liked the same topic X at
time T2 and Person C liked the same topic X at time T3 and
if T1� T2<T3 then we can establish an edge going from
(A,B) to C by assuming that A and B have influenced C in
liking the topic X. The edge weight for this hyperedge is
assigned by calculating how many topics the influencing
entities are interested in. The dataset is sorted according to
times tamp and a sorted list was made of all the people who
have liked/read a topic and based on the time stamp, the
hyperedges of the graph are built and the corresponding
weights are assigned. After pre-processing of the data, the
final graph have 897 nodes, normal edge count of 142,760
and hyperedge count of 479. The graphs below show the
experimental results for dataset 1.

6.2.2 Dataset 2

The second dataset is the Newmans scientific collaboration
network. The one mode data in this dataset records the rela-
tionship between Author A and Author B and the total
number of papers that they have written together. The
directed edges are built from the one mode data and the
total number of papers that the two authors have written is
assigned as the weight of the the edge between them. For
building the hyperedges of the graph, the two mode data is
processed. The two mode data gives the information about
the co-authors of a given paper. The head set for the hyper-
edge is derived by analysing the total number of papers
that each pair of co-authors have written. For example, if
A,B and C are three authors who have written paper
1 together, we analyze how many papers (A,B), (B,C) and
(A,C) have written. Whichever pair has written the most
papers is assumed to influence the the other. Let us assume
the number of papers for (A,B) is 5, for (B,C) is 2 and (A,C)
is 3, then we can establish a hyperedge (A,B) to C by

TABLE 2
Data Statistics

Normal Directed Edges Hyperedges Nodes

Dataset1 142,760 479 897
Dataset2 95,188 3,668 16,264
Dataset3 7,710 4,977 2,045
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assuming that as (A,B) had the maximum number of
papers, they must have influenced author C to collaborate
with them. The weight associated with this hyperedge
would the the total number of papers that the influencing
entity have written together. After pre-processing the data,
the final graph have 16,264 nodes, normal edge count of
95188 and hyperedge count is 3668. The graphs below show
the experimental results for dataset 2.

6.2.3 Dataset 3

The third dataset is the Norwegian Interlocking Directorate
network. The one mode data in this dataset depicts the rela-
tionship among directors in a company. The relation among
directors A and B are used to build a simple edge among
them. For the hyperedges, the two mode data is processed.
The two mode data gives the list of directors in a company.
For establishing an influence relation, we analyze the list of
directors in companies through months over three years.
For example, lets assume company C1 has a list L1 ¼ {A,B,
C} of directors in January of 2008, in April of 2008, the list
changes to L2 ¼ {B,C,D,E}, in July of 2008 the list changes to
L3 ¼ {B,C,F} and in October of 2008 the list changes to
L4 ¼ {B,F}. By analyzing the lists L1, L2, L3 and L4 we can
see that by April of 2008 director A had left the company,
by July of 2008 directors D and E had left the company and
by October of 2008 director C had left the company. Thus we
can assume that directors A and D had influenced C to leave

or directors A and E had influenced C to leave. Thus we can
establish the hyperedges (A,D) to C and (A,E) toC. Theweight
assigned to these hyperedges is the maximum time difference
of the entity leaving the company. For example, A left in April
and C left in October, then the difference is 10-4¼ 6. After pre-
processing the data, the final graph had 2045 nodes, normal
edge count is 7710 and hyperedge count is 4,977.

6.3 Performance and Comparison

Two experiments are performed for each dataset after the
graphs for each dataset is built using the concepts in Section
6.2. The first experiment is performed to obtain sðSÞ values
for a given seed set value k (ranging from 0 to 100) for upper
bound, the sandwich framework and lower bound. The sec-
ond experiment is performed to obtain the difference
between upper bound and lower bound for a value of k
ranging between 0 to 100 and compared to a heuristic gap.
All the experiments are plotted on graphs and shown in
Figs. 7, 8 and 9.

6.4 Experimental Results

From the graphs in Figs. 7, 8 and 9 it is observed that in the first
experiment the sandwich framework gave sðSÞ values lying
in between the sðSÞ values for the upper bound and lower
bound for all the three datasets and the sðSÞ values increased
with increasing values of seed set k. In the second experiment

Fig. 8. Experimental results for Dataset 2.Fig. 7. Experimental results for Dataset 1.
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it is observed that our gap is significantly less than the
heuristic gap for all the three datasets and also the gap
decreased with the increase in the value of seed set k. While
the lower bound in heuristic gap is the expected number of
influenced nodes without considering any crowd influence.

6.5 Experiments on Small Hypergraphs

In this section, we do experiments on small hypergraphs.
We generate 10 random hypergraphs of 20 nodes and ran-
domly generate its normal edges and hyperedges. We use
these graphs to compare the results of Algorithm 5 with the
optimal solution and also to compare with the value of
lower bound problems. We use the enumerate algorithm to
obtain the optimal solution. The number of seeds k values
used in the experiment are f1; 2; 3g as higher k values would
be time consuming. Two results can be observed from
the experiments on these small hypergraphs. First result
observed is that the output for Algorithm 5 and the optimal
solution are same and the second result observed is that the
lower bound output and the output of Algorithm 5 have a
very small gap. Table 3 shows the average values of these
10 experiments.

7 CONCLUSION

In this paper, wemodeled the crowd influence in information
diffusion process by using a hyperedge. Social Influence

Maximization Problem in Hypergraph was formulated to
select initially-influenced seed users under Independent
Cascade model to maximize the expected number of even-
tually-influenced users. We showed SIMPH is NP-hard and
the objective function was neither submodular nor super-
modular. We developed a lower bound and an upper
bound so that the Sandwich framework can applied. We
presented a D-SSA algorithm to solve the lower bound and
upper bound which were general weighted social influence
maximization problem. Then, a greedy strategy based on
influence increment maximization with randomized algo-
rithm for estimation of the objective function in SIMPH
was presented. Finally, we verified our algorithm on real
world data sets. The results showed crowd influence played
an important role in the information diffusion process.
For future research, we are looking for an efficient method
to solve nonsubmodular problems, such as SIMPH and also
to be able to incorporate the effect of crowd influence to for-
mulate new models of social networks.
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