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1. Introduction

A great deal of efforts is nowadays invested in solving statistical problems, where the data are
located in quite complex geometric domains such as matrix spaces or surfaces (manifolds). Geo-
metric models are motivated by the fact that many real-world high dimensional data are affected
by the “curse of dimensionality” phenomena. Although the data for a given data mining problem
may have many features, in reality, viewed from a geometric perspective the intrinsic dimension-
ality of the data support of the full feature space may be low. A seminal example in this direction
is the case of spherical data. Developments in this domain have been motivated by a number
of important applications. We only mention here some of the statistical challenges posed by as-
trophysical data: investigating the fundamental properties of the cosmic microwave background
(CMB) observation including its polarization, impainting of the CMB in zones on the sphere
obstructed by other radiations, producing cosmological maps, exploring clusters of galaxies or
point sources, investigating the true nature of ultra high energy cosmic rays (UHECR). We refer
the reader to the overview by Starck, Murtagh, and Fadili [33] of the use of various wavelet tools
in this domain as well as the work in [1] and [24] of some of the authors of this article.

Many more geometric objects have been analyzed in the statistical literature. For instance,
landmark-based shape spaces have diverse applications in morphometrics, medical diagnostics,
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machine vision (see, for instance, [2]); Pelletier [28,29] has long ago investigated nonparametric
statistics on regular manifolds; the now emerging field of signal processing on graphs or networks
is a mine for geometric investigation (see, for instance, [31]).

Dealing with complex data requires the development of more sophisticated tools and statisti-
cal methods. In particular, these tools should capture the natural topology and geometry of the
application domain. Our contribution will be essentially theoretical, however, our statements will
be illustrated by examples from various application fields.

Our aim in this article is to study the density estimation problem, namely, one observes
X1, ..., X, that are i.i.d. random variables defined on a space M and the problem is to find
a good estimation to the common density function. This problem has a long history in math-
ematical statistics, especially when the set M is R? or a cube in R? (see e.g. the monograph
[35] and the references herein). Here we will consider general spaces M such as Riemannian
manifolds or spaces of matrices or graphs and prove that under some reasonable assumptions, we
can develop an estimation theory with estimation procedures, regularity sets and upper bounds
evaluations quite parallel to what has been done in R?. In particular, we intend to develop kernel
methods with upper bounds and oracle properties as well as wavelet thresholding estimators with
adaptive behavior.

There are two principle quantities that will dominate our setting and usually appear in the
minimax rates of convergence. The first quantity d reflects the basic dimensional structure of
the sets (here introduced with the aid of the doubling condition on the measure) and the second
quantity s is associated to “regularity” and leads us to considering settings, where regularity
spaces can be defined along with kernels.

The setting presented here is quite general. Naturally, the classical results on R? and on the
sphere are contained in this general framework, but also various other settings are covered. In par-
ticular, spaces of matrices, Riemannian manifolds, and convex subsets of Riemannian manifolds
are covered.

This programm requires the development of new techniques and methods that break new
ground in the density estimation problem. Our main contributions are as follows:

(a) In a general setting described below, we introduce kernel density estimators sufficiently
concentrated to establish oracle inequalities and IL”-error rates of convergence for probability
density functions lying in Besov spaces.

(b) We develop linear wavelet density estimators and obtain IL” -error estimates for probability
density functions in general Besov smoothness spaces.

(c) We also establish IL”-error estimates on nonlinear wavelet density estimators with hard
thresholding and prove adaptivity properties up to logarithmic terms.

To put the results from this article in perspective, we next compare them with the results in
[3]. The geometric settings in both articles are comparable and the two papers study adaptive
methods. In [3], different standard statistical models (regression, white noise model, density esti-
mation) are considered in a Bayesian framework. The methods are different (we do not consider
here Bayesian estimators) and the results are also different (since, again, we are not interested
here in a concentration result of the posterior distribution). It is noteworthy that the results in
the so called dense case exhibit the same rates of convergence. It is also important to observe
the wide adaptation properties of the thresholding estimates here which allow to obtain minimax
rates of convergence in the so called sparse case, that was not possible in [3].
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Outline. The organization of this article is as follows. In Section 2, we begin with a short toy-
example. In Section 3, we describe our general setting and give some examples. We introduce
kernel density estimators in Section 4 and establish IL”-error estimates for probability density
functions in general Besov spaces. In Section 5, we review some basic facts related to our set-
ting such as the construction of wavelet frames, Besov spaces, and other background material.
Section 6, we prove the main results on kernel density estimators from Section 4. Section 7
is devoted to linear wavelet estimators. In Section 8, we introduce and study adaptive wavelet
threshold density estimators. We establish IL”-error estimates for probability density functions
in Besov spaces. In the Supplementary Material [4], Section 1, we present several additional ex-
amples covered by the setting, introduced in Section 3. In Section 2 of [4], we place the proofs
of some claims from Section 5. Finally, in Section 3, of [4] we give the proof of the main Theo-
rem 8.2 of Section 8.

Notation.

Throughout Iz will denote the indicator function of the set £ and || - |, := || - lLr (M, w)- We
denote by c, ¢’ positive constants that may vary at every occurrence. Most of these constants
will depend on some parameters that may be indicated in parentheses. We will also denote by
o, C1, - - - as well as c¢,, ¢, constants that will remain unchanged throughout. The relation a ~ b
means that there exists a constant ¢ > 1 such that ¢~ 'a < b < ca. We will also use the notation
a A b :=min{a, b}, a v b := max{a, b}, and CK(R,.), k € N U {00}, will stand for the set of all
functions with continuous derivatives of order up to k on Ry := [0, c0).

2. Illustrating example

Before going into the mathematical tools and results, let us study a toy example (although the
problem has a scientific interest by itself, but will be treated here only from a methodological
point of view): let us estimate a probability density on a spider web M. A spider web is a good
and emblematic example, since it reflects the geometric aspects of the problem. As well, most of
the time, it is a very inhomogeneous medium, built of regions with varying characteristics and
this is also an important issue that we will commented in the paper.

One observes X1, ..., X, i.i.d. random variables defined on the space M with the common
density f. The X;’s may be the places where preys are falling, and the density f might give
indications on the regions of the web devoted to catching preys as opposed to others affected to
others tasks such as informing the spider of the presence of predators.

To proceed to the estimation we first propose to identify M with a graph (simple, undirected,
no loops) with T vertices and edges. As is standard in graph theory (and commonly used in
clustering, see for instance [36]), we form the adjacency T x T matrix A, defined by A;; =1
if there is an edge between i and j, and A;; = 0 otherwise. M is naturally equipped with the
geodesic-distance and the Laplacian matrix L7 7 is defined as:

L=D-A,

where D is the diagonal degree matrix, D;; =) i A is the degree of the vertex i.
Again, as is common in clustering procedures, we compute the spectral decomposition of L. L

has A} <--- < Ar aseigenvalues and vi . .., vTas (normed) eigenvectors: Vi= (Vj, e V;').
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The kernel estimator that will be studied in the sequel is the following one: for an arbitrary
point x of the graph:

. 1L o
K (o) =~ DO o6V Vi
i=1j=1

Here § is the bandwidth and ® is a “Littlewood—Paley function”, that is, ® € C*°(R) is a real-
valued function with the following properties: supp ® C [0, 1] and (1) =1 for A € [0, 1/2].

3. Setting and motivation

We assume that (M, p, 1) is a metric measure space equipped with a distance p and a positive
Radon measure .

Let X1,..., X, be independent identically distributed (i.i.d.) random variables on M with
common probability having a density function (pdf) f with respect to the measure . Our goal
is to estimate the density f. To an estimator fn of f we associate its risk:

Ri(f. f, P)ZEf</M|fn(x) —~ f(x)|”u<dx)>” =Efllfu—fllp, 1<p<oo

as well as its Lo risk:

Ru(f, f,00) = Ef(essil/llﬂfn(x) — F@)=Efll fu = Flloo-
xXe

We will operate in the setting described below. Most of the material related to the setting can
be found in an extended form in papers [6,20]. Note that, depending on the results that will be
established, some of the following conditions will be assumed, others will not.

3.1. Doubling and non-collapsing conditions

The following conditions are related to the “dimensional” structure of M. This notion which
is one of the important parameters in statistical estimation may be subtle to define in complex
models. It has often been linked with entropy. We propose, here instead, to connect the dimension
with a more flexible notion, the doubling condition that was introduced in the 70s by R. Coifman
and G. Weiss [5].

C1. We assume that the metric space (M, p, u) satisfies the following doubling volume con-
dition:
/L(B(x, 2r)) < co,u(B(x, r)) for all x € M and r > 0, 3.1

where B(x,r) :={y e M :p(x,y) <r}and ¢y > 1 is a constant. The above implies that there
exist constants c6 > 1 and d > 0 such that

/L(B(x, Ar)) < cf))udu(B(x, r)) forallx e M,r >0,and A > 1. 3.2)

The least d such that (3.2) holds is the so called homogeneous dimension of (M, p, ).
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From now on we will use the notation |E| := u(E) for E C M.
In developing adaptive density estimators in Section 8§ we will additionally assume that
(M, p, n) is a compact measure space with (M) < oo satisfying the following condition:

C1A. Ahlfors regular volume condition: There exist constants ¢y, ¢c; > 0 and d > 0 such that
cir? <|B@x,r)| <cor?, ¥xeMand0 <r < diam(M). (3.3)

Clearly, condition C1A implies conditions C1 and condition C2 below with d from (3.3) being
the homogeneous dimension of (M, p, ).

It is interesting already to notice that d will in effect play the role of dimension in the statistical
results as well. Condition C1A is obviously true for M = R¢ with p the Lebesgue measure.
Also, under C1A, the doubling condition is precisely related to the metric entropy using the
following lemma whose elementary proof can be found for instance in [3], Proposition 1. Note
that it might be not true in general. For € > 0, we define, as usual, the covering number N (¢, M)
as the smallest number of balls of radius € covering M.

Lemma 3.1. Under the condition C1A and if M is compact, there exist constants ¢’ and ¢ such

that
d d d
l,<1> <N(E M) < 2—”(l> , (3.4
' \e ¢’ \ e

The cases where C1 is verified but not C1A are interesting but more complicated. They corre-
spond to media M with non homogeneous behavior: think of the spider web, with different zones
with different characteristics or medical images. More examples will be given in the sequel.

forall 0 <€ <¢p.

C2. Non-collapsing condition: There exists a constant ¢3 > 0 such that

inf |B(x, 1)| > c3 > 0. 35
xler}w! x.D|>c3> (3.5)

This condition is not necessarily very restrictive. For instance, it is satisfied if M is compact. It
is satisfied for R? if 1 is the Lebesgue measure, but untrue for R if 4 is the Gaussian measure.

3.2. The underlying operator

Before delving into the specificity of our set of assumptions (described below), let us explain our
motivation. A standard method in density estimation is the kernel estimation method. Namely,
consider a family of functions K5: M x M — R, indexed by § > 0. Then the associated kernel
density estimator is defined by

. 1<&
Kg()C)::;ZKg(Xi,x), x M. (3.6)
i=1
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In the classical case of R, an important family is the family of translation kernels Ks(x, y) =
[%]d G(%), where G maps R? into R. When M is a more involved set such as a manifold or a
set of graphs or matrices, the simple operations of translation and dilation may not be meaningful.
Hence, even finding a family of kernels to start with might be challenging. As will be shown in
Section 4.2 our assumptions will provide quite naturally a family of kernels.

When dealing with a kernel estimation method, it is standard to consider two quantities:
bs(f):= ||Eff5 — fllps l&rllp == ||I/(>,3 - Effa | - The analysis of the second (stochastic) term
I ¢1lp can be reduced via Rosenthal inequalities to proper bounds on norms of Ks(-,-) and f
(see the Lemmas 5.7, 5.8). The analysis of the first term bs(f) is linked to the approximation
properties of the family E ¢ Ks. One can stop at this level and express the performance of an es-
timator in terms of ||E 1?5 — fllp. This is the purpose of oracle inequalities (see Iheorem 4.4).
However, it is more compelling if the rate of approximation of the family [[E;Ks — f1l, can
be related to regularity properties of the function f. In R? it is standardly proved (see, e.g.,
[17]) that if K is a translation family with mild conditions on K, then polynomial rates of
approximation are obtained for functions with Besov regularity. Therefore, an important issue
becomes finding regularity spaces associated to a possibly complex set M. On a compact met-
ric space (M, p) one can always define the scale of s-Lipschitz spaces by the following norm
1 Iip, = | flloo + supyz, LE=LN 0 <5 < 1.

On Euclidian spaces a function can be much more regular than Lipschitz; for instance, it can
be differentiable of an arbitrary order. When M is a set where there is no obvious notion of
differentiability, one can introduce regularity spaces by means of an operator that is an analogue
of the Laplace operator on R or a Riemannian manifold. To make this point more clear, we next
discuss the classical case of Sobolev spaces Wé‘ on R¥. The space Wé‘ is defined as the set of all

functions f on R such that in weak sense Bfl e ajdf el?, Zflzl k; <k, and
_ ki kq
7D D LA N PR
S ky<k

As is well known f(ajf E) = GEH F(f)(E), where F(f)(E) := [pa f(x)e ™ dx is the
Fourier transform of f. Now, applying Plancherel’s identity we get, using the notation |£|* :=

Z?:] &2,
Iflye = Y & & FO® 1, ~ 17O @& |, + [1EFFH© ],
Y4 kj<k
Let A be the operator defined by the identity
FAD)E = EIFNHE), thatis, ACH=F ' (EIFNE).
Then
Il ~ D2 NAf ], (4% =1a).

0<I<k

Clearly, the operator A is not a differential operator (even in dimension d = 1).
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In this framework, the differential operator A = Z?: 1 8]2 (Laplacian) plays a prominent role.
We have

F(=Af)E) = EPPF(f)E) = A*(f) andhence A>=—A or A=+/—A.

The advantage of the operator ~/—A over A is that it is a first order operator, while A is of order
two; v/—A is a good substitute for differentiation. As a result the Sobolev spaces Wk, k eN,
are naturally described in terms of the operator »/—A. The situation is quite similar if M is a
Riemannian manifold.

The above discussion leads to the conclusion that regularity spaces can naturally be defined
via operators that behave as the Laplace operator on R?. This is the underlying idea of our
development in this article.

It is by now well understood that “good operators” are the ones that are self-adjoint, positive,
and defined on a metric measure space (M, p, ;) with the doubling property of the measure (see
(3.1)) and whose heat kernel has Gaussian localization. This is precisely the setting introduced
in [6,20] that we adopt in this article. This setting is rich enough to allow the development of
the Littlewood—Paley theory in almost complete analogy with the classical case on R? and at the
same time it is sufficiently general to cover a number of interesting cases as will be shown in
what follows. In particular, the setting allows to develop Besov spaces B;, ¢ With complete set of
indices. As will be seen it is also sufficiently flexible in allowing to develop kernel and wavelet
density estimators.

Our main assumption is that the space (M, p, i) is complemented by an essentially self-
adjoint non-negative operator L on L?(M, i), mapping real-valued to real-valued functions,
such that the associated semigroup P; = e¢~'L (see the formal definition in Section 4.1) consists
of integral operators with the (heat) kernel p;(x, y) obeying the following conditions:

C3. Gaussian localization: There exist constants c4, c5 > 0 such that
csp?(x.y)
cqexp(— S

(B, VDIIB(y, /D2

C4. Holder continuity: There exists a constant o > 0 such that

|pe(x, y)| < forall x,y e M, t > 0. 3.7

’(x.y)

p(y, y)\*  exp(==H=)
pe(x, y) = pe(x,y' 504( ) (3.8)

o /()] Vi) (BGVDIIB(y, VDDV
for x, v,y € M and ¢ > 0, whenever p(y, y') < /.
CS. Markov property:
/ pi(x,y)du(y)=1 forallx e Mandt > 0. (3.9
M

Above cy, c1, 2, ¢3, ¢4, ¢5,d, o > 0 are structural constants. These technical assumptions ex-
press that fact that the Heat kernel associated with the operator L behaves as the standard Heat
kernel of RY.
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3.3. Typical examples

Here we present some examples of setups that are covered by the setting described above. We
will use these examples in what follows to illustrate our theory. More involved examples will be
given Section 1 of the Supplementary Material [4].

3.3.1. Classical case on M = R4

Here 14 is the Lebesgue measure and p is the Euclidean distance on R?. In this case, we consider
the operator

d
—Lf(x) =97 f(x) =div(V f)(x),

j=l1

defined on the space D(R?) of C™ functions with compact support. As is well known the oper-
ator L is positive essentially self-adjoint and has a unique extension to a positive self-adjoint

operator. The associate semigroup e/l is given by the operator with the Gaussian kernel:
lx—

_d y|2
pi(x,y) = (4mt)”2 exp(——7—).

3.3.2. Periodic case on M =[—1, 1]

Here u is the Lebesgue measure and p is the Euclidean distance on the circle. The operator is
Lf = —f”, defined on the set on infinitely differentiable periodic functions. It has eigenvalues
Ak = k%m? for k € N and eigenspaces

1
ker(L) = Eg = span{ —}, ker(L — k*n*1;) = E;, = span{cos krrx, sinkmx}.

V2

3.3.3. Non-periodic case on M = [—1, 1] with Jacobi weight

Note that this example, further developed in Section 1 of the Supplemental Material [4], can arise
when dealing with data issued from a density which itself has received a folding treatment such
as in the Wicksell problem [18,21]. Now, the measure is

dite.p(x) = we p(x)dx = (1 —x)*(1+x)P dx, «, B> —1,
the distance is p(x, y) := | arccos x — arccos y|, and L is the Jacobi operator

we s A =2 f' @I
wa,ﬂ(x) '

Lf(x):=

Conditions C1-CS5 are satisfied, but not the Ahlfors condition C1A, unless ¢ = 8 = —%. The
discrete spectral decomposition of L is given by one dimensional spectral spaces:

LA(M. o) = @D By, Ejun =ker(L - 2P 14) = span{ PP ()},

where P’ #(x) is the kth degree Jacobi polynomial and Az’ﬂ =k(k+a+B+1).
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3.3.4. Riemannian manifold M without boundary

If M is a Riemannian manifold, then the Laplace operator A is well defined on M (see [16])
and we consider

L=—Ay.

If M is compact, then conditions C1-C5 are verified, including the Ahlfors condition C1A.
Furthermore, there exists an associated discrete spectral decomposition with finite dimensional
spectral eigenspaces of L:

L*M, ) =@ Ex. Eng=ker(L —hrla), ho=0< Ay <Ay <---

3.3.5. Unit sphere M = SlinR4, d>3

This is the most famous Riemannian manifold with the induced structure from R¢. Here p is the
Lebesgue measure on S, p is the geodesic distance on S?~!: p(&, n) = arccos((£, N)Ra), and
L := —Ao with Ag being the Laplace-Beltrami operator on S¢~!. The spectral decomposition
of the operator L can be described as follows:

L2(S?7!, 1) @Ekk, Ej, =ker(L — Adg), hp =k(k +d —2).

Here Ej, is the restriction to S?=1 of harmonic homogeneous polynomials of degree k (spherical
harmonics), see [34]. We have dim(Ej, ) = (di;ll) - (di;i3).
3.3.6. Lie group of matrices: M = SU(2)

This example is interesting in astrophysical problems, especially in the measures associated to
the CMB, where instead of only measuring the intensity of the radiation we also measure its
polarization. By definition

SUQ) = {(fz g) .a,beC,laf + b = 1}

sinfe!®  —cosfe b/
= . . ,0< ¢, 2m7;0<60 < — 3.
{<cos€e”/’ sinfe~'? ) <¢.v<2m = 2}

The normalized Haar measure (see [9]) is given by

1 ooy sinfe'®  —cosfe™V
=5 / ) ) sindcos0dgdy do.
/SU(Z)f 5 2712/(; /0 /0 f<<cosée”/’ sinGe—i® )) sin@ cos@ do dr

Thus
qesSUQR) < qeMQ2,0), q'=—¢*  det(q)=1.
This is a compact group which topologically is the sphere S*> ¢ R*. So, if

o Xrtix o xstixg y= yitiyz  y3tiya
—(x3—ixa) x1—ixp —(y3—iys) y1—iy
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with [y> =Y,y =1=x[|?>=Y; x?, then

1
(x,y)a= E Xiyi = ETr[xy*].
i

Therefore,
1 *
psu) (x, y) = arccos 3 Tr[xy*])

and for any ¢, x, y € SU(2) we have v = psu()(qx, qy) = psu)(xq, yq) = psu)(x, y). The
eigenvalues of L = —A are A; = k(k + 2) and the dimension of the respective eigenspaces Ej,
is (k + 1)2.

Remark 3.2. Looking at some of these examples an important question already arises: how
to choose in a given problem the distance p as well as the dominating measure before even
choosing the operator L and a class of regularity? In R?, most often the Euclidean distance and
the Lebesgue measure seem more or less unavoidable. In some other cases it might not be so
obvious.

Let us take for instance, the simple case of M = [—1, 1]. The cases of the ball, the simplex
(see Section 1 of the Supplementary Material [4]) and more generally sets with boundaries give
rise in fact to identical discussions. Therefore, we will focus on the case of the interval.

So, if M =[—1, 1], a possible choice and probably the most standard one in statistical exam-
ples could be taking p as the Euclidean distance and w as the Lebesgue measure. Then standard
kernel and wavelet statistical methods are available. However, “something” which generally is
often swept under the carpet or not really detailed has to be “done” about the boundary points
{—1, 1}. Often special regularity conditions are assumed about these boundary points such as
f(—=1) = f(1) =0 (see Section 3.3.2), which de facto lead to different methods for representing
the functions to be estimated.

Let us now look at the choices (again for the interval [—1, 1], Section 3.3.3) that are made in
the “Jacobi” case. The distance p (x, y) = | arccos x — arccos y| suggests a one-to-one correspon-
dence with the semi-circle. The measure d iy g(x) = (1 — x)*(1 + x)Pdx,a, B> —1, suggests
that the points in the middle of the interval (say from [—%, +%], where the measure behaves as
the Lebesgue measure) will not be weighted in the same way as the points near the boundaries.
In some cases, this makes perfect sense. For instance, if one needs to give a hard weight on these
points because they require special attention, or on the contrary a small one.

Apart from these considerations, there are in fact two measures in the family @y g that are un-
deniable if M = [—1, 1] equipped with the distance p (x, y) = | arccos x — arccos y|. The first one
is the Lebesgue measure (because Lebesgue is always undeniable), corresponding to o« = 8 = 0.
The second one is 1t because in that case there is a one-to-one identification between

M, p,u_ 11 ) and the semi circle equipped with the Euclidean distance and Lebesgue mea-
sure.

If we look more precisely into these two choices, we see that for the last case all required
conditions, including the Ahlfors condition are satisfied, and the dimension d = 1, which is
intuitively expected. Let us now observe that the case of the Lebesgue measure 1,0 would lead
to a larger dimension d = 2.
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4. Kernel density estimator on metric measure space

4.1. Functional calculus associated to L

A key trait of our setting is that it allows to develop a smooth functional calculus. Let E;, A > 0,
be the spectral resolution associated with the operator L in our setting. As L is non-negative,
essentially self-adjoint and maps real-valued to real-valued functions, then for any real-valued,
measurable, and bounded function /# on R, the operator

h(L) ::/ h(A)dEj, 4.1)
0

is well defined on IL?(M). The operator i (L), called spectral multiplier, is bounded on > (M),
self-adjoint, and maps real-valued to real-valued functions [37]. We will be interested in integral
spectral multiplier operators A (L). If A(L)(x, y) is the kernel of such an operator, it is real-valued
and symmetric. From condition C4 of our setting we know that e~/ is an integral operator whose
(heat) kernel p;(x, y) is symmetric and real-valued: p;(y, x) = p;(x,y) € R.

Observe that in the simple case (most common case in this paper) when the spectrum of L is

discrete, L has eigenvalues Ag < A1 < ---, and A (L) is an integral operator with kernel

h(L)(x, ) =Y hG) Pi(x, ),
k

with Pr(x,y) =), vl.kk (x)v;\k () (projector operator), where vl.)“' (x),i=1,...,dim(E;,) is an
orthonormal basis of Ej,, the eigenspace associated with the eigenvalue A.

Our further development will heavily depend on the following result from the smooth func-
tional calculus induced by the heat kernel, developed in [20], Theorem 3.4. It asserts that if a
function g(u) on R is even, compactly supported and sufficiently smooth, then the kernel of the
operator g(8+/L) is very well localized. Note that the operator with kernel [%]dG(’%) on RY,

where G : R — R is a bounded compactly supported function, has a similar localization.

Theorem 4.1. Under the conditions C1-CS5, let g € cN (R), N > d, be even, real-valued,
and suppg C [—R,R], R > 0. Then g(8~/L), 8§ > 0, is an integral operator with kernel
g(8~/L)(x, y) satisfying

|g(VL)(x, y)| < ¢|B(x, 5)\”(1 +8 1 p(x, y))*’”%, Vx,yeM, 4.2)

where ¢ > 0 is a constant depending on ||g|loo, |18 lc, N, R and the constants co, c4, cs5 from
our setting. Furthermore, for any § > 0 and x € M

/Mg(rs«/f)(x, y)du(y) =g(0). (4.3)

This result is a building block for the localization properties of the kernel estimators considered
in the sequel.



Density estimators on manifolds 1843

4.1.1. Examples

Here we revisit some of the examples from Section 3.3 and in each case we specify the form of
the kernels of the spectral multipliers operators A (L).

(a) Let M =[—1, 1] be in the periodic case (Section 3.3.2). It is readily seen that the pro-
jection operators are: Py(x,y) = %, Pi(x,y) =coskm(x — y). Hence, formally, h(L)(x, y) =
2h(0) + Y poy h(K*7?) coskm (x — y), x,y € [—1, 1].

(b) If M is a Riemanian manifold (Section 3.3.4), then h(L) is a kernel operator with
kernel /i(L)(x,y) = Y h(u) Pr(x, y), with P(x, y) = 3 v/ (0)v/* (), where v* (x), i =
I,...,dim(E},) is an orthonormal basis of Ej, .

(c) In the case of the sphere (Section 3.3.5), the orthogonal projector operator Pg,, :
LS4 > E, is a kernel operator with kernel of the form Py (&, n) = Ly ((§, n)ga), Where
Li(x) = @(1 + %)Cl‘:(x), v = d%z' Here C}(x) is the Gegenbauer polynomials of de-

gree k. Usually, the polynomials {C}'(x)} are defined by the generating function m =

Zkzorkc,‘c’(x), Ir] <1, |x| < 1. Hence, formally A(L)(§, n) = >, h(k(k+d —2)) Ly ({§, n)ga),
g,nesil

(d) In the case of SU(2) (Section 3.3.6), the orthogonal projector Py : L2(SU(2)) — E;, is
the operator with kernel pi(§,7n) = Lk(%Tr[En*]), where Li(x) = Ll(l + k)C,: (x). Hence,

Is®
formally h(L)(€, 1) = Y, h(k(k +2))Li (5 TrlEn*]), €, 1 € SU().

Observe that in each example from above, if h(u) := g(§./u), where g(u) is even, compactly
supported and sufficiently smooth, then A(L) is an integral operator with kernel localized as
specified in Theorem 4.1.

4.2. Kernel density estimators on the metric measure space M

Our goal in this section is to introduce and study kernel density estimators (kde’s) on a metric
measure space (M, p, n) in setting described above. More precisely, we assume that conditions
C1-CS5 are satisfied, and do not necessarily assume the Ahlfors regular volume condition C1A.

To explain our construction of kernel estimators, we begin by considering the classical exam-
ple of the periodic case on M = [—1, 1], presented in Section 3.3.2. In this setting, the following
nonparametric estimator is standard

—I—%Xn: Z coskm(x — X;).

i=11<k<T

N =

frx)=

It falls into the category of orthogonal series estimators. It is well known that these estimators
have nice IL? properties but can drastically fail in L, p # 2, or locally.
In this setting, we replace fr by a “smoothed version” defined by

n

. 1 1 1<
Ka(x)=§K(0)+;§ § K(Sk)coskn(x—X,-)::ZE Ks(x, X;), (4.4)
i=1k>1 i=1
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with Ks(x, y) = %K(O) + Zkzl K (8k) coskm (x —y), where K is a smooth and rapidly decaying
(or compactly supported) function on R .

In analogy to this case, replacing the circle by M and the Laplacian by the operator —L we
can naturally introduce kde’s on M by means of the machinery of spectral multipliers.

We will use Theorem 4.1 to define a family of multiplier operators whose kernels are suitable
for the construction of kernel density estimators on M and introduce the kde’s in the general
setting of this article.

Definition 4.2. Let X1, ..., X, be i.i.d. random variables on M. Let K (§/L)(x, y) with 0 <
8 <1 (the bandwidth) be the kernel of the integral operator K (8«/2), where K : Ry — R. The
associated kernel density estimator is defined by

Ks(x) := %ZK((S\/Z)(X,-, x), xeM. (4.5)
i=1

Remarks 4.3. Again the analogy with the torus case could lead to the choice of K to be the
indicator function of the interval [0, 1], for instance. This choice would induce L2 properties, but
not IL? because this function is not smooth enough to get the localization of K (§+/L)(x, y) from
Theorem 4.1.

If K() = e_)‘z, then K (8+/L)(x, y) = ps2(x, y) (the “heat kernel”) can be used to define a
kernel density estimator. This choice relates to the Bayesian estimator provided in [3].

The kernel estimators from (4.5) although constructed using orthogonal projectors, because
of the smoothing function K will have properties that are comparable to translation kernel esti-
mators in RY. In R? some properties such as a number of moment annulation (see for instance
[35]) to get a correct bias are required which will be here replaced by the vanishing properties at
infinity of the function K and its smoothness.

4.3. Upper bound estimates for kernel density estimators

We will especially study kernel density estimators induced by compactly supported C*° multi-
pliers, often called Littlewood—Paley functions. In fact other type of kernels among the family
of multipliers could lead to similar results. More explicitly, let ® be an even C*°(R) real-valued
function with the following properties:

supp® C [—1,1] and d(R)=1 forre[—1/2,1/2]. (4.6)

By Theorem 4.1, it follows that ®(8+/L) is an integral operator with well localized symmetric
kernel ®(8+/L)(x, y) and the Markov property:

/M O BVL)(x, y)dp(y) =1, 4.7)
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We will denote by E =, the expectation with respect to the probability measure P =Py.
and we will consider the class of Litlewood—Paley kde’s:

~ ~ 1«
5 () = By (x, X1, .., Xp) 1= D> eGVL)(x. Xi). VxeM. (4.8)
i=1
4.3.1. Explicit examples of Littlewood Paley kernel density estimators

We now present specific examples of kernel density estimators induced by the setups in Sec-
tion 3.3 (see also Section 4.1.1). We have already discussed the periodic case on [—1, 1] in
(4.4).

(a) On [—1, 1] in the Jacobi framework (Section 3.3.3), we get the following estimator:
~ 1 <
(1) ==Y Y @BVk(k+a+p+ D)PEPPIP (X)) forx e[—1,1],
L

where P,fl P (x) is the normalized kth degree Jacobi polynomial.
(b) For the sphere (Section 3.3.5), we get

Ds(x) = %ZZCD((S\/k(k +d —2))Li((x, Xi)pa) forxeS',
i=1 k

where Li(x) = ﬁ(] + %)Cl\:(x)’ b= %‘
(c) For SU(2) (Section 3.3.6), we get

Dp(x) = rll Z Z (8 k(k + 2))Lk(% Tr[Xix*]) for x € SU(2),
i=1 k

with L (x) = @(1 +k)C} ().

4.3.2. Upper bound results

We first establish oracle inequalities for the kernel density estimators introduced in Definition 4.2.
Theorem 4.4. Assume 1 < p < 00 and let ® be a Littlewood—Paley function as above. In the
setting described above and with ®g from (4.8), we have:

1) If2 < p < oo, then

c(p) c

ns)!"5  (n

E(®s — fl, <

, 0<é<l.
p

1
Dy £13 + oeVDf - /|
Sd)Z 2
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(i) If1 < p <2 and supp(f) C B(xg, R) for some xo € M and R > 0, then

c(p)
(nsd)2

El®s — fll, < B, R)| 7 + |0 (GVI) f — f]

, 0<é=<1.
p

(iii) There exists a constant ¢ such that for any g > 2 and 0 < 6 < 1 we have

1/2 1

1 1 1||f||§5")+||cb<aﬁ)f—f||oo.

sy =0 (nsd)?

~ _d
El[®s — flloo < cé ‘i(

We next estimate the rates of IL”-approximation of pdf’s f belonging to Besov space balls
by kernel estimators. The precise definition of the Besov spase B;t will be given in Section 5.4
below. Define

B}, (m):={fispdf: | fllp;, <m} 4.9)
and
Bj (m,x0, R) :={f € By (m) :supp f C B(xo, R)}, x0€M,m,R>0. (4.10)

Here is our main result on the properties of our kernel estimators for density functions in Besov
spaces, when the risk and the regularity classes are defined with the same norm.

Theorem 4.5. Assume s >0,1 < p<00,0<7<00,m iO, and let ® be a Littlewood—Paley
function as above. In the setting described above and with ®; from (4.8) we have:

@) If2§p<ooand8:n_ﬁ,then

sup B[ ®s— fll, <cn~ 57, (4.11)
fEBy(m)

where ¢c = c(p,s,m, 1) > 0.
1
) Ifl1<p<2,x0e M,R>0,and § =n" =+ then

sup  E|®s — fll, <cn”FH, (4.12)
feB}(m,xo,R)

where ¢ = c(p, s,m, T, x9, R) > 0.
1
(iii) If8 = (&) %5, then

~ logn T
sup  E|ds — flloo <c ) (4.13)
feBéor(m) n

where c =c(s,m, t) > 0.

The proofs of Theorems 4.4 and 4.5 will be preceded by several definitions and ancillary
claims that we place in the next subsection. The actual proof will be given in Section 6.
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Remarks 4.6. Note that we do not claim that the above rates are necessarily minimax, although
they show similarities with the results established in R?.

The length of the paper does not allow to investigate the full lower bounds results. Let us only
mention that if we add the Ahlfors condition C1A to the setting, then matching lower bounds
can be obtained by direct adaptation of the proof given in the case of the sphere in [1]. In the
case where the Ahlfors condition is not valid, the problem is more complex since not only the
regularity might be non-homogeneous due to Besov conditions but also the dimension itself may
vary spatially. In this case, the upper bounds might not be optimal.

It is interesting to compare the obtained upper bounds for M = [—1, 1] in different cases
(torus or Jacobi). In the torus case, no surprise, the rate is the usual one with dimension d = 1.
In the Jacobi case, the dimension is d = 1 + 2« + 1)+ VvV (28 + 1), which in the particular
case o = 8 = 0 (corresponding to u the Lebesgue measure), gives a slower rate than the usual
one. This is due to the fact that the boundary affects the spaces and the approximation rate is not
the same. In the case « = 8 = —% that corresponds to perfect identification of [—1, 1] with the
semi-circle (see Remark 3.2) the rate is the usual with dimension d = 1.

5. Besov spaces and wavelets in geometric setting

In this section, we collect some basic technical facts and results related to the setting described
in Section 3 that will be crucial for the properties of the density estimators. Most of them can be
found in [6,14,20].

5.1. Geometric properties
Conditions C1 and C2 yield
|B(x,r)‘z(C3/co)rd, xeM,0<r<l. (5.1)

To compare the volumes of balls with different centers x, y € M and the same radius r we
will use the inequality

d
‘B(x,r)’ §co<1 + p(x,y)) |B(y,r) , x,yeM,r>0. (5.2)

r

As B(x,r) C B(y, p(y, x) + r) the above inequality is immediate from (3.2).
We will also need the following simple inequality (see [6], Lemma 2.3): If 7 > d, then for any
§>0

/M(l +5 p(x, y))_t du(y) < c|B(x, N, xeM, (5.3)

where ¢ = (274 —277)~ 1,
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5.2. Spectral spaces

We recall the definition of the spectral spaces Ef , 1 < p < o0, from [6]. Denote by Ci°(R) the
set of all even real-valued compactly supported functions. We define

2P i={felP(M):0(WL)f = fforalld e CP(R),§ =10n[0,A]}, A>0.
We will need the following proposition (Nikolski type inequality):
Proposition 5.1. Let 1 <p<g <oo.lfge€ XV, 1> 1, then g € T and
lglly < a2 VD gy, (5.4)

where the constant c, > 1 is independent of p and q.

This proposition was established in [6], Proposition 3.12 (see also [20], Proposition 3.11). We
present its proof in the Supplementary Material [4] because we need to control the constant c,.

5.3. Wavelets

In the setting of this article, wavelet type frames for Besov and Triebel-Lizorkin spaces are
developed in [20]. Here, we review the construction of the frames from [20] and their basic
properties. Indeed, in this setting the ‘wavelets’ do not form an orthonormal basis but a frame. In
this case, the construction of a ‘dual wavelet system’ is necessary to get a representation of type
(5.10).

This construction is inspired by to the Littlewood—Paley construction of the standard wavelets
introduced by [11-13].

The construction of frames involves a “dilation” constant b > 1 whose role is played by 2 in
the wavelet theory on R.

The construction starts with the selection of a function Wy € C*°(R,) with the properties:
Wo(A) =1for A € [0, 1], 0 < Wo(A) < 1, and supp ¥o C [0, b]. Denote W (1) := Wo(1) — Wo(bL)
and set ¥;(A) := Wb, j € N. From this, it readily follows that

J
v =W (b 'x), reR,. (5.5)
j=0

For j > 0 we let X; C M be a maximal §;-net on M with §; := csb™/. It is easy to see that for
any j > 0 there exists a disjoint partition {A j¢}sex; of M consisting of measurable sets such
that

B(£,8;/2) C Ajs CB(E,58;), E€X;.

Here cg > 0 is a sufficiently small constant (see [20]).
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Lemma 5.2. If M is compact, then there exists a constant c¢7 > 0 such that
card(X;) < c7b/?,  j>0. (5.6)
Proof. This is a simple consequence of the proof of [6], Proposition 3.20. (]
The jth level frame elements v ;¢ are defined by
Ve () = AP0 (VD)(x,6), &€ (5.7)

We will also use the more compact notation ¢ := ;¢ for & € &;.

Let X =} j=0<j, where equal points from different sets X; will be regarded as distinct
elements of X', so X' can be used as an index set. Then {y¢ }ecx is Frame #1.

The construction of a dual frame {1/~fg} cex =U j{1/~/ j€tee X; is much more involved; we refer
the reader to Section 4.3 in [20] for the details.

By construction, the two frames satisfy

(VD) =) visWvjE), =0, (5.8)

%'EXJ'
A basic result from [20] asserts that for any f € LP(M, u), 1 < p < o0,

f= Z W;(vL)f (convergence in L) (5.9)

Jj=0

and the same holds in IL*° if f is uniformly continuous and bounded (UCB) on M. As a conse-
quence, for any f € LP(M, n), 1 < p < oo, (L = UCB) we have

f= Z Z (f.¥je)¥je  (convergence in LP). (5.10)

j=0EeX;

Furthermore, frame decomposition results are established in [20] for Besov and Triebel-Lizorkin
spaces with full range of indices.

Properties of frames in the Ahlfors regularity case. We next present some properties of the
frame elements in the case when condition C1A is stipulated (see [20]).

1. Localization: For every k € N, there exists a constant c(k) > 0 such that

Tje (0] < e/ (1+b/p(x,8) ", xeM. (5.11)

| je (x)

’

2. Norm estimation: For 1 < p < oo

1, id(l_1 ~ id(L—1 .
TV < el 10 el < cob? 270 Ee Xy, j>0. (5.12)
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3. For1 < p<o0

a1 1/p
<cob’ 27 <Z|x§|l’> . Jj=0, (5.13)
p §€Xj

Z AeVje

§€Xj

with the usual modification when p = co. Above the constant ¢, > 1 depends only on p, b, Wy,
and the structural constants of the setting.

5.4. Besov spaces

We will deal with probability density functions (pdf’s) in Besov spaces associated to the operator
L in our setting. These spaces are developed in [6,20]. Definition 5.3 coincides in R¢ with one
the definitions of usual Besov spaces with L replaced by Laplacian (—A in fact to get a positive
operator).

Here we present some basic facts about Besov spaces that will be needed later on.

Let @9, ® € C*(R) be real-valued functions satisfying the conditions:

supp®o C [0,6],  Po(A)=1 forre[0,1],  Po(A)=c>0 forre[0,6°], (5.14)
supp® C [, 6], @MW) =c>0 forre b b4 (5.15)
Set ®; (1) := d(b/A), for j > 1.

Definition 5.3. Lets >0, 1 < p <00, and 0 < g < 00. The Besov space B;q = B[S,q(/\/l, L) is
defined as the set of all functions f € IL” (M, ) such that

) 1/q
1S 1, = (Z(b” | ,-(fL)fHP)q) <00, (5.16)

j=z0
where the ¢9-norm is replaced by the sup-norm if ¢ = oco.

Note that as shown in [20] the above definition of the Besov spaces B‘; q is independent of the
particular choice of ®¢, ® satisfying (5.14)—(5.15). For example with ¥; from the definition of
the frame elements in Section 5.3, we have

) 1/q
£ 1lBs, ~ (Z(w ||\v,-(ﬁ)f||,,)q) (5.17)
j=0
with the usual modification when ¢ = co. The following useful inequality follows readily from
above
W, VD s, <cb™ 1 fllsy,. fe€Byy =0 (5.18)

As in R, we will need some embedding results involving Besov spaces. Recall the definition
of embeddings: Let X and Y be two (quasi-)normed spaces. We say that X is continuously
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embedded in Y and write X — Y if X C Y and for each f € X we have || f|ly <c| flx, where
¢ > 0 is a constant independent of f.

Proposition 5.4.

@) Ifl§q§r§oo,0<r§oo,s>0,andu(./\/l)<oo,theanrL>B;,.

.. s—d(:-1)
(i) Iflfrgqfoo,0<rfooands>d(%—$),thenBrsrL>B;, 0’

(iii) If1 <r <00,0 <7 <00, ands >d/r, then Bf, — L>.
(v) If 1<p<r<oo0,0<t<00,5>0,and (M) < oo, then B, — LP.

To streamline our presentation, we defer the proof of this proposition to the Supplementary
Material [4].

Besov spaces in the Ahlfors regularity case. For the development of adaptive density estimators
in Section 8, we will need some additional facts from the theory of Besov spaces when condition
C1A is assumed. We first introduce the Besov bodies.

Definition 5.5. Assume s >0, 1 < p <o00,0<¢g <00, and let X := szo X be from the
definition of the frames in Section 5.3. The Besov body bqu = b;q (X) is defined as the set of all
sequences {ag }¢c v of real (or complex) numbers such that

4 ey a/pN 1/a
lalles, = (Zblsq(Z[b T Iasl]p> ) < 00, (5.19)

j=0 feX;
where the ¢9-norm is replaced by the sup-norm if g = co.

One of the principle results in [20] asserts that the Besov spaces By, , can be completely char-
acterized in terms of the Besov bodies b),, of the frame coefficients of the respective functions.
To be specific, denote

Bis(f):=(fbjs), &EeXj,j=>0. (5.20)

We will also use the more compact notation: B¢ (f) := Bz (f) for & € X;. In the current setting,
assume s > 0, 1 < p <00, and 0 < g < oo. In light of [20], Theorem 6.10, f € Bf,q if and only
if {Bs(f)} e bf,,q with equivalent norms:

1183, ~ [{B: (O}, - (5.21)
This implies that if f € B;‘,q for some s > 0, p>1,and 0 < g < o0, then
N\ _ L israd-1y .

(Z |Bj ()] ) =cb 227N fllsy,. T =0, (5.22)

EEXJ'

where ¢ =c¢(s, p,q) > 0.
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By (5.13) and (5.22) it follows that, if f € B;',q for some s >0, p>1,and 0 < g < oo, then

> Bie(HVe

EEX]

<cb™|\flgy,. =0 (5.23)
P

We next assemble some additional facts we need about kernels in the setting of this article and
then carry out the proof of Theorems 4.4 and 4.5.

5.4.1. Spectral multiplier integral operators

The operator <I>(8\/Z) and its symmetric kernel <I>(8\/Z)(x, y) from above have a number of
useful properties that we describe and prove next.

(a) For any k > d there exists a constant ¢; > 0 such that
—1 —1 —k
|¢(5ﬁ)(x,y)|5c(k)|3(x,5)| (1+86"p(x,»)", x,yeM,0<5<1, (5.24)

where the constant c¢(k) > 0 depends only on k, ®, and constant from the setting in Section 3.
This inequality follows immediately from Theorem 4.1.
(b) Forany 1 < p <oo

1_ —da-1
|eGVI)(x, ], <c[Ba. )7 <es ™, xeM0<s<1, (5.25)
where the constant ¢, > 0 is independent of p. This estimate follows readily by (5.24), (5.3), and

5.1).
(¢) Let X be a random variable on M and X ~ f(u)du(u). Then

IE(CD((S«/Z)(x,X)):/ OSVL)(x,u) fw)duw) =DEVLE) f(x), xeM. (5.26)
M

This is a well known property of expected values.
We next estimate the bias term of the risk.

Proposition 5.6. Lets >0,1<p<o00,0<g<oc0.lff€ B;,q, then f € LP and
@GV f = £, <8I fllBy,, 0<8<1, (5.27)
where ¢c = c(s, p,q) > 0.
This statement is quite standard. For completeness, we give its proof in the Supplementary
Material [4].

We will also need the following two lemmas.

Lemma 5.7. Let2 < p < oo and 0 < § < 1. Then for any pdf f on M we have

1/p
(/M /M [ ®GVL(, u)|pf(u)du(u)du(x)> <c,870=1P) (5.28)
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and

2 r 1y —dj2y /2
(fM (/M|(D(5\/Z)(X,u)’ f(u)du(u)) du(x)) <87 ”f”p/Z’ (5.29)

where c, > 0 is the constant from (5.25); c, is independent of p.

Lemma 5.8. Let 1 < p < 2. Then there exists a constant ¢ = c(p) > 0 such that for any § > 0
and any pdf f supported in a ball B(xq, R) with xo € M and R > §/2 we have

1

p/2 H
(f ([ JoovDumlrmanm) auw)” <csu . 50

The proofs of these two lemmas are placed in the Supplementary Material [4].

6. Proof of Theorem 4.4 and Theorem 4.5

We will only prove Theorem 4.4. Theorem 4.5 follows readily.
By the triangle inequality we obtain the standard decomposition of the risk as the sum of
stochastic and bias terms:

E|®s - fll, <E[|® — 2@VD f] , + [ @GVD f - £],. ©6.1)

For the estimation of the bias term ||®(8+/L) f— fllp we will use estimate (5.27). We next focus
on the estimation of the stochastic term E|®s — @(Sﬁ)fnp. In the case 1 < p < o0, using
Jensen’s inequality, we get

E(|®s - o6VD)f],) < (E|®s - 26VD)f]7)?

:</ME

(i) Assume the pdf f € B‘I‘,r(m) and let X ~ X;. We first prove estimate (4.11) for p = 2.
Clearly

4 P
du(x)) . (6.2)

% Y PGVL)(x, X)) — PEVL) f(x)
i=1

2

E < %]E[CD(S«/Z)()C, bolk

% Y ®OVL)(x, Xi) — ®(BVL) f(x)
i=1

1
= 6V ) duw.
nJm
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This coupled with (6.2) yields

E|®s — ®GVL) f],

1
1 2 2 c
< </M /M | DBV LY, w)|” f (u) du(u)du(x)) = G 6.3)
where we used (5.28) with p = 2. Combining (6.1), (5.27), and (6.3) we get

-~ C
E||®s — fll2 < W + cmé®.

With § = n_ﬁ , that is, §* = W, this yields (4.11) when p = 2.
Let2 < p < oo. We will use the following version of Rosenthal’s inequality that can be derived
for instance from [17], page 245, inequality (C.5) with 7 = g +1<p+1:1fYy,..., Y, areiid.
random variables and Y; ~ Y, then
n 2,p/2+1
ISy —my plp+ DIl
n i=1

E nl’/z

14
14
S(p+1)

praol i

(E1Y2)">. (6.4)

We get

P
E

%Z@(sﬁ)u, Xi) = ®OVL) f(x)
i=1

¢ c
= np—_lE|<D(5\/Z)(x, X)|p + W(E|©(8\/Z)(x, X)|2)P/2.

This and (6.2) imply
~ c 1/p
E[®; - oGVDf], < W(/M /M|¢<8«/Z><x, u)lpf(u)du(u)du(X))

c 5 p/2 1/p
R (/ (/ |2V (x, 0] f(u)du(u)) du(x))
n MNIM

c

= Garyz T8 1S ©5)

where we used (5.28) and (5.28). Since 1 < % < p and || f]l1 = 1, we obtain by interpolation

p=2 p—2 )

1 p=2 p
-1 -1 -1 —1 —
Iy <A 0A L =11 <clflp, <emp . (6.6)

Here we also used Proposition 5.4(iv).
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Combining (6.5)-(6.6) with (6.1) and (5.27), and taking into account that § = n_ﬁ , that is,

N
777 We arrive at

(né")

o~ C s
Elj®s — fllp < W+cm8s <cn B, (6.7)

The proof of part (i) of the theorem is complete.
(i) Let 1 <p<2and f € B;T(m,xo, R). We use Jensen’s inequality and the fact that
|® (/L) (x,u)| <c|B(x,8)|"" < '8¢, using (5.24) and (5.1), to obtain

p

E LY 0GVI). X)) - 96V £(0)
n i=1

< (e[

< %(IE|<I>(8«/—)(x X)\)

}l Z OBV (x, Xi) — PEVL) £ (x)

2)§

P
2

l D
- —g(/M|<b(6fL>(x, u)lzf(u)du(u)> )
n

= 5d)2 (/ | ®EVL)(x, u)lf(u)du(u)>
n

This and (6.2) lead to

E[®s - oGVDf|, <

2 1
) (/M (/M|<D(3\/Z)(x, M)‘f(u)d,u,(u)> ’ du(x)) "

‘We now invoke Lemma 5.8 to obtain

C/

(n5d) 2

E|®; —o6VD ], < o~ |B(xo,R)|

Using this and (5.27) we complete the proof of (4.12) just as above in (6.7).

(iii) Assume the pdf f € BS . (m) and let ¢ > 2 be arbitrary. Since by construction supp ® C
[—1, 1], the function 55 (x) — D(SVL) f(x) belongs to the spectral space X1,s. Then by Propo-
sition 5.1

[® - @GVIIf | = a1 |Bs -
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where the constant ¢, > 1 is independent of g. This along with Jensen’s inequality and Fubini’s
theorem lead to

1
E|®s — 0 (VD) f]|, < i (/ME|&>5(X, - q>(5ﬁ)f(x)|qdu(x)> 68

We now apply Rosenthal’s inequality (6.4) to obtain

E[®s(x) — ®(VL) f ()]’

4 941 q
(q+1) E|o@vD) . 1) + L9702 516 0D, 1))
n2

(q“) f |GV (e )] f ) dpn ()

1
R N T &

n2

This coupled with (6.8) and the fact that 1 /g < 1 imply

E|®; — @(6VL) f|,

+1 1
(f / |q>(8‘/z)(x’”)|qf(”)dﬂ(u)du(x))
g MIM

< 9

1

posgdtat e ( / ( f (VD). u)|2f(u)du(u)> 2 du(x)>

1
n2

_d 2¢c.q e’cuq!/ 1/2
< d + ||f|| , (6.9)
((n(?d)l__ (nsd)1/2 q/2

1

1 1
where we used (5.28), (5.29), and the inequality ¢ 7 (¢ + 1)%€7+3 <e2q'/2, (g > 2). Observe
that the constant ¢, above is from (5.25) and is independent of g.
By Proposition 5.4(iii) it follows that f € L°° and since || f||; = 1 we obtain

-2 1-2
Ifllg2 <UFIS AN < (el g, ) T < (em) =4 < em + 1.

Let n > 2 and choose ¢ := logn. By assumption § = (lo%)l/(z”d). Now, it is easy to see

that n'/4 = ¢, 8414 < ¢, 85 = L. = (lognys/Q2s+d) apd
b —_— b n 9

(nad)l/z -
logn logn \*/ @5+
(msd)ql—l/q = (n53)3/4 = 56( ; > ifn 2 e
n2s+d
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Putting all of the above together, we obtain

s/(2s+d)
E||&>5—¢(aﬁ)f||oogc<1°§”) . (6.10)

If 2 < n < €2, then estimate (6.10) follows readily from (6.9) with g = 2.

As before we use (6.10) and (5.27) to obtain (4.13). The proof of Theorem 4.5 is complete.

A closer examination of the above proof shows that the oracle inequalities from Theorem 4.4
are valid.

7. Linear wavelet density estimators

In this section, we establish IL”-error estimates for linear wavelet density estimators. Let {j¢},

(¥ j&} be the pair of dual frames described in Section 5.3. We adhere to the notation from Sec-
tion 5.3.
For any j > 0 and & € X; we define the empirical coefficient estimators by

. 1 & -
Bje :=;§;wjg<xi>. (7.1)
=
Using this, we define the linear wavelet density estimator by
J
FrO =" Biewjex), xeM, (72)
j=0feX;

where the parameter J = J(n) € N is selected so that the factor 5=/ de facto behaves as a
bandwidth. More precisely, we define J as the unique positive integer such that

b < pl/@std) _ I+l (13)

It is easy to see that f* can be written in the following way

n J
F@=23 Y Y @)

i=1 j=0£eX;

n J
:%ZZ‘I’J‘(*/Z)(XI"” Z% b VL)(Xi, x). (7.4)

i=1 j=0

where we used (5.8) and (5.5).

Thus, this linear wavelet estimator is in fact a particular case of the linear estimators inves-
tigated in the previous subsection. This enables us to state the following upper bound theorem,
which is an immediate consequence of Theorem 4.5.
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Theorem 7.1. Lets >0,0 <t <00,m >0, x9€ M and R > 0.
() If2<p<ooandJ isasin(7.3), then

sup E|f*—f|, <en /D, (7.5)
feB(m) P

where ¢ =c(p, t,s,m) > 0.
() If 1 <p<2andJisasin (7.3), then

sup E|f* = f], < en/FD, (7.6)
feB;"(m,xo,R) 4

where c =c(p, t,s,m, xg, R) > 0.
(iii) If J is the unique integer satisfying b’ < (@)1/(2”"1) < b/t then

1 I
sup EHf*—fHoofc(Of") , .7)

feB3or(m)

where c = c(t,s,m) > 0.

8. Adaptive wavelet density estimators

As we want to parallel in our setting the main results in density estimation theory, say, on [0, 1]¢,
we need to introduce adaptation, that is, to obtain up to logarithmic factors optimal rates of
convergence without knowing the regularity. There are several techniques for this. For example,
Lepski’s method (see [15,27]) could be applied to our kernel estimators.

We choose to develop here nonlinear wavelet estimators, where we apply hard thresholding.
This method has been developed in the classical case of R in [8] and on the sphere in [17]. We
will operate in the general setting described in Section 3. Unlike the case of the kernel or linear
wavelet density estimates considered in the previous section, here we assume that the space M
is compact (u (M) < o00) and all conditions C1-C5 (including the Ahlfors regularity condition
C1A) are satisfied, see Section 3.

As before we assume that X, ..., X,, (n > 2) are i.i.d. random variables with values on M
and with a common density function f with respect to the measure u on M. Let X; ~ X. We
denote by [E = [E s the expectation with respect to the probability measure P = P¢. In addition,
we assume here that f is bounded. Denote

A=max{| flloc.4} andset «:=co(84)"/2 (8.1)

where ¢, > 1 is the constant from the norm boqnds of the frame elements in (5.12).
We will utilize the pair of frames {v;¢}, {1z} described in Section 5.3. We adhere to the
notation from Section 5.3. Recall that any f € L. (M, du) has the frame decomposition

£=Y"3 " Bie(H¥je.  Bje(f):=(f. ¥je) (convergence in LP). (8.2)

jZOSEX/'
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Assuming the pdf f fixed, we will use the abbreviated notation 8¢ := B¢ (f).

We introduce two parameters depending on n:

1 1/2
Ap = K( 0gn>
n

and J, uniquely defined by the following inequalities

N
bln < ( > < bl'l+],
logn

As in Section 7, we introduce the empirical coefficient estimators

n 1 . .
Bjs == " Zlﬁjs(xi), j=0§eX;.
i=1
We now define the hard threshold coefficient estimators by

’B;ké = ﬂjéﬂ{|[§1g|>2)\n}’ JEO,S EX]

Then the wavelet threshold density estimator is defined by

fa(x) = Z Z,é;’-‘slﬂjg(x), x e M.

0<j<Jy§€X;
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(8.3)

(8.4)

(8.5)

(8.6)

8.7

Remark 8.1. Note that the density estimator fn of the pdf f depends only on the number n of

observations, the geometric constant ¢, and the .°°-norm of f.

We now state our main result on the adaptive wavelet threshold estimator defined above.

Theorem 8.2. Let 1 <r <o00,0<t <00,1 <p<o00,s5>d/r,andm > 0. Then there exists a
constant ¢ = c¢(r, T, p, s, m) > 0 such that in the setting described above and with f, from (8.7)

we have:
@ (-4
A logn 2As—d(L-1)
sup E”fn_f”oofc< ) S
feBi (m) n
.. d
(ii) In the regular case s > 7”(% — %)

FeBs (m)

A logn nrd
sup Kl fu = fllp = clogn{ — .

(8.8)

(8.9)
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(iii) In the sparse case s < 7”(; — 5)
logn\ orp)
A 081\ 2s—al_I
sup Ellfn—fllpfclogn(iy[ A (8.10)
feB; (m) n

The proof of this theorem is quite long and involved. We place it in the Supplementary Material

[4].

Remark 8.3. Several observations are in order:

(a) The assumption s > d/r leads to || f[lc < ¢l fllBs, < cm, by Proposition 5.4(iii). In ad-
dition in the sparse case it implies p > 2.

(b) The geometry of the setting is represented by the dimension d. Note that the exponents of
121 are the same as in the case of the sphere [1].

(c) In the regular case (modulo the logarithmic terms) we have the same rate of convergence
n—/2s+d) 45 in the case of the linear wavelet estimator.

(d) Just as in the case of kernel density estimators (see Remark 4.6) we note that since we
assume here all conditions C1-C5 (including C1A) it would not be a problem to obtain lower
bounds matching up to logarithmic terms the rates established above by a direct adaptation of the
proof of the lower bounds in the case of the sphere from [1].
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