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We consider the problem of estimating the density of observations taking values in classical or nonclassical

spaces such as manifolds and more general metric spaces. Our setting is quite general but also sufficiently

rich in allowing the development of smooth functional calculus with well localized spectral kernels, Besov

regularity spaces, and wavelet type systems. Kernel and both linear and nonlinear wavelet density estimators

are introduced and studied. Convergence rates for these estimators are established and discussed.
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1. Introduction

A great deal of efforts is nowadays invested in solving statistical problems, where the data are

located in quite complex geometric domains such as matrix spaces or surfaces (manifolds). Geo-

metric models are motivated by the fact that many real-world high dimensional data are affected

by the “curse of dimensionality” phenomena. Although the data for a given data mining problem

may have many features, in reality, viewed from a geometric perspective the intrinsic dimension-

ality of the data support of the full feature space may be low. A seminal example in this direction

is the case of spherical data. Developments in this domain have been motivated by a number

of important applications. We only mention here some of the statistical challenges posed by as-

trophysical data: investigating the fundamental properties of the cosmic microwave background

(CMB) observation including its polarization, impainting of the CMB in zones on the sphere

obstructed by other radiations, producing cosmological maps, exploring clusters of galaxies or

point sources, investigating the true nature of ultra high energy cosmic rays (UHECR). We refer

the reader to the overview by Starck, Murtagh, and Fadili [33] of the use of various wavelet tools

in this domain as well as the work in [1] and [24] of some of the authors of this article.

Many more geometric objects have been analyzed in the statistical literature. For instance,

landmark-based shape spaces have diverse applications in morphometrics, medical diagnostics,
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machine vision (see, for instance, [2]); Pelletier [28,29] has long ago investigated nonparametric

statistics on regular manifolds; the now emerging field of signal processing on graphs or networks

is a mine for geometric investigation (see, for instance, [31]).

Dealing with complex data requires the development of more sophisticated tools and statisti-

cal methods. In particular, these tools should capture the natural topology and geometry of the

application domain. Our contribution will be essentially theoretical, however, our statements will

be illustrated by examples from various application fields.

Our aim in this article is to study the density estimation problem, namely, one observes

X1, . . . ,Xn that are i.i.d. random variables defined on a space M and the problem is to find

a good estimation to the common density function. This problem has a long history in math-

ematical statistics, especially when the set M is R
d or a cube in R

d (see e.g. the monograph

[35] and the references herein). Here we will consider general spaces M such as Riemannian

manifolds or spaces of matrices or graphs and prove that under some reasonable assumptions, we

can develop an estimation theory with estimation procedures, regularity sets and upper bounds

evaluations quite parallel to what has been done in R
d . In particular, we intend to develop kernel

methods with upper bounds and oracle properties as well as wavelet thresholding estimators with

adaptive behavior.

There are two principle quantities that will dominate our setting and usually appear in the

minimax rates of convergence. The first quantity d reflects the basic dimensional structure of

the sets (here introduced with the aid of the doubling condition on the measure) and the second

quantity s is associated to “regularity” and leads us to considering settings, where regularity

spaces can be defined along with kernels.

The setting presented here is quite general. Naturally, the classical results on Rd and on the

sphere are contained in this general framework, but also various other settings are covered. In par-

ticular, spaces of matrices, Riemannian manifolds, and convex subsets of Riemannian manifolds

are covered.

This programm requires the development of new techniques and methods that break new

ground in the density estimation problem. Our main contributions are as follows:

(a) In a general setting described below, we introduce kernel density estimators sufficiently

concentrated to establish oracle inequalities and Lp-error rates of convergence for probability

density functions lying in Besov spaces.

(b) We develop linear wavelet density estimators and obtain L
p-error estimates for probability

density functions in general Besov smoothness spaces.

(c) We also establish L
p-error estimates on nonlinear wavelet density estimators with hard

thresholding and prove adaptivity properties up to logarithmic terms.

To put the results from this article in perspective, we next compare them with the results in

[3]. The geometric settings in both articles are comparable and the two papers study adaptive

methods. In [3], different standard statistical models (regression, white noise model, density esti-

mation) are considered in a Bayesian framework. The methods are different (we do not consider

here Bayesian estimators) and the results are also different (since, again, we are not interested

here in a concentration result of the posterior distribution). It is noteworthy that the results in

the so called dense case exhibit the same rates of convergence. It is also important to observe

the wide adaptation properties of the thresholding estimates here which allow to obtain minimax

rates of convergence in the so called sparse case, that was not possible in [3].
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Outline. The organization of this article is as follows. In Section 2, we begin with a short toy-

example. In Section 3, we describe our general setting and give some examples. We introduce

kernel density estimators in Section 4 and establish L
p-error estimates for probability density

functions in general Besov spaces. In Section 5, we review some basic facts related to our set-

ting such as the construction of wavelet frames, Besov spaces, and other background material.

Section 6, we prove the main results on kernel density estimators from Section 4. Section 7

is devoted to linear wavelet estimators. In Section 8, we introduce and study adaptive wavelet

threshold density estimators. We establish L
p-error estimates for probability density functions

in Besov spaces. In the Supplementary Material [4], Section 1, we present several additional ex-

amples covered by the setting, introduced in Section 3. In Section 2 of [4], we place the proofs

of some claims from Section 5. Finally, in Section 3, of [4] we give the proof of the main Theo-

rem 8.2 of Section 8.

Notation.
Throughout IE will denote the indicator function of the set E and ‖ · ‖p := ‖ · ‖Lp(M,μ). We

denote by c, c′ positive constants that may vary at every occurrence. Most of these constants

will depend on some parameters that may be indicated in parentheses. We will also denote by

c0, c1, . . . as well as c�, c� constants that will remain unchanged throughout. The relation a ∼ b

means that there exists a constant c > 1 such that c−1a ≤ b ≤ ca. We will also use the notation

a ∧ b := min{a, b}, a ∨ b := max{a, b}, and Ck(R+), k ∈ N ∪ {∞}, will stand for the set of all

functions with continuous derivatives of order up to k on R+ := [0,∞).

2. Illustrating example

Before going into the mathematical tools and results, let us study a toy example (although the

problem has a scientific interest by itself, but will be treated here only from a methodological

point of view): let us estimate a probability density on a spider web M. A spider web is a good

and emblematic example, since it reflects the geometric aspects of the problem. As well, most of

the time, it is a very inhomogeneous medium, built of regions with varying characteristics and

this is also an important issue that we will commented in the paper.

One observes X1, . . . ,Xn i.i.d. random variables defined on the space M with the common

density f . The Xi ’s may be the places where preys are falling, and the density f might give

indications on the regions of the web devoted to catching preys as opposed to others affected to

others tasks such as informing the spider of the presence of predators.

To proceed to the estimation we first propose to identify M with a graph (simple, undirected,

no loops) with T vertices and edges. As is standard in graph theory (and commonly used in

clustering, see for instance [36]), we form the adjacency T × T matrix A, defined by Aij = 1

if there is an edge between i and j , and Aij = 0 otherwise. M is naturally equipped with the

geodesic-distance and the Laplacian matrix LT ×T is defined as:

L = D − A,

where D is the diagonal degree matrix, Dii =
∑

j �=i Ai,j is the degree of the vertex i.

Again, as is common in clustering procedures, we compute the spectral decomposition of L. L

has λ1 ≤ · · · ≤ λT as eigenvalues and V 1, . . . , V T as (normed) eigenvectors: V j = (V
j

1 , . . . , V
j

T ).
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The kernel estimator that will be studied in the sequel is the following one: for an arbitrary

point x of the graph:

K̂δ(x) := 1

n

n∑

i=1

T∑

j=1

�(δ
√

λj )V
j

Xi
V

j
x .

Here δ is the bandwidth and � is a “Littlewood–Paley function”, that is, � ∈ C∞(R) is a real-

valued function with the following properties: supp� ⊂ [0,1] and �(λ) = 1 for λ ∈ [0,1/2].

3. Setting and motivation

We assume that (M, ρ,μ) is a metric measure space equipped with a distance ρ and a positive

Radon measure μ.

Let X1, . . . ,Xn be independent identically distributed (i.i.d.) random variables on M with

common probability having a density function (pdf) f with respect to the measure μ. Our goal

is to estimate the density f . To an estimator f̂n of f we associate its risk:

Rn(f̂ , f,p) = Ef

(∫

M

∣∣f̂n(x) − f (x)
∣∣pμ(dx)

) 1
p

= Ef ‖f̂n − f ‖p, 1 ≤ p < ∞

as well as its L∞ risk:

Rn(f̂ , f,∞) = Ef

(
ess sup
x∈M

∣∣f̂n(x) − f (x)
∣∣) = Ef ‖f̂n − f ‖∞.

We will operate in the setting described below. Most of the material related to the setting can

be found in an extended form in papers [6,20]. Note that, depending on the results that will be

established, some of the following conditions will be assumed, others will not.

3.1. Doubling and non-collapsing conditions

The following conditions are related to the “dimensional” structure of M. This notion which

is one of the important parameters in statistical estimation may be subtle to define in complex

models. It has often been linked with entropy. We propose, here instead, to connect the dimension

with a more flexible notion, the doubling condition that was introduced in the 70s by R. Coifman

and G. Weiss [5].

C1. We assume that the metric space (M, ρ,μ) satisfies the following doubling volume con-
dition:

μ
(
B(x,2r)

)
≤ c0μ

(
B(x, r)

)
for all x ∈M and r > 0, (3.1)

where B(x, r) := {y ∈ M : ρ(x, y) < r} and c0 > 1 is a constant. The above implies that there

exist constants c′
0 ≥ 1 and d > 0 such that

μ
(
B(x,λr)

)
≤ c′

0λ
dμ

(
B(x, r)

)
for all x ∈M, r > 0, and λ > 1. (3.2)

The least d such that (3.2) holds is the so called homogeneous dimension of (M, ρ,μ).
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From now on we will use the notation |E| := μ(E) for E ⊂M.

In developing adaptive density estimators in Section 8 we will additionally assume that

(M, ρ,μ) is a compact measure space with μ(M) < ∞ satisfying the following condition:

C1A. Ahlfors regular volume condition: There exist constants c1, c2 > 0 and d > 0 such that

c1r
d ≤

∣∣B(x, r)
∣∣ ≤ c2r

d , ∀x ∈ M and 0 < r ≤ diam(M). (3.3)

Clearly, condition C1A implies conditions C1 and condition C2 below with d from (3.3) being

the homogeneous dimension of (M, ρ,μ).

It is interesting already to notice that d will in effect play the role of dimension in the statistical

results as well. Condition C1A is obviously true for M = R
d with μ the Lebesgue measure.

Also, under C1A, the doubling condition is precisely related to the metric entropy using the

following lemma whose elementary proof can be found for instance in [3], Proposition 1. Note

that it might be not true in general. For ε > 0, we define, as usual, the covering number N(ε,M)

as the smallest number of balls of radius ε covering M.

Lemma 3.1. Under the condition C1A and if M is compact, there exist constants c′ and c′′ such
that

1

c′

(
1

ε

)d

≤ N(ε,M) ≤ 2d

c′′

(
1

ε

)d

, (3.4)

for all 0 < ε ≤ ε0.

The cases where C1 is verified but not C1A are interesting but more complicated. They corre-

spond to media M with non homogeneous behavior: think of the spider web, with different zones

with different characteristics or medical images. More examples will be given in the sequel.

C2. Non-collapsing condition: There exists a constant c3 > 0 such that

inf
x∈M

∣∣B(x,1)
∣∣ ≥ c3 > 0. (3.5)

This condition is not necessarily very restrictive. For instance, it is satisfied if M is compact. It

is satisfied for Rd if μ is the Lebesgue measure, but untrue for R if μ is the Gaussian measure.

3.2. The underlying operator

Before delving into the specificity of our set of assumptions (described below), let us explain our

motivation. A standard method in density estimation is the kernel estimation method. Namely,

consider a family of functions Kδ : M×M → R, indexed by δ > 0. Then the associated kernel

density estimator is defined by

K̂δ(x) := 1

n

n∑

i=1

Kδ(Xi, x), x ∈M. (3.6)
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In the classical case of Rd , an important family is the family of translation kernels Kδ(x, y) =
[ 1
δ
]dG(

x−y
δ

), where G maps Rd into R. When M is a more involved set such as a manifold or a

set of graphs or matrices, the simple operations of translation and dilation may not be meaningful.

Hence, even finding a family of kernels to start with might be challenging. As will be shown in

Section 4.2 our assumptions will provide quite naturally a family of kernels.

When dealing with a kernel estimation method, it is standard to consider two quantities:

bδ(f ) := ‖Ef K̂δ − f ‖p , ‖ξf ‖p := ‖K̂δ −Ef K̂δ‖p . The analysis of the second (stochastic) term

‖ξf ‖p can be reduced via Rosenthal inequalities to proper bounds on norms of Kδ(·, ·) and f

(see the Lemmas 5.7, 5.8). The analysis of the first term bδ(f ) is linked to the approximation

properties of the family Ef K̂δ . One can stop at this level and express the performance of an es-

timator in terms of ‖Ef K̂δ − f ‖p . This is the purpose of oracle inequalities (see Theorem 4.4).

However, it is more compelling if the rate of approximation of the family ‖Ef K̂δ − f ‖p can

be related to regularity properties of the function f . In R
d it is standardly proved (see, e.g.,

[17]) that if K is a translation family with mild conditions on K , then polynomial rates of

approximation are obtained for functions with Besov regularity. Therefore, an important issue

becomes finding regularity spaces associated to a possibly complex set M. On a compact met-

ric space (M,ρ) one can always define the scale of s-Lipschitz spaces by the following norm

‖f ‖Lips
:= ‖f ‖∞ + supx �=y

|f (x)−f (y)|
ρ(x,y)s

, 0 < s ≤ 1.

On Euclidian spaces a function can be much more regular than Lipschitz; for instance, it can

be differentiable of an arbitrary order. When M is a set where there is no obvious notion of

differentiability, one can introduce regularity spaces by means of an operator that is an analogue

of the Laplace operator on R
d or a Riemannian manifold. To make this point more clear, we next

discuss the classical case of Sobolev spaces W k
2 on R

d . The space W k
2 is defined as the set of all

functions f on R
d such that in weak sense ∂

k1

1 · · · ∂kd

d f ∈ L
2,

∑d
i=1 ki ≤ k, and

‖f ‖W k
2

=
∑

∑d
j=1 kj ≤k

∥∥∂
k1

1 · · ·∂kd

d f
∥∥

2
< ∞.

As is well known F(∂k
j f )(ξ) = (iξj )

kF(f )(ξ), where F(f )(ξ) :=
∫
Rd f (x)e−ix·ξ dx is the

Fourier transform of f . Now, applying Plancherel’s identity we get, using the notation |ξ |2 :=∑d
i=1 |ξi |2,

‖f ‖W k
2

=
∑

∑d
j=1 kj ≤k

∥∥ξ
k1

l · · · ξ kd

d F(f )(ξ)
∥∥

2
∼

∥∥F(f )(ξ)
∥∥

2
+

∥∥|ξ |kF(f )(ξ)
∥∥

2
.

Let A be the operator defined by the identity

F
(
A(f )

)
(ξ) = |ξ |F(f )(ξ), that is, A(f ) =F

−1
(
|ξ |F(f )(ξ)

)
.

Then

‖f ‖W k
2

∼
∑

0≤l≤k

∥∥Alf
∥∥

2

(
A0 = Id

)
.

Clearly, the operator A is not a differential operator (even in dimension d = 1).
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In this framework, the differential operator 
 =
∑d

j=1 ∂2
j (Laplacian) plays a prominent role.

We have

F(−
f )(ξ) = |ξ |2F(f )(ξ) = A2(f ) and hence A2 = −
 or A =
√

−
.

The advantage of the operator
√

−
 over 
 is that it is a first order operator, while 
 is of order

two;
√

−
 is a good substitute for differentiation. As a result the Sobolev spaces W k
2 , k ∈ N,

are naturally described in terms of the operator
√

−
. The situation is quite similar if M is a

Riemannian manifold.

The above discussion leads to the conclusion that regularity spaces can naturally be defined

via operators that behave as the Laplace operator on R
d . This is the underlying idea of our

development in this article.

It is by now well understood that “good operators” are the ones that are self-adjoint, positive,

and defined on a metric measure space (M, ρ,μ) with the doubling property of the measure (see

(3.1)) and whose heat kernel has Gaussian localization. This is precisely the setting introduced

in [6,20] that we adopt in this article. This setting is rich enough to allow the development of

the Littlewood–Paley theory in almost complete analogy with the classical case on Rd and at the

same time it is sufficiently general to cover a number of interesting cases as will be shown in

what follows. In particular, the setting allows to develop Besov spaces Bs
pq with complete set of

indices. As will be seen it is also sufficiently flexible in allowing to develop kernel and wavelet

density estimators.

Our main assumption is that the space (M, ρ,μ) is complemented by an essentially self-

adjoint non-negative operator L on L2(M,μ), mapping real-valued to real-valued functions,

such that the associated semigroup Pt = e−tL (see the formal definition in Section 4.1) consists

of integral operators with the (heat) kernel pt (x, y) obeying the following conditions:

C3. Gaussian localization: There exist constants c4, c5 > 0 such that

∣∣pt (x, y)
∣∣ ≤

c4 exp(− c5ρ
2(x,y)
t

)

(|B(x,
√

t)||B(y,
√

t)|)1/2
for all x, y ∈M, t > 0. (3.7)

C4. Hölder continuity: There exists a constant α > 0 such that

∣∣pt (x, y) − pt

(
x, y′)∣∣ ≤ c4

(
ρ(y, y′)√

t

)α exp(− c5ρ
2(x,y)
t

)

(|B(x,
√

t)||B(y,
√

t)|)1/2
(3.8)

for x, y, y′ ∈ M and t > 0, whenever ρ(y, y′) ≤
√

t .

C5. Markov property:
∫

M

pt (x, y) dμ(y) = 1 for all x ∈M and t > 0. (3.9)

Above c0, c1, c2, c3, c4, c5, d,α > 0 are structural constants. These technical assumptions ex-

press that fact that the Heat kernel associated with the operator L behaves as the standard Heat

kernel of Rd .
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3.3. Typical examples

Here we present some examples of setups that are covered by the setting described above. We

will use these examples in what follows to illustrate our theory. More involved examples will be

given Section 1 of the Supplementary Material [4].

3.3.1. Classical case on M =R
d

Here μ is the Lebesgue measure and ρ is the Euclidean distance on R
d . In this case, we consider

the operator

−Lf (x) =
d∑

j=1

∂2
i f (x) = div(∇f )(x),

defined on the space D(Rd) of C∞ functions with compact support. As is well known the oper-

ator L is positive essentially self-adjoint and has a unique extension to a positive self-adjoint

operator. The associate semigroup e−tL is given by the operator with the Gaussian kernel:

pt (x, y) = (4πt)−
d
2 exp(− |x−y|2

4t
).

3.3.2. Periodic case on M = [−1,1]
Here μ is the Lebesgue measure and ρ is the Euclidean distance on the circle. The operator is

Lf = −f ′′, defined on the set on infinitely differentiable periodic functions. It has eigenvalues

λk = k2π2 for k ∈ N and eigenspaces

ker(L) = E0 = span

{
1√
2

}
, ker

(
L − k2π2Id

)
= Eλk

= span{coskπx, sin kπx}.

3.3.3. Non-periodic case on M = [−1,1] with Jacobi weight

Note that this example, further developed in Section 1 of the Supplemental Material [4], can arise

when dealing with data issued from a density which itself has received a folding treatment such

as in the Wicksell problem [18,21]. Now, the measure is

dμα,β(x) = wα,β(x) dx = (1 − x)α(1 + x)β dx, α,β > −1,

the distance is ρ(x, y) := | arccosx − arccosy|, and L is the Jacobi operator

Lf (x) := −[wα,β(x)(1 − x2)f ′(x)]′
wα,β(x)

.

Conditions C1–C5 are satisfied, but not the Ahlfors condition C1A, unless α = β = − 1
2

. The

discrete spectral decomposition of L is given by one dimensional spectral spaces:

L
2(M,μα,β) =

⊕
E

λ
α,β
k

, E
λ

α,β
k

= ker
(
L − λ

α,β
k Id

)
= span

{
P

α,β
k (x)

}
,

where P
α,β
k (x) is the kth degree Jacobi polynomial and λ

α,β
k = k(k + α + β + 1).
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3.3.4. Riemannian manifold M without boundary

If M is a Riemannian manifold, then the Laplace operator 
M is well defined on M (see [16])

and we consider

L = −
M .

If M is compact, then conditions C1–C5 are verified, including the Ahlfors condition C1A.

Furthermore, there exists an associated discrete spectral decomposition with finite dimensional

spectral eigenspaces of L:

L
2(M,μ) =

⊕
Eλk

, Eλk
= ker(L − λkId), λ0 = 0 < λ1 < λ1 < · · · .

3.3.5. Unit sphere M = S
d−1 in R

d , d ≥ 3

This is the most famous Riemannian manifold with the induced structure from Rd . Here μ is the

Lebesgue measure on S
d−1, ρ is the geodesic distance on S

d−1: ρ(ξ, η) = arccos(〈ξ, η〉Rd ), and

L := −
0 with 
0 being the Laplace–Beltrami operator on S
d−1. The spectral decomposition

of the operator L can be described as follows:

L
2
(
S

d−1,μ
)
=

⊕
Eλk

, Eλk
= ker(L − λkId), λk = k(k + d − 2).

Here Eλk
is the restriction to S

d−1 of harmonic homogeneous polynomials of degree k (spherical

harmonics), see [34]. We have dim(Eλk
) =

(
d−1

d+k−1

)
−

(
d−1

d+k−3

)
.

3.3.6. Lie group of matrices: M = SU(2)

This example is interesting in astrophysical problems, especially in the measures associated to

the CMB, where instead of only measuring the intensity of the radiation we also measure its

polarization. By definition

SU(2) :=
{(

a b

−b a

)
, a, b ∈C, |a|2 + |b|2 = 1

}

=
{(

sin θeiφ − cos θe−iψ

cos θeiψ sin θe−iφ

)
,0 ≤ φ,ψ < 2π;0 ≤ θ <

π

2

}
.

The normalized Haar measure (see [9]) is given by

∫

SU(2)

f dμ = 1

2π2

∫ 2π

0

∫ 2π

0

∫ π
2

0

f

((
sin θeiφ − cos θe−iψ

cos θeiψ sin θe−iφ

))
sin θ cos θ dφ dψ dθ.

Thus

q ∈ SU(2) ↔ q ∈ M(2,C), q−1 = −q∗, det(q) = 1.

This is a compact group which topologically is the sphere S
3 ⊂R

4. So, if

x =
(

x1 + ix2 x3 + ix4

−(x3 − ix4) x1 − ix2

)
, y =

(
y1 + iy2 y3 + iy4

−(y3 − iy4) y1 − iy2

)
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with ‖y‖2 =
∑

i y
2
i = 1 = ‖x‖2 =

∑
i x

2
i , then

〈x, y〉4 =
∑

i

xiyi = 1

2
Tr

[
xy∗].

Therefore,

ρSU(2)(x, y) = arccos
1

2
Tr

[
xy∗])

and for any q, x, y ∈ SU(2) we have v = ρSU(2)(qx, qy) = ρSU(2)(xq, yq) = ρSU(2)(x, y). The

eigenvalues of L = −
 are λk = k(k + 2) and the dimension of the respective eigenspaces Eλk

is (k + 1)2.

Remark 3.2. Looking at some of these examples an important question already arises: how

to choose in a given problem the distance ρ as well as the dominating measure before even

choosing the operator L and a class of regularity? In R
d , most often the Euclidean distance and

the Lebesgue measure seem more or less unavoidable. In some other cases it might not be so

obvious.

Let us take for instance, the simple case of M = [−1,1]. The cases of the ball, the simplex

(see Section 1 of the Supplementary Material [4]) and more generally sets with boundaries give

rise in fact to identical discussions. Therefore, we will focus on the case of the interval.

So, if M = [−1,1], a possible choice and probably the most standard one in statistical exam-

ples could be taking ρ as the Euclidean distance and μ as the Lebesgue measure. Then standard

kernel and wavelet statistical methods are available. However, “something” which generally is

often swept under the carpet or not really detailed has to be “done” about the boundary points

{−1,1}. Often special regularity conditions are assumed about these boundary points such as

f (−1) = f (1) = 0 (see Section 3.3.2), which de facto lead to different methods for representing

the functions to be estimated.

Let us now look at the choices (again for the interval [−1,1], Section 3.3.3) that are made in

the “Jacobi” case. The distance ρ(x, y) = | arccosx − arccosy| suggests a one-to-one correspon-

dence with the semi-circle. The measure dμα,β(x) = (1 − x)α(1 + x)β dx, α,β > −1, suggests

that the points in the middle of the interval (say from [− 1
2
,+ 1

2
], where the measure behaves as

the Lebesgue measure) will not be weighted in the same way as the points near the boundaries.

In some cases, this makes perfect sense. For instance, if one needs to give a hard weight on these

points because they require special attention, or on the contrary a small one.

Apart from these considerations, there are in fact two measures in the family μα,β that are un-

deniable if M = [−1,1] equipped with the distance ρ(x, y) = | arccosx−arccosy|. The first one

is the Lebesgue measure (because Lebesgue is always undeniable), corresponding to α = β = 0.

The second one is μ− 1
2 ,− 1

2
, because in that case there is a one-to-one identification between

(M, ρ,μ− 1
2 ,− 1

2
) and the semi circle equipped with the Euclidean distance and Lebesgue mea-

sure.

If we look more precisely into these two choices, we see that for the last case all required

conditions, including the Ahlfors condition are satisfied, and the dimension d = 1, which is

intuitively expected. Let us now observe that the case of the Lebesgue measure μ0,0 would lead

to a larger dimension d = 2.
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4. Kernel density estimator on metric measure space

4.1. Functional calculus associated to L

A key trait of our setting is that it allows to develop a smooth functional calculus. Let Eλ, λ ≥ 0,

be the spectral resolution associated with the operator L in our setting. As L is non-negative,

essentially self-adjoint and maps real-valued to real-valued functions, then for any real-valued,

measurable, and bounded function h on R+, the operator

h(L) :=
∫ ∞

0

h(λ)dEλ, (4.1)

is well defined on L
2(M). The operator h(L), called spectral multiplier, is bounded on L

2(M),

self-adjoint, and maps real-valued to real-valued functions [37]. We will be interested in integral

spectral multiplier operators h(L). If h(L)(x, y) is the kernel of such an operator, it is real-valued

and symmetric. From condition C4 of our setting we know that e−tL is an integral operator whose

(heat) kernel pt (x, y) is symmetric and real-valued: pt (y, x) = pt (x, y) ∈R.

Observe that in the simple case (most common case in this paper) when the spectrum of L is

discrete, L has eigenvalues λ0 < λ1 < · · · , and h(L) is an integral operator with kernel

h(L)(x, y) =
∑

k

h(λk)Pk(x, y),

with Pk(x, y) =
∑

i v
λk

i (x)v
λk

i (y) (projector operator), where v
λk

i (x), i = 1, . . . ,dim(Eλk
) is an

orthonormal basis of Eλk
, the eigenspace associated with the eigenvalue λk .

Our further development will heavily depend on the following result from the smooth func-

tional calculus induced by the heat kernel, developed in [20], Theorem 3.4. It asserts that if a

function g(u) on R is even, compactly supported and sufficiently smooth, then the kernel of the

operator g(δ
√

L) is very well localized. Note that the operator with kernel [ 1
δ
]dG(

x−y
δ

) on R
d ,

where G :Rd →R is a bounded compactly supported function, has a similar localization.

Theorem 4.1. Under the conditions C1–C5, let g ∈ CN (R), N > d , be even, real-valued,

and suppg ⊂ [−R,R], R > 0. Then g(δ
√

L), δ > 0, is an integral operator with kernel
g(δ

√
L)(x, y) satisfying

∣∣g(δ
√

L)(x, y)
∣∣ ≤ c

∣∣B(x, δ)
∣∣−1(

1 + δ−1ρ(x, y)
)−N+ d

2 , ∀x, y ∈M, (4.2)

where c > 0 is a constant depending on ‖g‖∞, ‖g(N)‖∞, N , R and the constants c0, c4, c5 from
our setting. Furthermore, for any δ > 0 and x ∈M

∫

M

g(δ
√

L)(x, y) dμ(y) = g(0). (4.3)

This result is a building block for the localization properties of the kernel estimators considered

in the sequel.
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4.1.1. Examples

Here we revisit some of the examples from Section 3.3 and in each case we specify the form of

the kernels of the spectral multipliers operators h(L).

(a) Let M = [−1,1] be in the periodic case (Section 3.3.2). It is readily seen that the pro-

jection operators are: P0(x, y) = 1
2

, Pk(x, y) = coskπ(x − y). Hence, formally, h(L)(x, y) =
1
2
h(0) +

∑
k≥1 h(k2π2) coskπ(x − y), x, y ∈ [−1,1].

(b) If M is a Riemanian manifold (Section 3.3.4), then h(L) is a kernel operator with

kernel h(L)(x, y) =
∑

k h(λk)Pk(x, y), with Pk(x, y) =
∑

i v
λk

i (x)v
λk

i (y), where v
λk

i (x), i =
1, . . . ,dim(Eλk

) is an orthonormal basis of Eλk
.

(c) In the case of the sphere (Section 3.3.5), the orthogonal projector operator PEλk
:

L
2(Sd−1) �→ Eλk

is a kernel operator with kernel of the form Pk(ξ, η) = Lk(〈ξ, η〉Rd ), where

Lk(x) = 1
|Sd−1| (1 + k

ν
)Cν

k (x), ν = d−2
2

. Here Cν
k (x) is the Gegenbauer polynomials of de-

gree k. Usually, the polynomials {Cν
k (x)} are defined by the generating function 1

(1−2rx+r2)ν
=

∑
k≥0 rkCν

k (x), |r| < 1, |x| < 1. Hence, formally h(L)(ξ, η) =
∑

k h(k(k +d −2))Lk(〈ξ, η〉Rd ),

ξ, η ∈ S
d−1.

(d) In the case of SU(2) (Section 3.3.6), the orthogonal projector Pk : L2(SU(2)) �→ Eλk
is

the operator with kernel pk(ξ, η) = Lk(
1
2

Tr[ξη∗]), where Lk(x) = 1
|S3| (1 + k)C1

k (x). Hence,

formally h(L)(ξ, η) =
∑

k h(k(k + 2))Lk(
1
2

Tr[ξη∗]), ξ, η ∈ SU(2).

Observe that in each example from above, if h(u) := g(δ
√

u), where g(u) is even, compactly

supported and sufficiently smooth, then h(L) is an integral operator with kernel localized as

specified in Theorem 4.1.

4.2. Kernel density estimators on the metric measure space M

Our goal in this section is to introduce and study kernel density estimators (kde’s) on a metric

measure space (M, ρ,μ) in setting described above. More precisely, we assume that conditions

C1–C5 are satisfied, and do not necessarily assume the Ahlfors regular volume condition C1A.

To explain our construction of kernel estimators, we begin by considering the classical exam-

ple of the periodic case on M = [−1,1], presented in Section 3.3.2. In this setting, the following

nonparametric estimator is standard

f̂T (x) = 1

2
+ 1

n

n∑

i=1

∑

1≤k≤T

coskπ(x − Xi).

It falls into the category of orthogonal series estimators. It is well known that these estimators

have nice L
2 properties but can drastically fail in L

p , p �= 2, or locally.

In this setting, we replace f̂T by a “smoothed version” defined by

K̂δ(x) = 1

2
K(0) + 1

n

n∑

i=1

∑

k≥1

K(δk) cos kπ(x − Xi) =: 1

n

n∑

i=1

Kδ(x,Xi), (4.4)
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with Kδ(x, y) = 1
2
K(0)+

∑
k≥1 K(δk) cos kπ(x −y), where K is a smooth and rapidly decaying

(or compactly supported) function on R+.

In analogy to this case, replacing the circle by M and the Laplacian by the operator −L we

can naturally introduce kde’s on M by means of the machinery of spectral multipliers.

We will use Theorem 4.1 to define a family of multiplier operators whose kernels are suitable

for the construction of kernel density estimators on M and introduce the kde’s in the general

setting of this article.

Definition 4.2. Let X1, . . . ,Xn be i.i.d. random variables on M. Let K(δ
√

L)(x, y) with 0 <

δ ≤ 1 (the bandwidth) be the kernel of the integral operator K(δ
√

L), where K : R+ → R. The

associated kernel density estimator is defined by

K̂δ(x) := 1

n

n∑

i=1

K(δ
√

L)(Xi, x), x ∈M. (4.5)

Remarks 4.3. Again the analogy with the torus case could lead to the choice of K to be the

indicator function of the interval [0,1], for instance. This choice would induce L2 properties, but

not Lp because this function is not smooth enough to get the localization of K(δ
√

L)(x, y) from

Theorem 4.1.

If K(λ) = e−λ2
, then K(δ

√
L)(x, y) = pδ2(x, y) (the “heat kernel”) can be used to define a

kernel density estimator. This choice relates to the Bayesian estimator provided in [3].

The kernel estimators from (4.5) although constructed using orthogonal projectors, because

of the smoothing function K will have properties that are comparable to translation kernel esti-

mators in R
d . In R

d some properties such as a number of moment annulation (see for instance

[35]) to get a correct bias are required which will be here replaced by the vanishing properties at

infinity of the function K and its smoothness.

4.3. Upper bound estimates for kernel density estimators

We will especially study kernel density estimators induced by compactly supported C∞ multi-

pliers, often called Littlewood–Paley functions. In fact other type of kernels among the family

of multipliers could lead to similar results. More explicitly, let � be an even C∞(R) real-valued

function with the following properties:

supp� ⊂ [−1,1] and �(λ) = 1 for λ ∈ [−1/2,1/2]. (4.6)

By Theorem 4.1, it follows that �(δ
√

L) is an integral operator with well localized symmetric

kernel �(δ
√

L)(x, y) and the Markov property:

∫

M

�(δ
√

L)(x, y) dμ(y) = 1. (4.7)
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We will denote by E = Ef the expectation with respect to the probability measure P = Pf .

and we will consider the class of Litlewood–Paley kde’s:

�̂δ(x) = �̂δ(x,X1, . . . ,Xn) := 1

n

n∑

i=1

�(δ
√

L)(x,Xi), ∀x ∈ M. (4.8)

4.3.1. Explicit examples of Littlewood Paley kernel density estimators

We now present specific examples of kernel density estimators induced by the setups in Sec-

tion 3.3 (see also Section 4.1.1). We have already discussed the periodic case on [−1,1] in

(4.4).

(a) On [−1,1] in the Jacobi framework (Section 3.3.3), we get the following estimator:

�̂δ(x) = 1

n

n∑

i=1

∑

k

�
(
δ
√

k(k + α + β + 1)
)
P

α,β
k (x)P

α,β
k (Xi) for x ∈ [−1,1],

where P
α,β
k (x) is the normalized kth degree Jacobi polynomial.

(b) For the sphere (Section 3.3.5), we get

�̂δ(x) = 1

n

n∑

i=1

∑

k

�
(
δ
√

k(k + d − 2)
)
Lk

(
〈x,Xi〉Rd

)
for x ∈ S

d−1,

where Lk(x) = 1
|Sd−1| (1 + k

ν
)Cν

k (x), ν = d−2
2

.

(c) For SU(2) (Section 3.3.6), we get

�̂δ(x) = 1

n

n∑

i=1

∑

k

�
(
δ
√

k(k + 2)
)
Lk

(
1

2
Tr

[
Xix

∗]
)

for x ∈ SU(2),

with Lk(x) = 1
|S3| (1 + k)C1

k (x).

4.3.2. Upper bound results

We first establish oracle inequalities for the kernel density estimators introduced in Definition 4.2.

Theorem 4.4. Assume 1 ≤ p ≤ ∞ and let � be a Littlewood–Paley function as above. In the
setting described above and with �̂δ from (4.8), we have:

(i) If 2 ≤ p < ∞, then

E‖�̂δ − f ‖p ≤ c(p)

(nδd)
1− 1

p

+ c(p)

(nδd)
1
2

‖f ‖
1
2
p
2

+
∥∥�(δ

√
L)f − f

∥∥
p
, 0 < δ ≤ 1.
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(ii) If 1 ≤ p < 2 and supp(f ) ⊂ B(x0,R) for some x0 ∈M and R > 0, then

E‖�̂δ − f ‖p ≤ c(p)

(nδd)
1
2

∣∣B(x0,R)
∣∣ 1

p
− 1

2 +
∥∥�(δ

√
L)f − f

∥∥
p
, 0 < δ ≤ 1.

(iii) There exists a constant c such that for any q ≥ 2 and 0 < δ ≤ 1 we have

E‖�̂δ − f ‖∞ ≤ cδ
− d

q

(
q

(nδd)
1− 1

q

+ q1/2

(nδd)
1
2

‖f ‖
1
2 − 1

q
∞

)
+

∥∥�(δ
√

L)f − f
∥∥

∞.

We next estimate the rates of Lp-approximation of pdf’s f belonging to Besov space balls

by kernel estimators. The precise definition of the Besov spase Bs
pτ will be given in Section 5.4

below. Define

Bs
pτ (m) :=

{
f is pdf : ‖f ‖Bs

pτ
≤ m

}
(4.9)

and

Bs
pτ (m,x0,R) :=

{
f ∈ Bs

pτ (m) : suppf ⊂ B(x0,R)
}
, x0 ∈M,m,R > 0. (4.10)

Here is our main result on the properties of our kernel estimators for density functions in Besov

spaces, when the risk and the regularity classes are defined with the same norm.

Theorem 4.5. Assume s > 0, 1 ≤ p ≤ ∞, 0 < τ ≤ ∞, m > 0, and let � be a Littlewood–Paley
function as above. In the setting described above and with �̂δ from (4.8) we have:

(i) If 2 ≤ p < ∞ and δ = n− 1
2s+d , then

sup
f ∈Bs

pτ (m)

E‖�̂δ − f ‖p ≤ cn− s
2s+d , (4.11)

where c = c(p, s,m, τ) > 0.

(ii) If 1 ≤ p < 2, x0 ∈M, R > 0, and δ = n− 1
2s+d , then

sup
f ∈Bs

pτ (m,x0,R)

E‖�̂δ − f ‖p ≤ cn− s
2s+d , (4.12)

where c = c(p, s,m, τ, x0,R) > 0.

(iii) If δ = (
logn

n
)

1
2s+d , then

sup
f ∈Bs∞τ (m)

E‖�̂δ − f ‖∞ ≤ c

(
logn

n

) s
2s+d

, (4.13)

where c = c(s,m, τ) > 0.

The proofs of Theorems 4.4 and 4.5 will be preceded by several definitions and ancillary

claims that we place in the next subsection. The actual proof will be given in Section 6.
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Remarks 4.6. Note that we do not claim that the above rates are necessarily minimax, although

they show similarities with the results established in R
d .

The length of the paper does not allow to investigate the full lower bounds results. Let us only

mention that if we add the Ahlfors condition C1A to the setting, then matching lower bounds

can be obtained by direct adaptation of the proof given in the case of the sphere in [1]. In the

case where the Ahlfors condition is not valid, the problem is more complex since not only the

regularity might be non-homogeneous due to Besov conditions but also the dimension itself may

vary spatially. In this case, the upper bounds might not be optimal.

It is interesting to compare the obtained upper bounds for M = [−1,1] in different cases

(torus or Jacobi). In the torus case, no surprise, the rate is the usual one with dimension d = 1.

In the Jacobi case, the dimension is d = 1 + (2α + 1)+ ∨ (2β + 1)+, which in the particular

case α = β = 0 (corresponding to μ the Lebesgue measure), gives a slower rate than the usual

one. This is due to the fact that the boundary affects the spaces and the approximation rate is not

the same. In the case α = β = − 1
2

that corresponds to perfect identification of [−1,1] with the

semi-circle (see Remark 3.2) the rate is the usual with dimension d = 1.

5. Besov spaces and wavelets in geometric setting

In this section, we collect some basic technical facts and results related to the setting described

in Section 3 that will be crucial for the properties of the density estimators. Most of them can be

found in [6,14,20].

5.1. Geometric properties

Conditions C1 and C2 yield

∣∣B(x, r)
∣∣ ≥ (c3/c0)r

d , x ∈M,0 < r ≤ 1. (5.1)

To compare the volumes of balls with different centers x, y ∈ M and the same radius r we

will use the inequality

∣∣B(x, r)
∣∣ ≤ c0

(
1 + ρ(x, y)

r

)d ∣∣B(y, r)
∣∣, x, y ∈ M, r > 0. (5.2)

As B(x, r) ⊂ B(y,ρ(y, x) + r) the above inequality is immediate from (3.2).

We will also need the following simple inequality (see [6], Lemma 2.3): If τ > d , then for any

δ > 0
∫

M

(
1 + δ−1ρ(x, y)

)−τ
dμ(y) ≤ c

∣∣B(x, δ)
∣∣, x ∈ M, (5.3)

where c = (2−d − 2−τ )−1.
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5.2. Spectral spaces

We recall the definition of the spectral spaces �
p
λ , 1 ≤ p ≤ ∞, from [6]. Denote by C∞

0 (R) the

set of all even real-valued compactly supported functions. We define

�
p
λ :=

{
f ∈ L

p(M) : θ(
√

L)f = f for all θ ∈ C∞
0 (R), θ ≡ 1 on [0, λ]

}
, λ > 0.

We will need the following proposition (Nikolski type inequality):

Proposition 5.1. Let 1 ≤ p ≤ q ≤ ∞. If g ∈ �
p
λ , λ ≥ 1, then g ∈ �

q
λ and

‖g‖q ≤ c�λ
d(1/p−1/q)‖g‖p, (5.4)

where the constant c� > 1 is independent of p and q .

This proposition was established in [6], Proposition 3.12 (see also [20], Proposition 3.11). We

present its proof in the Supplementary Material [4] because we need to control the constant c�.

5.3. Wavelets

In the setting of this article, wavelet type frames for Besov and Triebel–Lizorkin spaces are

developed in [20]. Here, we review the construction of the frames from [20] and their basic

properties. Indeed, in this setting the ‘wavelets’ do not form an orthonormal basis but a frame. In

this case, the construction of a ‘dual wavelet system’ is necessary to get a representation of type

(5.10).

This construction is inspired by to the Littlewood–Paley construction of the standard wavelets

introduced by [11–13].

The construction of frames involves a “dilation” constant b > 1 whose role is played by 2 in

the wavelet theory on R.

The construction starts with the selection of a function �0 ∈ C∞(R+) with the properties:

�0(λ) = 1 for λ ∈ [0,1], 0 ≤ �0(λ) ≤ 1, and supp�0 ⊂ [0, b]. Denote �(λ) := �0(λ)−�0(bλ)

and set �j (λ) := �(b−jλ), j ∈N. From this, it readily follows that

J∑

j=0

�j (λ) = �0

(
b−J λ

)
, λ ∈R+. (5.5)

For j ≥ 0 we let Xj ⊂ M be a maximal δj -net on M with δj := c6b
−j . It is easy to see that for

any j ≥ 0 there exists a disjoint partition {Ajξ }ξ∈Xj
of M consisting of measurable sets such

that

B(ξ, δj/2) ⊂ Ajξ ⊂ B(ξ, δj ), ξ ∈ Xj .

Here c6 > 0 is a sufficiently small constant (see [20]).
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Lemma 5.2. If M is compact, then there exists a constant c7 > 0 such that

card(Xj ) ≤ c7b
jd , j ≥ 0. (5.6)

Proof. This is a simple consequence of the proof of [6], Proposition 3.20. �

The j th level frame elements ψjξ are defined by

ψjξ (x) := |Ajξ |1/2�j (
√

L)(x, ξ), ξ ∈Xj . (5.7)

We will also use the more compact notation ψξ := ψjξ for ξ ∈ Xj .

Let X :=
⋃

j≥0 Xj , where equal points from different sets Xj will be regarded as distinct

elements of X , so X can be used as an index set. Then {ψξ }ξ∈X is Frame #1.

The construction of a dual frame {ψ̃ξ }ξ∈X =
⋃

j {ψ̃jξ }ξ∈Xj
is much more involved; we refer

the reader to Section 4.3 in [20] for the details.

By construction, the two frames satisfy

�j (
√

L)(x, y) =
∑

ξ∈Xj

ψjξ (y)ψ̃jξ (x), j ≥ 0. (5.8)

A basic result from [20] asserts that for any f ∈ L
p(M,μ), 1 ≤ p < ∞,

f =
∑

j≥0

�j (
√

L)f
(
convergence in L

p
)

(5.9)

and the same holds in L
∞ if f is uniformly continuous and bounded (UCB) on M. As a conse-

quence, for any f ∈ L
p(M,μ), 1 ≤ p ≤ ∞, (L∞ = UCB) we have

f =
∞∑

j=0

∑

ξ∈Xj

〈f, ψ̃jξ 〉ψjξ

(
convergence in L

p
)
. (5.10)

Furthermore, frame decomposition results are established in [20] for Besov and Triebel–Lizorkin

spaces with full range of indices.

Properties of frames in the Ahlfors regularity case. We next present some properties of the

frame elements in the case when condition C1A is stipulated (see [20]).

1. Localization: For every k ∈ N, there exists a constant c(k) > 0 such that

∣∣ψjξ (x)
∣∣,

∣∣ψ̃jξ (x)
∣∣ ≤ c(k)bjd/2

(
1 + bjρ(x, ξ)

)−k
, x ∈M. (5.11)

2. Norm estimation: For 1 ≤ p ≤ ∞

c−1
� b

jd( 1
2 − 1

p
) ≤ ‖ψjξ‖p,‖ψ̃jξ‖p ≤ c�b

jd( 1
2 − 1

p
)
, ξ ∈ Xj , j ≥ 0. (5.12)
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3. For 1 ≤ p ≤ ∞
∥∥∥∥

∑

ξ∈Xj

λξψjξ

∥∥∥∥
p

≤ c�b
jd( 1

2 − 1
p

)

( ∑

ξ∈Xj

|λξ |p
)1/p

, j ≥ 0, (5.13)

with the usual modification when p = ∞. Above the constant c� > 1 depends only on p, b, �0,

and the structural constants of the setting.

5.4. Besov spaces

We will deal with probability density functions (pdf’s) in Besov spaces associated to the operator

L in our setting. These spaces are developed in [6,20]. Definition 5.3 coincides in R
d with one

the definitions of usual Besov spaces with L replaced by Laplacian (−
 in fact to get a positive

operator).

Here we present some basic facts about Besov spaces that will be needed later on.

Let �0,� ∈ C∞(R+) be real-valued functions satisfying the conditions:

supp�0 ⊂ [0, b], �0(λ) = 1 for λ ∈ [0,1], �0(λ) ≥ c > 0 for λ ∈
[
0, b3/4

]
, (5.14)

supp� ⊂
[
b−1, b

]
, �(λ) ≥ c > 0 for λ ∈

[
b−3/4, b3/4

]
. (5.15)

Set �j (λ) := �(b−jλ), for j ≥ 1.

Definition 5.3. Let s > 0, 1 ≤ p ≤ ∞, and 0 < q ≤ ∞. The Besov space Bs
pq = Bs

pq(M,L) is

defined as the set of all functions f ∈ Lp(M,μ) such that

‖f ‖Bs
pq

:=
(∑

j≥0

(
bsj

∥∥�j (
√

L)f
∥∥

p

)q
)1/q

< ∞, (5.16)

where the �q -norm is replaced by the sup-norm if q = ∞.

Note that as shown in [20] the above definition of the Besov spaces Bs
pq is independent of the

particular choice of �0, � satisfying (5.14)–(5.15). For example with �j from the definition of

the frame elements in Section 5.3, we have

‖f ‖Bs
pq

∼
(∑

j≥0

(
bsj

∥∥�j (
√

L)f
∥∥

p

)q
)1/q

(5.17)

with the usual modification when q = ∞. The following useful inequality follows readily from

above
∥∥�j (

√
L)f

∥∥
p

≤ cb−sj‖f ‖Bs
pq

, f ∈ Bs
pq , j ≥ 0. (5.18)

As in R
d , we will need some embedding results involving Besov spaces. Recall the definition

of embeddings: Let X and Y be two (quasi-)normed spaces. We say that X is continuously
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embedded in Y and write X ↪→ Y if X ⊂ Y and for each f ∈ X we have ‖f ‖Y ≤ c‖f ‖X , where

c > 0 is a constant independent of f .

Proposition 5.4.

(i) If 1 ≤ q ≤ r ≤ ∞, 0 < τ ≤ ∞, s > 0, and μ(M) < ∞, then Bs
rτ ↪→ Bs

qτ .

(ii) If 1 ≤ r ≤ q ≤ ∞, 0 < τ ≤ ∞ and s > d( 1
r

− 1
q
), then Bs

rτ ↪→ B
s−d( 1

r
− 1

q
)

qτ .

(iii) If 1 ≤ r ≤ ∞, 0 < τ ≤ ∞, and s > d/r , then Bs
rτ ↪→ L

∞.

(iv) If 1 ≤ p ≤ r ≤ ∞, 0 < τ ≤ ∞, s > 0, and μ(M) < ∞, then Bs
rτ ↪→ L

p .

To streamline our presentation, we defer the proof of this proposition to the Supplementary

Material [4].

Besov spaces in the Ahlfors regularity case. For the development of adaptive density estimators

in Section 8, we will need some additional facts from the theory of Besov spaces when condition

C1A is assumed. We first introduce the Besov bodies.

Definition 5.5. Assume s > 0, 1 ≤ p ≤ ∞, 0 < q ≤ ∞, and let X :=
⋃

j≥0 Xj be from the

definition of the frames in Section 5.3. The Besov body b
s
pq = b

s
pq(X ) is defined as the set of all

sequences {aξ }ξ∈X of real (or complex) numbers such that

‖a‖bs
pq

:=
(∑

j≥0

bjsq

( ∑

ξ∈Xj

[
b

−jd( 1
p

− 1
2 )|aξ |

]p
)q/p)1/q

< ∞, (5.19)

where the �q -norm is replaced by the sup-norm if q = ∞.

One of the principle results in [20] asserts that the Besov spaces Bs
pq can be completely char-

acterized in terms of the Besov bodies bs
pq of the frame coefficients of the respective functions.

To be specific, denote

βjξ (f ) := 〈f, ψ̃jξ 〉, ξ ∈ Xj , j ≥ 0. (5.20)

We will also use the more compact notation: βξ (f ) := βjξ (f ) for ξ ∈ Xj . In the current setting,

assume s > 0, 1 ≤ p ≤ ∞, and 0 < q ≤ ∞. In light of [20], Theorem 6.10, f ∈ Bs
pq if and only

if {βξ (f )} ∈ b
s
pq with equivalent norms:

‖f ‖Bs
pq

∼
∥∥{

βξ (f )
}∥∥

bs
pq

. (5.21)

This implies that if f ∈ Bs
pq for some s > 0, p ≥ 1, and 0 < q ≤ ∞, then

( ∑

ξ∈Xj

∣∣βjξ (f )
∣∣p

)1/p

≤ cb
−j (s+d( 1

2 − 1
p

))‖f ‖Bs
pq

, j ≥ 0, (5.22)

where c = c(s,p, q) > 0.
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By (5.13) and (5.22) it follows that, if f ∈ Bs
pq for some s > 0, p ≥ 1, and 0 < q ≤ ∞, then

∥∥∥∥
∑

ξ∈Xj

βjξ (f )ψjξ

∥∥∥∥
p

≤ cb−sj‖f ‖Bs
pq

, j ≥ 0. (5.23)

We next assemble some additional facts we need about kernels in the setting of this article and

then carry out the proof of Theorems 4.4 and 4.5.

5.4.1. Spectral multiplier integral operators

The operator �(δ
√

L) and its symmetric kernel �(δ
√

L)(x, y) from above have a number of

useful properties that we describe and prove next.

(a) For any k > d there exists a constant ck > 0 such that

∣∣�(δ
√

L)(x, y)
∣∣ ≤ c(k)

∣∣B(x, δ)
∣∣−1(

1 + δ−1ρ(x, y)
)−k

, x, y ∈M,0 < δ ≤ 1, (5.24)

where the constant c(k) > 0 depends only on k, �, and constant from the setting in Section 3.

This inequality follows immediately from Theorem 4.1.

(b) For any 1 ≤ p ≤ ∞
∥∥�(δ

√
L)(x, ·)

∥∥
p

≤ c
∣∣B(x, δ)

∣∣ 1
p

−1 ≤ c�δ
−d(1− 1

p
)
, x ∈ M,0 < δ ≤ 1, (5.25)

where the constant c� > 0 is independent of p. This estimate follows readily by (5.24), (5.3), and

(5.1).

(c) Let X be a random variable on M and X ∼ f (u)dμ(u). Then

E
(
�(δ

√
L)(x,X)

)
=

∫

M

�(δ
√

L)(x,u)f (u)dμ(u) = �(δ
√

L)f (x), x ∈ M. (5.26)

This is a well known property of expected values.

We next estimate the bias term of the risk.

Proposition 5.6. Let s > 0, 1 ≤ p ≤ ∞, 0 < q ≤ ∞. If f ∈ Bs
pq , then f ∈ L

p and

∥∥�(δ
√

L)f − f
∥∥

p
≤ cδs‖f ‖Bs

pq
, 0 < δ ≤ 1, (5.27)

where c = c(s,p, q) > 0.

This statement is quite standard. For completeness, we give its proof in the Supplementary

Material [4].

We will also need the following two lemmas.

Lemma 5.7. Let 2 ≤ p < ∞ and 0 < δ ≤ 1. Then for any pdf f on M we have

(∫

M

∫

M

∣∣�(δ
√

L)(x,u)
∣∣pf (u)dμ(u)dμ(x)

)1/p

≤ c�δ
−d(1−1/p) (5.28)
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and

(∫

M

(∫

M

∣∣�(δ
√

L)(x,u)
∣∣2

f (u)dμ(u)

)p/2

dμ(x)

)1/p

≤ c�δ
−d/2‖f ‖1/2

p/2, (5.29)

where c� > 0 is the constant from (5.25); c� is independent of p.

Lemma 5.8. Let 1 ≤ p < 2. Then there exists a constant c = c(p) > 0 such that for any δ > 0

and any pdf f supported in a ball B(x0,R) with x0 ∈M and R ≥ δ/2 we have

(∫

M

(∫

M

∣∣�(δ
√

L)(x,u)
∣∣f (u)dμ(u)

)p/2

dμ(x)

) 1
p

≤ c
∣∣B(x0,R)

∣∣ 1
p

− 1
2 . (5.30)

The proofs of these two lemmas are placed in the Supplementary Material [4].

6. Proof of Theorem 4.4 and Theorem 4.5

We will only prove Theorem 4.4. Theorem 4.5 follows readily.

By the triangle inequality we obtain the standard decomposition of the risk as the sum of

stochastic and bias terms:

E‖�̂δ − f ‖p ≤ E
∥∥�̂δ − �(δ

√
L)f

∥∥
p

+
∥∥�(δ

√
L)f − f

∥∥
p
. (6.1)

For the estimation of the bias term ‖�(δ
√

L)f −f ‖p we will use estimate (5.27). We next focus

on the estimation of the stochastic term E‖�̂δ − �(δ
√

L)f ‖p . In the case 1 ≤ p < ∞, using

Jensen’s inequality, we get

E
(∥∥�̂δ − �(δ

√
L)f

∥∥
p

)
≤

(
E

∥∥�̂δ − �(δ
√

L)f
∥∥p

p

) 1
p

=
(∫

M

E

∣∣∣∣∣
1

n

n∑

i=1

�(δ
√

L)(x,Xi) − �(δ
√

L)f (x)

∣∣∣∣∣

p

dμ(x)

) 1
p

. (6.2)

(i) Assume the pdf f ∈ Bs
pτ (m) and let X ∼ Xi . We first prove estimate (4.11) for p = 2.

Clearly

E

∣∣∣∣∣
1

n

n∑

i=1

�(δ
√

L)(x,Xi) − �(δ
√

L)f (x)

∣∣∣∣∣

2

≤ 1

n
E

[
�(δ

√
L)(x,X)

]2

= 1

n

∫

M

∣∣�(δ
√

L)(x,u)
∣∣2

f (u)dμ(u).
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This coupled with (6.2) yields

E
∥∥�̂δ − �(δ

√
L)f

∥∥
2

≤ 1

n1/2

(∫

M

∫

M

∣∣�(δ
√

L)(x,u)
∣∣2

f (u)dμ(u)dμ(x)

) 1
2

≤ c

(nδd)1/2
, (6.3)

where we used (5.28) with p = 2. Combining (6.1), (5.27), and (6.3) we get

E‖�̂δ − f ‖2 ≤ c

(nδd)1/2
+ cmδs .

With δ = n− 1
2s+d , that is, δs = 1

(nδd )1/2 , this yields (4.11) when p = 2.

Let 2 < p < ∞. We will use the following version of Rosenthal’s inequality that can be derived

for instance from [17], page 245, inequality (C.5) with τ = P
2

+1 ≤ p +1: If Y1, . . . , Yn are i.i.d.

random variables and Yi ∼ Y , then

E

∣∣∣∣∣
1

n

n∑

i=1

Yi −EY

∣∣∣∣∣

p

≤ (p + 1)p

np−1
E|Y |p + p(p + 1)p/2ep/2+1

np/2

(
E|Y |2

)p/2
. (6.4)

We get

E

∣∣∣∣∣
1

n

n∑

i=1

�(δ
√

L)(x,Xi) − �(δ
√

L)f (x)

∣∣∣∣∣

p

≤ c

np−1
E

∣∣�(δ
√

L)(x,X)
∣∣p + c

np/2

(
E

∣∣�(δ
√

L)(x,X)
∣∣2)p/2

.

This and (6.2) imply

E
∥∥�̂δ − �(δ

√
L)f

∥∥
p

≤ c

n1−1/p

(∫

M

∫

M

∣∣�(δ
√

L)(x,u)
∣∣pf (u)dμ(u)dμ(x)

)1/p

+ c

n1/2

(∫

M

(∫

M

∣∣�(δ
√

L)(x,u)
∣∣2

f (u)dμ(u)

)p/2

dμ(x)

)1/p

= c

(nδd)1/2
+ c

(
nδd

)−1‖f ‖p/2, (6.5)

where we used (5.28) and (5.28). Since 1 ≤ p
2

< p and ‖f ‖1 = 1, we obtain by interpolation

‖f ‖ p
2

≤ ‖f ‖
1

p−1

1 ‖f ‖
p−2
p−1
p = ‖f ‖

p−2
p−1
p ≤ c‖f ‖

p−2
p−1

Bs
pτ

≤ cm
p−2
p−1 . (6.6)

Here we also used Proposition 5.4(iv).



Density estimators on manifolds 1855

Combining (6.5)–(6.6) with (6.1) and (5.27), and taking into account that δ = n− 1
2s+d , that is,

δs = 1
(nδd )1/2 we arrive at

E‖�̂δ − f ‖p ≤ c

(nδd)1/2
+ cmδs ≤ c′n− s

2s+d . (6.7)

The proof of part (i) of the theorem is complete.

(ii) Let 1 ≤ p < 2 and f ∈ Bs
pτ (m,x0,R). We use Jensen’s inequality and the fact that

|�(δ
√

L)(x,u)| ≤ c|B(x, δ)|−1 ≤ c′δ−d , using (5.24) and (5.1), to obtain

E

∣∣∣∣∣
1

n

n∑

i=1

�(δ
√

L)(x,Xi) − �(δ
√

L)f (x)

∣∣∣∣∣

p

≤
(
E

∣∣∣∣∣
1

n

n∑

i=1

�(δ
√

L)(x,Xi) − �(δ
√

L)f (x)

∣∣∣∣∣

2) p
2

≤ 1

n
p
2

(
E

∣∣�(δ
√

L)(x,X)
∣∣2) p

2

= 1

n
p
2

(∫

M

∣∣�(δ
√

L)(x,u)
∣∣2

f (u)dμ(u)

) p
2

≤ c

(nδd)
p
2

(∫

M

∣∣�(δ
√

L)(x,u)
∣∣f (u)dμ(u)

) p
2

.

This and (6.2) lead to

E
∥∥�̂δ − �(δ

√
L)f

∥∥
p

≤ c

(nδd)
1
2

(∫

M

(∫

M

∣∣�(δ
√

L)(x,u)
∣∣f (u)dμ(u)

) p
2

dμ(x)

) 1
p

.

We now invoke Lemma 5.8 to obtain

E
∥∥�̂δ − �(δ

√
L)f

∥∥
p

≤ c

(nδd)
1
2

∣∣B(x0,R)
∣∣ 1

p
− 1

2 ≤ c′

(nδd)
1
2

.

Using this and (5.27) we complete the proof of (4.12) just as above in (6.7).

(iii) Assume the pdf f ∈ Bs
∞τ (m) and let q > 2 be arbitrary. Since by construction supp� ⊂

[−1,1], the function �̂δ(x) − �(δ
√

L)f (x) belongs to the spectral space �1/δ . Then by Propo-

sition 5.1

∥∥�̂δ − �(δ
√

L)f
∥∥

∞ ≤ c�δ
− d

q
∥∥�̂δ − �(δ

√
L)f

∥∥
q
,
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where the constant c� > 1 is independent of q . This along with Jensen’s inequality and Fubini’s

theorem lead to

E
∥∥�̂δ − �(δ

√
L)f

∥∥
∞ ≤ c�δ

− d
q

(∫

M

E
∣∣�̂δ(x, ·) − �(δ

√
L)f (x)

∣∣q dμ(x)

) 1
q

. (6.8)

We now apply Rosenthal’s inequality (6.4) to obtain

E
∣∣�̂δ(x) − �(δ

√
L)f (x)

∣∣q

≤ (q + 1)q

nq−1
E

∣∣�(δ
√

L)(x,X)
∣∣q + q(q + 1)

q
2 e

q
2 +1

n
q
2

(
E

∣∣�(δ
√

L)(x,X)
∣∣2) q

2

= (q + 1)q

nq−1

∫

M

∣∣�(δ
√

L)(x,u)
∣∣qf (u)dμ(u)

+ q(q + 1)
q
2 e

q
2 +1

n
q
2

(∫

M

∣∣�(δ
√

L)(x,u)
∣∣2

f (u)dμ(u)

) q
2

.

This coupled with (6.8) and the fact that 1/q < 1 imply

E
∥∥�̂δ − �(δ

√
L)f

∥∥
∞

≤ c�δ
− d

q
q + 1

n
1− 1

q

(∫

M

∫

M

∣∣�(δ
√

L)(x,u)
∣∣qf (u)dμ(u)dμ(x)

) 1
q

+ c�δ
− d

q
q

1
q (q + 1)

1
2 e

1
2 + 1

q

n
1
2

(∫

M

(∫

M

∣∣�(δ
√

L)(x,u)
∣∣2

f (u)dμ(u)

) q
2

dμ(x)

) 1
q

≤ c�δ
− d

q

(
2c�q

(nδd)
1− 1

q

+ e2c�q
1/2

(nδd)1/2
‖f ‖1/2

q/2

)
, (6.9)

where we used (5.28), (5.29), and the inequality q
1
q (q + 1)

1
2 e

1
2 + 1

q ≤ e2q1/2, (q > 2). Observe

that the constant c� above is from (5.25) and is independent of q .

By Proposition 5.4(iii) it follows that f ∈ L
∞ and since ‖f ‖1 = 1 we obtain

‖f ‖q/2 ≤ ‖f ‖1−2/q
∞ ‖f ‖1 ≤

(
c‖f ‖Bs∞τ

)1−2/q ≤ (cm)1−2/q ≤ cm + 1.

Let n ≥ e2 and choose q := logn. By assumption δ = (
logn

n
)1/(2s+d). Now, it is easy to see

that n1/q = e, δ−d/q ≤ e, δs = q1/2

(nδd )1/2 = (
logn

n
)s/(2s+d), and

q

(nδd)1−1/q
≤ q

(nδd)3/4
≤ logn

n
3s/2
2s+d

≤ c

(
logn

n

)s/(2s+d)

if n ≥ e2.



Density estimators on manifolds 1857

Putting all of the above together, we obtain

E
∥∥�̂δ − �(δ

√
L)f

∥∥
∞ ≤ c

(
logn

n

)s/(2s+d)

. (6.10)

If 2 ≤ n < e2, then estimate (6.10) follows readily from (6.9) with q = 2.

As before we use (6.10) and (5.27) to obtain (4.13). The proof of Theorem 4.5 is complete.

A closer examination of the above proof shows that the oracle inequalities from Theorem 4.4

are valid.

7. Linear wavelet density estimators

In this section, we establish Lp-error estimates for linear wavelet density estimators. Let {ψjξ },
{ψ̃jξ } be the pair of dual frames described in Section 5.3. We adhere to the notation from Sec-

tion 5.3.

For any j ≥ 0 and ξ ∈ Xj we define the empirical coefficient estimators by

β̂jξ := 1

n

n∑

i=1

ψ̃jξ (Xi). (7.1)

Using this, we define the linear wavelet density estimator by

f ∗(x) =
J∑

j=0

∑

ξ∈Xj

β̂jξψjξ (x), x ∈M, (7.2)

where the parameter J = J (n) ∈ N is selected so that the factor b−J de facto behaves as a

bandwidth. More precisely, we define J as the unique positive integer such that

bJ ≤ n1/(2s+d) < bJ+1. (7.3)

It is easy to see that f ∗ can be written in the following way

f ∗(x) = 1

n

n∑

i=1

J∑

j=0

∑

ξ∈Xj

ψjξ (x)ψ̃jξ (Xi)

= 1

n

n∑

i=1

J∑

j=0

�j (
√

L)(Xi, x) = 1

n

n∑

i=1

�0

(
b−J

√
L

)
(Xi, x). (7.4)

where we used (5.8) and (5.5).

Thus, this linear wavelet estimator is in fact a particular case of the linear estimators inves-

tigated in the previous subsection. This enables us to state the following upper bound theorem,

which is an immediate consequence of Theorem 4.5.
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Theorem 7.1. Let s > 0, 0 < τ ≤ ∞, m > 0, x0 ∈ M and R > 0.

(i) If 2 ≤ p < ∞ and J is as in (7.3), then

sup
f ∈Bs

pτ (m)

E
∥∥f ∗ − f

∥∥
p

≤ cn−s/(2s+d), (7.5)

where c = c(p, τ, s,m) > 0.

(ii) If 1 ≤ p < 2 and J is as in (7.3), then

sup
f ∈Bs

pτ (m,x0,R)

E
∥∥f ∗ − f

∥∥
p

≤ cn−s/(2s+d), (7.6)

where c = c(p, τ, s,m,x0,R) > 0.

(iii) If J is the unique integer satisfying bJ ≤ ( n
logn

)1/(2s+d) < bJ+1, then

sup
f ∈Bs∞τ (m)

E
∥∥f ∗ − f

∥∥
∞ ≤ c

(
logn

n

) s
2s+d

, (7.7)

where c = c(τ, s,m) > 0.

8. Adaptive wavelet density estimators

As we want to parallel in our setting the main results in density estimation theory, say, on [0,1]d ,

we need to introduce adaptation, that is, to obtain up to logarithmic factors optimal rates of

convergence without knowing the regularity. There are several techniques for this. For example,

Lepski’s method (see [15,27]) could be applied to our kernel estimators.

We choose to develop here nonlinear wavelet estimators, where we apply hard thresholding.

This method has been developed in the classical case of R in [8] and on the sphere in [17]. We

will operate in the general setting described in Section 3. Unlike the case of the kernel or linear

wavelet density estimates considered in the previous section, here we assume that the space M

is compact (μ(M) < ∞) and all conditions C1–C5 (including the Ahlfors regularity condition

C1A) are satisfied, see Section 3.

As before we assume that X1, . . . ,Xn (n ≥ 2) are i.i.d. random variables with values on M

and with a common density function f with respect to the measure μ on M. Let Xj ∼ X. We

denote by E = Ef the expectation with respect to the probability measure P = Pf . In addition,

we assume here that f is bounded. Denote

A := max
{
‖f ‖∞,4

}
and set κ := c�(8A)1/2, (8.1)

where c� > 1 is the constant from the norm bounds of the frame elements in (5.12).

We will utilize the pair of frames {ψjξ }, {ψ̃jξ } described in Section 5.3. We adhere to the

notation from Section 5.3. Recall that any f ∈ L
p(M, dμ) has the frame decomposition

f =
∞∑

j=0

∑

ξ∈Xj

βjξ (f )ψjξ , βjξ (f ) := 〈f, ψ̃jξ 〉
(
convergence in L

p
)
. (8.2)
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Assuming the pdf f fixed, we will use the abbreviated notation βjξ := βjξ (f ).

We introduce two parameters depending on n:

λn := κ

(
logn

n

)1/2

(8.3)

and Jn uniquely defined by the following inequalities

bJn ≤
(

n

logn

)1/d

< bJn+1. (8.4)

As in Section 7, we introduce the empirical coefficient estimators

β̂jξ := 1

n

n∑

i=1

ψ̃jξ (Xi), j ≥ 0, ξ ∈Xj . (8.5)

We now define the hard threshold coefficient estimators by

β̂∗
jξ := β̂jξ I{|β̂jξ |>2λn}, j ≥ 0, ξ ∈ Xj . (8.6)

Then the wavelet threshold density estimator is defined by

f̂n(x) :=
∑

0≤j≤Jn

∑

ξ∈Xj

β̂∗
jξψjξ (x), x ∈M. (8.7)

Remark 8.1. Note that the density estimator f̂n of the pdf f depends only on the number n of

observations, the geometric constant c�, and the L
∞-norm of f .

We now state our main result on the adaptive wavelet threshold estimator defined above.

Theorem 8.2. Let 1 ≤ r ≤ ∞, 0 < τ ≤ ∞, 1 ≤ p < ∞, s > d/r , and m > 0. Then there exists a
constant c = c(r, τ,p, s,m) > 0 such that in the setting described above and with f̂n from (8.7)

we have:

(i)

sup
f ∈Bs

rτ (m)

E‖f̂n − f ‖∞ ≤ c

(
logn

n

) s− d
r

2[s−d( 1
r − 1

2
)]
. (8.8)

(ii) In the regular case s ≥ dp
2

( 1
r

− 1
p
)

sup
f ∈Bs

rτ (m)

E‖f̂n − f ‖p ≤ c logn

(
logn

n

) s
2s+d

. (8.9)
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(iii) In the sparse case s <
dp
2

( 1
r

− 1
p
)

sup
f ∈Bs

rτ (m)

E‖f̂n − f ‖p ≤ c logn

(
logn

n

) s−d( 1
r − 1

p )

2[s−d( 1
r − 1

2
)]
. (8.10)

The proof of this theorem is quite long and involved. We place it in the Supplementary Material

[4].

Remark 8.3. Several observations are in order:

(a) The assumption s > d/r leads to ‖f ‖∞ ≤ c‖f ‖Bs
rτ

≤ cm, by Proposition 5.4(iii). In ad-

dition in the sparse case it implies p > 2.

(b) The geometry of the setting is represented by the dimension d . Note that the exponents of
logn

n
are the same as in the case of the sphere [1].

(c) In the regular case (modulo the logarithmic terms) we have the same rate of convergence

n−s/(2s+d) as in the case of the linear wavelet estimator.

(d) Just as in the case of kernel density estimators (see Remark 4.6) we note that since we

assume here all conditions C1–C5 (including C1A) it would not be a problem to obtain lower

bounds matching up to logarithmic terms the rates established above by a direct adaptation of the

proof of the lower bounds in the case of the sphere from [1].
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