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NONLINEAR n-TERM APPROXIMATION OF HARMONIC
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ABSTRACT. A basic building block in classical potential theory is the funda-
mental solution of the Laplace equation in R? (Newtonian kernel). The main
goal of this article is to study the rates of nonlinear n-term approximation
of harmonic functions on the unit ball B? from shifts of the Newtonian ker-
nel with poles outside B¢ in the harmonic Hardy spaces. Optimal rates of
approximation are obtained in terms of harmonic Besov spaces. The main ve-
hicle in establishing these results is the construction of highly localized frames
for Besov and Triebel-Lizorkin spaces on the sphere whose elements are linear
combinations of a fixed number of shifts of the Newtonian kernel.
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1. INTRODUCTION

The fundamental solution of the Laplace equation m% in dimension d > 2 or
In ﬁ if d = 2 with |z| being the Euclidean norm of 2 € R? is a basic building block

in potential theory. As is customary, we shall term the harmonic function \II% or

In ﬁ “Newtonian kernel”.

The main purpose of this article is to study the nonlinear n-term approximation
of harmonic functions on the unit ball B in R? from linear combinations of shifts of
the Newtonian kernel. More explicitly, the problem is for a given harmonic function
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3118 K. G. IVANOV AND P. PETRUSHEV

U on B and n > 1 to find n locations {y;} in R%\ B and coefficients {a;} in C
so that

(L) ao+ Y o i d>2 or ag+ Y ajln—— if d=2
=l =yl = |z — y;]

approximates U with an optimal rate (near best) in the harmonic Hardy space
HP(B?), 0 < p < co. Denote by N,, the set of all harmonic functions on B? that
can be represented in the form (1.1). Here the points {y;} are allowed to vary with
the function and hence N,, is nonlinear. Given U € HP(B%) we denote

(12) En(U)j{p = Gienjg’n HU—GHg.fp(Bd).

We shall term E,,(U)g¢» the best n-term approximation of U in the harmonic Hardy
space HP(B?) from shifts of the Newtonian kernel as in (1.1). Our goal is to study
the rate of convergence of {E,,(U)g¢»} and the smoothness spaces that govern this
approximation process. The same approximation problem is also important in the
case when the function U to be approximated is harmonic on R?\ B¢ and the poles
{y;} are in B or U is harmonic on R% and the poles {y;} are in RZ.

The results of A. Pekarskii [28,29] on rational approximation of holomorphic
functions on the unit disc in C and also the results in [22] served as an inspiration
and motivation for the development in this article. An important motivation to us
also comes from some applications of potential theory. In geodesy people consider
approximation of the gravitational (disturbing) potential using the potential of n
point masses. A given potential U is approximated by the potential of n point
charges in electrostatics or by the potential of n magnetic poles in magnetism.
There is also a great deal of work done on the method of fundamental solutions for
the Dirichlet problem of the Laplace equation in numerical analysis. This research
is directly related to the problems we consider here. The multipole method of
V. Rokhlin and his collaborators (e.g., [5,13]) is also relevant to our undertaking.

We refer the reader to [2,14,19] for the basics of potential theory.

The focus of this article is on the establishment of a direct (Jackson type) esti-
mate for nonlinear n-term approximation of functions in the harmonic Hardy space
HP(B?), 0 < p < oo, from shifts of the Newtonian kernel. As one can expect the
harmonic Besov spaces on the ball

BT (H) with 1/r=s/(d=1)+1/p, s >0,

will be naturally involved in the approximation process.

The poor localization of the Newtonian kernel is the first obstacle to overcome
in approximating from linear combinations of its shifts. An important step forward
in solving this approximation problem is the construction in [16] of highly localized
summability kernels on the unit sphere S*~! in R? that are restrictions to the sphere
of linear combinations of a fixed number of shifts of the Newtonian kernel just as
in (1.1). Note that the harmonic functions by their nature cannot be well localized
in an open subset of R?, but they can be well localized on the boundary of such
a set; typical examples are S~ and R~ 1.

To obtain our approximation result we proceed as follows. We first use the result
from [16] to construct a pair of dual frames {0}, {f¢} for all spaces of interest on
S?1 whose elements {f;} are linear combinations of a fixed number of shifts of
the Newtonian kernel and are well localized. Armed with these frames we apply
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NONLINEAR APPROXIMATION OF HARMONIC FUNCTIONS 3119

an intermediate nonlinear n-term approximation from {f¢} to the boundary value
function/distribution fi; of the harmonic function U to be approximated. This leads
us to the desired estimate by harmonic extension to B? of the approximant and
using the fact that each 6 is a finite linear combination of shifts of the Newtonian
kernel.

Thus a major step in our development is to construct such a pair of dual frames.
More precisely, one of our main goals is to construct (see Theorem 6.9) a pair
of frames {6¢}, {f¢} for the Besov and Triebel-Lizorkin spaces B(S41) and

f;q(Sd_l) with parameters (s, p, q) in the range
(1.3) Q=09(A):={(s,p,q):|s| <A A" <p<A and A" < ¢ < oo},

where A > 1 is a fixed constant. This construction employs the small perturbation
method for construction of frames developed in [9] and relies on the kernels from
[16]. While the basic ideas behind the construction of the frames {6¢}, {f¢} is
relatively simple, some of the details become technical when applied to the specific
case of this article. For example, the requirement that {6¢}, {f¢} are frames for
the class of Besov and Triebel-Lizorkin spaces B3?(S*~!) and F39(S!) with pa-
rameters (s,p,q) € Q(A) compels us to carefully trace the constants appearing in
all relevant estimates.

The next several remarks will perhaps clarify some of the issues arising in our
construction of the pair of frames {f¢}, {6¢} described above:

(1) In applying the small perturbation method from [9] we use as a back-
bone a frame {i¢} on S from [26], which can characterize the Besov and
Triebel-Lizorkin spaces B5?(S*~!) and F39(S?~!) with complete range of parame-
ters (s,p,q), i.e., s € R, 0 < p,q < co. With the restriction that each frame element
{0¢} is a linear combination of a fixed number of shifts of the Newtonian kernel
comes the natural limitation that the new frames {f¢}, {6¢} can characterize the
Besov and Triebel-Lizorkin spaces B3?(S%~!) and F39(S?~!) with parameters from
Q(A) (see (1.3)). Here A > 1 can be arbitrarily large but is fixed and the number
of shifts depends on A.

(2) If the old frame {t¢} is a basis, then the new frame {6¢} is also a basis. This
is the case in dimension d = 2, where we use Meyer’s periodic wavelet basis on S'.
As for now there are no convenient bases on S¥~! when d > 2. For this reason we
work with frames, which are completely satisfactory for our purposes.

(3) The rotation group on S¢~! is not commutative in dimensions d > 3, which is
a major difference from the translation group in R4~!. This is an essential obstacle
in constructing highly localized linear combinations of a fixed number of shifts
of the Newtonian kernel with vanishing moments on S*~'. In order to overcome
this difficulty we replace the vanishing moment conditions on the ¢-transform of
Frazier and Jawerth with small moment conditions; see, e.g., Propositions 2.3-2.5
and (6.15) in Theorem 6.1. In general, the vanishing moment conditions are not
valid for 0.

(4) We restrict the parameters to p,q < oo for several reasons. First, whenever
p.q < oo the Besov and Triebel-Lizorkin spaces B5?(S*~!) and F39(S?~!) are sepa-
rable and the finite sequences are dense in the respective Besov and Triebel-Lizorkin
sequence spaces. Also, the respective frame representations converge uncondition-
ally. These facts are important in the construction and utilization of the frames
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3120 K. G. IVANOV AND P. PETRUSHEV

{0}, {55} Furthermore, as is well known, in general, nonlinear n-term approxi-
mation from frames or bases in L or as in our case H° is not quite natural. Just
as in harmonic analysis one should work in BMO instead.

The intimate relation between the harmonic Hardy and Besov spaces on B¢ on
the one hand and the Triebel-Lizorkin and Besov spaces of functions/distributions
on S on the other hand will play a critical role in our development. Harmonic
Besov and Triebel-Lizorkin spaces on B? and Besov and Triebel-Lizorkin spaces of
distributions on S¥~! with full range of parameters are treated in [15]. In particular,
the equivalence of these spaces on B¢ and on its boundary S?~! is established in
[15]. These equivalences enable us to mediate between spaces and frames on B¢
and on S?~1. For example, it allows us to transfer the constructed frame {6} on
S%=1 to a frame on B¢ and approximation results from S?~! to B¢.

Our main result in Theorem 7.1 asserts that if U € B:"(H) with s > 0 and
1/7=s/(d—1) +1/p, then U € HP(B?) and
(1.4) En(U)3cr < en™ /DU gor (50, n > 1.

We derive this estimate from a respective estimate for nonlinear n-term approxi-
mation of functions/distributions from {¢} on the unit sphere S¢~1.

Denote by o, (f) Fo2 the best n-term approximation of f in the Triebel-Lizorkin

space FO?(S?7!) from the frame {f¢} mentioned above. We show that whenever
f e By (8™ with 1/7 =s/(d—1) +1/p, 0 <p < o0, then f € F*(S™") and

(1.5) O'n(f)}‘SQ(Sd—l) < cnis/(dil)||f||Bi‘r(Sd—1), n > 1.

As is well known the harmonic Hardy space HP(B%), 0 < p < oo, can be identified
with the Triebel-Lizorkin space Fp? = F32(S?"!) of functions/distributions on
S?-1 and hence (1.5) implies that for any harmonic function U € B3™(K)

(1.6) on(D)ser < en VU par ey, n > 1,

where o, (U)3¢» stands for the best n-term approximation of U in H?(B<) from the
harmonic extension to B¢ of {;}. Finally, estimate (1.6) yields (1.4) taking into
account that each frame element ¢ is a linear combination of a fixed number of
shifts of the Newtonian kernel.

It is insightful to study the nonlinear approximation from functions as in (1.1)
in the norms of the closely related to H?(B%) harmonic Triebel-Lizorkin and Besov
spaces FPU(B%) and BJ?(B%). As shown in Theorem 7.9 the nonlinear n-term
approximations in F09(B%) have the optimal rate O(n=*/14=D) for any 0 < ¢q < oo,
while the nonlinear n-term approximation in B39(B%) achieves this optimal order
only for p < ¢ < o0; see Theorem 7.10.

Bernstein inequality: Conjecture. We conjecture that the following Bernstein type
inequality is valid. Let 1 < p < 00, s >0, and 1/7 = s/(d — 1) + 1/p. Then

(1.7) |Gl per 30y < en® V(G lger(pay VG € N

If valid this estimate along with the Jackson estimate (1.4) would lead to a complete
characterization of the rates of approximation (approximation spaces) of nonlinear
n-term approximation in H?(B%), 1 < p < 0o, from shifts of the Newtonian kernel.

It is natural to pose the question whether the approximation results of this paper
hold when p = oco. We think that just as in the case of rational approximation
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analogues of these results are valid if H>°(B?) is replaced by the harmonic BMO
space on B%. We shall not pursue this line of research in the present article.

Organization. The outline of the paper is as follows. In Section 2 we introduce
some basic notation and assemble background material about the maximal opera-
tor, spherical harmonics, and maximal d-nets; we also give some technical estimates
on inner products of localized functions on the sphere. Section 3 presents some basic
facts about harmonic Besov and Triebel-Lizorkin spaces on B and S4~! developed
in [15]; it also recalls the construction of frames for Besov and Triebel-Lizorkin
spaces on S%~! and their frame decomposition developed in [26]. Section 4 presents
and somewhat refines the small perturbation method for construction of frames
developed in [9]. Section 5 deals with localization properties of the frame elements
from Section 3 and highly localized kernels induced by shifts of the Newtonian ker-
nel, developed in [16]. Section 6 contains the construction of a pair of frames for
Besov and Triebel-Lizorkin spaces whose elements are finite linear combinations of
shifts of the Newtonian kernel. Section 7 is devoted to nonlinear n-term approx-
imation of functions in the harmonic Hardy spaces from shifts of the Newtonian
kernel. Section 8 deals with nonlinear n-term approximation in the exterior of the
unit ball in R? and in the upper half space in R? from shifts of the Newtonian
kernel. Proofs of key estimates supporting our main results are given in Section 9.

Notation. Throughout this article the constants d, M, and K will appear frequently.
Here d € N is the dimension of the space R?, M > 0 determines decay rates, and
K € N is a parameter determining the upper bound of the order of derivatives re-
quired from some functions. Positive constants will be denoted by ¢ and they may
vary at every occurrence. Most of these constants will depend only on d, K, M. By
C’s we denote numbers (constants) that also depend on parameters different from
d, K, M. When we would like to trace the dependence of a constant ¢ on these
parameters we use indexing, e.g., ¢1,ca, etc., or indicate the dependence on pa-
rameters in parenthesis. These indexed constants preserve their values throughout
the article. The relation a ~ b means that there exists a constant ¢ > 1 such that
¢ la<b<ca.

2. BACKGROUND AND TECHNICAL GROUNDWORK

2.1. Basic notation and simple inequalities. In this article we use standard
notation. Thus R¢ stands for the d-dimensional Euclidean space. The inner product
of z,y € R? is denoted by z -y = 22:1 Yy, and the Euclidean norm of = by
|z| = /x- 2. We write B(xg,7) := {z : |z — 20| < r} and set B? := B(0, 1), the
open unit ball in R

As usual Ny stands for the set of nonnegative integers. For 8 = (34, ...,84) € Nd
the monomial 2# is defined by 2 := xfl e xgd and its degree is | 3| := 1+ - -+ Ba-
The set of all polynomials in # € R? of total degree n is denoted by PZ. We denote
Oy = 0/0x), and then 9% := 651 ---85d is a differential operator of order |5|,
the gradient operator is V := (81,...,04), and A := 97 + --- + 973 stands for the
Laplacian. When necessary we indicate the variable of differentiation by a subscript,
e.g., 5.

The unit sphere in R? is denoted by S¢~1 := {z : |#| = 1}. We denote by
p(z,y) the geodesic distance between z,y € S?~!, that is, p(z,y) := arccos(z - y).
The open spherical cap (ball on the sphere) centered at n € S?~! of radius r is
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3122 K. G. IVANOV AND P. PETRUSHEV

denoted by B(n,r) = {z € S¥ ! : p(n,z) < r}. We denote by Ay the Laplace-
Beltrami operator on S?~1. As is well known (e.g., [8, Theorem 1.8.2]) A has the
decomposition

(2.1) Ag= > D}, Dig=uwi—x0;, xS
1<i<t<d

For any function g on S~! we denote by § its standard extension, defined by
(2.2) g(z) = g(x/lz]) for = eR\{0}.

As is well known (e.g., [8, Corollary 1.4.3] or [30]) for any g € C?(S?~1)

(2.3) Ag(x) = Aog(z), =€ ST

By definition g € ng(Sd_l), K € Ny, if ||8ﬁ§||Loo(3(072)\3(071/2)) <c V|ﬁ‘ <K.
The Lebesgue measure on S~ ! is denoted by ¢ and we set |E| := o(FE) for
a measurable set E C S¥~!. Thus, wy := [S* | = 27%2/TI'(d/2).
The inner product of f,g € L?(S%~1) is given by

(f.g) = /Sd_l FW)gly) do(y).

The nonstandard convolution of functions F' € L>[—1,1] and g € L(S¢™1) is defined
by

(2.4 Fegla) = (Fla-o.9) = [ FGa9at)doty)

We say that a function f defined on S?' is localized around n € S¢! with
dilation factor NV and decay rate M > 0 if the estimate
(2.5) [f(@)| < kN 1+ Np(n, )™, zesi™,

holds for some constant £ > 0 independent of N, z, 7. The multiplier N¢~! is used
as part of the decay function in (2.5) in order to have || f||.1g¢-1) < c. Namely, for
M > d—1 we have

Ndfl
2.6 / —_do(y)<cy VneStl YN >1,
(26) i (LF Np(g gm0 <0 ¥

where ¢y = ¢(d)/(M — d + 1) depends only on d and M. The weight function
in the right-hand side of (2.5) also has the property: for any 7,7, € S~ with
p(ni,m2) < N1

(2.7) (14 Np(na, )~ <2(14 Np(m,2))~" Ve e S
Indeed, 1+ Np(m,z) <14 N(p(m,n2) + p(n2, z)) < 2+ Np(na, x), which implies
(2.7).

Another simple inequality that will be useful is:

(2.8) AK 2| <5 WreSTT, 0< | <K,

where cg depends only on d and K.
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2.2. Spherical harmonics. The spherical harmonics will be our main vehicle in
dealing with harmonic functions on the unit ball B¢ in R¢.
Denote by H;, the space of all spherical harmonics of degree k on S?~!. As is

well known the dimension of Hy, is N(k,d) = W (k;ﬁ;g) ~ k41, Furthermore,
the spaces Hy, k = 0,1,..., are orthogonal and L?(S*"1) = @, -, Hx-

Let {Yi, : v =1,...,N(k,d)} be a real-valued orthonormal basis for Hz. Then
the kernel of the orthogonal projector onto Hy is given by

N (k,d)
(2.9) Z Yk,, Yk,, ), x,y € Sdil.

As is well known (see, e.g., [8, Theorem 1.2.6])

(210)  Zy(a-y) =

k d—2
+'U'C]l:(xy)’ xayegdilv o= _,d>2
Hwq 2
Here CJ' is the Gegenbauer (ultraspherical) polynomial of degree k normalized

by C}(1) = (k+2k” 71). The Gegenbauer polynomials are usually defined by the
following generating function:

oo
(1—2uz+2%)"* = ZC};(u)zk, lz] <1, |u| < 1.

The polynomials C}', k = 0,1,..., are orthogonal in the space L?([—1,1],w) with
weight w(u) = (1 — u?)*~1/2; see [34, p. 80, (4.7.1)] or [27, Table 18.3.1]. In the
case d = 2 the kernel of the orthogonal projector onto H; takes the form

1 1
Zo(z-y) = 70 Zy(w-y) = ;Tk(x ), k>1,

where Ty, (u) := cos(n arccosu) is the kth degree Chebyshev polynomial of the first
kind. We refer the reader to [24,32] for the basics of spherical harmonics.

As is well known (see, e.g., [8, Theorem 1.4.5]) the spherical harmonics are
eigenfunctions of the Laplace-Beltrami operator Ay on S?~!, namely,

(2.11) —AY () =k(k+d—2)Y(z), z € ST, VY € Hy.

The set of all band-limited functions (i.e., spherical polynomials) on S%~! of
degree < N will be denoted by Iy, i.e., Iy := @QI:O Hi.
The Poisson kernel on the unit ball B? is given by

> T 11— |z)?
(212)  P(y,a):=) m’%(m : y) = — @ ll<tiye i1,
k=0

wa |z —y

As is well known (see, e.g., [32]) |z|*Z; (\i_l +y) is a homogeneous harmonic polyno-
mial of degree k in x and hence by continuity takes value 0 for z = 0 if £ > 0; it is
the constant 1/w, if k = 0. We use this fact above and in what follows.

Kernels on the sphere S of the form

oo

(2.13) Z (k/N)Zp(x-y), x,yeSt N>1,
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3124 K. G. IVANOV AND P. PETRUSHEV

where A € C*°[0,00) is compactly supported, will play a key role in this article.
Observe that in this case

(2.14) An(u) == i A(k/N)Zi(u), we[-1,1],
k=0

is simply a polynomial kernel. The localization of this kernel is given in the follow-
ing.

Theorem 2.1. Let v > 0 and M € N. Assume A € C®[0,00), |\ < &
for 0 < m < M, and either supp A C [1/4,4] or supp A C [0,2] and A\(t) = 1 for
t € [0,1]. Then there exists a constant ¢ > 0 depending only on M, v, and d such
that for any N > 1 the kernel Ay from (2.13)—(2.14) obeys

) Nd—1+2v
2.15 AY 0)| <eck—-———, |0 <m,
( ) | N (COS )|—CK:(1+N|9DM | |—7T
and hence
, Nd-1+2v
(2.16) AN (- y)| < e z,y € S

(1+ Np(z, )™
Furthermore, for x,y,z € S41

p(z,y) N
(1+ Np(x, 2))M

For a proof, see [25, Theorem 3.5] and [26, Lemmas 2.4, 2.6], also [17].

(2.17) [An(z-2) = An(y-2)| < ck if px,y) < N°L

2.3. Maximal §-nets and cubature formulas on the sphere. For discretiza-
tion of integrals and construction of frames on S*~! we shall need cubature formulas,
which are naturally constructed using maximal é-nets on S~1.

Definition. Given § > 0 we say that a finite set Z C S%~! is a maximal é-net on
St if (1) p(Cl,CQ) > ¢ for all G, € Z, (1 7é (2, and (11) U(EZ B(C,(S) =S4 1

Clearly, a maximal §-net on S?~! exists for any 6 > 0. For every maximal §-net
Z it is easy to construct (see [6, Proposition 2.5]) a disjoint partition {A¢}¢ccz of
S~ consisting of measurable sets such that

(2.18) B((,6/2) C Ac C B(¢,0), (€2Z.
Two kinds of cubature formulas on S%~! will be utilized.
Simple cubature formulas on S%'. Let 0 < v < 1 be a parameter to be

selected. Let Z; C S*! (j € N) be a maximal d;-net on S with §; := 4277 FL.
We shall use the cubature formula

(2.19) f@)do(z) ~ > wef(Q), we:=|Ac,
gd—1 ez,

where A¢ is from (2.18) with Z = Z,, § = §,;. The cubature (2.19) is apparently
exact for all constants. Evidently,

(2.20) we = |A¢| ~ (y277 )

with constants of equivalence depending only on d. Note that (2.18) implies that
the number of elements in Z; is < ¢(d)(y~127)4-1.
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Further, given j € N we define a map ¢ from S~ to Z; as follows. For every
y € ST ! we set ((y) :=n € Z; if y € A,,. We shall use this map in Lemmas 6.3
and 6.4 below.

Nontrivial cubature formulas on S?~!. Let X; C S?~! be a maximal §,-net on
S with §; := 42791 0 <y < 1, j > 1. In [25, Theorem 4.3] it is shown that
there exist v (0 < < 1) depending only on d, and weights {w¢ }ecx, satisfying

(2.21) e 127D < e < 279D e e x
with constant ¢; depending only on d, such that the cubature formula
(2.22) fla)do(z) = ) wef(€)

§d—1 Eer

is exact for all spherical harmonics f of degree < 27+1, j 2 1.

As before, the number of nodes in X; is < ¢(d)(y _123) ~+, since &} is a maximal
§;-net on S¢~1. Also the disjoint partition {A¢}¢cx, of ST~ ex1sts Wlth B(£,6;/2) C
A¢ C B(&,6;), but the equality we = |A¢| does not hold in general.

2.4. Maximal operator. The maximal operator is an important technical tool
when dealing with Besov and Triebel-Lizorkin spaces. We shall use the following
version of the Hardy-Littlewood maximal operator:

Jt
(2.23) M, f(x) == sup |B|/ |f\tda . eSS >0,

where the sup is over all spherical caps B C S~! such that = € B.

The Fefferman-Stein vector-valued maximal inequality (see [31, Ch. II (13),
p. 56]) can be written in the form: If0 < p < 00,0 < ¢ < 00, and 0 < t < min{p, ¢},
then for any sequence of measurable functions {f,} on S~!

eay  (Zhesor) |, sa|(Sinor)”

From Theorem 2.1 in [12] it follows that the constant ¢ above can be written in
the form

1/t
(225) & = (¢ max{p/t, (p/t = 1) fmax {1, (a/t = 1)1}) ",

where ¢* > 0 is a constant depending only on d.
Note that the area/volume of a spherical cap B(x,r) on S¥~! d > 2, is given by

v

™
|B(x,r)|=wd,1/ sin?=2 v dv.
0

Hence

(2.26) |B(z1,71)|/|B(2z2,7r2)] < (Tl/'rQ)d717 O0<ro<r <m, x1,x0€ S,

(2.27) 1/éy < |B(x,r)|/ri™  <é, O0<r<m 2eS¥1

where ¢; is a constant depending only on d.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



3126 K. G. IVANOV AND P. PETRUSHEV

2.5. Inner products of zonal functions. A function f on S?! is zonal if it
is invariant under rotation about a fixed axis. If this axis is in the direction of
n € S%=1 then f can be represented as f(z) = F(n-z), x € S¥"!, for an appropriate
function F : [-1,1] — R.

Lemma 2.2. Let F,G € L*°[—1,1]. Then there exists H € C[—1,1] such that
(2.28) H(z-z)= / F(z-y)G(y-2)do(y) Va,ze€ S
Sd—1

Proof. Assume first that F' and G are algebraic polynomials of degree m. Then
we can expand them in Gegenbauer polynomials to obtain F = > " FZ;, and
G=>", GrZ,. Using that Zj(x - y) is the kernel of the orthogonal projector
onto Hy we have [o,  Zi(x-y)Zi(y - z) do(y) = Zi(x - z) (see (2.9)). Therefore,
/ F(z-y)Gy-2)do(y) =Y FGZy(x-2) = H(z- 2),
Sd*l E—0
where H is an algebraic polynomial of degree m. Thus (2.28) holds for polynomials.
Finally, a limiting argument implies that (2.28) is valid in general. (]

From Lemma 2.2 it follows that for any F,G € L*>°[-1,1]
(2.29) / F(z-y)G(y - z)do(y) = / F(z-y)G(y-z)do(y) Va,ze S
§d—1 S§d—1

2.6. Inner products of localized functions. The estimation of the inner prod-
ucts of well-localized functions and functions with small moments on the sphere
will play a key role in our further development. The following proposition is an
analogue of [10, Lemma B1]. We replace the vanishing moment condition used in
[10] by the weaker “small moments” condition (2.32).

Proposition 2.3. Let K € N, M > K+d—1, N, > N; > 1 (N;,Ny € R),
and k1,ky > 0. Assume f € L®(S41) and g € WE(S?1); see Section 2.1.
Furthermore, assume that for some 1, x5 € S 1

5y N‘B\-ﬁ-d 1 1
2.30 9% vy e Sl 0< |8 < K,
( ) ’ |— 1+N1P($1, ))]\/[ Y —|B|—
"92N§i ! d—1
2.31 < Yy € S, and
231 TS T Nap(am 7
(2.32) ‘/ y )‘<52N2 . 0<|Bl<K-1.
S
Then
Iilﬁg(Nl/Ng)KNldil
2.33 - ‘/ T d ‘ ,
( ) (9, /)= o(y)| <ea (1+ Nip(z1,22))M

where c; depends only on d, K, and M. Above g(y) := g(y/|y|) for y € RI\{0}
Just as in (2.2).

For cases where condition (2.32) may not be satisfied we modify Proposition 2.3
as follows.
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Proposition 2.4. Let M > d, Ny > Ny > 1, and ky,k2 > 0. Let f € L>°(S%1)
and g € WL (S41). Also, assume that for some x1, 29 € ST1

o IilNd _ o
(2.34) 950 < TR gy W ESTH lal =1,
“2N§i ! d—1
(2.35) |f(y)] < (0T Nop(za, g™ Vy € 87
Then
r1kg( Ny /Ny) N1
(2.36) ’/Sdilg(y)f(y g(x2) / f(y)do(y 0 Nyplay, 2a) ¥

where co depends only on d and M.

In cases where only the function localizations are known/matter we use the
following.

Proposition 2.5. Let M >d—1, Ny > Ny > 1, k1, k2 > 0. Let f,g € L>®(S%1),
and for some 1,y € ST!

kiNy ! 1
2.37 = ven
o) WOl < T Mpten o

ko Ny ! -t
2.38 = e
2.38) IO T Mpamy™ ™
Then

K1:‘€2Nd '

2.39 - d
@39 Jah=] [ sG] <oq T

where c3 depends only on d and M.

To streamline our presentation we defer the proofs of Propositions 2.3, 2.4, and
2.5 to Section 9.

3. SPACES OF FUNCTIONS AND DISTRIBUTIONS ON THE BALL AND SPHERE

The theory of harmonic Besov and Triebel-Lizorkin spaces on B¢ and their rela-
tion with the respective Besov and Triebel-Lizorkin spaces of distributions on S?~!
is developed in [15]. In this section we review all definitions and results that will
be needed from [15].

Denote by H(B?) the set of all harmonic functions on the unit ball B¢ in R%.

3.1. Harmonic Besov and Triebel-Lizorkin spaces on B?. It is convenient to
define the harmonic Besov and Triebel-Lizorkin spaces on B? by using their expan-
sion in solid spherical harmonics. As in Section 2.2 let {Yy; : j =1,...,N(k,d)} be
a real-valued orthonormal basis for ;. The harmonic coefficients of U € 3 (B%)
are defined by

1 /S  Ulan)Yiu(n)da(n)

ak

(3'1) bku(U) =
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for some 0 < a < 1. It is an important observation that the coefficients are
independent of a for all 0 < @ < 1. This implies the representation

oo N(k,d)

(3.2) =3 b (U (6), 0<r<1, £esiT

k=0 v=1

where the convergence is absolute and uniform on every compact subset of B¢.
For U € H(B%) and 8 € R we define

N(kd)
(3.3)  JPU(re) : Zr k+1)" Zbk,, VWi (§), 0<r<1, €St

The above series converges absolutely and uniformly on every compact subset of
B¢ and hence JAU is a well-defined harmonic function on B¢,

Definition 3.1. Let se R, 0 < ¢ < 00, and §:=s+ 1.
(a) The harmonic Besov space B;q(f}f), 0 < p < o0, is defined as the set of all

U € H(B?) such that

1
s _ dr \1/4 .
g0 = ([ =000 g0y 72 ) <00 i o0

and
U]

Beea0) = sup (1 =) || JPU(r)|| 1o (ga-1) < oo
o<r<1

(b) The harmonic Triebel-Lizorkin space F;4(3(), 0 < p < o0, is defined as the
set of all U € H(B?) such that

1
Ullgeony = [ ([ = @=a-vepe

and

dr 1/‘1‘
1 —7‘)

< if
o) oo ifg# oo

||U\|Fm(}c) —H sup 1—7“)5 5T~ ﬁU \‘

< 00.
Lp(Sd-1)

Choosing an arbitrary S > s above results in equivalent quasi-norms for the
spaces B4(3H) and F;4(H).

Note that the spaces Bp?(H) and F;?(3() are quasi-Banach spaces (Banach
spaces if p,q > 1). For more details, see [15].

3.2. Besov and Triebel-Lizorkin spaces on S%!. The Besov and Triebel-
Lizorkin spaces on S?~! in general are spaces of distributions. As test functions we
use the class S := C°°(S%~1) of all functions ¢ on S~! such that

1Z * dll2 < c(g,m)(1 + k)~™  Vk,m = 0.
Recall that the convolution Zj, ¢ is defined in (2.4). The topology on S is defined
by the sequence of norms

oo N(k,d)

(34)  Pul6) =Y (k)™ Zex blla = Y (k+1)" (Z 6 Yi?)”

k=0 k=0

S is complete in this topology.
Observe that all Y3, € S and hence by (2.9) Zx(z-y) € S as a function of z for
every fixed y and as a function of y for every fixed =x.
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The space S’ := S'(S971) of distributions on S~ is defined as the space of all
continuous linear functionals on S. The pairing of f € &’ and ¢ € S will be denoted
by (f,®) := f(¢), which is consistent with the inner product on L%(S?"!). More
precisely, S’ consists of all linear functionals f on S for which there exist constants
¢ >0 and m € Ny such that

(3.5) I(f 0| < cPn(d) Vo€ S.
For any f € &’ we define Zy, * f by
(36) Zk*f(l') S <f,Zk(x'.)>:<f,Zk($'.)>7

where on the right f is acting on Zx(z -y) = Zx(x - y) as a function of y (Z is
real-valued).
Observe that the representation

(3.7) f=Y_2Zy«f Vfes

k=0

holds with convergence in the distributional sense.

Definition 3.2. Let s € R, 0 < g < oo, and ¢ satisfy the conditions: ¢ € C*(R),
supp ¢ C [1/2,2], and |¢(u)| > ¢ > 0 for u € [3/5,5/3]. For a distribution f € &’
set

k

(3.8) Qo f=Zoxf, Cxf=Y ¢(55)%xf iz,
k=0

where Zj, x f is defined in (3.6).
(a) The Besov space B3? := B34(S*"!), 0 < p < oo, is defined as the set of all
distributions f € &’ such that

> ‘ a\ 1/q
By = (Z (QS]H(I)j * f||Lp(Sd71)) ) < 00,

=0

(3.9) /1

where the /?-norm is replaced by the sup-norm if ¢ = co.
(b) The Triebel-Lizorkin space F,;7 := f;q(Sd_l), 0 < p < o0, is defined as the
set of all distributions f € 8’ such that

Fpo i H(i (29]@; * £())")

where the ¢?-norm is replaced by the sup-norm if ¢ = co.

(3.10) 11 I

Lp(Sa-1)

Note that the definitions of the Besov and Triebel-Lizorkin spaces above are in-
dependent of the particular selection of the function ¢ with the required properties,
i.e., different ¢’s produce equivalent quasi-norms; see [26, Theorems 4.5 and 5.5].
Observe also that the spaces B3?(S*') and F39(S%!) are quasi-Banach spaces
(Banach spaces if p, ¢ > 1).

To put the definitions of the Besov and Triebel-Lizorkin spaces on the sphere in
perspective we refer the reader to [6,20] for a general approach to such spaces on
Riemannian manifolds and more general settings.
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3.3. Identification of harmonic Besov and Triebel-Lizorkin spaces. We are
interested in harmonic functions U € H(B?) with coefficients of at most polynomial
growth:

(3.11) by (U)] < e(k+1), v=1,...,N(k,d), k=0,1,...,

for some constants ,c¢ > 0. The functions in the harmonic Besov and Triebel-
Lizorkin spaces have this property.

The relationship between harmonic functions on B? and distributions on S%1
is clarified by the following.

Proposition 3.3. (a) To any U € H(BY) represented by (3.2) with coefficients
satisfying (3.11) there corresponds a distribution f € S', f = fu (the boundary
value function/distribution of U), defined by

oo N(k,d)

(3.12) f —Z Z biw (U)Ye,  (convergence in S”)

k=0 v=1
with coefficients by, (U) = (f, Yiu)-

(b) To any distribution f € S" with coefficients by, (f) := (f, Yiv) there corre-
sponds a harmonic function U € H(B®), U = Uy (the harmonic extension of f to
B%), defined by

oo N(k,d)
(3.13) =3 N bl \a:|’fY,w(| ‘) 2| < 1,
k=0 v=1

with coefficients by, (U) = by, (f) obeying (3.11), where the series converges uni-
formly on every compact subset of BY.
(c) For every U € H(B?) we have Uy, = U and for every f € S’ we have

Ju, =TI
The principle results of this subsection are the following theorems.

Theorem 3.4. Let s € R, 0 < p < 00, 0 < q < 00. A harmonic function
U € FJ9(3) if and only if its boundary value distribution f = fu defined by (3.12)
belongs to F31(S*~1), moreover ||U]|

Theorem 3.5. Let s € R, 0 < p,q < oo. A harmonic function U € Bp4(H)
if and only if its boundary value distribution f = fy defined by (3.12) belongs to
B;q(Sd_l), moreover ||U| psa ~ || f|lssa-

3.4. Harmonic Hardy spaces. Here we consider the harmonic Hardy spaces
HP(B?) on the ball (usually denoted by h?(B?)).

Definition 3.6. The space H? := HP(B?), 0 < p < oo, is defined as the set of all
harmonic functions U € 3(B?) such that

(3.14) [Ullsee == sup |U(r)[l|zega-1) < .
0<r<1

The following identification of harmonic Hardy spaces holds.

Theorem 3.7. A harmonic function U € HP(B?), 0 < p < oo, if and only if its
boundary distribution fy € fSZ(Sdfl) and

(3.15) [Ullsce ~ Ul po2(30) ~ || full Foz(sa-1)-
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Furthermore, U € HP(B?), 1 < p < oo, if and only if fir € LP(S*1) and

(3.16) 1Ullace ~ I fullesi-1)-

In addition, for any U € HP(B?), 1 < p < oo,

(3.17) [Ullsce ~ sup [|U(r)[[r(se-1)
0<r<1

and the right-hand side quantity is sometimes used to define ||U||gc» for p > 1.
To prove this theorem we shall need the following.

Lemma 3.8. IfU € H?(B%), 0 < p < oo, then

(3.18) by (U)] < e(k+1)7||U||3co, v=1,...,N(k,d), k=0,1,...,

for some constants 7, ¢ > 0, depending only on d and p, i.e., inequalities (3.11) are
valid. Consequently, there exists a distribution fy € S with spherical harmonic
coefficients the same as the coefficients of U, which in turn leads to

U=Px fU
with P(y,x) being the Poisson kernel; see (2.12). Here P x fy is defined by

Px fu(z) == (fu, P(-,2)) = (fu, P(-,2)),
where fu acts on P(y,x) = P(y,x) as a function of y (P(y,x) is real-valued).

Proof. To prove (3.18) we invoke Proposition 4.2 from [15] which, in particular,
asserts that for any U € By%(H), s € R, 0 < p,q < o0,

(3.19)  |be(U)| < e(k +1)"|Ullgsaise), v =1,...,N(k,d), k=0,1,...,

where the constants -, ¢ > 0 depend only on d, s, p, q.
If U € HP(B%), then by Definition 3.1 with 3 =0

1
11151 30) :/ 1O )lpdr < || sup [U(r)llp = [[Ull3cr,
0 0<r<1

which implies that 3?(B?) is continuously embedded in the harmonic Besov space
B, (H). Now, the above and (3.19) imply (3.18).
We set

(k.d)
(3.20) fo=>"3" b (U)Ye.

k>0 v=1

Inequalities (3.18) and Proposition 3.3 lead to the conclusion that the series in
(3.20) converges in S’ and defines a distribution fyy € S’ with coeflicients by, (fu) :=
bk, (U). In turn, this implies that

N(k,d)

3 bky(U)ka(;l) = Zk*fU(| ‘), ] < 1,

v=1
and hence

UGe) =l 2 fu (1) = 2 bl (o 2 (7))
k=0 k=0
= Jim (o, 32 1 2 () ) = (o PCa)) = P folo)
k=0
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Here we used the obvious fact that for any |z| < 1

P(y,z) = mlgnoo Z |z|* Z), (y, ‘i—|> (convergence in S).
k=0

The proof is complete. O

Proof of Theorem 3.7. The Hardy space HP(S%™1), 0 < p < oo, on the sphere is
defined as the set of all distributions f € &’ such that

(3.21) [ fllace(sa-1y = || sup |P* f(r)|l|prga-1y < oo
0<r<1

A frame characterization of the Triebel-Lizorkin spaces on S*~! has been established
in [26, Theorem 4.5] (see Theorem 3.12(b) below), which along with the same frame
characterization of the Hardy spaces H?(S?~!) from [7, Theorem 1.1] implies that
HP(S1) = F2(S?71), 0 < p < oo, with equivalent quasi-norms.

By Lemma 3.8 and (3.21) it follows that U € HP(B%), 0 < p < oo, if and
only if fy € HP(S*"1) and ||U|l5¢p(pay = || fullger(ga-1y. This along with the above
observation and Theorem 3.4 implies

[Ull3cr(Bay = [ fullgcesa-1y ~ | foll zozsa-1) ~ U]l Fo2(30)

which confirms (3.15).

The equivalence ||U||5¢r ~ || fr||Lr(sa-1), when 1 < p < oo, follows by Lemma 3.8
and the maximal inequality just as in the case of Hardy spaces on R%; see [31, §1.2.1,
p. 91]. For the equivalence supg<, 1 [|[U(r)[|Lpa-1) ~ [[fullLege-1), 1 < p < o0,
see [3, Chapter 6]. The proof is complete. |

3.5. Frame decomposition of spaces of distributions on S?~!. We next recall
the construction of the frame (needlets) on S%~! from [26]. Note that in dimen-
sion d = 2 the Meyer’s periodic wavelets (see [23]) form a basis with the desired
properties.

The first step in the construction of needlets on S~ !, d > 2, is the selection
of a real-valued function ¢ € C°°(R.) with the properties: suppy C [1/2,2],
0<p<1,pu)>c>0foruc[3/55/3], p*(u) + ¢*(u/2) =1 for u € [1,2], and
hence Y7 ©*(27u) = 1 for u € [1,00). Set

oo

k )
(3.22) Uy:=Zy and U, := ng(ﬁ)zk, j>1.
k=0

It is easy to see that f = Z?io U, % U, * f for every f € S’ (convergence in ).
The next step is to discretize ¥; x W; for j > 1 by using the cubature formula
on S~ from (2.22), where X; is a maximal §;-net with §; = v279+1, 0 < v < 1.
In addition, for j = 0 we set Xy := {e1} with e; :=(1,0,...,0), and W,, = wq.
Since the cubature formula (2.22) is exact for spherical harmonics of degree
< 29+ we have

Wi = [ Wi 0¥ nden) = 3 v 9T,
EEX;
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which allows us to discretize f = Z;io W; W, * f and obtain

(3.23) f= Z Z (f,he)pe Vf eS8 (convergence in '),
i=0¢ex;
(3.24) ve(x) == w2 W;(€ - 2), €€, j>0.

We set X :==J ;>0 &j assuming that equal points from different sets X; are distinct
points in X’ so that X can be used as an index set. This completes the construction
of the system ¥ = {t)¢ }ecr.

Observe that the frame elements {t¢} are not only band limited, but also have
excellent localization on S%~!. From the properties of ¢ and Theorem 2.1 and (2.21)
it follows that (see also [25,26]) for any M >0

(3.25) |te(x)| < &0 DUED/2(1 4 277 p(z,6)) ™M, 2 eSS ce Xy, 520,

where ¢4 > 0 is a constant depending only on d, M, c7, and ¢. Moreover, the
localization of 9¢ can be improved to subexponential as shown in [17, Theorem 5.1].

1/2

The normalization factor w,'" in (3.24) makes all )¢ essentially normalized in

L2(S771), ie., |[Yellp2ga-1y ~ 1. In what follows we only need the lower bound
estimate

(3.26) Vel L2ga-1y > ¢ VE€ &, j >0,

with a constant ¢ depending only on d, M, ¢7, and ¢. Inequality (3.26) follows from
(3.24), (2.21), (3.22), the properties of ¢, and [y, , Z(§- x)do () = Zx(1) ~ k=2,

We next define the Besov and Triebel-Lizorkin sequence spaces by? and f,? asso-
ciated to X.

Definition 3.9. Let s € R, 0 < p,q¢ < oo. Then by? := b;7(X) is defined as the
space of all complex-valued sequences h := {h¢}ecx such that

00 y y
bt ‘= (Z |:2j[5+(d*1)(1/271/p)]( Z |h5‘p) P}Q) q “

Jj=0 EEX;

(3.27) A

with the usual modification when p = oo or ¢ = oco.
Definition 3.10. Let s € R, 0 < p < 00, and 0 < g < co. Then f7 := (X&) is

defined as the space of all complex-valued sequences h := {h¢ }ecx such that

(3.28) llg = | (D2 [1Bel =071 2 e 15, ()]

fex

1/4q

< o0
Lp

with the usual modification for ¢ = co. Here Be := B(£,7277F1), € € X;, where v
is used in the selection of X, | B¢| is the measure of B, and 1 p, is the characteristic
function of Bg.

Remark 3.11. The replacement of Be = B(§,7277%!) in Definition 3.10 with
B(&,7277) or with the disjoint partition sets A¢ produces equivalent quasi-norms.
This immediately follows from the vector-valued maximal inequality as observed in
[10, Proposition 2.7].
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The main result here asserts that {i¢}ecx is a self-dual real-valued frame for
Besov and Triebel-Lizorkin spaces on the sphere. To state this result we introduce
the following analysis and synthesis operators:

(3.29) Sp i [ {(fve)teer, Ty {heleex = Y heve.
fex
Theorem 3.12. Let s € R and 0 < p,q < co.
(a) The operators Sy : Bp? — by? and Ty : by? — Bp? are bounded, and
Ty oSy =1 on Byi. Hence, if f € &', then f € By? if and only if
{(f.ve)}eex € b3, and

(3.30) F=Y (fve)be and |f]

£ex
(b) The operators Sy : Fp¢ — §;9 and Ty : f7 — F,9 are bounded, and
TyoSy =1 on Fy?. Hence, if f € S', then f € F;9 if and only if
{(f,ve)teex €7, and

(3.31) =Y (fve)be and |f]

fex

sye ~ [{{f: )}

sq .,
bP

Fpo ~ [{{f, )}

sq .,
P

The convergence in (3.30) and (3.31) is unconditional in B,? and F,9, respectively.
For details and proofs, see [26, Theorems 4.5 and 5.5].

Remark 3.13. A careful examination of the proofs in [26] shows that the operators
Sy and T, are uniformly bounded on the respective spaces with parameters

(s,p,q) € Q(A) for fixed A > 1,

where Q(A) is the index set defined in (1.3), that is, all constants that appear in
the equivalences in Theorem 3.12 depend only on A, d, and ¢, if (s,p,q) € Q(A).
In fact, the only nontrivial source of constants is the maximal inequality (2.24),
however, as seen in (2.25) these constants are compatible with the definition of

Q(A) in (1.3).
The above observation will be needed for the construction of new frames below.

Remark 3.14. In general, one normally constructs and works with a pair of dual
frames {t¢}ecx, {¥e}tecax on ST1; see [26]. In the construction presented above
we consider the case when )¢ = 1 for simplicity.

Some embeddings between Besov or Triebel-Lizorkin spaces will be needed.

Proposition 3.15. Assume s,s0,51 € R and let 0 < p,po,P1,¢,q0,q1 < 00 in
the case of Besov spaces and 0 < p,po,p1 < 00, 0 < q,q1,q2 < 00 in the case of
Triebel-Lizorkin spaces. The following continuous embeddings are valid:

(3.32) Byt C Byttt Fpov C Fort o if so = s1, qo < qu or so > s1, Yqo,q1;

(3.33) Byl c By, FlCFd if po>pri;
d—1 d—1
(334) B;gq C B;iq Zf S0 > 81, S0 — = S1 — ;
0 h
d—1 d—1
(3.35) Fpoto C Forttif so > 81, So — P 51— T V4o, q1;
0 1
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(3.36) By C Fyi C FP =B if q < p;

(3.37) B = FP C F3i C B if p<q.

Proof. The proofs of embeddings (3.32), (3.33), (3.36), and (3.37) are easy and will
be omitted.

Embedding (3.34) is an immediate consequence of the Nikolski inequality for
spherical polynomials. Indeed, by Definition 3.2 it follows that ®; * f is a spherical
polynomial of degree < 27, i.e., ®; * f € IIy;. Then by the Nikolski inequality (see,
e.g., [8, Theorem 5.5.1])

(3.38) 195 % fllzo < VP /POED @) 4 £l o, po < p1,

and (3.34) follows readily.
The proof of embedding (3.35) relies on the Nikolski inequality (3.38) and can
be carried out along the lines of the proof of the same embedding result in the

classical case on R™ from [18, Theorem 2.1]; see also [33, Theorem 2.7.1]. We omit
the details. O

4. CONSTRUCTION OF FRAMES BY SMALL PERTURBATION

Here we present the small perturbation method for construction of frames, devel-
oped in [9]. Special attention is paid to the dependence of the numerous constants
on the parameters of the distribution spaces involved.

4.1. Setting and conditions on the old frame. As in Section 3.2 we denote
by S := C>(S%71) the set of all test functions on S%~! and let &’ be its dual.
We assume that Y is a collection of quasi-Banach spaces B = B(S?!) C &’ of
distributions on S?~! with quasi-norms || - ||, which are continuously embedded
in &, i.e., there exist m = m(B) € N and C = C(B) > 0 such that |(f,¢)| <
C|fllsPm(p) for all f € B, ¢ € S. Also we assume that S is a dense subset of
each B € Y.

Furthermore, we assume that there exists a collection Y, of quasi-Banach
complex-valued sequence spaces b = b(X) with quasi-norms || - ||p, such that every
B € Y is associated with a space b € Y45. We assume that the constants in the
quasi-triangle inequalities for the quasi-Banach spaces in Y and Y, are uniformly
bounded, i.e., there exists a constant C; = C1(Y,Y4) such that

If1+ folls < Crlllfills + [ f2lls) Vii, f2 € B, VB €Y;
||h1 + hg”b < Cl(”hl”b + ||h2||b) Vhy,ho € b, Vb € Y,.
A popular version of the Aoki-Rolewicz theorem states (see, e.g., [4, Lemma 3.10.1])

that for any quasi-Banach space 8B with a quasi-norm || - || satisfying the quasi-
triangle inequalities with constant Cy there exists a norm || - ||* on B, such that

(4.2) A < Ifls <20flI* VfeB, wherer=In2/(In2+1InC;) <1.

Targeted application of this construction is to the Besov and Triebel-Lizorkin
function spaces introduced in Section 3.2 and the corresponding sequence spaces
introduced in Section 3.5. For the Besov spaces the sets Y and Y, are given by

Y={B(S" ") : (s,p,q) € QA)} and Yq={bJI(X): (s,p,q) € QA)},

where A > 1 is fixed and Q(A) is introduced in (1.3). A similar observation is valid
for the Triebel-Lizorkin spaces F37(S*~!) and §57(X).

(4.1)
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The old frame. We stipulate the existence of a pair of dual frames {ti¢}ecx,

{z/;f}ge;( for all B € Y such that )¢, 1/35 € S, where X is a countable index set, with
the following properties.

A1l. The analysis and synthesis operators Sy, Su? and Ty, T from (3.29) have the
properties.

(a) The operators Sy, Sy B — b are bounded.

(b) For any sequence h = {h¢}ecx € b the series > .oy hethe and D .y hete
converge unconditionally in B and T}, Tj:b— B are bounded.

It is assumed that the norms of the operators Sy, SJ) and Ty, T, J are uniformly
bounded relative to B € Y and b € Y4 by a constant Cy = Ca(Y, Y4, {t0e}) > 1.
Thus, for any %6 € Y and f € B we have

Cy I flls < 1Suflle = I{{f,e) Hlo < Coll £l
Cy ' fllss < 1S5£1l6 = [I{{f, %) Hlo < Call fllos-

A2. We have T@Sq/, = T,/,Sd; =1 in B, i.e., for any f € B

(4.4) F=Y ({fidehe =D (frve) e,

gex eX

(4.3)

where the two series converge unconditionally in 8 and hence in S'.
Note that the compositions Sd,Td;, SIZ)TQZ, are projectors due to

(SyTy)? = Sy(T;Sy) Ty = SylITy = SyTy.

A3. In addition, we assume that each b € Y, obeys the conditions:

(a) For any sequence {h¢}ecx € b one has |[{he}|lo = [[{IRel}]e-
(b) If the sequences {h¢}tecx,{getecx € b and |he| < |ge| for £ € X, then

[{Pe e < {ge}He-

(c¢) Compactly supported sequences belong to b and are dense in b.
Note that conditions A3(b)—(c) imply condition A3(ii) in [9].
As a consequence of A1l we obtain that the operator A := ST, with matrix

A ={agntenex, agn = (y, )

is uniformly bounded on the sequence spaces b € Yy, i.e.,

(4.5) I Allpse < C3 := C2 Vb € Y.

4.2. Construction of new frames. We next construct a pair of dual frames
{0c}ecx, {Oc}ecx for all spaces B € Y, where X is the index set from above.

For a system {0¢}ecxr C (B : B € Y} of real-valued functions 0 € B, { € X,
we define the matrices

B = {bentenexs bey = (O, 1),
D = {dentenex, den = (g — 0y, 1)

The only condition that we require when constructing {f¢ }¢c x is that the operator

D:SwTw—Sme D:b—b,
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with matrix D, defined by (Dh)e = >_, 4 d¢nhy, has a sufficiently small norm
uniformly for all b € Y,;. More precisely we assume that

(1 o 277')1/7'

4.6 D <er=————
(46) IDlle < €3= Somrir

Vb € gda

with 7 given in (4.2), where C is the constant from (4.1) and Cs is the constant in
(4.3). For the operator B with matrix B we have B = A— D = 5, Ty and hence by
(4.1), (4.5), and (4.6) it follows that B is uniformly bounded on Y,4; more precisely,

(4.7) I1Blloss < Ca Vb € Yq,

with constant Cy = C1(C5 + ¢).
Condition (4.6) will be sufficient to show that {f¢}ecx is a frame for all spaces

B € Y and to construct its dual frame {ég}ge;g. To this end we introduce the
operator:

(4.8) Tf:=Y (f,e)be, fe€B.

fex

The next three lemmas will be instrumental in the construction of {f¢ }¢ex. They
are direct adaptations of Lemmas 3.1-3.3 in [9]; we omit their proofs.

Lemma 4.1. The operators Ty, defined in (3.29) with 8¢ in the place of e, and T
are well defined and uniformly bounded, that is,

HTGhH‘B < CQC4Hth Vh € b, Vb e 90{,

(4.9) ;
ITflls < C3C||flls Vf€EB, VBEY,

where Cq is from (4.3) and Cy is from (4.7). Furthermore, the series in (3.29) and
(4.8) converge unconditionally in B and hence in S'.
The fact the operator T is invertible plays a key role in this construction.

Lemma 4.2. If (4.6) is satisfied, then

1— 2—7’)1/7’ 1
4.1 I-T < (2= (A-27)7" <=
( 0) H H%H‘B > C'26 20102221/7- =9 (DRSS 9;
and hence T~ exists and
4.11 7! C 21 VB
. - < = —_—
(4.11) T s < Cs = gy VB EY,

where T is from (4.2).

Lemma 4.3. Assume (4.6) holds. Then the operator H with matric H :=
{{T Yy, e) Ye mex is uniformly bounded on b € Yq, i.e.,

(4.12) | H||pso < Cs := C2C5 Vb € Yy.

The operators from the previous three lemmas can be written as Ty = Tq/;B,
T= T@Su’; = TJ)BSJ), I-T= TJ}DS{), H= SJ)T_ITw.
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Construction of the dual frame {55} For any £ € X we define the linear
functional ¢ by

(4.13) Oc(f) = (f.06) =Y (T by, he)(f ) for fEeB, Bey.

nex
Lemma 4.3 and A1 imply that for any f € B, B €Y,
(4.14) I((f )Mo < I H [lomolH{(Fs ) Hlo < CoCoall fllss-

Denote 1¢ := {0¢p}nex. Then 1 € b by A3(c) and | 1¢|l[e > O because b is
a quasi-normed space. Now, condition A3(b) and inequality (4.14) imply

_ _ _ _ CsC:
Be(F)] = 1(,06)] = ——— (/. 8e) Lello < ———[1{(, e Mo < =22
Tels el el

ie., 675 (€ € X) is a bounded linear functional on every B € Y.
Also, for any f € B by Lemma 4.2 T~ f € 9B and using Lemma 4.1

(4.15) F=T@ )= (T f,0e)be.

fex

£l

Furthermore, from the fact that 7! is a bounded operator on 98 and (4.4) it follows
that for any f € B

T_lf = Z <f, &n>T_1¢na
nex

where the series converges unconditionally in B and hence in &’. This and the fact
that ¢ € S imply

(4.16) (T f,e) = D (T oy, ) (fo ) = ([ ).
nex

Here the series converges unconditionally and hence absolutely because of the un-
conditional convergence of the former series. From (4.15)—(4.16) it follows that

(4.17) F=Y (f0e)0, feB,

fex

where (f,0¢) is defined in (4.13) and the convergence is unconditional in 5.
The following theorem shows that {6}, {0} is a pair of dual frames for all
spaces B € Y if € from (4.6) is sufficiently small.

Theorem 4.4. Let {1}, {155} be a pair of dual old frames for all B € Y satisfying
conditions A1-A3 in Subsection 4.1. Assume {O¢}ecx C (B : B € Y} satisfies
(4.6) and {0¢} is defined as in (4.13). Then the analysis operator Sz : B — b
and the synthesis operator Ty : b — B are uniformly bounded for 6 € Y, b € Y,.
Furthermore, TySz = I on B, i.e., for any f € B, B €Y, we have

(4.18) F =D {f.06)0,
fex
where the convergence is unconditional in B, and
(4.19) £l < Crl{(£:0) s [I{(F:0) o < Csl fll»
with 07 = 20102 and Cg = 0205.
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For a proof of Theorem 4.4 see the proof of Theorem 3.5 in [9].

The main assumption in constructing the frames {0¢}ecx, {55}56 x is the oper-
ator norm condition (4.6). A standard tool for evaluating the operator norms in
sequence spaces is the following monotonicity lemma.

Lemma 4.5. Assume the quasi-norm in b(X) satisfies conditions A3(a)—(b) in
Subsection 4.1. If the entries of two matrices ¥ = {fe n}enex, G = {gen e ncx are
related by |fen| < gen, §,m € X, then the respective operators F', G are related by

(4.20) [Fllo—6 < 1Gllo—o-

Proof. The relation between F and G implies

‘(Fh)d = | Z hnf€777| < Z |hn||f£,n < Z |h77‘gﬁ777 = (G|h‘)£-

nex nex nex
Now, (b) and (a) of A3 imply that for every h € b(X)
[Fhlle < [[GlAllle < [[Gllo—olllhllle = IGlle—ullA]e,

which implies (4.20). O

4.3. Almost diagonal operators. In the next two sections we shall apply the
small perturbation method described above for construction of new frames for the
Besov spaces from
Y={B(S""): (s,p.q) € Q(A)}

for an arbitrary fixed A > 1 as well as for the respective collection of Triebel-
Lizorkin spaces f;q(Sd’l). All spaces from Y satisfy (4.1) with C; = C1(A4).
On account of Theorem 3.12 and Remark 3.13 the frame ¥ = {¢¢}¢cr is real-
valued, self-dual, i.e., 1[)5 = )¢, and conditions A1-A2 in Subsection 4.1 are satisfied
with a constant Cy = Ca(d, A, {¢¢}). Conditions A3 are trivially satisfied for the
sequence spaces by?, §79 with 0 < p,q < 00, s € R, and for /7, 0 < p < oo, as well.
It remains to establish sufficient conditions for verifying the operator norm bound
(4.6). To this end, using Lemma 4.5 one can compare the operator matrix elements
with the elements of an appropriate almost diagonal matriz (cf. [10,21]).

The almost diagonal matrices we shall use are Qg p = {wéi’M)}g,neX with
entries
(K.M) min{Ng, N, } \ K072 1
(4.21) we, = v v T _ T
’ max{Ne, Ny } (14 min{Ne, N, }p(€, )

where N¢ := 277! for £ € X;, j > 0. Other (nonsymmetric) examples of almost
diagonal matrices with index set X" are given in [21, Definition 3.9].

We next show that under appropriate conditions on K and M the operator 2
with matrix Qg s is bounded on b;q and f;q . In the following, we shall use the no-
tation J := (d—1)/ min{1, p} in the case of b-spaces and J := (d—1)/ min{1,p, ¢}
in the case of f-spaces.

Theorem 4.6. Let s € R, 0 < p,q < co. For a fired 6 € (0,1] assume that
K, M € N satisfy

(4.22) K >max{s,J —s—d+1}+6 and M >TJ+4.
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Then the operator Q with matriz Qx ar is bounded on b7 and on f,1. More precisely,
there exists a constant Cq > 0 such that

19kl < Collllyzr ¥h €635 [Qhllje < Collhln Vh € .

Here in the case of b-spaces the constant Cg can be written in the form

c ci\2/P=1\ rc ce\ /4
a-(m+G) )G )
VRV 5 5
and in the case of f-spaces in the form

/q\ &
Co — d/J+2|s/(d—1)+1/2|(C_* (C_*) )_

0= ¢t 5 5 5
where c; is a constant depending only on d, c. is an absolute constant, and ¢, is the

constant from the maximal inequality (2.25) with 1/t =1/ min{l,p,q} +46/(d—1).

Observe that if (s, p, ¢) € Q(A) for some fixed A > 1 and § = 1, then Theorem 4.6
holds with Cy depending only on d and A.

To streamline our presentation we defer the long tedious proof of Theorem 4.6
to Section 9.

In light of Theorem 4.6 we next use Proposition 2.5 and the localization property
(3.25) to show that the scalar products of the elements of the needlet system {¢}
from Subsection 3.5 are majorized by the entries of an almost diagonal matrix.

Proposition 4.7. For any K € Ny and M > d — 1 the needlet system {¢¢} from
Subsection 3.5 satisfies

(4.23) ()] < Crow{s™ e ne x,

where wéif]’M) is defined in (4.21) and C1g = 2K ¢36% with c3 from Proposition 2.5
and ¢4 from (3.25).

Proof. Let £ € X; and n € &). From (3.22) and (3.24) it readily follows that
(n,be) = 0if |[j — k| > 2. The symmetry of wg;’M) implies that it suffices to
consider only the cases k = j and k =7 + 1.

On account of (3.25) condition (2.37) is satisfied for g = ¢ with 1 = §, N7 =
Ne¢, and k1 = 64Ng(d71)/2 and condition (2.38) is satisfied for f = 1, with 2o =,
Ny = N, and ko = 64N,,7(d71)/2. Then Proposition 2.5 and N,, = N¢ for k = j
or N,, = 2N for k = j + 1 show that (4.23) is satisfied with Ciy = ¢3¢3 or
Cho = 25362, respectively. O

Note that a combination of Proposition 4.7, Lemma 4.5, and Theorem 4.6 readily
yields another proof of (4.5).

Corollary 4.8. Let b = by? or b = ;7 with (s,p,q) € Q(A) for a fired A > 1.
Then {1} satisfies (4.5) with a constant Cs depending only on d, A, and ¢, namely
C3 = CyChp, where Cy is from Theorem 4.6 with K = M = [Ad] and C1p is from
Proposition 4.7 with the same K and M.

Proof. As K and M satisfy assumption (4.22) of Theorem 4.6 with § = 1, Propo-

sition 4.7, Lemma 4.5, and Theorem 4.6 imply that (4.5) is valid with C3 =
CoChp. O

We shall also apply Theorem 4.6 in Section 6 to show that condition (4.6) holds
for the constructed new Newtonian kernel frame.
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5. SPACE LOCALIZATION OF NEEDLETS AND NEWTONIAN KERNELS

The basic localization property of the needlets is given in (3.25). In this section
we establish some additional localization properties of the needlets introduced in
Section 3.5. We also introduce the localized kernels developed in [16]. These kernels
are linear combinations of shifts of the Newtonian kernel and will be the building
blocks in the construction of Newtonian kernel frames in Section 6.

5.1. Properties of the needlets. Let N := 27! j € N, and assume that the in-
teger parameter K is even, i.e., K € 2N. Let ¢ be the C°°[0, co) function introduced
in Section 3.5. We define (cf. (3.22))

61 kv == Ye(Hzaw- Y o(£)zaw
k=0

N/2<k<2N

and

62 Aw)i= DS ()b d - 2)] 2 w),
N/2<k<2N

where Z, is from (2.10). By (2.11) it follows that
—AoZp(n-x) =k(k+d—2)Zx(n - x),

implying

(5.3) Aé(/QAN(n-a?):ICN(n-x), n,x €S

Here Ay is the Laplace-Beltrami operator on S~ (see Section 2.1).
Given 7 € ST we extend Ay (n-x) and Kx(n - x) by

v n-xT o n-x d
4 An(n;x) = Ay (— ;x) = -— R .
(5.4) wOe) = Ax(Tr), Kalre) = Ka (7)), = € RN}
In light of (2.3) and (5.3) this implies
(5.5) ARPZR (s @) = Aé(ﬂAN(n cx) =Ky z)=Kn(p;z), zeSP1
We shall need the following simple claim.

‘ || ‘ for:z: y € RA\{0}.
(a) For any j =1,2,...,d we have

Lemma 5.1. Let W(z,y) :=

0 _3 -
O W( ) Pj(x,y)|x| 3|y| 17 T,y ERd\{0}7
J

where P; is a homogeneous polynomial of degree 2 in x and a homogeneous polyno-

mial of degree 1 in y and

(5.6) a%mx,y)\@p(xy }— (@.)| < 20@.9). s

(b) For any multi-index 3 with |3| > 1 and any G € C'8I[—=1,1] we have the
representation

(5.7 CW ()= Y G(W(x,y)Rsw(ey)lel ™ 2Py~

1<v<|B
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with
(5.8)

d
Rg,(x,y) = Z H (\x| |y|— (x,y))# Qpvu(z,y), |/B‘ <v <8,
H k=1
[u|=2v—|8]

where z,y € RN\{0}, Rs,, 1 < v < |B|, is a homogeneous polynomial of degree
|B| + v in & and a homogeneous polynomial of degree v in y, and Qg .., |B]/2 <
v < |B|, is a homogeneous polynomial of degree 3|3| — 3v in x and a homogeneous
polynomial of degree |B|—v iny. The coefficients of Rg,, and Qg .., are independent
of G and some of the polynomials (g, are identically equal to zero.

(c) For any multi-indices o, B with || = 1, |8] > 0 and any G € C1°I+1[—1,1]
we have the representation

(5.9) 9500G(W(x,y))

> GUIDW ()05 W (2, y) R o ()l ™y~
0<v</8)

+ Y GUW () [lyPoy R (w,y) — vy R, y)] |72y 772,
1<v<|8|

where z,y € RI\{0}, Roo =1, and Rp,, 1 <v < |B], are from part (b).
Proof. Clearly,

0 3 -
%W(Ly) = |2y~ qu(yj% — Y Tj)
J v#j

= |$‘73‘y|71 qu[yj(xu - yl/) - yu(xj - y])]
v#£j

and the first inequality of part (a) follows using the Cauchy-Schwarz inequality and
that |z —y| < p(z,y) for z,y € S¥~1. The second inequality of part (a) follows from
the first one by symmetry.

Part (b) follows by induction on |3|. Note that Rg, is defined recursively by
Ro,..000(®,y) =1, Rgo(x,y) =0 for |B] > 1, Rg g+1(x,y) = 0 for |[B] > 0, and
for Ja] = 1, 18] > 0

Rﬁ+a,u($v y) = (|x\3\y|(9;‘W(9c, y))Rﬁ,ufl(xa y)
+ 207 Rp(w.y) — (v + 2|B))a" R (z,y), 1<v<|B+1
Part (c) follows from part (b) by differentiating (5.7) with respect to y for |5] > 1
or trivially for |8| = 0. O

From Lemma 5.1 one easily derives localization estimates for zonal functions.

Lemma 5.2. Let K,d € N, G € CK[-1,1]. Assume that for some N > 1 and
M >0

N2y
(1 4+ N arccosu)M+v

(5.10) |G (u)| < Vue[-1,1], 0<v <K,
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where k > 0 is a constant depending on K, d, M, and N. Then for all z,y € S1
we have

YT N8
5.11 <o N7 0< 8 <K,
10 (\yIIw\>’ = "(1+ Np(y, z))M 1Bl
NIBI+1
5.12 (‘)a(‘)ﬁG <c K , Jal=1,0< <K -1,
12 (I || I)‘_ (1+ Np(y, )M o <18l <

where ¢ > 0 is a constant depending only on K and d.

Proof. For || =0 (5.10) with v = 0 coincides with (5.11) with ¢ = 1.

Let 1 < || < K. From (5.6) and (5.8) we get |Rg.,(z,y)| < cp(z,y) 18D+,
z,y € S, Using this estimate and (5.10) with u = y-x = cos p(y, x), x,y € ST~1,
in (5.7) we get

G(E) e Y 16w @)l a) 0

lyl|] S
<c > RN(1+Np(y,a) M ply,z) @ 1PD+
1<v<B]
<ec Z HN2u7(2l/*|ﬁ|)+(1+Np(y7l,))fM7V+(2V7|ﬁ|)+
1<v<|B]
< erNVI(1 + Np(y, ),
which confirms (5.11).

For the proof of (5.12) with the help of (5.6) and (5.8) we estimate the quantities
in (5.9) for z,y € S¥! as follows:

(W (2,9)) Raw (@, y)| < cpla,y) T 1D+,
(2v—18l-1)4

Y10y Ro.o () — vy* R (2, y)| < cp(x,y)
Now (5.9) implies for z,y € S41

aaaBG< )‘ <c 3 16U (y-a)lp(y, x) D
wllel) | =€, 2=
te Y 1GW (Y- a)lply, x) D
1<v<|B]
and one completes the proof of (5.12) along the lines of the proof of (5.11). O

For Ay, K N, and their partial derivatives we have the following estimates.

Proposition 5.3. For any N >1, K € N, M >0, and x,n € S* ! we have
N—K+[B]+d-1

U Nl 0= IS EEL

(513) 0% (io)]| <

N-EK+|Bl+d
14 agb Ay (L2 B —1.0<8 <K
10 0500 ()| S g e =L 0SBISK
and

NIBl+d-1

(5.15) (0K ()| < e i ey

0< |8 <K+1,
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NIBI+d
(1+ Np(n, )M’
where ¢4, c5 depend only on d, K, M, and .

(5.16) |6$,“651€N(ﬁ)\ < cs o] =1, 0< |8 < K,

Proof. Let A(t) := (—1)K/2N=K ([t + (d — 1)/N])_K/2

@(t), t € [0,00). Clearly,
k
An(u) = Z )\(N)Zk(u), A€ C™[0,00), and suppA C [1/2,2].
N/2<k<2N
It is readily seen that |[A(")||, < ¢N—X for each m > 0 with ¢ = ¢(d, m, K, p).
Then for any M > 0 by Theorem 2.1 with M + K + 1 instead of M we have
CN—K+d—1N2u

(1+ N|g)MFEFD
where ¢ = ¢(d, M, K, ). Applying Lemma 5.2 with x = ¢cN~K+T4=1 K replaced
by K 4+ 1, and (5.17) with |0] = p(n, z) we get (5.13) and (5.14).

For the localization of K we use (5.1) and the fact that [|¢("™)||o < ¢ for each

m > 0 with ¢ = ¢(d, m, ). Thus for any M > 0 by Theorem 2.1 with M replaced
by M 4+ K + 1 we obtain

(5.17) IAY (cos B)] < | <m 0<v<K+1,

) CNd*lNzV
Ky’ (cosb)] < (1 + N|o))M+E+1°

This estimate along with Lemma 5.2 with £ = ¢N¢~! and K replaced by K + 1
imply (5.15) and (5.16). O

) <m 0<v<K+1

For £ € X, j € Ny, we set N¢ := 2971, The elements of the needlet frame
U = {¢pe(x) : £ € X}, defined in (3.24), can be represented in terms of the kernels
Kn as follows:

(518)  the(w) == Covg(x), g(a) =K (§ o) = U;(¢ - 2), CF =1/
for z € ST, € € A, j € N, and the coefficients C’g satisfy

(5.19) C¢ <Ny VR e,

with ¢g = 2(1"1)/20;/2 depending only on d (cf. (2.21)).
In the following sections we assume that the needlet frame ¥ is fixed; the de-
pendence of some of the constants on ¢ will not be indicated explicitly.

5.2. Highly localized kernels in terms of shifts of the Newtonian kernel.
As already explained in the introduction our tool for approximation of harmonic
functions on the ball will consist of linear combinations of shifts of the Newtonian
kernel:

1 1
T3 ndimension d>2 or In— if d=2,
|z| ||

just as in (1.1). The poor localization of the Newtonian kernel, however, creates
problems. Its directional derivatives achieve much better localization and are well
approximated by finite differences. However, as explained in [16] they do not have
either the right localization in the sense of (2.5) or L!(S%~1) normalization.

We next invoke Theorem 3.1 from [16] to show (see Corollary 5.5 below) the
existence of highly localized summability kernels that are linear combinations of
finitely many directional derivatives of the Newtonian kernel. Consequently, they
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will be arbitrarily well approximated by linear combinations of a fixed number of

shifts of the Newtonian kernel.

Theorem 5.4 (Theorem 3.1 in [16]). Letd > 2, M >d—2, and 0 < e < 1. Set
a:=14+¢,8:=1—a"2, and

(5.20) m:=[(M-d+2)/2].

Consider the function

(5.21) Fo(u) == a? + 1 = 2au)~ 421" we[-1,1].

The function F. has the properties

(5.22) Fo(z-n) = Ha —an|~ 272 va,ne S,
He—d+1

(5.23) 0< Fe(z-m) < (14—5171!7(33’77))]\/[ Vo, n € ST

and

(5.24) Fe(z-n)do(z) > >0 vpesi,

gd—1

where 0?&70;2@& > 0 are constants depending only on m and d. Furthermore, there
exist real numbers by, by, ..., b, depending only on €, m, and d such that for every
n € S the function F.(x-n) is the restriction on S*=' of the harmonic function
Feom defined on R\ {an} by

(5.25) Feml(an, x) = Z be(n-V)lz —an** ifd>3,
£=0
or
(5.26) Fem(an,z) :=by+ > be(n-V)'In e ifd=2.
=1

We define the univariate function
(5.27) F.(u) == “e,m,d]:e?(u)a u € [-1,1],
where F; is defined in (5.21) and

(5.28) Kem.d ‘= ( Fe(z-m) da(x)) B v e S?71

Sd—1

Note that ke q is independent of  and (5.24) implies
ema <1/cf V0O<e<1.
Given 7 € S we extend F.(n - z) just as Kx(n-x) in (5.4) by

(5.29) F.(n;z) = FE(%), z € RN\{0}.

In this case (2.3) takes the form
(5.30) AF.(n;z) = AgF.(n-z), zeS L

We use F. to bound the derivatives of Fy(1 - z) for z € S 1,
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Corollary 5.5. Letd > 2, M >d—2, K € N. Let 0 < e <1, and let F be defined
by (5.27)—(5.28). Then for all z,n € S*~! we have

(531) Fe(n . :E) = ne,m,dge,m(anu :E)a
(5.32) /Sd_1 F.(n-y)do(y) =1,
9 I (TP K
5.33 (1 < , 0 <2 1,
(5:83) (07 F(ms2)| < ca (1+etp(n,2)M 7 ’
—1)\/3\+d

(5.34) \aaaﬁF( T )y_ jal =1, 0 < || < 2K,

(1 +6 Lp(n, )M
where F. is defined by (5.29) and cg depends only on d, K, M.

Proof. Identity (5.31) follows from (5.27) and the second part of Theorem 5.4, while
(5.32) follows from (5.27) and (5.28). From (5.27) and (5.21) it follows that for any
v e Ny
v—1
FY(u) = ke maa’e®™ (o + 1 = 2au)~ > TT(2m + d — 2+ 2k).
k=0
On the other hand, using that a = 1 + ¢ it is easy to show that
2 _ 1/2
1 < (a* + 1 —2au) <9
5~ g(1+etarccosu) —
see the proof of inequalities (3.7) in [16]. The above, (5.20), and (5.24) yield
ce —(2v+d-1) CE_(2V+d_1)

, we[-1,1];

FW) < ,
| ()l < (1 + e~ larccosu)d=2+2m+2v = (1 4+ ¢=1 arccosu)M+v
with ¢ depending on d, m, and v. In turn, this estimate and Lemma 5.2 with
G =F., N =¢"' r=cNL and K replaced by 2K + 1 imply (5.33) and
(5.34). a

Note that the extension F.(n;z) of F.(n - x) from (5.29) is different from its
harmonic extension ke m aFem(an, ) given in (5.31) of the form (5.25)-(5.26).

6. FRAMES IN TERMS OF SHIFTS OF THE NEWTONIAN KERNEL

We now come to the most technical part of our development—the construction
of a frame whose elements are finite lineal combinations of shifts of the Newtonian
kernel. We shall carry out this construction in several steps.

6.1. The main technical step in the construction of the new frame on S%~!.
We now focus on the construction of highly localized frame elements {§, : £ € X'}
of the form

(6.1) Z‘x_ N if d>2,

or

(6.2) Z ay ln | if d=2.
vy
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Here y, € R? with |y,| > 1, a, € R, and {y,}"_; and {a,}?_; may vary with
& e X, but n is fixed.

Assume that U = {p¢ : £ € X}, X = (J;5 A), is the existing frame, described
in Section 3.5. For the construction of the new frame elements {f¢} we utilize the
small perturbation method, described in Section 4. In applying this scheme the
main step is to construct frame elements ¢, £ € X, of the form (6.1)-(6.2) so that

(63) |<¢n_9m¢£>\ S’Ywa,’r]a gane X?
and
(d—1)/2
YN, _
(6.4) e () — e ()] < : rest e

(1 + Nep(z, )M’
Here Ng = 297! for € € Xj, 79 > 0 is a small parameter, wg, are the entries

of an almost diagonal matrix like wgf]’M) from (4.21), and M > 0 is sufficiently
large. The result of this construction will be a frame {6¢}scx for the Besov and
Triebel-Lizorkin spaces of interest.

It will be convenient to us to approximate the essentially L!-normalized frame
elements ¢¢(z) := Ky, (€ - z) defined in (5.18) by essentially L'-normalized new
frame elements ¢¢. Then multiplication by constants C¢ (see (5.18)) will complete
the construction of L2-normalized frame elements.

The construction of the new frame elements 6¢ will be carried out in four steps:

(a) Approximation of Ky, (§ - x), { € &, by convolving Ky, with the kernel
F.(y- ) from (5.31).

(b) Discretization of the convolutions by using the cubature formula from (2.19).

(¢) Truncation of the resulting sums.

(d) Approximation of the truncated sums by discrete versions of the operators
involved.

These approximation steps will be governed by four small parameters (con-
stants): v1, v2, 3, 74 > 0. The relations between these parameters and all involved
constants will be carefully traced.

We next introduce some convenient notation and set up the approximation steps
described above. For the only index ¢ € Xy we set O¢(x) := ¢)¢(x) = 1. In the
remaining part of this subsection we consider £ € X' \ Xy = U;’il X;.

Given 0 < 71 <1 (to be selected), we set

(6.5) €=y /Ne
and define
(6.6) g(&x) = /S_ An (& y)Fe(y- o) do(y), zeST,

where Ay, is defined in (5.2), F.(y - z) is the kernel from (5.31) with ¢ from (6.5),
and m from (5.20).

Given 0 < 72 < 71 (to be selected), we let Z; C S?! be a fixed maximal §-
net with 0 := 12277 and let {A¢}cez, be the associated partition of S9! (see
Section 2.3). Applying cubature formula (2.19) with nodes ( € Z; and weights
we = |A¢| to (6.6) we arrive at

(6.7) 02(&2) = Y wAn (6 OF:(C-x), weSTh

CEZ;
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Observe that there is no connection between the nodal sets X; and Z; (j € N).
In particular, the cubature Z<€Zj we f(¢) from (2.19) has to be exact only for

constants, while the cubature 3. x, Wef (&) from (2.22) is required to be exact for

all spherical harmonics of degree < 2711,
Given 0 < 73 < 1 (to be determined), we truncate the sum in (6.7) by including
only the nodes within distance r¢ := (73N¢) ™! from £ to obtain

(6.8) g3(&m) = Y weAn (§-QF:(¢-x), weSTh
p(éé)zéré

The functions g1(&;x), g2(&;x), and g3(&; x) should be viewed as consecutive ap-
proximations of Ay, (£ - ).

We obtain consecutive approximations to K, (£ - ) by applying Aé( /% 46 each
of the functions ¢1, go, g3 in (6.6), (6.7), and (6.8). We set

(6.9) (&) = Ag "o (&2) = A7 /S A )Py - €) do(y)

:/ AL An, (2 - y)Fe(y - €) doly / Kne(z-y)Fe(y - §) do(y),
Sd—l

(6.10)  ha(&2) = AgPga(&a) = D weln, (€ OAFPE(C - ),

CEZ;

(6.11) ha(2) = A Pgs(€a) = Y weAn (€ QAT PR(C - ).
p(éi)zéré

Above in (6.9) we first used the commutativity of the inner product of zonal func-
tions (2.29) in the definition of g; followed by (5.3) in the last equality.

Observe that h3(&; x) is a linear combination of finitely many (independent of &)
terms of the form

AYPF(C 2) = ena Dby 2(C- V) z — a2~ ifd > 3;
=0
see (5.25), (5.28), and (5.31). We have a similar representation of h3(&; x) in dimen-
sion d = 2. Replacing the differential operator A(I){m (¢ - V)" in (6.11) by its discrete

counterpart StK/ QQf (¢) with an appropriate small ¢ = t; > 0 (to be specified) we
arrive at the following definition of 0g, £ € &}, j € N, in dimension d > 3:

(612)  02(2) = Fema Y. weAne (€O Dbl D (O)lx — ag]*

CEZ; =0
p(C,6)<r¢
If d = 2 we set
1
(6.13) 02(x) = Kemz Y. weln (€-C) Zb e ?o) (g)1n| —
CeZ; =1 r—a
p(6,€)<r¢
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Several remarks are in order:

(1) The finite difference operator D¢(¢) := ¢t=* Zizo(—l)g’k(ﬁ)T(g, kt) is de-
fined by the translation operator (in R?) in direction ¢ € S9~! with step ¢
given by T(c,t)f(z) = f(z + ts) for z € R

(2) Following [8, p. 23 or (4.2.1) on p. 81] the rotation Q12 € SO(d) is given
by

Q1,2,6S = Q1,2,¢(S1,2, - - -,5a)
= (g1 cost + ¢osint, —¢p sint + ¢ cost,3,...,64), S E sé-1,

and Q;¢+S is defined similarly for any 1 < 7 < ¢ < d. The translation
operator corresponding to the rotation @Q; ¢, 1 < ¢ < ¢ < d, is given by

T(Qiea) f(s) = f(Qi4,5) = f(Qi,—15).

The operator

Sf(6) =t Y (T(Qint) + T(Qie,—t) — 2 f (<),

1<i<e<d

where I stands for the identity, approximates well Aqf(s) for small ¢; the
powers of £; are defined as usual by £F := £,(£F1).

(3) The numbers a, , m, and by, ¢ = 0,1, ..., m, are determined in Theorem 5.4
as functions of ¢ from (6.5) and M.

‘We now come to the first main assertion in this section.

Theorem 6.1. Letd>2, K € 2N, M > K +d—1, and vy > 0. Then there exist
constants y1, Y2, v3, va > 0 depending only on d, K, M,~y, and for every j € N
there exists t; > 0 depending only on d, K, M,~o, and j such that for every § € X
the element 02 from (6.12) or (6.13) obeys

(6.14) |07 [¥¢(x) — B (x)]| < Vo es? 0< |8 < K,

©15) | [0 )~ )] do(w)] < 0N 0 < B < K -1

Here 63 (x) = 0¢(z/|z]), z € R\ {0}, and y¢(z) := K, (& 7); see (5.4), (5.18).

The proof of Theorem 6.1 relies on four lemmas, which establish estimates similar
to estimates (6.14) and (6.15) for the differences 1g — h1(&;-), h1(&;+) — (&5,
ha(&;) — hs(&;+), and hs(&;-) — 0¢. The values of the parameters v1, 72, 73, V4,
used in these four lemmas will be selected in the proof of Theorem 6.1 (see (6.35)).

In light of the last integral in (6.9) we define

o) = [ xRy € dofy). a € R\ {0}

where léNE (y; x) is defined in (5.4) and ¢ is from (6.5).

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



3150 K. G. IVANOV AND P. PETRUSHEV

Lemma 6.2. Let{ € Xj, jeN, K €2N, and M > K+d—1. If0 <y <1, ¢ is
from (6.5) and F; is from (5.27), then:
(a) For any B, 0 < |B| < K,

N|B|+d—1

(6.16) ‘85 [I&N5 (&x) — ﬁl(ﬁ;x)ﬂ < c10 i —ZlNggp(ﬁ,fE))M Vo € S

(b) FO’I”CLTLyﬁ,OS|ﬁ|SK—1,

(617) | [0 ol 9) = (€] dota)] < enm N ™,
where c19 depends only on d, K, M.

Proof. Let 0 < |8| < K. We apply Proposition 2.4 with ¢g(y) = 85161\;{ (y;2), z1 ==,
Ny = Ng, k1 = C5N§W on account of (5.16), and with f(y) = F.(£ - y), 2 = &,
Ny = 1/e, € = 71 /Ng, ko2 = cg on account of (5.33) with § = 0. Observe that
Ny = N¢/~ > Ni. Hence, because of (5.32), inequality (2.36) implies
,le§|/3|+d—1
(1+ Nep(€, )M’
For the proof of (6.17) we apply Proposition 2.4 with 1 = §, N1 = Ng, g(y) =
AN (§5y), k1 = C4N§_K in view of (5.13) with || = 1, f(y) = F.(z - y) with any
fixed z € ST1, Ny = 1/e, ¢ = 41/N¢, ko = cg in view of (5.33) with 3 = 0.
Consequently, because of (5.32), inequality (2.36) implies
71N5_K+d_1
1+ Nep(8, )M’

with ¢11 1= cacqcs. Now, for 0 < || < K — 1 we apply consecutively (5.3), (6.9),
the fact that the operator Ag is symmetric, (6.19) with y in place of z, (2.6), and
(2.8) to obtain

(6.18) |3fivzl(§;x) - 85/6N5(£;x)| < caesc8 r e St

z e St

(6.19) An.(&-2) — g1 (&2)| < 011(

020) | [ 0" onele ) = m(esn)] dot)
| [ 7aE Al ) - )] dot)

= ‘/Sd*l [An (€ y) —91(& )] A(I)(/zyﬁda(y)‘ < encocen N X

Finally, (6.18) and (6.20) imply (6.16) and (6.17) with ¢19 := max{cacscs, c11¢0¢6}-
The proof is complete. |

The first integral in (6.9), (2.29), and identity (5.30) give another representation
of hy(&; ), namely,

©2)  hi60)= [ A€ pAR R o), o€ R (o),
Sd—1
with F.(y;z) defined in (5.29). Using (6.10) and (5.30) we also set for £ € X;

(6.22) ho(&w) i= Y weln (§- QOARPF(¢Gx), xR\ {0}
CEZ;
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Lemma 6.3. Assume € X;, jeN, K € 2N, M > K+d—1, and let 11, €, F;
be as in Lemma 6.2. If 0 < vy < 1 and E. is from (5.29), then:
(a) For any B, 0 < |B] < K,

N\ﬁ\+d—1

(6.23) |07 [ha(&2) — ha(& 2)]| < ca072r1 2 e ]f,gp(m))M Vo € s

(b) FOT‘(Z’ﬂy/B,OSMﬂSK—l,

(6.24) ‘/SH v’ [h(&y) = ha(&y)] do(y)| < camayy 2N K
where cog depends only on d, K, M.

Proof. Let 0 < || < K. From (6.21) and (6.22) we get

(6.25) |07 [ (&) = ha(é52)]|

| [ Avele- 00" AP (ia)doty) = 3 wehne(€- 0 ARG o)

Cez;

o /Sd_l[ANs (- 9)OP AR E (ys2) — A (€ Cw)) O ARPELC(y)s )] do(y)|

/SH AN (& y) [0 AP E (y;2) — 3BAK/2FE(C(y);w)]dU(y)‘

+| /S [Ane (€ ) = Ane (€ - CW)]OPARPE(C(y): 0)do(y) |,

where ((y) is defined in Section 2.3. Let n = n(s), s € [0,p], p = p(y,((y)), be the

geodesic line on S9~! such that 7(0) = y and 7(p) = ((y). Then
. . x
P AR (y;) — O° AR EL(C(y); / v, 00 AK/2F, (|7Z’||x|) . -1 (s) ds.
n=n(s

Using in the above representation (5.34), (2.7), p(y,((y)) < 'ygNgl, vo < v <1,
we get

72]\75—167(K+\5\+d)

(I+e 1oy, z)M
—(K+|/3|+1)Ng<+\/3\57d+1

Y271
(L+etp(y,z))M ’

(0P AR E (y;2) — 0P AKPPEL(C(y); )| < e

z,y €St

= C21

Applying Proposition 2.5 with g(y) = An, (§-7), N1 = Ng, k1 = C4N§_K (because of
(5.13) with 8 = 0), f(y) = O°AK2F(y;2) — DPAKI2E(((y); 2), Na = 1/e > Ny,

K+|8] (

and K2 = 21727 —2K - 1N using the above estimate) we get

‘ /Sdi1 Ane(§-y) [85AK/2FE(y;I) — 85AK/2F’E(C(y); x)}da(y)‘

d—1
N9 —2K— 1N|ﬁ|+

d—1
NG "5

< c3eq021

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



3152 K. G. IVANOV AND P. PETRUSHEV

Similarly, using (5.14) and (5.33) we obtain

[, el ) = Ae(€ - CoMJO AR RCu)sa)doty)

Yoy 2KN|ﬁI+d 1

< 2 L Nl )T

Substituting the above two estimates in (6.25) we get (6.23) with cog > ca3 =
C22 + C3C4C21.

For the proof of (6.24) we repeat the arguments applied for the proof of (6.23)
and get

zesSit.

Yoy 1N K+d-1

(6.26) 91(& %) — g2(§5 )| < 4 +ng(§7 x))M

Now, for 0 < |B| < K — 1 we apply consecutively (6.9), (6.10), the fact that the
operator A is symmetric, (6.26), (2.6), and (2.8) to obtain

’ /Sdfl Y’ (& y) — ha(&y)]do(y)

=| [ A 6w -~ misn)dot)

= ‘/ n(&y) &9 A Py do(y )‘ < cococar2y TN,

which yields (6.24) with cog = max{ca3, cocgca4} in view of 1 < 1. O

The estimates on ha(&;-) — hs(§;-) are given in the following lemma, where
ho(&; ) is as in Lemma 6.3 and for £ € X; we set

ha(Go) = > weln (& QARKPE(G ).
CEZ;:p(C,€)<re

v

Lemma 6.4. Let £ € X;, j € N, K € 2N, M>K+d—1 and let v1, ve, €, F. be
as in Lemma 6.3. If 0 < v3 <1 and r¢ = (y3Ne) ™!, then:
(a) For any B, 0 < |B| < K, we have

N|ﬁ|+d71

©27) |9 [hales )~ ho(&s ]| < csorirt ™ a8

(b) For any 8, 0 <|B] < K — 1, we have

028) | [, 9 lalén) ~ ma(gsul dota)] < cannt N,
where c3g depends only on d, K, M.

Proof. Let § € Xj. Set Ay, (u) := An, (u)L(r¢,7(w). Then for 0 < [B] < K we get
from (6.10) and (6.11)

07 [ha(&w) — ha(§2)] = Y weAy, (& QO ARPE(¢x)
CEZ;
(6.29) - /S A€ C)P AR ) )do(y),
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where ((y) is defined in Section 2.3. For Ay, (£ - z) estimate (5.13) with 8 = 0 and
M replaced by M + 1 yields
N{K-‘rd_l
An (€ 2)| < ¢ ' St
Aaele Dl < Ay 7€
This estimate and the inequality (1 + Nep(&,2)) M7t < 45(1 + Nep(&, )M, if
p(gax) > Te, yleld

’}/3N£_K+d_1
Ay (€ x)| < ¢ : , xeSi
A% (&)l < iR g T
and hence
—K+d-1
. 73N, _
(6.30) A% (€ Cw))| < ean : yesi,

(14 Nep(§, )M

with e3; = 2M ¢} on account of p(y,((y)) < ’YgNgl < Ngl and (2.7). Using (2.7)
again we get from (5.33)

e~ (K+|B|+d—1)
(e Lp(y, o)
with c39 cs. We now apply Proposition 2.5 to the integral in (6.29) with
xr1 = Ea g(y) = A?\Q(é— : C(y))a N1 = N§7 R1 = 03173N5_K from (630)7 T2 = T,
fly) = OPAKI2E(C(y);x), e = m/Ne, No = 1/e > Ny, kg = cao(e™ 1)K+l from
(631), and get (627) with C30 Z C3C31C32.

For the proof of (6.28) we repeat the argument from the proof of (6.27) and get

(6.32) |g2(&;2) — g3(& )
V3NgK+d71

=| /S Al CONE) 0o )] < e R

Now, for 0 < |8] < K — 1 we apply consecutively (6.10), (6.11), the fact that the
operator A is symmetric, (6.32), (2.6), and (2.8) to obtain

‘ /Sd—l yﬁ [ha(&y) — ha(&5 )] do(y)

(6.31) 0P AR EL(C(y)i )| < e

— oM jK/2

| [ A (6w - sa(Edoto)]

= ‘/SH [92(&59) — 93(&y))] Af){/zyﬁdo(y)’ < eocecazrsNT K,

which yields (6.28) with c3g > cocecss because of v; < 1. Finally, we set c3g :=
max{03031032, 0006633}. [l

Lemma 6.5. Assume{ € X;, j €N, K € 2N, M > K +d—1, and let v1, 72, 3,
€, Te, hs be as in Lemma 6.4. Let ég(x) be defined by (6.12) if d > 3 or by (6.13)

if d = 2 with x/|z| in the place of x. Then for any va > 0 there exists t; > 0 such
that

(6.33)  |0°[ha(& ) — B2(2)]| < Ve e ST 0< |8 < K,
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030 | [ 07 [alin) — 0200 dotu) < NV 0 1B < K -1

Proof. Inequalities (6.33) and (6.34) follow from (6.11)—(6.13) by approximating

the operator Agﬂ (¢-V)™ by 25/233;"(0 as t — 0 and the infinite smoothness of
|(1+¢)¢ — x|74"2 and log 1/|(1 + €)¢ — z| on the compact S 1. O

Proof of Theorem 6.1. This proof follows at once by Lemmas 6.2, 6.3, 6.4, and 6.5
with the following selection of parameters:

(635 1= min{io/(ew). 1}, g = mindyerd T (en) kg
v3 1= min{y077" /(4c30),1}, 74 = Y0/4.

6.2. Completion of the construction of new frames on S%"!. We use the
scheme from Section 4 to complete the construction of a pair of dual frames {6¢ }ecx,
{ég}ge x on S9! where each frame element 0 is a linear combination of a fixed
number of shifts of the Newtonian kernel.

Following the definition ¢ () := Cg1p¢(z) of the elements of old frame ¥ given
in (5.18), we similarly construct the elements

Oc(x) = CgO: (), §€dj j=1,
of the new frame © = {f¢}ccx. In light of (6.12) and (6.13) we have for j > 1

(6.36) Oc(2) = C¢hema D welne (€)Y 0ol * DL Oz —all*~?, d >3,

CEZ; =0
p(C,€)<re
= 1
(637) Oe(x) = Clhema Y. wehn (60D bt *Df (()In Tl d=2.
CEZ; =1

p(C,6)<re

The only frame element excluded from this definition is the constant function cor-
responding to £ € Xp. For £ € Xy we set O (x) := pe(z) = 1, 2 € STL.

In Theorem 6.7 below we collect some important properties of the new frame ©.
Its proof is based on Theorem 6.1 and the following lemma.

Lemma 6.6. Letne X, K € 2N, and M > K +d — 1.
(a) For any B, 0 < |B| < K, we have

52 Nl,ﬁ\-‘rd—l it
6.38 Ky ()] < Ve e §41,
(6.58) 9w, (50| < o TN S
with léNn (n;x) given by (5.4).
(b) For any §, 0 <|8] < K — 1, we have
(6.39) ’ /Sdi1 yﬁICNn (n-y)do(y)| < C40N,;K.

Proof. For n € Xy we have léNT7 (n;x) = 1/wg, N, = 271, and inequalities (6.38),
(6.39) are trivial.

Let n € X\Xy. Inequality (5.15) with N = N,, yields (6.38) with c49 > ¢5. For
any multi-index 3, 0 < |8 < K — 1, we get from (5.3), the fact that the operator
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Ag is symmetric, (5.13) with 8 =0 and N = N,, (2.6), and (2.8) that
K/2
‘/SH v’ K, (n- y)da(y)’ = ‘/SM YAy Ay, (- y)da(y)‘

/d A, (- y)Aé(/Qyﬁda(y)‘ < cocgeaN,
i

which proves the lemma with ¢49 := max{cs, cocges }- a

Theorem 6.7. Letd > 2, K € 2N, M > K+d—1, and 0 < vy < 1. Then there

exist constants y1, Y2, V3, Ya > 0 depending only on d, K, M,~y, and for every

§ € X;, j €N, there exists t; > 0 depending only on d, K, M, vy, and j such that:
(a) The new frame © = {0¢}¢ € X is real-valued and satisfies

NP2
(1 + Nep(€, )M
(6.41) | (b — O | < cazyowiy ™ V€€ X,
with c41 = max{2(d_1)/2(1 +7/2)M co(cao +70)}, Caz = c1c40CE.

(b) Every frame element 8¢, £ € X\Xy, is a linear combination of at most 1
. (4K+3)(1—d)

(6.40)  [07¢ ()| < en Vz e S VE € X VB, 0< |8l < K,

shifts of Newtonian kernels, where 7 < ca37, with cy3 depending only on
d, K, M.

(¢) Moreover, if
(6.42) P

. (IS 4642’

where cqz is from (6.41) and ¢5 is from (3.26), then

_ - d—1
(643) ||9§HLP(Sd*1) ~ Ng(d na/2 1/p)7 7 <p < 00, Vé- € X7

with uniformly bounded constants of equivalence for p > d_—Alf‘s, 4> 0.

Proof. For £ € Xy we have ¢ = 1, N = 27! and (6.40) is satisfied with cq; >
2(d=1/2(1 4 7 /2)M . Also ¢ — 0 = 0 and inequality (6.41) is obvious for all n € X.

Let £ € X\AXp. Then (6.14), (6.38) with £ in the place of 1, and (5.19) imply
(640) with C41 > 09(040 + ’}/0)

For the proof of (6.41) first assume that N > N,. We apply Proposition 2.3
with g = ¢y = Coyp, o1 =, f = e — b0 = CZ(Yg — 62), 12 = £ Lemma 6.6
implies that (2.30) is satisfied with Ny = N, k1 = c40C};, and Theorem 6.1 implies
that (2.31), (2.32) are satisfied with Ny = N¢, k2 = 7C¢. Now, (2.33) and (5.19)
give

—1

_d-1 _d
cCoNy 7 9CoN, 2 (N, /Ne) Ny~ < (K, M)
> Cq27 oW )
L+ Nopl& )™ &n
with cy2 := c1eq9c2, which establishes (6.41) in this case.
Second, assume that N¢ < N,,. Here, we apply Proposition 2.3 with g = 1¢ — ¢,

f = 1y, and then (6.41) follows similarly as above. This completes the proof of (a).
The number of ¢ € Z; in (6.36) (or (6.37)) can be estimated as follows. From

U A¢ C B(&§ e +72/Ne)
CeZ;5:p(¢,€)<re

[(Yn e = Oe) [ <
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we find that the total volume covered by A, does not exceed (vt + Y2)/Ne)* 1.
From this estimate and (2.20) with v = 72 we get that the number of ( € Z; in
(6.36) is at most c(y572)' ¢ = caur TP in light of (6.35).

Clearly, the number of translation terms in 25/2 is at most (d(d—1)/2)%/2 4 1.
The number of translation terms in ’ij (¢)is€+1,£=0,1,...,m, and every such
term is also a term for ’D?}(C) This leads to the estimate i < 043764K+3)(17d) with

a3 = caa[(d(d —1)/2)%/2 £ 1](m +1) for the number of shifts of Newtonian kernels
used in (6.36) or in (6.37). Thus, the proof of (b) is complete.
We now establish (¢). Inequality (6.40) with |8| = 0 along with (2.6) imply

(6.44) 10cll e < cg/Pea NG 2P
with ¢o = ¢(d) /6.

To prove the estimate in the other direction:
(6.45) 16 Le > cas NS~DA/2HP)
we first consider the case p = 2. From

(0, 0c) = (e, Ye) — 2(e, e — Og) 4 (Ve — Oc,1be — b¢),
(3.26), (6.41), and (6.42), we get

(B, 0c) > (e, ) — 2/ (e, e — Oc)| > & — 2y0canwle ™ > /2,

due to wég’M) =1 (see (4.21)). This gives (6.45) for p = 2 with c45 = é5/v/2.
Now, consider the case p < 2. Using (6.45) with p = 2 and (6.44) with p = oo
we obtain

2—p
~ 2— d—1)/2
&/2 < 10cl3e < 10152 10el150 < (caNETD2) 7 10,

which proves (6.45) for p < 2 with ¢q5 = (& 262 /2)/P.
Finally, consider the case 2 < p < oco. Using Holder’s inequality, (6.45) with
p=2, and (6.44) with 1 < p’ < 2, we obtain

~ 1/p’ d—1)(1/2—1/p’
2/2 < 01> < 10ell o 19ell e < e car NSV g

which proves (6.45) for p > 2 with c45 = cal+1/ch1155/2. This proves (6.45) for all

p and completes the proof of the theorem. O

Remark 6.8. All poles of the Newtonian kernels in (6.36) and in (6.37) are placed
on m + 1 concentric spheres of radii 1 + 'legl + ktj, k=0,1,...,m. On every
such sphere the poles are located in the spherical cap of radius (y3Ng) ™t +¢;K/2
centered at (1 + 'leE_I + kt;)E .

Our next step is to show that the above defined system © coupled with the
dual system © = {f¢}ccx constructed by the scheme from Section 4.2 form a
pair of frames for all Besov and Triebel-Lizorkin spaces B;9, F;9 with parameters

(s,p,q) € Q(A) for a fixed A > 1 with Q(A) defined in (1.3).

Theorem 6.9. Assume d > 2, A > 1, and let © = {0¢}ecx be the real-valued
system constructed in (6.36) or (6.37), where

(6.46) K >[Ad],K €2N, M=K +d.
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If the constant vy in the construction of {0¢}ecx is sufficiently small, namely,

(6.47) Y <

cs2Cy’
where € is from (4.6), cao is from (6.41), and Cy is from Theorem 4.6, then:

(a) The synthesis operator Ty defined by Tyh := dex hebe on sequences of
complex numbers h = {h¢}ecx is bounded as a map Ty : by — By?, uniformly with

respect to (s,p,q) € Q(A).
(b) The operator

(6.48) Tf:=" (f,ve)0c = ToSyf
fex

is invertible on By? and T, T~ are bounded on B, uniformly with respect to

(s,p,q) € Q(A). o
(c) For (s,p,q) € Q(A) the dual system © = {0 }ecx consists of bounded linear
functionals on By? defined by

(6.49) Oc(f) = (f,0¢) =Y (T~ ", o) (f,1by)  for f € By,
nex
with the series converging absolutely. Also, the analysis operator
S@' : B;q — b;q, 59* = SwT_lTwS¢ = SwT_l,

is uniformly bounded with respect to (s,p,q) € Q(A). Moreover, {0¢}ecx, {0e}ecx
form a pair of dual frames for B, in the following sense: for any f € Bp?

(6.50) F=Y (£,606¢ and | fllsze ~ I{{f. 06} loze,

cex

where the convergence is unconditional in B37.
Furthermore, (a), (b), and (c) hold true when By, b3? are replaced by F39, 1,
respectively.

Proof. The parameters K and M from (6.46) satisfy (4.22) with § = 1 for all
(s,p,q) € Q(A) and we can apply Theorem 4.6. From estimate (6.41) in Theo-
rem 6.7, Lemma 4.5, and Theorem 4.6 we obtain that {6¢ }ecx satisfies (4.6) due to
Yoc42C9 < €. Also, all conditions on the old frame laid in Section 4.1 are satisfied
as shown in Section 4.3. Now, we apply Lemma 4.1 and Lemma 4.2 to get (a) and
(b). Finally, Theorem 4.4 implies (c). O

6.3. Frames on B? in terms of shifts of the Newtonian kernel. Note that
by the fact that each frame element ¢, £ € X, is represented as a finite linear
combination of shifts of the Newtonian kernel it readily follows that ¢ (z) defined in
(6.36) or (6.37) as a function of x € B¢ is harmonic on BY. This leads immediately
to the conclusion that {f¢ }ecx, {fe }ec is a pair of dual frames for harmonic Besov
and Triebel-Lizorkin spaces in the sense of the following.

Theorem 6.10. Under the hypothesis of Theorem 6.9 let {0¢ }ecx, {0¢ }eex be the
frames from Theorem 6.9. Then for any (s,p,q) € Q(A) and U € By4(H)

(651)  Ulw) =Y (fv,0e)0e(x), x € B, and [[U] gz ~ [{(fur, 0c)}
fex

sq,
bl’
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Here fy is the boundary value of U (see Proposition 3.3) and the series converges
uniformly on every compact subset of B. Furthermore, the above holds true when
ByA(3), byt are replaced by F;9(3), §39, respectively.

This theorem follows immediately by Theorems 6.9, 3.4, and 3.5.

7. NONLINEAR APPROXIMATION FROM SHIFTS OF THE NEWTONIAN KERNEL

The primary goal of this article is to establish a Jackson type estimate for nonlin-
ear n-term approximation of harmonic functions on B? from shifts of the Newtonian
kernel in the harmonic Hardy space HP(B?). For any n > 1 write

ay

(7.1) Ny, == {G :G(x) =ao+ Z T

|d72’ |yl/| > 1,0/1/ (S (C} if d > 2,
Yv

and
(72) N, = {G:G(;v) —ap+ :a,,lnﬁ, vl > 1, a, ec} if d = 2.
T — Yy
v=1

Observe that the points {y, } above may vary with G and hence N,, is nonlinear.
Let B be one of the spaces H?(B?), BY(H), or FU(H), 0 < p,q < oo. Given
U € B we define
. E, = inf — .
(73) (U)n = nt U~ Gllw
We call E,(U)x the best nonlinear n-term approximation of U from shifts of the

Newtonian kernel in the harmonic space B.
We now come to the main result in this article.

Theorem 7.1. Let s >0,0<p<oo, and 1/7 =s/(d—1)+1/p. IfU € B:"(H),
then U € HP(B?) and

(7.4) En(U)gc(pay < en™ /DU gor (90, n>1,
where the constant ¢ > 0 depends only on p, s, d.

Theorem 7.1 is an immediate consequence of Theorem 7.9 below with ¢ = 2 and
Theorem 3.7.

Our approach to approximating a harmonic function U on B? amounts to first
establishing a Jackson estimate for nonlinear n-term approximation of its boundary
value function fr; on S¢=1 from the frame elements {6 }¢cx constructed in Section 6
and then considering the harmonic extension to B? of the approximant. The gist
of our approximation method is that each frame element 6, is a linear combination
of a fixed number of shifts of the Newtonian kernel.

7.1. Nonlinear n-term frame approximation on S%!. Let {0¢}ecx be the
frame constructed in Section 6 with parameters to be specified. Denote by 3, the
set of all functions g on S¥~1 of the form

g = Z (15957 ag € C,
§EYy
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where Y,, C X is an index set such that #Y,, < n. Define
7.5 - = inf — ,
(75) 7a(f)w = it f = gl

where B is one of the spaces LP(S?71), BY(S?~1), or F9(S41), 0 < p,q < oc.

As one can expect the smoothness spaces on S ! governing this kind of ap-
proximation should be the Besov spaces B57(S?!) with s and 7 as in Theorem 7.1.
For this to be true, however, {0¢}¢c v, {55 }eex have to provide frame decomposition
of all spaces involved just as in Theorem 6.9.

Assumptions. The construction of the frames {f¢}ecx, {fe }ecr in Section 6 de-
pends on the parameters A, K, M, and 9. The main parameter is A. In light of
Theorems 6.7 and 6.9 we require that

0<s<A A'<p<A A'<g<oo, A'<s/(d-—1)+1/p< A, A>T,
which reduces to the following principle conditions:

(76) 0<s<A 0<p<A A'<g<oo, s/(d-1)+1/p<A, A>1.
The parameters K, M are secondary and are defined as

(7.7) K:—Z{%—‘, M :=K +d.

Further, 79 > 0 is a “small” parameter and using the notation from Theorems 6.7
and 6.9 we fix it as

. € 5%
(7.8) Yo := min { cCs Iony } .
It is easy to see that 7y depends only on A, d, and the “old” frame {t¢}ecu,
described in Section 3.5.

Conditions (7.6) can be viewed in two ways:

(a) Given A > 1 consider (7.6) as conditions on s,p,q.

(b) Given s, p, q consider (7.6) as conditions on A. For Theorem 7.1 we take A
to be the smallest number satisfying (7.6).

Either way conditions (7.6) coupled with (7.7)—(7.8) imply that the hypotheses
of Theorems 6.7 and 6.9 are obeyed and hence the conclusions of these theorems
are valid for the frames {f¢}ecx, {f¢}ecr and the spaces BY(S41), FRa(se,
and B27(S41).

Although we are mainly interested in approximation of functions in the harmonic
Hardy space HP(B?) or their boundary values in F5?(S?~1), to put it in perspective
we shall examine the approximation process at hand in the slightly more general
spaces ng(Sd_l) and B4 (Se-1).

7.1.1. Nonlinear n-term frame approzimation in Triebel-Lizorkin spaces on S*1.

Theorem 7.2. Assume A > 1 and let the parameters K, M, and -y be defined as
in (7.7)~(7.8). Lets >0,0<p,q < o0, and1l/T =s/(d—1)+1/p, and assume that
s,p,q satisfy conditions (7.6). If f € BS™(S*™1) = FE7(S41), then f € FJU(S*1)
and with the notation from (7.5)

(7.9) Un(f)]:gtqsdfl) < Cnis/(dil)||f||BjT(Sd*1)’ n2>1,

where the constant ¢ > 0 depends only on A,d.
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The proof of this theorem depends on the following simple lemma.

Lemma 7.3. For any 0 < p < oo and any finite subset Y of X we have

(7.10) | S 1B 71| < ey
ey

with Bg = B({,’yNgl) from Definition 3.10.

Proof. First, we observe that for any 5 € N and any 2 € S% ! the number of
points n € &; such that « € B, = B(7,0;) does not exceed a constant ¢(d). In-
deed, the spherical caps {B(7,d;/2)},cx, are mutually disjoint and = € B, implies
B(n,0;/2) C B(z,36;/2), which together with (2.26) justifies the observation.

Given Y C X we set Q := ey Be and h(z) := min {|Be| : # € Be,{ € Y} if
z € Q. Clearly, if x € B for some £ € Y, then the above observation and (2.26)
imply

D (Bel/IBy)'P < ey 27D = ¢, <o,

neY:xeB, =0
|B77‘Z|B§‘
yielding
1/p
3 1Bel VP L g, (2) < enhl(z) VP < c*( 3 \Bg|_1ﬂ35(:10)> . e
ey ey
In turn, this readily implies (7.10). O

Proof of Theorem 7.2. Under the hypotheses of Theorem 7.2 assume f € B37(S?1).
Embedding (3.35) imply f € FJ7(S*"1).

As we already alluded to above the frames {f¢}ecx, {0¢}eca are well defined
and the conclusions of Theorems 6.7 and 6.9 are valid for the spaces Fp¢ (S?1) and
B27(S?1). In particular, condition (7.8) implies (6.42) and conditions (7.6)—(7.7)
imply (d—1+406)/M < p with § = 1. Hence the assumptions of Theorem 6.7(c) are
fulfilled and from (6.43) and (2.27) we get

(7.11) 16¢llze = 10l Lo sa-1) ~ NV B ip=1/2 g e x,

with constants of equivalence depending only on d and A. Set a¢ := (f, §5>, EeX.
From (7.11) and (3.27)—(3.28) we obtain

1/7
(7.12) lallysr gy ~ lallrsery ~ (D (laebellis)™) " =t N(P).
fex

We may assume N(f) > 0. Denote
(7.13) Y, = {g €X:27N(f) < |labe||r < 2*”+1N(f)}, veN.
Then

U o ={e:27N(f) <llacbelr }, neN,

v<p
and hence
(7.14) w0 <Y #v = #(J ) <2,

v<p v<p
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Set F), := ZEE% |a5\q|B£\7’1/2ﬂB§. We next show that for m > 0

(2 8"

pn>m~+1

< p9—mTs/(d—1)
Lot <2 N(f).

To this end we first estimate ||F,| 1 »/q. Using (7.13), (7.11), Lemma 7.3 with p
replaced by p/q, and (7.14) we obtain

1Full ora = H 3 (\a§||B§|1/”‘1/2)q\35|“1/”HBE‘
=

(7.16) < c?fq(“’l)N(f)qH Z |B£‘*Q/PHB§ HLPM < CgfquN(f)q(#yM)q/p
£€Y,
< Cgfqu(lff/p)N(f)q — CQ*QMS/(dfl)N(f)q.

Lr/a

To prove (7.15) we consider two cases. If ¢ < p, then using (7.16)

1/q1q
X m)7 = X B, < X 1Rl
pzm+1 pzm+1

pn>m+1
<c Z g—ans/(d=D N ()9 < eg=amms/(d=D N ()4,
nw>m—+1

which implies (7.15). In the case ¢ > p using that p/q < 1 and (7.16) we have

1/qp p/q
_ p/q
H( Z F”) ‘LP o H Z F“‘ Lr/a = Z HF“”L”/“
pzm+1 pzm+1

pn>m+1
<ec Z 9 PuTs/(d=1) N (f)P < o mPmTs/(d=1) N(f)P,
p>m+1

yielding again (7.15).

Choose m > 0 so that 2™7 < n < 2(m+D7 and denote Z,, := Uu<m Y,. Also,
set af = a¢ if £ € X\ Z,, and af == 01if £ € Z,,. By (7.14) it follows that
#Zm < 2™7 < n. This, the frame representation (6.50) for f € FJ9(S*"'), and the
boundedness of the synthesis operator Ty from Theorem 6.9(b) yield

onfppe < ||f = 3 acte]p =] 3 act]
cez P 3

m m

= 3 ), = (X £)"

*
o S el

e

EEX\Znm p>m4+1
Finally, we use (7.15), (7.12), and Theorem 6.9(c) to obtain
ou(f) gou < 27" UN(f) < en™ /@D laflger < en™* /@] fllger gav),
which confirms (7.9). O

From Theorem 7.2 and the equivalences FJ?(S*7!) ~ LP(S*1) for 1 < p < o0
and .7-'192(865_1) ~ HP(S?1) for 0 < p < 1 we immediately get the following.

Corollary 7.4. Assume A > 1 and let the parameters K, M, and oy be defined as
n (7.7)~(7.8). Let s >0, 0 <p < oo, and 1/7 = s/(d— 1)+ 1/p, and assume that
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s, p satisfy conditions (7.6) with ¢ = 2. If f € BS7(S?1), then f € LP(SY~1) when
1<p<oo, f€HP(S™) when0 < p<1, and

=D 1]

on(f)rei-1y <en”?

o) a1y < en” V| fllgrgaty, n>1,0<p< 1,

BsT(sd-1), M >1,1<p<oo,

where the constant ¢ > 0 depends only on A, d.
7.1.2. Nonlinear n-term frame approzimation in Besov spaces on S1.

Theorem 7.5. Assume A > 1 and let the parameters K, M, and -~y be as in
(7.71)~(7.8). Let s >0,0<p,g < o0, 1/Tr=5/(d—1)+1/p, and ¢ > T, and assume
that s,p,q satisfy conditions (7.6). If f € BST(S9™1), then f € ng(Sd_l) and for
every n > 1 we have

(7.17) on(f)ng(Sdil) S Cn_s/(d—l) ||f|

Bim(si-1), P <4,

(7.18) 0 (F)goraisy = oY) fllser @iy, T <aq<p,

where the constant ¢ > 0 depends only on A, d.

For the proof of this theorem we shall utilize inequality (6.7) from [26] given in
the following.

Lemma 7.6. Let 0 < 7 <p < oo and xqy > x9 > --- > 0. Then for every n € N

we have
> 1/p oo 1/7
(55 )" <)

k=n+1 k=1
Proof of Theorem 7.5. Assume that the hypotheses of Theorem 7.5 are obeyed and
let f € B7(S%!). Embeddings (3.34) and (3.32) imply f € BJ?(S*1).

As above the frames {0¢}ecx, {0¢}ecr are well defined and the conclusions of
Theorems 6.7 and 6.9 are valid for the spaces By?(S!) and Bs7(S*"!). Denote
ag == (f, §£>, & € X. Recall the equivalence (7.11) which holds in this case.

Let {||any,0n, || e }:o:l be the nonincreasing rearrangement of the sequence
{Hag@g”Lp}geX, i.e.,

[[an, O, Nl o > Nlan, O, llLe = -+ .

Consider first the case p < ¢. Fixn > 1 and set aj, = a,, if k >n and aj =0
if k£ <n. Note that from (3.27) and (7.11) it follows that

. wn ip \ /P > » \ /P
la*llyge ~ (D lazbelly, ) " = (D2 Nanbuclifn)

fex k=n+1

Using this, embedding (3.32), and the boundedness of the synthesis operator Tj
from Theorem 6.9(b) we get

n o0
onPggror ) < || 30 antn =D anbuc| o, < | 3 anibun|
nex k=1 P k=n+1 P
N > » \ /P
<clallggr <o Y llan bl )
k=n-+1
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Further, we apply the inequality of Lemma 7.6 with i = ||a,, 0y, | z», (7.11), and
Theorem 6.9(c) to obtain

o 1/7
on(Dgprgany < n P ( Y lla,OnlI7 )

k=1
< en™ " Vallesr < en= D |

BsT(S4-1))
which confirms (7.17).

In the case ¢ = 7, we use the embedding B:™(S*7!) € BY7(S41) (see (3.34)) to
obtain |[f — gllser = o(1)||flle- with g = 37}, ay, 0y, Combining this estimate
with estimate (7.17) with ¢ = p and applying Holder’s inequality we obtain in the
case T < g<p

||f _gHng < ||f_gHg:;f1)"'/((P*T)Q)Hf HBquT)p/ p—T)

1)Hf| (liTQ)T/((p 7)q) 1/q 1/7-Hf’ gliTT)p/((p_T)Q) — O(nl/q—l/T)Hf' B
This proves (7.18) and completes the proof of the theorem. |

Remark 7.7. In comparing Theorem 7.2 and Theorem 7.5 we see that the optimal
rate n°/(4=1) holds for approximation in fgq(Sd_l) for every ¢ > 0 but only for
q > p for approximation in ng(Sdfl). Theorem 7.5 cannot be extended for ¢ < 7
because BT (S) \ BY(S*1) £ D if g < 7.

Remark 7.8. Note that in both Theorem 7.2 and Theorem 7.5 we form the near
best approximant as the sum of the n terms (f,60:)0 with the biggest norms

||<f, 9~§>0§HLP(S«1—1).

7.2. Nonlinear n-term approximation of harmonic functions on B?. We
next use Theorems 7.2 and 7.5 to establish respective Jackson estimates for non-
linear n-term approximation of harmonic functions on B? from shifts of Newtonian
kernel.

Theorem 7.9. Let s > 0,0 < p,q < o0, and 1/7 = s/(d—1)+1/p. If the harmonic
function U € BT (H) = F£7(H), then U € F4(H) and

(7.19) En(U) goa(se) < en”*/ VU pgr 3, 1> 1,
where the constant ¢ > 0 depends only on s,p,q,d.

Proof. By Theorem 3.5 it follows that the boundary value function f; of U given in
Proposition 3.3 belongs to BT (S?71) = F27(S?71) and || fy|
Then embedding (3.35) of Proposition 3.15 implies that fy € F29(S*"!) and in turn
Theorem 3.4 yields U € F9(H).

With s, p, ¢, 7 already fixed, we choose A := max {s,p, R 2}. Then condi-
tions (7.6) are satisfied. Pick the parameters K, M, and 7o as in (7.7)—(7.8). Then
the frames {0¢}ecx, {ég}ge;( are well defined. Appealing to Theorem 7.2 we con-
clude that for any n > 1 there exist &1, ...,&, € X and coefficients a1,...,a, € C
such that

HfU - Zn:aj%
j=1

ger(si-1) ~ Ul B (30)

rorgery S TVl ey < en= DU gy 0oy
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Write G, (z) = Z;.l:l a;b¢, (x), x € B From above by harmonic extension using
Theorem 3.4 we obtain

(7.20) 1T = Gl s (3¢) < en™*/ " VNU | per (30)-

However, by Theorem 6.7(b) we know that for every £ € X'\ A} the frame element 6
is a linear combination of < 7 shifts of the Newtonian kernel, where 7 is a constant.
Therefore, G,, € N, and then estimate (7.19) follows readily by (7.20). O

Theorem 7.10. Let s > 0,0 <p,g < oo, 1/1=s/(d—1)+1/p, and ¢ > 7. If the
harmonic function U € BS™(H) = F27(H), then U € Bp4(H) and for every n > 1
we have

(721) En(U)Bg‘l(:}() < cn_s/(d—1)||U|

Bs (7)), P4,

(7.22) Ea(U) gon a0, = o(n/ Y )||U]

Bs7(3H)>» T<q<p,
where the constant ¢ > 0 depends only on A, d.

The proof of Theorem 7.10 goes along the lines of the proof of Theorem 7.9 with
Theorem 7.2 replaced by Theorem 7.5. We omit it.

8. APPROXIMATION OF HARMONIC FUNCTIONS ON R\ B4 Anp R?

The results in Section 7 have their analogues for approximation of harmonic
functions on R? \ﬁ or Ri. In the following we established the analogue of the
main result (Theorem 7.1) on R?\ B? and explain briefly its analogue on R%.

In analogy to the set N,, from (7.1)-(7.2) we denote by N,, the set of all linear
combinations of shifts of the Newtonian kernel as in (7.1)—(7.2) with the requirement
that the poles g, € BY.

The approximation will take place in the harmonic Hardy space HP(R9 \ ﬁ)
Let H(R%\ B9) denote the set of all harmonic functions U on R%\ B? such that
lim |y oo U(x) = 0 if d > 2 or limj,o U(x) = const. if d = 2. The harmonic
Hardy space J{p(Rd\ﬁ), 0 < p < 00, is defined as the set of all harmonic functions
U € H(R?\ B?) such that

(8'1) HU”g{p(Rd\ﬁ) = ” ngl) Td72|U(7"')|||Lp(§d—1) < 00.
Given U € HP(R?\ B?) we define
(82) En(U)

Ip(RI\BI) = Gienﬁf” U - G”g{p(Rd\ﬁ)-

Denote by B59(H) the harmonic Besov spaces on R \ B4 (see [15, Section 8]).
As one can expect the following Jackson type theorem is valid.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



NONLINEAR APPROXIMATION OF HARMONIC FUNCTIONS 3165

Theorem 8.1. Let s >0,0<p<oo, and 1/ =s/(d—1)+1/p. IfU € BT (H),
then U € HP(R?\ B4) and

(8.3) E.(U) <en VU gor a0, n > 1,

Fr(R4\B?)
where the constant ¢ > 0 depends only on p, s, d.

Proof. As is well known the Kelvin transform KU (z) := |z|>~ U (x/|x|?) maps one-
to-one H(B%) onto H(R?\ B?) and K~ = K. It is easy to see that the Kelvin
transform is an isometric isomorphism of H?(R? \ B9) onto HP(B?). Also, as
shown in [15, Section 8] the Kelvin transform is an isometric isomorphism between
the harmonic Besov spaces Bf)q(f}() on R4 \ﬁ and the harmonic Besov spaces
B;q(ﬂf) on B?. Furthermore, it is readily seen by the symmetry lemma that for a
fixed y € R?, y # 0,

1 ly|> ¢
Kl— @)= — 4> 2,
(=)@ = o=y
and
1 1 1
K(ln—)(az):ln——!—ln\ﬂ—kln—, d=2.
lz -y |yl lz —y/lyl?|

Assuming that U € B27(H) we apply estimate (7.4) to KU and use all of the above
to conclude that estimate (8.3) holds true. O

Approximation of harmonic functions on Ri. Closely related to the approx-
imation problem considered above is the problem for nonlinear n-term approxima-
tion of functions in the harmonic Hardy spaces HP(R%), 0 < p < oo, from linear
combinations of shifts of the Newtonian kernel with poles in R%. This problem
should be regarded as a limiting case of the same problem on B(0,R) C R? as
R — oo. For lack of space we do not elaborate on this sort of approximation. We
would like to observe only that all definitions and statements in this article have
analogues in the more common setting on R‘i from the harmonic analysis point of
view, in particular, our main Jackson estimate (7.4) is valid.

9. PROOFS

9.1. Proofs of Propositions 2.3, 2.4, and 2.5. For the proof of Proposition 2.3
we need the following simple lemma.

Lemma 9.1. Let K € N, 25 € S¥1, g € WE(S?1), and g(x) := g(x/|z|) for
x € RN\{0}. Then for every x € ST with p(x,z0) < 1 we have

08
o Zo o
g(xz) — E 7‘(}( )(x — xo)ﬁ < cp(x,xo)K sup max ’8[39(2)’
ﬂ' gd—1 |B|I=K
IBI<K—1 =8
p(z,x0)<p(x,x0)

with ¢ depending only on d and K.
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Proof. Assuming x # x¢, we set 1 := (v — 1) /|z — 20| € S¢~1. Then from Taylor’s
theorem there exists A € (0,1) such that

9%
gy - 3 LIy
1Bl<K-1
_ K

0 V)X = %‘(n Do)

where ) = z¢ + Mz — zp) and the definition of g is used for the last equality.
Now, we use that |z — zo| < p(x, x0), |zA| > cos1/2 for A € (0,1), and

|(77 . V)Kﬁ(y)| < Clrﬁrlli};( |aﬁ§(y)‘ . ye€ Sdﬂ7

to complete the proof. O

Proof of Proposition 2.3. We represent (g, f) in the form

<.g7.]c>:S1—|—S27
y P () Jg—
S = (y) — —— =2 (y — x2) (y) do(y),
(9.1) ' /Sd—l (gy |B|<ZI;1 g W ) y)do(y
855(552) Ty
52 = a3 (y —x2)" fy) do(y).
Bﬁzf;—l p! /Sd” Y Y Y

From (2.32) we get
[, =2 T doty)] < ey 0 < 18 < K~ 1,

and using (2.30)

K1 N‘BH_d ! KlﬂQ(Nl/NQ)KNld_l

craNy X <c :
6%; | B+ Niplay, )02 = T (14 Nip(ay, o))V

We bound S; by

s [, Jio- 5 ZEE G —wfiiam = [+ + ]

|S2| <

|B|<K-1
where
A = {y €5 : plan, ><N 1,
Ay ={y € ST p(xa,y) > N p(,y) < plan, 22)/2),
Az ={y € ST p(xa,y) > N p(1,y) > plan, 22)/2}.
For y € A;, Lemma 9.1 and (2.30) 1mply

B 5 To
J(y) — Z il )(y—xz)ﬁ < ep(y, z2)™ sup max [0°g(z)|

|
[BI<K -1 At z€A, 1BI=K
K+d-1 Ktd—1
HlN ) K/lNl .
Scsu » L <c T
ZEz‘Il)l (1 +N1p(x1, ))Mp(y 2) (1 _'_Nlp(xl,xz))Mp(y 2)
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due to (2.7). Using the above estimate, (2.31), and (2.6) we see that

/ <ec RN / p(y, x2) nlNy do(y)
Aq N ( +N1P xlax2 M ’ +N2P(y,$2))M

I‘El/ﬁ?QNK+d 1 A / N371 da(y)
(1+N1P($173?2))M 2 ga-1 (14 Nap(y, z2))M—K

C/-em(Nl JNp)KE N1
T (14 Nip(xy,z0))M

For y € Az we have p(x1,22)/2 < p(z2,y) < 3p(x1,22)/2, and hence

3Nap(y, x2) > (Na/Ny)(1 4+ Nip(zy1,22)), using that p(y,z9) > N; '. Therefore,
(1+ Nap(y, 22)) ™ < (Nop(y, 2)) ™™ < 3M (N1 /N2)M (1 + Nup(ar, ).
This combined with (2.30) and (2.31) implies

/ / gy N1 ry N4 i)
A, Ja, 1+ Nip(zy,y))M (1 + Nap(y, v2))M
/ le’BHd Yoy, m0)1P roNE1
A BUL + Nip(z1,22))M (14 Nop(y, v2))M
ki N{ ! 3M iy (N1 /No) M Ng !
/A2 (L + Nip(z1,9))M o) (1+ Nip(w1,22))M
/“le*“<3/2>Bp<w1,x2>B 3 1y (Ny /Ng) M Ng -1
Az

do(y)
2 \B\<K 1

+ o
IBI<K—1 BI(1 + Nip(z, 2))M Y (14 Nip(z1,22))M

K1k (N1 /Ny ) K N1
(1+ Nip(z1,22))M
Here we used that M > K +d — 1 and (2.6) as well as the fact that N;/Ny <1
and o(A) < cp(xy,w2)? L.
For y € A3, we have (1 + Nip(x1,22))/2 < 14 Nip(z1,y) and p(za,y) > Nl_l.
Therefore,

/ / mNd ! KQNQd 1 do ()
ag
ne ~ Jay (ULF Nup(ar, )M (1+ Naply, z2))™ “7Y

+/ N T oy o) kN do(y)
As |ﬁ|<K71 BI(1+ Nip(z1,22))M (1 + Nop(y, z2))M
Rk N~ (N1p(y, z2)) KNG~ do(y)
(1 + Nip(z1,22))M J4, (1+ Nap(y,x2))M
< C"Wﬁz(1\71/J\72)KN1‘1_1

(1+ Nip(z1,22))M
using that M > K +d — 1 and

N- , T K yd-1 Na-1

/Sd 1 ((12f(fz<7zpz(3)/), I2)§M doly) < /Sd—l (1+ ng(zy,xg))M*K do(y) < c

because of (2.6). This completes the proof. 0
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Proof of Proposition 2.4. This proof is the same as the proof of Proposition 2.3 for
K = 1. Instead of estimating S in (9.1) we move it to the left-hand side. Only the
localization of the first derivatives of g, but not of g itself, is needed here. O

Proof of Proposition 2.5. This proof follows along the lines of the proof of Propo-
sition 2.3 with K = 0. Of course, in this case the Taylor series is missing from the
definitions of both S; and Sy in (9.1), i.e., So = 0. Lemma 9.1 is also not used in
the proof. O

9.2. Proof of Theorem 4.6. This proof depends on the next three lemmas.
Lemma 9.2. Let j,m >0,0< <1, 2€S% !, and € € Xj. Then

1
(9.2) — < ¢gomld-D)
2 T Neplom7 <

with ¢ = c(d)B~1.

Proof. Using that Xj,, is a maximal y277~™%! net with a fixed v = ¢(d) € (0,1)
(as stated in Section 2.3), (2.20), the inequality (1+7)(1+Ne¢p(x,n)) > 14+Nep(z, y)
for any y € A,;, and (2.6) we obtain

1 _ | Ay
> <c(dNTH D u
d—1+8 n d—1+8
e (L4 Nep(a,m) nar, (Lt Nep(,m))

1 do(y)
SR Wees v e R

which proves (9.2). O

d)NS " e(d)B™ N,

Lemma 9.3. Let 0 <t <1land M > (d—1)/t+6,0 < 6 < 1. Then for any
sequence of complex numbers {hy}nex,,, m >0, and for any x € Be = B(£,7277),
£€ X, j >0, we have
[fon|
. M
nEXym (1 + min{Ng, Ny }p(€, 77))
< max{l,Z(mfj)(dfl)/t}Mt( Z |h,7|]13n)(x),
nNEXm

where ¢ := (2/In2)44=D/t(2/7)M 51 with v € (0,1) being the constant from the
construction of the old frame U in Section 3.5.

(9.3)

Proof. Two cases present themselves here.
Case 1. m > j. Set Qp:={n € X, : 277 1p(&,m) < v} and

Qi ={n€ X 72 <2V p(&m) < 2"}, v 1
Since 0 < t <1 we have for v > 1

3 ) < (%)MT”M Syl < (%)Mrm( S )

. M —
neQy (1 + 27—1p(§,77)) neEQy neEQ,
The same estimate holds trivially for » = 0. Put

R, = B(&,2y(2™™ +277)), v >0.
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Clearly U, co, By C Ry. Using this, the fact that the sets {B, : n € X,,} are
disjoint, and (2.26) we obtain for every x € Be C R,

> Il = 1(2 |hn|Bn|1/tan<y>)tda<y>

neQ,
Ry / .
- hy|1 do
|B(&,v2=™)] IR, | = | Bn(y)) (v)
j t
< 4IP3 Ihlts,)(@)]
NEXm

Therefore, since M > (d — 1)/t + 6 we get for any = € B
[fon|
» M
ner, (1+277p(&,m))
2 M (d—1)/t —vM o (v—j+m)(d—1)/t
<(5) 4SS Il ) (@) o2

v NEXm v>0

2\M - m—j)(d— —v
(;) 40 /9m= @D/ (S Ry 1, ) (2) S 27

NEXm v>0

2 2\M .~ o
Sz () ARG S (|, ) (7).
NEXm

IN

IN

which confirms (9.3).
Case 2. m < j. Set Qp :={n € X, : 2™ 1p(€,n) <~} and
Q, i={ne€ X727 <2 (&) <427}, v>1
Write
R, = B(&,v2 ™ (1 +2Y), v>o0.

We use that 0 < ¢ <1 to obtain

> & <(3) e Sl < (2) e (3 )

— M -
neQ, (1 +2m 1/)(5,77)) neQ, neg,

Just as in Case 1 we obtain for x € By C 7@,,

Sl = [ (S ol 1,0 ot

ned, neQy
R do
|(72m|7z|/ |h|ﬂ3())d(y)
ool S s

nNEXm
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As before, since M > (d — 1)/t + § we get for any x € Bg

Z [Fon|

ner, (1+2m=1p(g, 77))M
2 M (d-1)/t —v(M—(d—1)/t)
< AN (D by |1, ) (2) D2

" NEXm v>0

2 2NM
< sz (s) AT it @)

NEXm

which verifies (9.3). The proof of the lemma is complete. O

In the next lemma we specify the constants in certain well-known discrete Hardy
inequalities that will be needed.

Lemma 9.4. Let >0, 0< q < oo, and a,, > 0 form > 0. Then

o0 (DS <o)

J>0  m>j m>0
and
J
(9.5) (Z ( 3 2—(j—m)[3am>‘Z>1/q - c§( 3 a%)uq
j>0 m=0 m>0
with

1 1
* — of )
“ max{mnz’ (5q1n2)1/q}

Proof. In the case 0 < ¢ < 1 inequalities (9.4)—(9.5) follow readily by applying the
g-inequality and switching the order of summation. More precisely, we have

(Z ( 2. 2_(m_j)5am)q)1/q < (Z > 2—<m—j>ﬂqagn)1/‘1

Jj=20  m2>j j20m=>j
= (S rromag) < (o) (L)
m>05=0 v>0 m>0
Clearly
1/ 1/ B
() = () < o <
= 1-2 (Bgln2)

which implies (9.4). The proof of (9.5) in the case 0 < ¢ < 1 is similar and gives
the same constant c3.

In the case ¢ > 1 using Holder’s inequality (1/¢' + 1/¢ = 1) and switching the
order of summation just as above we obtain

(Z ( Z 27<mfj>5am)q)1/q _ (Z ( )3 Qf(mfj)ﬁ/q’y(mfj)ﬁ/qam)q)1/q

j20 m>j j20 m2>j

< (Z ( Z 2—(m—j)5)q/q/< Z 2—(m—j)5agn))1/q
j=20 m2zj m2j

- (ZQ‘”B)I/QI(Z 2_V/B)l/q( Z a?n)l/q _ ZQ_Vﬁ( Z a?n) l/q7
v>0 v>0 m>0 v>0 m>0
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which gives (9.4) with ¢§ > 2%/(31n2). The proof of (9.5) in the case ¢ > 1 is
similar and with the same constant. ]

Proof of Theorem 4.6. We shall use the abbreviated notation we, := wélz M) for

&,ne X (see (4.21)).
We first establish the result for the sequence Besov spaces by, that is,

(9.6) 10k

bs7 < Co

Set p, := max{p,1}. We start with the proof of the estimate

([ X weam)”

ﬁer nex
i ’ 1/p
0.7) <y 27m(K+(d71)(1/271/19*)75/2)( 3 \hnlp)
' m=0 Nne€EXjtm
J 1/p
+Cn Y 27m<K+(d71><1/271/p>76/2>( 3 |hn|p>
m=1 nexj*vn

for any j > 0. For 1 < p < oo using (4.21) and the convexity of u? we obtain

9—m(K+(d— 1/2)|h ‘)

98) ‘ ng,nhn}p <2ty [(Z Z (1+ Nep(&,m)M

feXx; nex £EX; m= 0776?(

2 m(K+(d— 1)/2)|h |> }

( Z Z L+ Nyp(&,m)M

m=1neX;_

Applying Holder’s inequality in the first double sum in the right-hand side of (9.8)
twice, first in the summation on m and then on 7, and Lemma 9.2 with 8 = § we
get with Ml = (d— 1 +5)/p/ and M2 =M — M1

9-m(K+(d=1)/2)|p, ‘)

(Z Z (1+ Nep(§,m)M

m=0neX;

9—m(K+(d—1)/2—6/2) |1y ),,

Cmpls)2 p/p &
g(g:o? 5/) Z( Z (1+ Nep(€,m)M

m=0 WGXj+m
2—m(K+(d—1)/2—6/2)p‘hT,|p

S 1 »/p’
<> (X (1+N5p(€ﬂ7))Mlp/) 2 T Ve

m=0 nN€EXjim NEX;1m
*p 1-p
SHNDY

2—m(K+(d—1)(1/2—1/p’)—5/2)p‘hn|p
m=0 HEXJ+m

(14 Nep(&,m))M=p ’
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where C1p := (1 — 2_17/5/2)_1/[) < 56~ Y?'. Applying the same arguments to the
second double sum in the right-hand side of (9.8) we obtain

9—m(K+(d— 1/2)|h |)

(910 (Z Z (1 + Nyp(&,n)M

m=1neX;_
9—m(K+(d—1)/2-4/2) p‘h |p

<d’ Z Z Nyp(€,n))Mzp

m=1neX;_

Note that (4.22) implies Map > d — 1+ §. Substituting (9.9) and (9.10) in (9.8)
and using Lemma 9.2 with 5 = § we get

(9.11) Z ‘ Zwﬁmhn‘p

fer nex

8

2*m(K+(d*1)(1/2*1/p')*5/2)1?|hn|p

< 2’1*10’{”_10]102( > > Z (14 Nep(&,m)*=1+°

m=0 WEXJer £EX

27m(K+(d71)/276/2)p|h |p)

P IIP VD D e i

< 2p—1cfpflcf2( 3 oKD/ =620 g,
m=0

NEXj+m

8

j
+ZCpfm(lw(df1)<1/271/p)76/2>p Z \h,,|p).

m=1 nEXj*m

Now, we raise both sides of (9.11) to the power 1/p < 1 and apply the 1/p-inequality
to its right-hand side to obtain (9.7) for 1 < p < oo with C1; > Ci3 1= 21 ~1/P¢5Cs.

Let 0 < p < 1. Using the p-inequality, observing that (4.22) implies in this case
Mp > d— 1+ dp, and using Lemma 9.2 with 8 = dp < 1 we obtain

(9.12) Z ’ng ol ‘ 20*2—@5/22— m(K+(d—1)/2—-5/2)p Z ||

feX nex m=0 v]erer
+ Z CI2fmp5/22*M(K+(d*1)(1/2*1/17)*5/2)10 Z |y |P.
m=1 NEXj—m

We now raise both sides of (9.12) to the power 1/p > 1, use the convexity of
u/? to break the right-hand side into two terms and apply Hoélder’s inequality
with exponents r = 1/(1 — p) and ' = 1/p in the summations on m in order to
get the 1/p power inside the sum and to prove (9.7) for 0 < p < 1 with Cy; =
max{C13,C15}, where Ci5 = 21/”_10‘{1/”014 with ¢f is for 8 = dp and Cy4 =
(1- 2—6p/<2<1—p>>)—<1—1’>/1’_
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Finally, using (3.27), (9.7), (4.22), and Lemma 9.4 with § = ¢/2 and a,, =
1/p
2m[s+(d—1)(1/2—1/10)](Znexm \hnl”) we obtain

= (S0 8 e

7=0 EEX; neEX

(9.13)

)1/p}q)1/q
<CH(§: [izﬂ fs+(d—1)( 1/2—1/p>]—m<K+<d—1)(1/2—1/p;)—6/2>( ) ‘hn|p)””

j=0 m=0 NEX; t-m
i 1/pya\1/q
+Z2][s+(d—1><1/2—1/p>]—m(K+<d—1)<1/2—1/p)—6/2)( 3 |hn\p> ”
m=1 NEXj—m
— [ —m(K s (d—1)(1/p.—1/p)—6/2) ! —m(K—s—6/2) 7\ 1/a
-on(% [ S 5
j=0 m=0 m=1
con (X[ 3 e +Zz =iz, | )
7=0 m>j
1/g+1 - 1a
§2 g C1103(Za%l) :Cg‘lh b;tz.
m=0

Thus, (9.6) is established with a constant Cy = 2'/9%1C ;¢4 of the claimed form.
We next prove the result for the sequence Triebel-Lizorkin spaces f?, that is,

(9.14) 19030 < Collh

Taking into account Remark 3.11 we chose the quasi-norm of f;? in Definition 3.10
to be defined with By = B(£,y277) for £ € Xj, j > 1. Thus B¢ N B, = 0 for

§# €.
Let h € f37. Then (Qh)e = -, <y

(see proof below). Then by (2.27)

sq .,
P

we.nhy, where the series converges absolutely

1/q
9.15) 8]0 = || (32 [1Bel=/ @2 @myel 1, ]7) |
gex
s — 1/q
= 021H ( Z [NEHd i Z “’E»n‘hWMBs]q) HLp < O 2/PTHA(S, + 5),
geX nex

where Cyy i= &,/ (47DT1/2 (9 ) )st+(d-1)/2

5, = H(Z {N§+(d71)/2 Z w£7n|hn|ﬂ3§}q>1/q = and
fex nEX:N, > N¢
/
Yy 1= H( { N Z w57”|h’7|ﬂBJq>1 q‘ L
fex NEX:Ny<N¢

Write \¢ := N§+(d71)/2]l35, ¢ € X, and choose ¢ so that (d—1)/t = J +6/2. Then
0 <t <min{l,p,q}. If N, > N, then

Ne\K+(d-1)/2 -
Wen = (Vi) (1+ Nep(&,m)
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Then we have

s<|(S] ()T W Moot x|

Ny
£€EX nNEX:N,>Ne

B H(Z 2 [Zzi(mﬁ)(%#%m > (1+Nsp(&n))_%élhn\/\ﬁr)% L

J208eXx; m>j n€Xm

We now apply Lemma 9.3 (with (d — 1)/t and §/2 in the place of M and ¢§) and
the fact that the sets {Be : £ € X;} are mutually disjoint to obtain

moa| (D030 [ Dot et g (Y |hn|nB,,)A£]q)5

J>0¢ex; m>j n€Xm b
. a3
<al(T[X 2 X i)'
>0 m>j NEXm

The application of inequality (9.4), the maximal inequality (2.24), the fact that the
sets {B,, : n € X;} are mutually disjoint, and (2.27) lead to

(9.16) % < cgch(Z [Mt< Z |hn|)\n)}q>é

Jj> b
!
< cgcgélH(Z [ Z N;+(d*1)/2|hn\ﬂ3n] )q i
i>0 nex,
~ o/ (d—1)— a\ g
§c§c§c16’22H<Z Z [|Bn‘ /(d—1) 1/2\hn|ﬂ3n] ) HLP =c||f Foa
J>0neX;

with Gy = &%/ @=DF1/2 () j9)st(d-1)/2,
If N;, < Ng, then

Nn)K+(d—1)/2

Wen = (E (1 + an(&??))iM

and hence

Q=

ne(S] 2 () e e i)

E€X nEX:N,<Ng

(S [Zromerwon 5 vt nid’) ],

j>06€Xx; m<j NEX,

As above employing Lemma 9.3, using the fact that the sets {Be : £ € X} are
mutually disjoint, applying (9.5), the maximal inequality (2.24), and (2.27) we
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obtain
—(7—m 1 %
017 Z<a|(X [ 20 X )],
>0 m<j NEXm
0\
< (X (X man)])
3>0 neX;
~ S - e %
gcgcgclH(Z [ Z NnJr(d 1)/2|hn|ﬂ3"} ) o
Jj=20 nex;
~ —Ss - - q %
§C§C§Clc22H(Z Z {\Bn| /(d—1) 1/2|hn\ﬂ3n] ) L =c|[flljze,
Jj=0nex;

where the constants c3, cj, ¢1, Caa are as above.

Finally, using estimates (9.16) and (9.17) in (9.15) we obtain (9.14) with Cy =
02121/p+1/qc§c§61022, which is of the claimed form. This completes the proof of
Theorem 4.6. U
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