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Gaussian bounds for the heat kernels

on the ball and the simplex: classical approach

by

Gerard Kerkyacharian (Paris),
Pencho Petrushev (Columbia, SC) and

Yuan Xu (Eugene, OR)

Abstract. Two-sided Gaussian bounds are established for the weighted heat kernels
on the unit ball and the simplex in R

d generated by classical differential operators whose
eigenfunctions are algebraic polynomials.

1. Introduction. Two-sided Gaussian bounds have been established
for heat kernels in various settings. For example, Gaussian bounds for the
Jacobi heat kernel on [−1, 1] with weight (1 − x)α(1 + x)β , α, β > −1,
are obtained in [2, Theorem 7.2] and [8, Theorem 5.1], and also in [9] for
α, β ≥ −1/2 (see (1.24) below).

In this article we establish two-sided Gaussian estimates for the heat
kernels generated by classical differential operators whose eigenfunctions are
algebraic polynomials in the weighted cases on the unit ball and the sim-
plex in R

d. Such estimates are also established in [8] using a general method
that utilizes known two-sided Gaussian estimates for the heat kernels gen-
erated by weighted Laplace operators on Riemannian manifolds. Here we
derive these results directly from the Gaussian bounds for the Jacobi heat
kernel. Such a direct method leads to working in somewhat restricted range
for the parameters of the weights (commonly used in the literature). More
recently, another proof of the Gaussian bounds for the heat kernel on the
ball appeared in [12]. We next describe our results in detail.

We shall use standard notation. In particular, positive constants will be
denoted by c, c′, c̃, c1, c2, . . . and they may vary at each occurrence. Most
constants will depend on parameters that will be clear from the context.
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The notation a ∼ b will stand for c1 ≤ a/b ≤ c2. The functions that we deal
with in this article are assumed to be real-valued.

1.1. Heat kernel on the unit ball. Consider the operator

(1.1) Dµ :=
d

∑

i=1

(1− x2i )∂
2
i − 2

∑

1≤i<j≤d

xixj∂i∂j − (d+ 2µ)
d

∑

i=1

xi∂i,

acting on sufficiently smooth functions on B
d := {x ∈ R

d : ‖x‖ < 1}, the
unit ball in R

d, equipped with the measure

(1.2) dνµ = wµ(x)dx := (1− ‖x‖2)µ−1/2dx, µ ≥ 0,

and the distance

(1.3) dB(x, y) := arccos
(

〈x, y〉+
√

1− ‖x‖2
√

1− ‖y‖2
)

,

where 〈x, y〉 is the inner product of x, y ∈ R
d and ‖x‖ :=

√

〈x, x〉. As will
be shown, the operator Dµ is symmetric and −Dµ is positive in L2(Bd, wµ).
Furthermore, Dµ is essentially self-adjoint.

For 0 ≤ r ≤ 1 denote

(1.4) BB(x, r) := {y ∈ R
d : dB(x, y) < r} and VB(x, r) := νµ(BB(x, r)).

As is well known (see e.g. [3, Lemma 11.3.6]),

(1.5) VB(x, r) ∼ rd(1− ‖x‖2 + r2)µ.

Denote by Vn(wµ) the set of all algebraic polynomials of degree n in d
variables that are orthogonal to lower degree polynomials in L2(Bd, wµ), and
let V0(wµ) be the set of all constants. As is well known (see e.g. [5, §5.2]),
Vn(wµ), n = 0, 1, . . . , are eigenspaces of the operator Dµ, more precisely,

(1.6) DµP = −n(n+ d+ 2µ− 1)P, ∀P ∈ Vn(wµ).

Let Pn(wµ;x, y) be the kernel of the orthogonal projector onto Vn(wµ). Then
the semigroup etDµ , t > 0, generated by Dµ has a (heat) kernel etDµ(x, y) of
the form

(1.7) etDµ(x, y) =
∞
∑

n=0

e−tn(n+2λ)Pn(wµ;x, y), λ := µ+ (d− 1)/2.

We establish two-sided Gaussian bounds on etDµ(x, y):

Theorem 1.1. For any µ ≥ 0 there exist constants c1, c2, c3, c4 > 0 such

that for all x, y ∈ B
d and t > 0,

(1.8)
c1 exp

{

−dB(x,y)
2

c2t

}

[VB(x,
√
t)VB(y,

√
t)]1/2

≤ etDµ(x, y) ≤
c3 exp

{

−dB(x,y)
2

c4t

}

[VB(x,
√
t)VB(y,

√
t)]1/2

.



Gaussian bounds for heat kernels 237

1.2. Heat kernel on the simplex. We also establish two-sided Gaus-
sian bounds for the heat kernel generated by the operator

(1.9) Dκ :=
d

∑

i=1

xi∂
2
i −

d
∑

i=1

d
∑

j=1

xixj∂i∂j +
d

∑

i=1

(

κi +
1
2 −

(

|κ|+ d+1
2

)

xi
)

∂i

with |κ| := κ1 + · · · + κd+1 acting on sufficiently smooth functions on the
simplex

T
d := {x ∈ R

d : x1 ≥ 0, . . . , xd ≥ 0, |x| ≤ 1}, |x| := x1 + · · ·+ xd,

in R
d, d ≥ 1, equipped with the measure

(1.10) dνκ(x) = wκ(x)dx :=
d
∏

i=1

x
κi−1/2
i (1− |x|)κd+1−1/2dx, κi ≥ 0,

and the distance

(1.11) dT(x, y) := arccos
(

d
∑

i=1

√
xiyi +

√

1− |x|
√

1− |y|
)

.

As will be shown, the operator Dκ is symmetric and −Dκ is positive in the
weighted space L2(T, wκ); furthermore, Dκ is essentially self-adjoint.

We shall use the notation

(1.12) BT(x, r) := {y ∈ T
d : dT(x, y) < r} and VT(x, r) := νκ(BT(x, r)).

It is known that for 0 ≤ r ≤ 1,

(1.13) VT(x, r) ∼ rd(1− |x|+ r2)κd+1

d
∏

i=1

(xi + r2)κi .

This equivalence follows e.g. from [3, (5.1.10)] (see also [8, (4.23)–(4.24)]).
Denote by Vn(wκ) the set of all algebraic polynomials of degree n in d

variables that are orthogonal to lower degree polynomials in L2(Td, wκ),
and let V0(wκ) be the set of all constants. As is well known (e.g. [5, §5.3]),
Vn(wκ), n = 0, 1, . . . , are eigenspaces of the operator Dκ, namely,

(1.14) DκP = −n(n+ |κ|+ (d− 1)/2)P, ∀P ∈ Vn(wκ), n = 0, 1, . . . .

Let Pn(wκ;x, y) be the kernel of the orthogonal projector onto Vn(wκ) in
L2(Td, wκ). The heat kernel etDκ(x, y), t > 0, takes the form

(1.15) etDκ(x, y) =
∞
∑

n=0

e−tn(n+λκ)Pn(wκ;x, y), λκ := |κ|+ (d− 1)/2.

Theorem 1.2. For any κi ≥ 0, i = 1, . . . , n + 1, there are constants

c1, c2, c3, c4 > 0 such that for all x, y ∈ T
d and t > 0,

(1.16)
c1 exp

{

−dT(x,y)
2

c2t

}

[VT(x,
√
t)VT(y,

√
t)]1/2

≤ etDκ(x, y) ≤
c3 exp

{

−dT(x,y)
2

c4t

}

[VT(x,
√
t)VT(y,

√
t)]1/2

.
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1.3. Method of proof and discussion. We shall prove Theorems 1.1
and 1.2 by using the known two-sided Gaussian bounds on the Jacobi heat
kernel on [−1, 1]. We next describe this result. The classical Jacobi operator
is defined by

(1.17) Lα,βf(x) :=
[wα,β(x)(1− x2)f ′(x)]′

wα,β(x)
,

where

wα,β(x) := (1− x)α(1 + x)β , α, β > −1.

We consider Lα,β with domain D(L) := P[−1, 1] the set of all algebraic
polynomials restricted to [−1, 1]. We also consider [−1, 1] equipped with the
weighted measure

(1.18) dνα,β(x) := wα,β(x)dx = (1− x)α(1 + x)βdx

and the distance

(1.19) ρ(x, y) := |arccosx− arccos y|.
It is not hard to see that the Jacobi operator Lα,β in the setting described
above is essentially self-adjoint and −Lα,β is positive in L2([−1, 1], wα,β).

We shall use the notation

(1.20) B(x, r) := {y ∈ [−1, 1] : ρ(x, y) < r} and V (x, r) := να,β(B(x, r)).

As is well known (see e.g. [2, (7.1)]),

(1.21) V (x, r) ∼ r(1−x+r2)α+1/2(1+x+r2)β+1/2, x ∈ [−1, 1], 0 < r ≤ π.

It is well known [13] that the Jacobi polynomials P
(α,β)
n , n = 0, 1, . . . ,

are eigenfunctions of the operator Lα,β , namely,

(1.22) Lα,βP
(α,β)
n = −n(n+ α+ β + 1)P (α,β)

n , n = 0, 1, . . . .

The Jacobi polynomials {P (α,β)
n } are standardly normalized by the condition

P
(α,β)
n (1) =

(

n+α
n

)

[13]. As usual we denote h
(α,β)
n := ‖P (α,β)

n ‖2L2([−1,1],wα,β)
.

Then the Jacobi heat kernel etLα,β (x, y), t > 0, takes the form

(1.23) etLα,β (x, y) =
∞
∑

n=0

e−tn(n+α+β+1)P
(α,β)
n (x)P

(α,β)
n (y)

h
(α,β)
n

.

Theorem 1.3. For any α, β > −1 there exist constants c1, c2, c3, c4 > 0
such that for all x, y ∈ [−1, 1] and t > 0,

(1.24)
c1 exp

{

−ρ(x,y)2

c2t

}

[V (x,
√
t)V (y,

√
t)]1/2

≤ etLα,β (x, y) ≤
c3 exp

{

−ρ(x,y)2

c4t

}

[V (x,
√
t)V (y,

√
t)]1/2

.

This theorem is established in [2, Theorem 7.2] using a general result
on heat kernels in Dirichlet spaces with a doubling measure and a local
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Poincaré inequality. The same theorem is also proved in [8, Theorem 5.1].
In [9] Nowak and Sjögren obtained this result in the case when α, β ≥ −1/2
via a direct method using special functions.

For the proof of Theorem 1.1 it will be critical that the kernel P (wµ;x, y)
of the orthogonal projector onto Vn(wµ) in L2(B, wµ) has an explicit rep-
resentation in terms of the univariate Gegenbauer polynomials (see (2.5)–
(2.7)). For the proof of Theorem 1.2 we apply the well known representation
of the kernel Pn(wκ;x, y) in terms of Jacobi polynomials (see (3.6)).

It should be pointed out that our method of proof of estimates (1.8) and
(1.16) works only in the range µ ≥ 0 for the weight parameter in the case
of the ball and in the range κi ≥ 0, i = 1, . . . , n, in the case of the simplex.
These restrictions on the range of the parameters are determined by the
range for the parameters in the representations of the kernels P (wµ;x, y)
and Pn(wκ;x, y).

Observe that the two-sided estimates on the heat kernels from (1.8),
(1.16) coupled with the general results from [2, 7] entail smooth functional
calculus in the settings on the ball and the simplex (see [6, 11]), in particular,
the finite speed propagation property is valid. For more details, see [8, §3.1].

2. Proof of Gaussian bounds for the heat kernel on the ball.

We adhere to the notation from §1.1. Define

Di,j := xi∂j − xj∂i, 1 ≤ i 6= j ≤ d.

It is easy to see that

(2.1) Di,j = ∂θi,j with (xi, xj) = ri,j(cos θi,j , sin θi,j).

Further, define the second order differential operators

D2
i,i := [wµ(x)]

−1∂i[(1− ‖x‖2)wµ(x)∂i], 1 ≤ i ≤ d.

It turns out that the differential operator Dµ from (1.1) can be decomposed
as a sum of second order differential operators [3, Proposition 7.1]:

(2.2) Dµ =

d
∑

i=1

D2
i,i +

∑

1≤i<j≤d

D2
i,j =

∑

1≤i≤j≤d

D2
i,j .

The basic properties of the operator Dµ are given in

Theorem 2.1. For f ∈ C2(Bd) and g ∈ C1(Bd),

(2.3)
�

Bd

Dµf(x)g(x)wµ(x) dx

= −
�

Bd

[

d
∑

i=1

∂if(x)∂ig(x)(1− ‖x‖)2 +
∑

1≤i<j≤d

Di,jf(x)Di,jg(x)
]

wµ(x) dx.
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Consequently, the operator Dµ is essentially self-adjoint and −Dµ is positive

in L2(Bd, wµ).

Proof. Applying integration by parts in the variable xi we obtain
�

Bd

(D2
i,if(x))g(x)wµ(x) dx =

�

Bd

(

∂i[(1− ‖x‖2)wµ(x)∂if(x)]
)

g(x) dx

= −
�

Bd

∂if(x)∂ig(x)(1− ‖x‖)2wµ(x) dx.

We now handle D2
i,j . It is sufficient to consider D1,2. If d = 2 we switch

to polar coordinates and use (2.1) and integration by parts for 2π-periodic
functions to obtain

�

B2

(D2
i,jf(x))g(x)wµ(x) dx =

1�

0

r(1− r2)µ−1/2
2π�

0

(∂2
θf)g dθ dr

= −
1�

0

r(1− r2)µ−1/2
2π�

0

∂θf∂θg dθ dr

= −
�

B2

Di,jf(x)Di,jg(x)wµ(x) dx.

In dimension d > 2 we apply the following integration identity that follows
by a simple change of variables:

(2.4)
�

Bd

f(x) dx =
�

Bd−2

[ �

B2

f
(
√

1− ‖v‖2 u, v
)

du
]

(1− ‖v‖2) dv,

and parametrizing the integral over B2 by polar coordinates we arrive at
�

Bd

(D2
i,jf(x))g(x)wµ(x) dx = −

�

Bd

Di,jf(x)Di,jg(x)wµ(x) dx.

The above identities imply (2.3).

We consider the operator Dµ with domain D(Dµ) = P(Bd) the set of
all polynomials on B

d, which is obviously dense in L2(Bd, wµ). From (2.3) it
readily follows that Dµ is symmetric and −Dµ is positive.

We next show that Dµ is essentially self-adjoint, i.e. its completion Dµ

is self-adjoint. Let {Pnj : j = 1, . . . , dimVn} be an orthonormal basis of
Vn = Vn(wµ) consisting of real-valued polynomials. Clearly

D(Dµ) =
{

f =
∑

n,j

anjPnj : anj ∈ R, {anj} compactly supported
}

,

Dµf = −
∑

n,j

anjn(n+ 2λ)Pnj if f =
∑

j

anjPnj ∈ D(Dµ).
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We define Dµ and its domain D(Dµ) by

D(Dµ) :=
{

f =
∞
∑

n=0

dimVn
∑

j=1

anjPnj :
∑

n,j

|anj |2 < ∞,

∑

n,j

|anj |2(n(n+ 2λ))2 < ∞
}

and

Dµf := −
∑

n,j

anjn(n+ 2λ)Pnj if f =
∑

n,j

anjPnj ∈ D(Dµ).

It is easy to show that Dµ is the closure of Dµ and that Dµ is self-adjoint.

Remark 2.2. Identity (2.3) is the weighted Green formula on B
d (see [8]).

Proof of Theorem 1.1. We shall assume that 0 < t ≤ 1. For t > 1 the
Gaussian bounds (1.8) obviously follow from (1.8) with t = 1.

It is known (see [5, Thm. 5.2.8]) that for µ > 0 the kernel Pn(wµ;x, y) of
the orthogonal projector onto Vn(wµ) in L2(B, wµ) has the representation

(2.5) Pn(wµ;x, y)

= cµ
n+ λ

λ

1�

−1

Cλ
n

(

〈x, y〉+ u
√

1− ‖x‖2
√

1− ‖y‖2
)

(1− u2)µ−1 du,

where Cλ
n is the Gegenbauer polynomial of degree n, and cµ is the constant

such that cµ
	1
−1(1 − t2)µ−1dt = 1. The Gegenbauer polynomials {Cλ

n} are

orthogonal in the weighted space L2([−1, 1], wλ) with wλ(u) := (1−u2)λ−1/2

and can be defined by the generating function

(1− 2uz + z2)−λ =
∞
∑

n=0

Cλ
n(u)z

n, |z|, |u| < 1.

Using Cλ
n(1) =

(

n+2λ−1
n

)

it is easy to show that

(2.6) cλ+1/2

1�

−1

|Cλ
n(u)|2wλ(u) du =

λ

n+ λ
Cλ
n(1).

In the limiting case µ = 0 the representation of Pn(wµ;x, y) takes the form

(2.7) Pn(w0;x, y) =
λ+ n

λ

[

Cλ
n

(

〈x, y〉+
√

1− ‖x‖2
√

1− ‖y‖2
)

+ Cλ
n

(

〈x, y〉 −
√

1− ‖x‖2
√

1− ‖y‖2
)]

.

If α = β = λ−1/2, we denote the Jacobi operator by Lλ := Lλ−1/2,λ−1/2

and we have Lλf(x) = (1−x2)f ′′(x)−(2λ+1)f ′(x). We denote by etLλ(u, v)
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the associated Jacobi heat kernel. By (1.23) and (2.6) we obtain

(2.8)

etLλ(u, v) =

∞
∑

n=0

e−tn(n+2λ) cλ+1/2(n+ λ)

λ

Cλ
n(u)C

λ
n(v)

Cλ
n(1)

, λ := µ+(d−1)/2.

Assume µ > 0. The above, (1.7), and (2.5) lead to the representation

(2.9) etDµ(x, y)

=
cµ

cλ+1/2

1�

−1

etLλ
(

1, 〈x, y〉+ u
√

1− ‖x‖2
√

1− ‖y‖2
)

(1− u2)µ−1 du.

Note that in the case of Gegenbauer polynomials (α = β = λ− 1/2) by
(1.21) it follows that V (x, r) ∼ r(1− x2 + r2)λ, −1 ≤ x ≤ 1, and hence

(2.10) V (1,
√
t) ∼ tλ+1/2, V (z,

√
t) ∼ tλ+1/2(1 + (1− z2)/t)λ, |z| ≤ 1.

If x = cos θ, then 1− x = 2 sin2(θ/2) ∼ θ2 and hence

(2.11) ρ(1, z) = |arccos 1− arccos z| = arccos z ∼
√
1− z, −1 ≤ z ≤ 1.

From this, (2.9), (1.24), and (2.10) we obtain

etDµ(x, y) ≤ c1

1�

−1

exp
{

−1−z(u;x,y)
c2t

}

tλ+1/2
(

1 + 1−z(u;x,y)2

t

)λ/2
(1− u2)µ−1 du,(2.12)

etDµ(x, y) ≥ c3

1�

−1

exp
{

−1−z(u;x,y)
c4t

}

tλ+1/2
(

1 + 1−z(u;x,y)2

t

)λ/2
(1− u2)µ−1 du,(2.13)

where z(u;x, y) := 〈x, y〉+ u
√

1− ‖x‖2
√

1− ‖y‖2.
Since 1 + b ≤ eb for b ≥ 0, we have

1 ≤
(

1 +
1− z2

t

)λ/2

≤
(

1 + 2
1− z

t

)λ/2

≤ exp

{

λ
1− z

t

}

, |z| ≤ 1.

Therefore, by replacing the constant c4 in (2.13) by a smaller constant c′4
we get

(2.14) etDµ(x, y) ≥ c′3
tλ+1/2

1�

−1

exp

{

−1− z(u;x, y)

c′4t

}

(1− u2)µ−1 du.

Obviously, from (2.12) it follows that

(2.15) etDµ(x, y) ≤ c1

tλ+1/2

1�

−1

exp

{

−1− z(u;x, y)

c2t

}

(1− u2)µ−1 du.
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We have

1− z(u;x, y) = 1− 〈x, y〉 −
√

1− ‖x‖2
√

1− ‖y‖2

+ (1− u)
√

1− ‖x‖2
√

1− ‖y‖2

and using the definition of dB(x, y) in (1.3) we get

1− z(1;x, y) = 1− cos dB(x, y) = 2 sin2
dB(x, y)

2
∼ dB(x, y)

2.

Hence,

1−z(u;x, y) ∼ dB(x, y)
2+(1−u)H(x, y), H(x, y) :=

√

1−‖x‖2
√

1−‖y‖2.
Consequently,

exp

{

−1− z(u;x, y)

c2t

}

≤ exp

{

−dB(x, y)
2

c′t

}

exp

{

−(1− u)H(x, y)

c′t

}

,

exp

{

−1− z(u;x, y)

2c4t

}

≥ exp

{

−dB(x, y)
2

c′′t

}

exp

{

−(1− u)H(x, y)

c′′t

}

.

These two inequalities along with (2.14)–(2.15) imply that in order to obtain
the two-sided Gaussian bounds in (1.8) it suffices to show that the quantity

(2.16) At(x, y) :=
1

tλ+1/2

1�

−1

exp

{

−(1− u)H(x, y)

ct

}

(1− u2)µ−1 du

satisfies the following inequalities, for any ε > 0:

c?

[VB(x,
√
t)VB(y,

√
t)]1/2

≤ At(x, y) ≤
c?? exp

{

εdB(x,y)
2

t

}

[VB(x,
√
t)VB(y,

√
t)]1/2

.(2.17)

Here the constant c?? > 0 depends on ε.

Lower bound. First, assume that H(x, y)/t ≥ 1. Then

At(x, y) ≥
c̃

tλ+1/2

1�

0

exp

{

−(1− u)H(x, y)

ct

}

(1− u)µ−1 du(2.18)

=
c̃tµ

tλ+1/2H(x, y)µ

H(x,y)/t�

0

vµ−1e−v/c dv

≥ c∗
td/2H(x, y)µ

with c∗ = c̃

1�

0

vµ−1e−v/c dv,

where we have applied the substitution v = (1− u)H(x, y)/t and used λ+
1/2 = µ+ d/2. However, by (1.5), VB(x, r) ≥ crd(1− ‖x‖2)µ, which implies

td/2H(x, y)µ = td/2
(
√

1− ‖x‖2
√

1− ‖y‖2
)µ ≤

[

VB(x,
√
t)VB(y,

√
t
]1/2

.
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Putting the above together we conclude that At(x, y) obeys the lower bound
in (2.17) in this case.

Now, assume that H(x, y)/t ≤ 1. Then exp
{

− (1−u)H(x,y)
ct

}

≥ e−1/c and

At(x, y) ≥
c̃

tλ+1/2
≥ c?

[VB(x,
√
t)VB(y,

√
t)]1/2

.

Here we have used the fact that, by (1.5), VB(x, r) ≥ crd+2µ = cr2λ+1. Thus,
At(x, y) again obeys the lower bound in (2.17) and this completes its proof.

Upper bound. Obviously exp
{

− (1−u)H(x,y)
ct

}

≤ 1 and hence

(2.19) At(x, y) ≤
c∗

tλ+1/2
=

c∗
td/2+µ

.

We shall obtain another estimate on At(x, y) by breaking the integral in
(2.16) into two parts: over [0, 1] and over [−1, 0]. Just as in (2.18) applying
the substitution v = (1− u)H(x, y)/t we obtain

1

tλ+1/2

1�

0

exp

{

−(1− u)H(x, y)

ct

}

(1− u2)µ−1 du ≤ c∗max{1, 2µ−1}
td/2H(x, y)µ

with c∗ =
	∞
0 vµ−1e−v/c dv. Here we have used (1 + u)µ−1 ≤ max{1, 2µ−1}.

For the integral over [−1, 0] we use the fact that 1−u ≥ 1 for u ∈ [−1, 0]
to obtain

1

tλ+1/2

0�

−1

exp

{

−(1− u)H(x, y)

ct

}

(1− u2)µ−1 du

≤ c∗
tλ+1/2

exp

{

−H(x, y)

ct

}

≤ c̃

tλ+1/2

( t

H(x, y)

)µ
=

c̃

td/2H(x, y)µ
.

Here we have used vµ ≤ bµ+ 1c!ev for all v > 0, and λ = µ+ (d− 1)/2.

Together, the above inequalities imply

(2.20) At(x, y) ≤
c∗

td/2H(x, y)µ
.

In turn, (2.19) and (2.20) yield

(2.21) At(x, y) ≤
c�

td/2(t+H(x, y))µ
.

It remains to show that the above estimate implies the upper bound
in (2.17). To this end we need the following simple inequalities:

(2.22) (u+ a)(u+ b) ≤ 3(u2 + ab)(1 + u−1|a− b|), a, b ≥ 0, 0 < u ≤ 1

(see, e.g. [10, (2.21]) and (see [11, (4.9)])

|
√

1− ‖x‖2 −
√

1− ‖y‖2| ≤
√
2 dB(x, y), x, y ∈ B

d.
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Together, these two inequalities yield

(2.23)
(
√
t+

√

1−‖x‖2
)(
√
t+

√

1−‖y‖2
)

≤ c
(

t+H(x, y)
)

(

1+
dB(x, y)√

t

)

.

Evidently 1 + u ≤ ε−1eεu for u ≥ 0 and 0 < ε ≤ 1, and hence

(2.24) (1 + b)µ ≤ 2µ(1 + b2)µ/2 ≤ 2µε−µ/2eµεb
2

, ∀b ≥ 0, 0 < ε ≤ 1.

Also, from (1.5) it follows that VB(x, r) ∼ rd(r +
√

1− ‖x‖2)2µ. From this,
(2.23), and (2.24) it follows that

[

VB(x,
√
t)VB(y,

√
t)
]1/2 ≤ ctd/2

(
√
t+

√

1− ‖x‖2
)µ(√

t+
√

1− ‖y‖2
)µ

≤ cεt
d/2(t+H(x, y))µ exp

{

µε
dB(x, y)

2

t

}

.

In turn, this and (2.21) yield the upper estimate in (2.17).

We next consider the case when µ = 0. Now, (1.7), (2.7), and (2.8) yield
the representation

etD0(x, y) = cλe
tLλ

(

1, 〈x, y〉+
√

1− ‖x‖2
√

1− ‖y‖2
)

(2.25)

+ cλe
tLλ

(

1, 〈x, y〉 −
√

1− ‖x‖2
√

1− ‖y‖2
)

.

From this point on the proof follows in the footsteps of the proof when µ > 0
above, but is much simpler because the integral in (2.9) is replaced in (2.25)
by two terms. We omit the further details. The proof of Theorem 1.1 is
complete.

3. Proof of Gaussian bounds for the heat kernel on the simplex.

In this part we adhere to the notation from §1.2. The differential operator Dκ

from (1.9) can be represented in the more symmetric form

(3.1) Dκ =

d
∑

i=1

Ui +
∑

1≤i<j≤d

Ui,j ,

where

Ui :=
1

wk(x)
∂i
(

xi(1− |x|)wκ(x)∂i
)

,

Ui,j :=
1

wk(x)
(∂i − ∂j)[xixjwκ(x)(∂i − ∂j)], 1 ≤ i < j ≤ d.

This decomposition was first established in [1] for wκ(x) = 1 and later used
in [4] with general wκ. It is easy to verify it directly.

The following basic property of the operator Dκ follows from (3.1) by
integration by parts:
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Proposition 3.1. For any f ∈ C2(Td) and g ∈ C1(Td),

(3.2)
�

Td

Dκf(x) · g(x)wκ(x) dx = −
�

Td

[

d
∑

i=1

∂if(x)∂ig(x)xi(1− |x|)

+
∑

1≤i<j≤d

(∂i − ∂j)f(x)(∂i − ∂j)g(x)xixj

]

wκ(x) dx.

Proof. Fix f ∈ C2(Td) and g ∈ C1(Td). For any x = (x1, . . . , xd) in R
d

we denote x̂i := (x1, . . . , xi−1, xi+1, xd) ∈ R
d−1. We use the identity

(3.3)
�

Td

h(x) dx =
�

Td−1

1−|x̂i|�

0

h(x) dxi dx̂i

and integration by parts to obtain�

Td

Uif(x) · g(x)wκ(x) dx =
�

Td

∂i[xi(1− |x|)wκ(x)∂if(x)]g(x) dx

=
�

Td−1

[

xi(1− |x|)wκ(x)∂if(x)g(x)
∣

∣

1−|x̂i|
xi=0

−
1−|x̂i|�

0

xi(1− |x|)wκ(x)∂if(x)∂ig(x) dxi

]

dx̂i.

Now, since xi(1− |x|)wκ(x) vanishes when xi = 0 or xi = 1− |x̂i| we get

(3.4)
�

Td

Uif(x) · g(x)wκ(x) dx = −
�

Td

∂if(x)∂ig(x)xi(1− |x|)wκ(x) dx.

We next show that

(3.5)
�

Td

Ui,jf(x) · g(x)wκ(x) dx

= −
�

Td

(∂i − ∂j)f(x) · (∂i − ∂j)g(x)xixjwκ(x) dx.

For any x = (x1, . . . , xd) we set

ξi(x) := (x1, . . . , xi−1, 1− |x̂i|, xi+1, . . . xd).

Also, denote Fij(x) := (∂i − ∂j)f(x).
Assume first that κd+1 > 1/2. Just as above using (3.3) and integration

by parts in xi, we obtain�

Td

∂i[xixjωκ(x)Fij(x)] · g(x) dx

=
�

Td−1

[

xixjωκ(x)Fij(x)g(x)
∣

∣

1−|x̂i|
xi=0

−
1−|x̂i|�

0

xixjωκ(x)Fij(x)∂ig(x) dxi

]

dx̂i
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=
�

Td−1

(1− |x̂i|)xjωκ(ξi(x))Fij(ξi(x))g(ξi(x)) dx

−
�

Td

xixjωκ(x)Fij(x) · ∂ig(x) dx = −
�

Td

xixjωκ(x)Fij(x) · ∂ig(x) dx.

Here we have used the fact that xiωκ(x) = 0 when xi = 0 and ωκ(ξi(x)) = 0
since κd+1 > 1/2. Similarly,

�

Td

∂j [xixjωκ(x)Fij(x)] · g(x) dx = −
�

Td

xixjωκ(x)Fij(x) · ∂jg(x) dx.

Subtracting the above identities proves (3.5) when κd+1 > 1/2. The validity
of (3.5) for all κd+1 > −1/2 follows by analytic continuation in κd+1.

In light of (3.1), summing up (3.4) and (3.5) leads to (3.2).

Observe that identity (3.2) is the weighted Green formula on the sim-
plex T

d (see [8]).

We consider the operator Dκ defined on the set D(Dκ) = P(Td) of
all algebraic polynomials on T

d, which is obviously dense in L2(Td, wκ).
From (3.2) it readily follows that Dκ is symmetric and −Dκ is positive in
L2(Td, wκ). Furthermore, just as in the proof of Theorem 2.1 it follows that
Dκ is essentially self-adjoint.

Proof of Theorem 1.2. We may assume that 0 < t ≤ 1, because the case
t > 1 follows immediately from the case t = 1.

Recall that the Jacobi polynomials {P (α,β)
n } are standardly normalized

by P
(α,β)
n (1) =

(

n+α
n

)

and h
(α,β)
n = ‖P (α,β)

n ‖2L2([−1,1],wα,β)
. It is known (see [5,

Theorem 5.3.4]) that if κi > 0 for all i, the kernel Pn(wµ;x, y) of the orthog-
onal projector onto Vn(wκ) in L2(Td, wκ) has the following representation:

(3.6) Pn(wµ;x, y) = cκ(h
(λ−1/2,−1/2)
n )−1P (λ−1/2,−1/2)

n (1)

×
�

[−1,1]d+1

P (λ−1/2,−1/2)
n (2z(u;x, y)2 − 1)

d+1
∏

i=1

(1− u2i )
κi−1 du,

where

z(u;x, y) :=
d+1
∑

i=1

ui
√
xiyi, xd+1 := 1−|x|, yd+1 := 1−|y|, λ := |κ|+(d−1)/2,

with |x| = x1 + · · · + xd. When some or all κi are 0, this identity holds in
the limit κi → 0, which can be shown using

lim
κ→0+

	1
−1 f(x)(1− x2)κ−1 dx
	1
−1(1− x2)κ−1 dx

=
1

2
[f(1) + f(−1)].
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Assume κi > 0, i = 1, . . . , n+ 1. Combining (1.15), (1.23), and (3.6) we
obtain the representation

(3.7) etDκ(x, y)

= cκ
�

[−1,1]d+1

etLλ−1/2,−1/2(1, 2z(u;x, y)2 − 1)

d+1
∏

i=1

(1− u2i )
κi−1 du.

Note that from the definition of the distance dT(x, y) in (1.11) we have
∑d+1

i=1

√
xiyi = cos dT(x, y) and hence |z(u;x, y)| ≤ 1. Just as in (2.11) we

obtain

ρ(1, 2z2 − 1) := |arccos 1− arccos(2z2 − 1)| ∼
√

1− (2z2 − 1)(3.8)

∼
√

1− z2.

On the other hand, with α = λ − 1/2 and β = −1/2 we infer from (1.21)
that V (x, r) ∼ r(1− x+ r2)λ and hence V (1,

√
t) ∼ tλ+1/2 and

V (2z2 − 1,
√
t) ∼ t1/2

(

t+ 2(1− z2)
)λ ∼ tλ+1/2

(

1 +
1− z2

t

)λ

.

We use these equivalences, (3.7), (1.24), and (3.8) to obtain

etDκ(x, y) ≤ c1
�

[−1,1]d+1

exp
{

−1−z(u;x,y)2

c2t

}

tλ+1/2
(

1 + 1−z(u;x,y)2

t

)λ/2

d+1
∏

i=1

(1− u2i )
κi−1 du,(3.9)

etDκ(x, y) ≥ c3
�

[−1,1]d+1

exp
{

−1−z(u;x,y)2

c4t

}

tλ+1/2
(

1 + 1−z(u;x,y)2

t

)λ/2

d+1
∏

i=1

(1− u2i )
κi−1 du.

(3.10)

Just as in the proof of Theorem 1.1 by replacing the constant c4 in (3.10)

by a smaller constant c′4 we can eliminate the term
(

1 + 1−z(u;x,y)2

t

)λ
in the

denominator. Thus, it follows that

(3.11) etDκ(x, y) ≥ c′3
tλ+1/2

�

[−1,1]d+1

exp

{

−1− z(u;x, y)2

c′4t

}d+1
∏

i=1

(1− u2i )
κi−1 du.

By simply deleting that term in (3.9) we get

etDκ(x, y) ≤ c1

tλ+1/2

�

[−1,1]d+1

exp

{

−1− z(u;x, y)2

c2t

} d+1
∏

i=1

(1− u2i )
κi−1 du.
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Evidently,

1− z(u;x, y)2 = (1 + |z(u;x, y)|)(1− |z(u;x, y)|)

≥ 1− |z(u, x, y)| ≥ 1−
d+1
∑

i=1

|ui|
√
xiyi.

Using the symmetry of the last term above with respect to sign changes
of ui, and the fact that 1− u2i ∼ 1− ui when 0 ≤ ui ≤ 1, we conclude that

(3.12) etDκ(x, y) ≤ c′1
tλ+1/2

�

[0,1]d+1

exp

{

−1− z(u;x, y)

c2t

} d+1
∏

i=1

(1− ui)
κi−1 du.

Similarly, using 1− z(u;x, y)2 ≤ 2(1− z(u;x, y)) we infer from (3.11) that

(3.13) etDκ(x, y) ≥ c′′3
tλ+1/2

�

[0,1]d+1

exp

{

−1− z(u;x, y)

c′′4t

} d+1
∏

i=1

(1− ui)
κi−1 du.

By the definition of dT(x, y) in (1.11) we have

1−
d+1
∑

i=1

√
xiyi = 1− cos dT(x, y) = 2 sin2

dT(x, y)

2
∼ dT(x, y)

2

and hence

1− z(u;x, y) = 1−
d+1
∑

i=1

√
xiyi +

d+1
∑

i=1

(1− ui)
√
xiyi(3.14)

∼ dT(x, y)
2 +

d+1
∑

i=1

(1− ui)
√
xiyi.

Consequently,

(3.15) exp

{

−1− z(u;x, y)

c2t

}

≤ exp

{

−dT(x, y)
2

c′t

} d+1
∏

i=1

exp

{

−(1− ui)
√
xiyi

c′t

}

,

(3.16) exp

{

−1− z(u;x, y)

c′′4t

}

≥ exp

{

−dT(x, y)
2

c′′t

} d+1
∏

i=1

exp

{

−(1− ui)
√
xiyi

c′′t

}

.

For x, y ∈ [0, 1] and κ > 0, denote

(3.17) At(κ;x, y) := κ

1�

0

exp

{

−(1− u)
√
xy

ct

}

(1− u)κ−1 du,
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where c > 0 is a constant. We claim that for any 0 < ε ≤ 1,

c�t|κ|
∏d+1

i=1 (xi + t)κi/2(yi + t)κi/2
≤

d+1
∏

i=1

At(κi;xi, yi)(3.18)

≤ c�t|κ| exp
{

εdT(x,y)
2

t

}

∏d+1
i=1 (xi + t)κi/2(yi + t)κi/2

,

where c� > 0 depends on ε.
Assume for a moment that the inequalities (3.18) are valid. Then by

(3.12), (3.15), and the first inequality in (3.18) we obtain

etDκ(x, y) ≤ c

t|κ|+d/2
exp

{

−dT(x, y)
2

c′t

}

t|κ| exp
{

εdT(x,y)
2

t

}

∏d+1
i=1 (xi + t)κi/2

∏d+1
i=1 (yi + t)κi/2

≤ c exp
{

−dT(x,y)
2

2c′t

}

[

VT(x,
√
t)VT(y,

√
t)
]1/2

.

Here we have used the facts that λ = |κ| + (d − 1)/2, and VT(x,
√
t) ∼

td/2
∏d+1

i=1 (xi+t)κi and a similar expression for VT(y,
√
t). These follow read-

ily from (1.13) since xd+1 = 1− |x|. We have also used the second estimate
in (3.18) with ε = (2c′)−1. The above inequalities yield the upper estimate
in (1.16). One similarly shows that (3.13), (3.16), and the first inequality in
(3.18) imply the lower estimate in (1.16).

It remains to prove the estimates in (3.18). We first focus on the lower

estimate. If
√
xy/t ≤ 1, then exp

{

− (1−u)
√
xy

ct

}

≥ c′ > 0 and hence

At(κ;x, y) ≥ c′ ≥ c′

(x/t+ 1)κ/2(y/t+ 1)κ/2
=

c′tκ

(x+ t)κ/2(y + t)κ/2
.

Assume
√
xy/t > 1. Then applying the substitution v = (1− u)

√
xy/t we

obtain

At(κ;x, y) =
κtκ

(
√
xy)κ

√
xy/t�

0

e−v/cvκ−1 dv

≥ κtκ

(
√
xy)κ

1�

0

e−v/cvκ−1 dv =
c′′tκ

(
√
xy)κ

.

Therefore, in both cases

At(κ;x, y) ≥
ctκ

(x+ t)κ/2(y + t)κ/2
,

which yields the lower estimate in (3.18).
We next prove the upper estimate in (3.18). It is readily seen that

exp
{

− (1−u)
√
xy

ct

}

≤ 1 and hence At(κ;x, y) ≤ c′. On the other hand, from
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the above it follows that

At(κ;x, y) ≤
tκ

(
√
xy)κ

∞�

0

e−v/cvκ−1 dv =
c′′tκ

(
√
xy)κ

.

Together, these two estimates yield

At(κ;x, y) ≤
c?tκ

(
√
xy + t)κ

,

implying

(3.19)
d+1
∏

i=1

At(κi;xi, yi) ≤
c?t|κ|

∏d+1
i=1 (

√
xiyi + t)κi

.

To show that this leads to the desired upper estimate, we need the following
simple inequality (see [6, (7.5)]):

|√xi −
√
yi| ≤ dT(x, y), i = 1, . . . , d+ 1, x, y ∈ T

d.

This along with (2.22) implies

(
√
xi +

√
t)(

√
yi +

√
t) ≤ c(

√
xiyi + t)

(

1 +
dT(x, y)√

t

)

,

which leads to

d+1
∏

i=1

(xi + t)κi/2(yi + t)κi/2 ∼
d+1
∏

i=1

(
√
t+

√
xi)

κi(
√
t+

√
yi)

κi

≤ c

d+1
∏

i=1

(
√
xiyi + t)κi

(

1 +
dT(x, y)√

t

)|κ|

≤ c(ε)
d+1
∏

i=1

(
√
xiyi + t)κi exp

{

ε|κ|dT(x, y)
2

t

}

.

Here for the last inequality we have used (2.24) with µ = |κ|. The above
coupled with (3.19) yields the upper estimate in (3.18).

We now consider the case when one or more κi are 0, 1 ≤ i ≤ n+ 1. In
this case, the kernel representation (3.6) holds in the limit. If κi = 0, then
the integral over ui in (3.7) is replaced by the average of point evaluations
at ui = 1 and ui = −1. It is easy to see that all deductions that lead to
(3.18) are still valid taking into account the obvious fact that (see (3.17))

lim
κ→0+

At(κ;x, y) = lim
κ→0+

κ

1�

0

exp

{

−(1− u)
√
xy

ct

}

(1− u)κ−1 du = 1.

This completes the proof.
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