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Gaussian bounds for the heat kernels
on the ball and the simplex: classical approach

by

GERARD KERKYACHARIAN (Paris),
PENCHO PETRUSHEV (Columbia, SC) and
YuaN Xu (Eugene, OR)

Abstract. Two-sided Gaussian bounds are established for the weighted heat kernels
on the unit ball and the simplex in R? generated by classical differential operators whose
eigenfunctions are algebraic polynomials.

1. Introduction. Two-sided Gaussian bounds have been established
for heat kernels in various settings. For example, Gaussian bounds for the
Jacobi heat kernel on [—1,1] with weight (1 — z)*(1 + 2)?, o, > —1,
are obtained in [2, Theorem 7.2] and [8, Theorem 5.1], and also in [9] for
a, > —1/2 (see (1.24) below).

In this article we establish two-sided Gaussian estimates for the heat
kernels generated by classical differential operators whose eigenfunctions are
algebraic polynomials in the weighted cases on the unit ball and the sim-
plex in R?. Such estimates are also established in [8] using a general method
that utilizes known two-sided Gaussian estimates for the heat kernels gen-
erated by weighted Laplace operators on Riemannian manifolds. Here we
derive these results directly from the Gaussian bounds for the Jacobi heat
kernel. Such a direct method leads to working in somewhat restricted range
for the parameters of the weights (commonly used in the literature). More
recently, another proof of the Gaussian bounds for the heat kernel on the
ball appeared in [12]. We next describe our results in detail.

We shall use standard notation. In particular, positive constants will be
denoted by c,c, ¢, c1,c,... and they may vary at each occurrence. Most
constants will depend on parameters that will be clear from the context.
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The notation a ~ b will stand for ¢; < a/b < ¢y. The functions that we deal
with in this article are assumed to be real-valued.

1.1. Heat kernel on the unit ball. Consider the operator
d

d
(1) Dui=> (1-2))07 -2 > mw0i0; — (d+2p) Yz,

i=1 1<i<j<d i=1

acting on sufficiently smooth functions on B¢ := {z € R? : ||z| < 1}, the
unit ball in R?, equipped with the measure

(1.2) dvy, = wy(z)de == (1 — ||z|H)*~Y2dz, p>0,
and the distance
(1.3) dg(z,y) := arccos((z,y) + /1 — [[z]2v/1 = [ly]?),

where (x,y) is the inner product of z,y € R% and ||z|| := \/(z,z). As will
be shown, the operator D,, is symmetric and —D,, is positive in L?(B%, w),).
Furthermore, D,, is essentially self-adjoint.

For 0 < r <1 denote

(1.4) Bg(z,r):={y € R dg(z,y) <r} and Vi(z,r):=v,(Be(z,r)).
As is well known (see e.g. [3, Lemma 11.3.6]),
(1.5) Vi (z,7) ~ (1 — ||z|? + r2)~.

Denote by V,(w,,) the set of all algebraic polynomials of degree n in d
variables that are orthogonal to lower degree polynomials in L?(B<, wy,), and
let Vo(w,) be the set of all constants. As is well known (see e.g. [5, §5.2]),
Vn(wy,), n=0,1,..., are eigenspaces of the operator D,,, more precisely,

(1.6) D,P=-nn+d+2pu—1)P, VP eV,(w,).

Let P, (wy; x,y) be the kernel of the orthogonal projector onto V, (w,,). Then
the semigroup e!Pr, t > 0, generated by D, has a (heat) kernel P+ (x,y) of
the form

(1.7) e!Pu(x Ze tn(n+2) p w(wyiz,y), Ai=p+(d—1)/2.

We establish two-sided Gaussian bounds on e/Px(z, y):

THEOREM 1.1. For any p > 0 there exist constants cy, ca,c3,cq4 > 0 such
that for all x,y € B and t > 0,

CleXp{ %} tDu(:L- ) < 03eXp{ %}

[Va(o, VOVa(y, VI = © Va(z, V)Valy, VOII2

(1.8)
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1.2. Heat kernel on the simplex. We also establish two-sided Gaus-
sian bounds for the heat kernel generated by the operator

(1.9) D, := Z:cléﬂ ZZIE1$36 0; + Z Ki + 2 \h;| + d“)acl)(?l

i=1 j=1
with |k] := K1 + -+ + K441 acting on suﬂi(nently smooth functions on the
simplex
T :={zecR:2,>0,...,20>0,|z| <1}, |z|:=21+ - + x4,
in R% d > 1, equipped with the measure
d
(1.10)  dug(z) = we(x)dx := Hzfiflﬂ(l —|z|)ke1 1 2dx, ks >0,
i=1
and the distance

d
(1.11) dr(z,y) = arccos(Z\/@—i— VI [2]V/I— |y|).
=1

As will be shown, the operator D, is symmetric and —D, is positive in the
weighted space L2(']I‘ wy); furthermore, Dy, is essentially self-adjoint.
We shall use the notation

(1.12) Bp(z,r) :={y € T dp(x,y) <r} and Vi(x,r):= ve(Br(z,7)).
It is known that for 0 < r <1,
d
(1.13) Vr(z,r) ~ rd(1 — |z| 4 r?)ra+ ]h_[(:r2 + r2)ri
i=1
This equivalence follows e.g. from [3, (5.1.10)] (see also [8, (4.23)—(4.24)]).
Denote by V,(w,) the set of all algebraic polynomials of degree n in d
variables that are orthogonal to lower degree polynomials in L?(T% w,),
and let Vp(wy) be the set of all constants. As is well known (e.g. [5, §5.3]),
Vn(wg), n=0,1,..., are eigenspaces of the operator D,;, namely,
(1.14) D.P=-n(n+|s|+(d—-1)/2)P, VP e V,(w,),n=0,1,....

Let P,(wg;x,y) be the kernel of the orthogonal projector onto V,(wy) in
L%(T?,w,). The heat kernel e!P=(z,7), t > 0, takes the form

(o]
(1'15) etDR(SUa y) = Z e_m(n—‘_)\n)Pn(wn;xay)v Ak 1= |K| + (d - 1)/2'
n=0
THEOREM 1.2. For any x; > 0, ¢ = 1,...,n + 1, there are constants
c1,Co,c3,c4 > 0 such that for all x,y € T and t > 0,
d ) 2 )
c1 exp{ -~} g exp{ — )

(1.16) P (,y) <

Vel VOV (g, VI = Vel VD Ve (y, VT2
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1.3. Method of proof and discussion. We shall prove Theorems 1.1
and 1.2 by using the known two-sided Gaussian bounds on the Jacobi heat
kernel on [—1, 1]. We next describe this result. The classical Jacobi operator
is defined by

[wa,p(2)(1 — 22) f' ()]
Wa,3()

Y

(1.17) Losf(z) ==
where
Wa 5(x) = (1 —2)*(1+2)’, «a,f>-1.

We consider L, g with domain D(L) := P[—1,1] the set of all algebraic
polynomials restricted to [—1, 1]. We also consider [—1, 1] equipped with the
weighted measure

(1.18) v 5() = wa g(x)dr = (1 — 2)*(1 + 2)° da
and the distance
(1.19) p(x,y) := |arccos z — arccos y|.

It is not hard to see that the Jacobi operator L, g in the setting described
above is essentially self-adjoint and —L, g is positive in L?([—1, 1], w4, g).
We shall use the notation

(1.20)  B(z,r):={y € [-1,1]: p(z,y) <r} and V(z,r) :=va5(B(z,r)).

As is well known (see e.g. [2, (7.1)]),

(1.21) V(z,r) ~r(1—z+r2) 20424722 2 e [-1,1,0<r <.
It is well known [13] that the Jacobi polynomials Pfla’ﬂ ), n=0,1,...,

are eigenfunctions of the operator L, g, namely,

(1.22) LogP?) = —pn+a+p+1)PP n=0,1,....

The Jacobi polynomials {P,Sf”ﬁ )} are standardly normalized by the condition

Prga’ﬁ)(l) = (") [13]. As usual we denote pled) = ||PT(LO"B)||%2([_1’1]7waﬁ).

Then the Jacobi heat kernel etFes(z, y), t > 0, takes the form

_ Po (@) P (y)
tLa,3 — tn(n+a+p8+1)
(1.23) e (x,y) 5_06 heB)

THEOREM 1.3. For any o, > —1 there exist constants c1,ca,c3,c4 > 0
such that for all x,y € [-1,1] and t > 0,

plz? ple)?

c1 exp{_ cat } < etLavB(gc ) < c3 exp{— cat }
[V (z, VOV (y, VDIV~ S VOV VDI
This theorem is established in [2, Theorem 7.2] using a general result
on heat kernels in Dirichlet spaces with a doubling measure and a local

(1.24)
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Poincaré inequality. The same theorem is also proved in [8, Theorem 5.1].
In [9] Nowak and Sjogren obtained this result in the case when o, 5 > —1/2
via a direct method using special functions.

For the proof of Theorem 1.1 it will be critical that the kernel P(w,,;x,y)
of the orthogonal projector onto V,(w,) in L?*(B,w,) has an explicit rep-
resentation in terms of the univariate Gegenbauer polynomials (see (2.5)—
(2.7)). For the proof of Theorem 1.2 we apply the well known representation
of the kernel P, (wy;x,y) in terms of Jacobi polynomials (see (3.6)).

It should be pointed out that our method of proof of estimates (1.8) and
(1.16) works only in the range p > 0 for the weight parameter in the case
of the ball and in the range x; > 0,7 =1,...,n, in the case of the simplex.
These restrictions on the range of the parameters are determined by the
range for the parameters in the representations of the kernels P(wy;x,y)
and P, (wy;x,y).

Observe that the two-sided estimates on the heat kernels from (1.8),
(1.16) coupled with the general results from [2, 7] entail smooth functional
calculus in the settings on the ball and the simplex (see [6, 11]), in particular,
the finite speed propagation property is valid. For more details, see [8, §3.1].

2. Proof of Gaussian bounds for the heat kernel on the ball.
We adhere to the notation from §1.1. Define

D; ;= 2;0; — x;0; 1<i#j<d.
It is easy to see that
(2.1) D;j =0y, ; with (z;,2;)=1r;;(cos0;;,sin0;;).
Further, define the second order differential operators
D2, = [w (@) 5 1(1 — 2lP)w,(2)d)], 1<i<d.

It turns out that the differential operator D,, from (1.1) can be decomposed
as a sum of second order differential operators [3, Proposition 7.1]:

d
(2.2) Dy=>» D}+ Y Djj= > D}
=1

1<i<j<d 1<i<j<d
The basic properties of the operator D,, are given in
THEOREM 2.1. For f € C%(B?) and g € C*(B?),

(2.3) S D, f(x)g(x)w,(x)dx
Bd

d
=~ | [Xar@ag@)a~ Iz + 37 Digf@)Dijow)|w,() da

Be i=1 1<i<j<d
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Consequently, the operator D,, is essentially self-adjoint and —D,, is positive
in L2(B%,w,).
Proof. Applying integration by parts in the variable x; we obtain
| (DFif (@) g(z)wu(@) de = | (1 = ||2]|*)wpu(2)di f (2)]) g ) da
Bd B4
— | 0 (@)Dig (@) (1 — |[2[])*wp(x) de.
Bd

We now handle D2 i It is sufficient to consider D;s. If d = 2 we switch
to polar coordinates and use (2.1) and integration by parts for 27-periodic
functions to obtain

1 27
| (D7, (@) g(@)wy(x) dw = \r(1 = r*)=1/2 \ (57 £)g b dr
B2 0 0
1 2T
= —\r@@—r?=12\ 0y f0pgdo dr
0 0
= _ S D; i f(x)D; jg(x)wy(x) dx.
]BQ

In dimension d > 2 we apply the following integration identity that follows
by a simple change of variables:

24) [ f@de=§ [ § /T TolPu o) du] (1= |jo)?) do
Bd Bd-2 B2
and parametrizing the integral over B? by polar coordinates we arrive at
| (D2 £(2))g(@)wu(@) dz = — | Dy f(w)Disg(x)w,(a) da.
Bd Bd
The above identities imply (2.3).

We consider the operator D, with domain D(D,) = P(B?) the set of
all polynomials on B?, which is obviously dense in L?*(B?, w,,). From (2.3) it
readily follows that D), is symmetric and —D,, is positive.

We next show that D, is essentially self-adjoint, i.e. its completion 5”
is self-adjoint. Let {P,; : 7 = 1,...,dimV,} be an orthonormal basis of
Vi = Vn(w,,) consisting of real-valued polynomials. Clearly

D(D,) = {f = Zaannj tanj € R, {an;} compactly supported},
7j

Duf ==Y anyn(n+2\) Py if f= anjPnj € D(Dy).
n,j J
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We define D,, and its domain D(D,,) by

oo dim V,

D(D,, { Z Z anjPpj Z‘anﬂ < o0,
n=0 j=1
3 Jans( n—|—2)\))2<oo}
n.j

and
Dufi==Y ann(n+2\)Py; if f= an;Py; € D(D,).
n,j n,j
It is easy to show that ﬁu is the closure of D, and that ﬁﬂ is self-adjoint. m
REMARK 2.2. Identity (2.3) is the weighted Green formula on B¢ (see [8]).

Proof of Theorem 1.1. We shall assume that 0 < ¢t < 1. For ¢t > 1 the
Gaussian bounds (1.8) obviously follow from (1.8) with ¢ = 1.

It is known (see [5, Thm. 5.2.8]) that for i > 0 the kernel P,(wy;x,y) of
the orthogonal projector onto V,,(w,) in L?(B,w,) has the representation

(2.5)  Py(wy;z,y)
n+ A :

=i | C(e ) +uy/T— [PV = ylP) (1 - ) du,
5

where C) is the Gegenbauer polynomial of degree n, and ¢y, is the constant
such that CMS (1 —¢*)»~1dt = 1. The Gegenbauer polynomials {C;} are

orthogonal in the weighted space L2([—1, 1], wy) with w) (u) := (1—u?)*~1/2
and can be defined by the generating function

(1 —2uz 4 2%~ ZC)‘ "oz, | < 1L

Using C) (1) = (”+2n>‘_1) it is easy to show that
1

(2.6) CA+1/2 S |G ()P (u) du =
~1

Ao

1).
n+)\C”( )

In the limiting case u = 0 the representation of P, (w;x,y) takes the form

1) Palw,y) = 21O ((w9) + VT BV T= TTP)

+C () = V1= [l2lPV/1 = [ly]1?)]-
If a« = 8 = A—1/2, we denote the Jacobi operator by L) := Ly 1/27-1/2
and we have Ly f(z) = (1—22)f"(z)— (2A+1) f'(x). We denote by e (u,v)
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the associated Jacobi heat kernel. By (1.23) and (2.6) we obtain
(2.8)

o0 A A
tLy — —tn(n+2X) Cx+1/2 (TL + )\) Cn (U)Cn (U) - _
e u,v) g e 3 aa) Ai=pu+(d—1)/2.

n=0
Assume g > 0. The above, (1.7), and (2.5) lead to the representation
(29)  ePr(z,y)

1

= S (1, (o, y) + uy/T— [Py [9T2) (1 — w2 du,
Cx+1/2

Note that in the case of Gegenbauer polynomials (« = =A—1/2) b
(1.21) it follows that V(z,7) ~ r(1 — 22 +r2)*, =1 < 2 < 1, and hence

(210) V(L,VE) ~ 20 V(e V) ~ T2 (1 (1= 220N, 2 < L
If x = cos@, then 1 —z = 2sin?(0/2) ~ 6% and hence
(2.11)  p(1,2) = |arccos 1 — arccos z| = arccosz ~ V1 —z, —1<z<1.

From this, (2.9), (1.24), and (2.10) we obtain

1 1—z(u;z,y)
exp] —————%
(2.12) ePr(z,y) < o S - - } 21— u?) " du,
L H/2(1 4 Z(ury) )
1 exp{ 1— cht:vy)}

(2.13) ePr(z,y) > cs | (1 —u?)* 1 du,

2 t)‘+1/2( + 1— z(ixy)Q))\/Q

where z(u; ,y) = (z,y) +u\/1 = [[z]2y/1 — [[y]2.
Since 1 4+ b < €? for b > 0, we have

1_2)\/2 1— A2 1—
1§<1+ tz> §<1+2t’z> gexp{AtZ}, |2 < 1.

Therefore, by replacing the constant ¢4 in (2.13) by a smaller constant ¢
we get

1
ch 1—2(u;z,y) _
(2.14) etPr(z,y) > t}\fi/z Sl exp{—iﬁlt}(l —u?)* 1 du.

Obviously, from (2.12) it follows that

1
tD C1 1 —z(u;z,y) 2\p—1
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We have

1—2(usz,y) =1 — (2,9) — /1 — [|z]]2 \/1 yl2
(1 —u)y/1 - [Jz]2/1 - |2

and using the definition of dg(z,y) in (1.3) we get

d
1—2(1;z,y) = 1 — cosdg(z,y) = 2sin’ B(;’y) ~ dp(z,y)*.
Hence,

1—z(u;z,y) ~ ds(z,y)*+(1—w)H(z,y), H(z,y):=1-[z]>v/1—-]y]>
Consequently,

oxpf LTI o[BI (o f U0,

cot 't 't
1 —z(u; 2, y) dg(z,y)? (1 —w)H(z,y)
S Sl Ak L2 O ANt L2 Sk S L2
exp{ 2¢qt } - exp{ 't P 't

These two inequalities along with (2.14)—(2.15) imply that in order to obtain
the two-sided Gaussian bounds in (1.8) it suffices to show that the quantity

1

1 1—u)H(x,y _
(2.16) Az, y) == puYs) Slexp{—()ct(>}(1 —u2)u L du
satisfies the following inequalities, for any & > 0:
* dp xy)
c **exp{e =L}
2.17 < Ay(z,y) < .
R e P A AN A PVG T PRV

Here the constant ¢** > 0 depends on &.

Lower bound. First, assume that H(z,y)/t > 1. Then
L1

c 1 —u)H(x,
218)  Ade) > 5 exp{_<><y>

ct

p H(z,y)/t

=V — :u‘_l —’l)/Cd
PF2H (2, ) § oo

}(1 — w1 du

1
with ¢, =¢ Sv“ile*”/c dv,
0

Cx

> —
~t2H (2, y)m

where we have applied the substitution v = (1 — u)H(z,y)/t and used A +
1/2 = pu+ d/2. However, by (1.5), Vi(z,7) > crd(1 — HxH )#, which implies

2 H (w, y) = 192 (V1= [2lPV/T— [9)" < [Vi(e, VEValy, Vi) /.
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Putting the above together we conclude that A;(z,y) obeys the lower bound
n (2.17) in this case.

Now, assume that H(z,y)/t < 1. Then exp{ 73’)} > e~ 1/¢ and

6 *

P2 = [Va(a /D) Valy VO 2

Here we have used the fact that, by (1.5), Vi(z,7) > cr®+2 = cr2*+1 Thus,
Ay(z,y) again obeys the lower bound in (2.17) and this completes its proof.

Ay(x,y) >

u

Upper bound. Obviously exp{ (= 2.y) } <1 and hence

Cy Cy

(2.19) An,) < S = e

We shall obtain another estimate on A(z,y) by breaking the integral in
(2.16) into two parts: over [0, 1] and over [—1,0]. Just as in (2.18) applying
the substitution v = (1 — u)H(x,y)/t we obtain

| fesp I sy sl

— \ex
t>‘+1/2§) P ct t4/2H (2, y)"

with ¢* = {° vi—le=v/¢ dy. Here we have used (1 +u)*~' < max{1,2¢71}.
For the integral over [—1, 0] we use the fact that 1 —u > 1 for u € [—1,0]
to obtain

L e {_(1 — w)H(x,y) }(1 g

tA+1/2 2 ct

< G _H(z,y) - ¢ ( t )u ¢
S P\ g [T e\ H(n,y)) T R H(w,y

)
Here we have used v* < |+ 1]le¥ for all v > 0, and A = p+ (d — 1)/2.
Together, the above inequalities imply

*

(2.20) Ay(z,y) < m
In turn, (2.19) and (2.20) yield
(2.21) Ailz,y) < td/2(t+cf<>l(a: G

It remains to show that the above estimate implies the upper bound
n (2.17). To this end we need the following simple inequalities:

(2.22)  (u+a)(u+b) <3w?+ab)1+u"ta—b]), ab>00<u<l
(see, e.g. [10, (2.21]) and (see [11, (4.9)])
V1= lel? = V1= yl? < V2dp(z,y), 2,y €B”
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Together, these two inequalities yield

(223 (Vi Vi-llel?)(Vi+ wa%sdﬂﬂuw»@+%gf».

Evidently 1 4+ u < e~ Lef% for u > 0 and 0 < ¢ < 1, and hence
(2.24) (14D < 28(1 + B2 < 2ke™H2erV  wh>0,0<e < 1.

Also, from (1.5) it follows that Vi (x,7) ~ r4(r + /1 — [[]|2)?*. From this,
(2.23), and (2.24) it follows that

[Va(e, VOVa(y, VD] < et (Vi + /1= [alP)" (Vi+ V1= [y]?)"

al

< et (t + H(z,y))* exp{,us ;

In turn, this and (2.21) yield the upper estimate in (2.17).
We next consider the case when = 0. Now, (1.7), (2.7), and (2.8) yield
the representation

(2.25) ¢ (z,y) = exe™ (L, (2, y) + V1 — [[2]2V/1 — [ly]]?)
+ane™ (L (z,y) — V1 - [PV~ yl?).

From this point on the proof follows in the footsteps of the proof when p > 0
above, but is much simpler because the integral in (2.9) is replaced in (2.25)
by two terms. We omit the further details. The proof of Theorem 1.1 is
complete. m

3. Proof of Gaussian bounds for the heat kernel on the simplex.
In this part we adhere to the notation from §1.2. The differential operator D,
from (1.9) can be represented in the more symmetric form

d
=1

1<i<j<d
where
1
Ui = mai(ici(l - \x|)w,€(x)8i),
1 . .
Ui,j = m(& — @)[:le]w,{(x)(& — aj)], 1< < i < d.

This decomposition was first established in [1] for wy(z) = 1 and later used
in [4] with general wy. It is easy to verify it directly.

The following basic property of the operator D, follows from (3.1) by
integration by parts:
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PROPOSITION 3.1. For any f € C%(T%) and g € C1(T?),

d

(32)  § Def(@) - g(o)wn(e) do = = [ [3 0:f(@)0g(x)mi(1 — Jo])
Td Td i=1
+ > (8- 0)f(@)(0; — 9))g(@)aiw; |we(x) da.
1<i<j<d
Proof. Fix f € C?(T?%) and g € CY(T%). For any = = (x1,...,14) in RY
we denote @; := (21,..., i 1, Tir1,2q) € R™1. We use the identity
1—|d]
(3.3) | h@yde= | | h@)dzdi
Td Td—1 0

and integration by parts to obtain

 Uif(2) - g(@)we(e) do = | 0ifai(1 = |2))we(2)0; f (2)]g(x) do

Td Td

= | w0 = lehws @0 (@)g(@)],
'H‘d—l
1—|2]
— | @~ Je)wn(2)0if (2)0ig(x) da;i} di;.
0

Now, since z;(1 — |z|)wk(x) vanishes when x; = 0 or z; = 1 — |#;| we get

(34) | Uif(@)- g@ywnlw)de = — | 0 @)dg(@)a:(1 - [al)wn(x) da.
Td Td
We next show that

(35) | Uijf(x)- g(x)w.(z) da

Td
— [0 0)1(@) - (01 - Oy)glw)iwyun(a) do.
Td
For any = = (21, ...,zq) we set
&i(x) == (x1,...,zi—1, 1 — |Zi|, Tit1, - .- q)-

Also, denote Fjj(x) := (0; — 0;) f(x).
Assume first that kg1 > 1/2. Just as above using (3.3) and integration
by parts in x;, we obtain

S Oi[zixjwe(x) Fij(x)] - g(x) d

T 1l

= S [xzx]wﬁ(x)FZ(m)g(x) :lc::f)" — S zixjwe(2) Fij(2)0;9(x) dzy | di;
Td—1 0
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= | (0= lai)zjwe(&(@) F;(&(2)g (&) da

Td-1
— S zixjwe(2) Fij(2) - 0i9(x) doe = — S zixjwi(2) Fij(z) - 09(x) dx.
Td Td

Here we have used the fact that z;w.(z) = 0 when x; = 0 and w(&;(z)) =0
since Kg41 > 1/2. Similarly,

| Ojlizjwe () Fij(@)] - g(2) do = — | ziwjon(2)Fy (@) - 9j9(x) da.
Td Td
Subtracting the above identities proves (3.5) when k411 > 1/2. The validity
of (3.5) for all kg1 > —1/2 follows by analytic continuation in Kg41.
In light of (3.1), summing up (3.4) and (3.5) leads to (3.2). m

Observe that identity (3.2) is the weighted Green formula on the sim-
plex T? (see [8]).

We consider the operator D, defined on the set D(D,) = P(T%) of
all algebraic polynomials on T¢, which is obviously dense in L?*(T%, w,).
From (3.2) it readily follows that D is symmetric and —D,; is positive in
L?(T?,w,). Furthermore, just as in the proof of Theorem 2.1 it follows that
D, is essentially self-adjoint.

Proof of Theorem 1.2. We may assume that 0 < t < 1, because the case
t > 1 follows immediately from the case t = 1.

Recall that the Jacobi polynomials {P,(La’ﬂ )} are standardly normalized
by PP (1) = ("t} and pleB) ‘|P7§°‘”B)|]%2([71’1]7wa ;- It is known (see [5,
Theorem 5.3.4]) that if x; > 0 for all 4, the kernel P, (w,;x,y) of the orthog-
onal projector onto V,,(wy) in L?(T% w,) has the following representation:

(3.6)  Pu(wyz,y) = c,.;(h(’\_l/Qv_l/z))—1P£>\—1/27—1/2)(1)

n
d+1
X S PAY271/2) (9 (w2, y)? — 1) H(l —u2)il du,
[—1,1]d+1 i=1
where
d+1
(i 0,y) = i /FG, Tan = 1= ol yarr = 1-lgl, A= nl-(d=1)/2,
i=1

with |z| = 21 + -+ - + 4. When some or all k; are 0, this identity holds in
the limit x; — 0, which can be shown using

Lorie) (1 — 221 do
iL) fla)(1—a?) ~ Y+ p-1)).

K0+ 81_1(1 — 22)"1dg 2
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Assume x; > 0,7 =1,...,n+ 1. Combining (1.15), (1.23), and (3.6) we
obtain the representation

(3.7)  ePr(x,y)

d+1
= ¢, S ethr-12-1/2(1, 22 (u; 2, )% — 1) H(l —u2) 1 du,
[-1,1)4+1 =1

Note that from the definition of the distance dr(x,y) in (1.11) we have
Zdﬂ /Tiy; = cosdr(x,y) and hence |z(u;z,y)| < 1. Just as in (2.11) we
obtain
(3.8) p(1,22% — 1) := |arccos 1 — arccos(22% — 1)| ~ /1 — (222 — 1)

~ /1 =22,

On the other hand, with « = A —1/2 and § = —1/2 we infer from (1.21)
that V(z,r) ~ 7(1 — 2 4+ r2)* and hence V (1, /%) ~ t**1/2 and

_ 2\ A
V(222—1,\/£)Ntl/Q(t+2(1—z2))*NtA+1/2<1+1tz) :

We use these equivalences, (3.7), (1.24), and (3.8) to obtain

S exp{_l Zcu; y)2} d+1

1 — )"t du,
t)\+1/2(1+1 z(utx,y)Q)/\/Z Zl_{( U; U

(3.9) ePr(z,y) <c

[~1,1]4+1
(3.10)
1—z(u;z,y)? d+1
eXp|— ——
etDN(l,’y)Zc3 S { cat })\2H 1_u nl—ldu
$A+1/2(1 4 12y /

[ 1 1]d+1

Just as in the proof of Theorem 1.1 by replacing the constant ¢4 in (3.10)

. 2
by a smaller constant ¢ we can eliminate the term (1 + %)A in the
denominator. Thus, it follows that

Dy 03 1 — z(u; 2, y)? s 2\ki—1
(3.11) e r(z,y) > pEsy S eXpy T H(l —u;)" " du.
[—1,1]d+1 4 i=1

By simply deleting that term in (3.9) we get

tD ! 1 —2(u;x y)Q e 2\ ki—1

e (z,y) < 12 S exp{—} I |(1 —u?)" 1 du.
CQt .

[71,1}d+1
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Evidently,
1—2(u;z,9)% = (14 [2(u; 2,9)) (1 — |2(u; 2, 9)|)
d+1
>1—|z(u,z,y)| > 1~ Z |wil /iy
i1

Using the symmetry of the last term above with respect to sign changes
of u;, and the fact that 1 — u? ~ 1 —u; when 0 < u; < 1, we conclude that

d+1

(3.12) ePr(z,y) < _a | ex _1- 2wy T[] =) du

. 7y — t)\+1/2 p CQt 1 .
[0,1]d+1 i=1

Similarly, using 1 — z(u; z,y)? < 2(1 — 2(u; z,y)) we infer from (3.11) that
/" 1 . d+1

313) Pz iy | ew{- PR T - e

= A+1/2 't
! [0,1]4+1 ! i=1

By the definition of dy(z,y) in (1.11) we have

d+1
d
1— Z VT = 1 — cosdp(z,y) = 2sin’ T(;U’y) ~ dp(z,7)*
i=1
and hence
d+1 d+1
(3.14) 1= z(wz,y) =1-> Vagi+ Y (1 — )/
i=1 i=1
d+1
~dr(@,y)® + (1 —w)Vay,
i=1
Consequently,

(3.15) exp{_l—du;x?y)}
: Ir(@, )\ TT o (L= 4V
< exp{—’} H eXp{—}7

c't . ct
=1
1— .
(3.16) exp{_z(u,x,y)}

SIWEETAS | IR}

Mt ) 't
=1

For x,y € [0,1] and x > 0, denote

1
(3.17) Ay(kyz,y) = K;Sexp{(l_u)\/@}(l —u)* Ldu,

0 ct
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where ¢ > 0 is a constant. We claim that for any 0 < e <1,

Cotw d+1

Ay (kg i,
Hd—H(.CE _|_t)nz/2(y+t Ki/2 H t\ vy zyz

K d x, 2
. ol ‘exp{e T(z,y) } |
Hd+1(ml+t)m/2( )ni/Q

(3.18)

where ¢® > 0 depends on ¢.
Assume for a moment that the inequalities (3.18) are valid. Then by
(3.12), (3.15), and the first inequality in (3.18) we obtain

¢!Px € o {_dﬂr(flfay)2 1] exp {2

dﬂ‘(l‘,y) }
x,y) < W It }Hd+1($ +t>nl/2 Hd+1 y _‘_t)m/Q

_dp(zy)?
cexp{— L=

B [VT(:U,\[)VT(?J, \[)]1/2.

Here we have used the facts that A = |k| + (d — 1)/2, and Vi(z,Vt) ~
£/ Hf;“ll (z;+1)% and a similar expression for Vr(y, v/t). These follow read-
ily from (1.13) since 441 = 1 — |z|. We have also used the second estimate
n (3.18) with € = (2¢/)~!. The above inequalities yield the upper estimate
n (1.16). One similarly shows that (3.13), (3.16), and the first inequality in
(3.18) imply the lower estimate in (1.16).

It remains to prove the estirnates in (3.18). We first focus on the lower

estimate. If |/zy/t <1, then exp{ ‘ﬁ} > ¢ > 0 and hence

, d dtr

CE T )P )T @ Oy e

Assume ,/zy/t > 1. Then applying the substitution v = (1 — u),/xy/t we
obtain

Ay(ksz,y) >

o VY /t
Ay(k;x,y) = eV dy
(Vzy)" (S]
1 Ik
t
> eveyr gy = £ .
g §) (VTy)”
Therefore, in both cases
ct®
Aq(k; >
t(’%a .%',y) el (x_i_t)H/Q(y_i_t)ﬁ/Qv

which yields the lower estimate in (3.18).
We next prove the upper estimate in (3.18). It is readily seen that

exp{—%} < 1 and hence Ay(k;x,y) < . On the other hand, from



Gaussian bounds for heat kernels 251

the above it follows that

o0
a S eyl dy = ot

Wl Wzl

Together, these two estimates yield

Ai(ksz,y) <

't
A(rsz,y) < N R
implying
d+1 sl
(319 o < s o

To show that this leads to the desired upper estimate, we need the following
simple inequality (see [6, (7.5)]):

Vi — Vil <dr(z,y), i=1,...,d+1, z,yeT
This along with (2.22) implies

(Vi + VOV + VD) < C<@”)(l i dT(fiy)>’

which leads to

d+1 d+1
[Tty w4 002 ~ TIVE+ VED)™ (Ve Vi)™
=1 1=1

d+1 . |&|
<c|[(Vaw + )" (1 + dT(ﬁ”)

=1

d+1 iy (. )2
<) [T(vam + 0 exp{ el T2
i=1
Here for the last inequality we have used (2.24) with p = |k|. The above
coupled with (3.19) yields the upper estimate in (3.18).

We now consider the case when one or more k; are 0, 1 <7 <n+1. In
this case, the kernel representation (3.6) holds in the limit. If x; = 0, then
the integral over wu; in (3.7) is replaced by the average of point evaluations
at u; = 1 and u; = —1. It is easy to see that all deductions that lead to
(3.18) are still valid taking into account the obvious fact that (see (3.17))

m /ﬁs)exp{—(l_u)\/@}(l —u)* tdu=1.

lim Ay(k;x,y) "
c

=1
k—0+ Kk—0+

This completes the proof. m
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