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Abstract— Group plays an important role in social society.
Much of the world’s decision or work is done by groups and
teams. A group’s decision should be made based on most of the
members in the group that reach agreement on a concerned topic.
If we want to spread a topic and maximize the total number of
activated groups in a social network, which seed users should we
choose. In this article, we will study a new influence maximization
(IM) problem which focuses on the number of groups activated
by some concerned topic or information. A group is said to be
activated if β percent of users in this group are activated. Group
IM (GIM) aims to select k seed users such that the number of
eventually activated groups is maximized. We first analyze the
complexity and approximability of GIM, which is NP-hard, and
the objective function presented in this article is proven to be nei-
ther submodular nor supermodular. We develop an upper bound
problem and a lower bound problem whose objective functions
are submodular. Then, an algorithm based on group coverage
will be proposed, and the Sandwich framework is formulated
with theoretical analysis to solve GIM. Our experiments verify
the effectiveness of our method, as well as the advantage of our
method against the other heuristic methods.

Index Terms— Group influence maximization (GIM), indepen-
dent cascade (IC), nonsubmodular, sandwich framework, social
networks.

I. INTRODUCTION

UNDERSTANDING people’s group is critical to under-
stand people’s personal behaviors, such as why they

think and what they do [1]. Human behavior is mostly easily
influenced by their group’s behavior and most of the world’s
decisions or works are done by groups or teams. Sometimes,
the group is small with only two or three members, such
as family. While sometimes group may be large, such as a
community, even a whole state or country.

Nowadays, several large-scale social networks emerge such
as Facebook with 2.2B users, Twitter with 0.34B users, and
WeChat with 1.0B users, etc. [2], and millions of people are
more able to become friends and share information or topic
with each other. People with the same character such as
interest may create a group on the social network platform
to discuss the concerned topics. Group plays an important
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role in these platforms. Another group decision example is
U.S. Presidential Elections. Presidential candidate will win all
votes in a state if he got the maximum number of tickets in
this state.

Group can be formed traditionally offline. But with the
deepening of Internet application, many offline group decision
processes are switched to online. Especially in China, online
communities formulate conveniently while members inside are
stranger and not in the same place. These viral communities
exist everywhere and various kinds of information diffuse
inside the group. For example, the group purchase would
ensure a relatively lower price and higher quality of vari-
ous products for Chinese buyers, which means advertisement
needs influence a certain number of members in this group
where the group purchase can be carried out. A brief example
is shown in Fig. 1(a). There are three different groups in this
network with different sizes. Group U1 contains four members,
while groups U2 and U3 have three members, respectively.
Note that member v6 belongs to two different groups.

Either in real-world or online social network, the group
plays an important role. In many cases, government or com-
pany tries to influence group rather to care more about personal
influence in order to obtain a maximum benefit. A group will
be activated if a certain number of members are activated.
Given a random social network G = (V , E, P), P represents
the influence probability on each directed edge (u, v) which
means u will try to activate v with probability P when
u becomes activated. The traditional influence maximization
(IM) problem aims to select k initial seed users inside the
whole network to maximize the expected number of eventu-
ally activated users. While in this article, we consider there
exists a set of groups in the social network. One group may
contain several users, and this group will be activated if a
certain number of users in this group are activated. Fig. 1
shows an example of group influence problem. There are
nine nodes and the influence probability of each edge is 1,
and there exist three groups. U = {U1 = {v1, v2, v3, v4},
U2 = {v5, v6, v9}, U3 = {v6, v7, v8}}. Assume the activation
threshold β = 0.5 which means a group will be activated
if at least half of nodes are activated. Fig. 1(a) chooses v1
as the seed, then {v1, v2, v3, v4, v5, v7} will be activated and
only group U1 is activated under the activation threshold 0.5.
On the other hand, Fig. 1(b) chooses v6 as the seed, then
{v3, v4, v5, v6, v7} will be activated and U2, U3 are activated.
Seed v1 could activate six nodes and one group, while v6 as
seed could activate five nodes and two groups. That means
the node has maximum influence may not always group
IM (GIM). In this article, we will study the GIM problem
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Fig. 1. Example of information diffusion process with initial seed v3.

which aims to select k seeds such that the number of activated
groups is maximized.

Here we present some other examples for group influence
problem:

1) The group may be a family, a company, or a society
in real-world social network. A family usually makes
a decision of purchasing some product among different
brands according to their advertisements. Another sit-
uation is that a company plans to purchase computers
for each employee. If the company uses voting method
to determine the brand of computer to purchase, each
employee may influence by a different brand of com-
puter and vote for that brand, while the eventually brand
purchased is just one brand which gets the maximum
votes.

2) For online social network, such as Wechat, people
always formulate groups or join different kinds of
groups.

For example, all students and teachers in one laboratory
formulated a research group. They can easily share information
and ideas anytime. In Wechat APP, each person may belong
to tens to hundreds of groups. There are millions of types
of groups, while each group must have its own characters.
In some large groups, members inside the group may not know
each other at the beginning of group formulation. Therefore,
more and more information is propagating in a group platform,
which becomes more valuable to study group characters and
the group influence problem.

A. Related Works

IM problem was first presented in 2003 by Kempe et al. [3].
They formulated this problem as an optimization mathematic
model and proved that the IM is NP-hard under independent
cascade (IC) model, and the objective function is a submoduar
function. Finally, they proposed a greedy algorithm which
guarantees (1−1/e−�)-approximate for any � > 0. Motivated
by IM problem, fruitful research works [4]–[10] have been
developed. Aslay et al. [11] presented a novel model of incen-
tivized social advertising problem. Li et al. [12] summarized
the recent works on IM problem.

The most popular methods are two-phase influence maxi-
mization (TIM)/TIM+ [13] and influence maximization via
Martingales (IMM) [14], which guarantee an (1 − 1/e − �)-
approximation for IM under IC model. Another recent and

more efficient technique is reverse influence set (RIS) sam-
pling introduced by Tang et al. [13], [14] and Borgs et al.
[15]. They all tried to generate a (1 − 1/e − �)-approximate
solution with the numbers of samples as smaller as possible.
Later, Nguyen et al. [16] proposed a new sampling algorithms
named dynamic-stop-and-stare (D-SSA), which is faster than
TIM+ and IMM with the same (1− 1/e− �)-approximation.
Zhu et al. [17] extended the RIS sampling technique to
weighted version.

Few results [18] are proposed when the objective function
violates the submodularity. Note that the objective function
of group influences maximization problem is not submodular
which will be proved in Section III, we cannot adapt existing
social IM methods to solve the GIM directly. Narasimhan
and Bilmes [19] have proposed an approximation method
for submodular + supermodular function by substituting one
of the two functions by a modular function. Bach et al. [20]
proved that any nonsubmodular function could represent as
a difference of two submodular functions. The latest method
is based on the sandwich approximation strategy [21], [22],
which analyzes the objective function by comparing with its
lower bound and upper bound.

B. Contributions

1) Motivated by the group decision in social society,
we propose the GIM problem that aims to maximize the
number of eventually activated groups under IC model.

2) We assess the challenges of GIM problem by analyzing
computational complexity and properties of the objective
function. First, we show that GIM is NP-hard under IC
model. Furthermore, the objective function of GIM is
proven neither submodular nor supermodular.

3) To achieve a practical approximate solution, we develop
a lower bound and upper bound of the objective function.
We prove that the problems of maximizing these two
bounds are still NP-hard under IC model. However,
we also prove that both lower bound and upper bound
are submodular.

4) For solving GIM, first we develop a group coverage
maximization algorithm (GCMA). Second, we formulate
a sandwich approximation framework, which preserves
a theoretical analysis result. Our experiments on real-
world data sets verify the effectiveness and the efficiency
of the proposed algorithm.

The content of this article is as follows: first, we formulate
the GIM problem; then, the statement of NP-hardness and
properties of objective function will be given; afterward,
we develop a lower bound and upper bound and present
our algorithm; experiments are presented in Section VI; and
finally, this article draws a conclusion. The symbols and their
meaning used in this article are shown in Table I.

II. PROBLEM FORMULATION

Based on the above concept, we will formulate a new IM
problem called GIM problem in this section. The IC model
is one of the most popular information diffusion models.
Our GIM Problem is also based on the IC model. IC model
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TABLE I

FREQUENTLY USED SYMBOLS AND THEIR MEANING

specifies that each node u has only one chance to activate each
of its neighbors after u is activated and all influence processes
are independent.

A. Group Influence Maximization

Given a directed graph G = (V , E, P), a group U is defined
as a subset of V . Let U be the set of groups and l be the
number of total groups. Given an activation threshold 0 <
β ≤ 1, a group is said to be activated if β percent of nodes
in this group are activated under IC model.

The GIM considers information propagation in social net-
work under the IC model. The objective is to look for k initial
seed users where the expected number of eventually activated
groups is maximized

max ρ(S) (1)

s.t. |S| ≤ k (2)

where S is the initial seed set and ρ(S) is the expected number
of groups eventually activated for given initial seed set S.

An example is shown in Fig. 2 to explain the diffu-
sion process for GIM, where there are nine nodes and the
influence probability of each edge is 1. And there exist
four groups U = {U1 = {v1, v2, v3}, U2 = {v1, v5},
U3 = {v4, v7, v9}, andU4 = {v6, v8}}. Assume the activation
threshold β = 0.5. At the beginning, v3 is selected as seed.
At the first time step, v1, v2, andv4 will be activated by v3
as shown in Fig. 2(1). At the second time step, v5 will be
activated by v1, and v6 will be activated by v4 as shown
in Fig. 2(2). At the third time step, v8 will be activated by
v6 as shown in Fig. 2(3). Then, the final activated nodes are
{v1, v2, v3, v4, v5, v6, v8}. According to the given activation
threshold 0.5, groups U1, U2, U4 are activated, while U3 is
inactivated. The number of eventually activated groups is
ρ({v3}) = 3.

Fig. 2. Example of information diffusion process with initial seed v3.

III. PROPERTIES OF GIM

In this section, we first present a statement of the hardness of
the GIM, then discuss the properties of the objective function
ρ(·).

A. Hardness Results

The IM problem has been proven to be NP-hard [3], which
is a special case of our problem when each node is considered
as a group and β = 1. Therefore, the GIM is obvious NP-hard.

Theorem 1: The GIM Problem is NP-hard.
Given an instance of GIM, it is difficult to compute the

objective ρ(S) even for a given seed set S since the activation
process is not determinate but randomized according to the
influence probability. Then, ρ(S) is the expected value of the
number of groups eventually activated. For such a problem,
the Monte Carlo method is widely used to compute ρ(S)
by generating a large number of sample graphs of G and
computing ρ(S) on each sample graph. Finally, the output is
the average value of all ρ(S). The next section discussed on
the number of graphs to be generated. Since computing the
objective of IM had been proved #P-hard under the IC model
[3], then we have the following result.

Theorem 2: Given a seed node set S, computing ρ(S) is
#P-hard under the IC model.

B. Realization of Random Graph

Given a general directed graph G = (V , E, P), a realization
g of G is a sample graph where g has the same node set with
G and the edge set E(g) of g is a subset of E(G). While
the influence probability on each edge in the sample graph is
set 1, which means the influence process is determinate. The
formulation process of a sample graph g is as follows: 1) for
each edge e ∈ E(G), randomly generate a number r between
0 and 1 uniformly and 2) e will be kept in g if and only if
Pe ≥ r . Now, g is a deterministic directed graph. Assume
G contains all possible realizations of G. Not that there are
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2|E(G)| graphs in G. Let Pg be the probability that g can be
generated. Then

Pg =
∏

e∈E(g)

Pe

∏
e∈E(G)\E(g)

(1− Pe).

Let ρg(S) denote the number of groups activated by seed
set S in g. Therefore, ρ(S) can be expressed as

ρ(S) =
∑
g∈G

Pgρg(S). (3)

C. Modularity of Objective Function

Assume f : 2V ← R is a set function. f is said to be
submodular [23] if for any two subsets V1 ⊂ V2 ⊆ V and
v ∈ V \V2, f (V1∪{v})− f (V1) ≥ f (V2∪{v})− f (V2) holds.
While if for any two subsets V1 ⊂ V2 ⊆ V and v ∈ V \ V2,
it satisfies that f (V1 ∪ {v}) − f (V1) ≤ f (V2 ∪ {v})− f (V2),
f is supermodular. f is said to be monotone nondecreasing
if for any V1 ⊆ V2 ⊆ V , it satisfies f (V1) ≤ f (V2). f is
called a polymatroid function if it is submodular, monotone
nondecreasing, and f (∅) = 0, where ∅ denotes the empty set.

Polymatriod maximization problem with cardinality
constraints has an (1 − 1/e)-approximation for greedy
method [24]. Furthermore, this guarantee cannot be improved
in general, since it cannot improve for Max k-cover(assuming
P �= N P) which is equivalent to polymatriod maximization
problem, no polynomial algorithm could provide better
approximation guarantees [25].

It is obvious that ρ(∅) = 0 and ρ(·) is monotone non-
decreasing. Unfortunately, ρ(·) is neither submodular nor
supermodular under the IC model.

Theorem 3: ρ(·) is neither submodular nor supermodular in
GIM under the IC model.

Proof: This theorem will be proved by formulating a
counterexample. First, we will prove that ρ(·) is not super-
modular. Consider an instance of GIM problem as shown
in Fig. 2. Let A = ∅, B = {v3}, and v9 ∈ V \ B .
We have ρ(A) = 0, ρ(B) = 3. Substituting v9 into A and B ,
we have ρ(A ∪ {v9}) = 0 since v9 cannot activate any group.
ρ(B∪{v9}) = 4 since all groups are eventually activated. Thus,
ρ(A∪{v9})−ρ(A) = 0 and ρ(B ∪{v9})−ρ(B) = 4−3 = 1.
Therefore, ρ(A ∪ {v9})− ρ(A) < ρ(B ∪ {v9})− ρ(B) means
ρ(·) is not submodular.

On the other hand, ρ(·) is not supermodular. Let A = ∅,
B = {v3}, and v7 ∈ V \ B . We have ρ(A) = 0, ρ(B) = 3.
Substituting v7 into A and B , we have ρ(A ∪ {v7}) = 3 since
v7 can activate {v4, v5, v6, v7, v8, v9}. ρ(B∪{v7}) = 4 since all
nodes are eventually activated. Thus, ρ(A∪ {v7})− ρ(A) = 3
and ρ(B∪{v9})−ρ(B) = 4−3 = 1. Therefore, ρ(A∪{v9})−
ρ(A) > ρ(B ∪ {v9})− ρ(B) means ρ(·) is not supermodular.

IV. LOWER BOUND AND UPPER BOUND

A sandwich approximation strategy introduced by
Lu et al. [21] for solving nonsubmodular optimization
problem, which analyzes the objective function by comparing
with its lower bound and upper bound. In this section, we will
first design an upper bound for ρ(·), then a lower bound is
presented for ρ(·).

Fig. 3. Example for generating super node: assume U is a group, then add
super node u and connect each node in U to u with influence probability 1.

A. Upper Bound

We will define a new set function ρ(·) that satisfies ρ(S) ≤
ρ(S) for any seed set S ⊆ V . The formulation process
can be divided into two steps. Given an instance of GIM
G = (V , E, P), in the first step, we get a relaxed GIM (r-GIM)
problem for given GIM by changing the group activation rules.
For r-GIM problem, a group will be activated if there exists at
least one activated node in this group. In the second step, for
each group, we add a super node to the graph and connect
each node in this group to the super node with influence
probability 1. Fig. 3 shows an example.

Assume W is the super node set and E � is the edge set
for node in V to node in W . Then, an instance of a general
weighted IM (WIM) problem is defined as follows. V ∪W is
the node set and E∪E � is the edge set. C ⊆ V is the candidate
seed set, while all k seed nodes must be picked from C . For
each node v, there is a weight f (v) and f satisfies

f (v) =
{

1, v ∈ W

0, v ∈ V .

For all nodes that belong to super node set, the weight f
is 1. For the other nodes, f is 0. Assume S is the initial
seed set. Let ρ(S) = ∑

v is activated f (v) be the expected
weight of eventually influenced nodes. ρ(S) yields to count
all activated super nodes only. Then, G = (V , C, E, P, f ) is
called general WIM problem with candidate seed set C ⊆ V .
ρ(·) is monotone, submodular and ρ(S) ≤ ρ(S) for any seed
set S ⊆ V .

Theorem 4: Given an instance of GIM G = (V , E, P), ρ(·)
is an upper bound of ρ(·).

B. Lower Bound

In this section, we will formulate a lower bound for GIM.
The main idea is to delete some groups from G, and only
keep such groups whose β percent of nodes can be activated
at the same time. That means there exists at least one node
connect to β percent nodes of this group in G. Fig. 4 shows
an example with activation threshold β = 0.5. Group U will
be kept since there exist v1 and v2 that connect to two nodes
in group U . Then, generate super node u for group U and add
new directed edges (v1, u), (v2, u) with influence probability
p(v1,u) = p1 p2, p(v2,u) = p3 p4.

The general construction process is as follows. Given an
instance of GIM, for each group Ui , suppose Hi = {v ∈
V |v connects to at least β percent nodes of Ui }, if Hi �= ∅,
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Fig. 4. Example for generation of lower bound problem.

generate super node u and add directed edges {(v, u)|v ∈ Hi}.
Assume W is the super node set. For each v ∈ Hi , assume U �i
contains all nodes in Ui which v connects to. Then, p(v,u) =∏

v �∈U �i p(v,v �). Finally, an instance of a general WIM problem
could be formulated. V ∪ W is the node set, E ∪ E � is the
edge set where E � contains all newly added edges, candidate
seed set C ⊆ V means k seed nodes must be selected from
C . f is weight function of node which satisfy

f (v) =
{

1, v ∈ W

0, v ∈ V .

Suppose S is the initial seed set. Let ρ(S) =∑
v is activated f (v) be the expected weight of eventually

influenced nodes. ρ(S) yields to count all activated super
nodes only. Then, G = (V , C, E, P, f ) is a general WIM
problem with candidate seed set C ⊆ V . ρ(·) is monotone,
submodular and ρ(S) ≥ ρ(S) for any seed set S ⊂ V .

Theorem 5: Given an instance GIM G = (V , E, P), ρ(·)
is an lower bound of ρ(·).

V. ALGORITHM

Zhu et al. [17] have extended D-SSA [16] algorithm to
solve a general WIM problem. Then, an estimation procedure
for the objective function of GIM is proposed based on Monte
Carlo method. Finally, a sandwich approximation framework
will be presented for analyzing the performance of our algo-
rithm.

A. (�, δ)-Approximation

Sampling method needs to be used in solving random
models since the expected number of influenced nodes ρ(·)
is an expectation of a random process. To obtain an efficient
estimation, we review the (�, δ)-approximation in [26] which
will be used in our algorithm.

Given � as an absolute error of estimation and (1−δ) as the
confidence, let X be a random variable and μX is a numerical
characteristic of these random variables. (�, δ)-approximation
means a Monte Carlo estimator μ̂X of μX satisfies

Pr[(1− �)μX ≤ μ̂X ≤ (1+ �)μX ] ≥ 1− δ. (4)

Define the sampling times as ϒ = 4(e−2) ln(2/δ)/�2, then
the Stopping Rule Algorithm given in [26] has been proven
to be (�, δ)-approximation. Algorithm 1 shows an estimation
procedure for ρ(·) by applying (�, δ)-approximation.

Fig. 5. Example of WRR set generation.

B. Extension for Reverse Influence Set Sampling

In this section, we will recall the extended version of the RIS
sampling method for weighted cases. First, define a general
WIM problem under the IC model as G = (V , C, E, P, f ).
C ⊆ V is the candidate seed set where seed must be selected
from C , f is weight function of node and P is the influence
probability. Assume S is the initial seed set. Let ρ�(S) =∑

v is activated f (v) denote the expected weighted number of
influenced users. The aim is to select k initial seed users set
S in C to maximize ρ�(S). Note that ρ�(S) is submodular and
monotone. Since G is a weighted random graph, the sampling
method is necessary in order to estimate ρ�(S). An extension of
the RIS method is also based on RIS, which needs to generate
a set R of weighted reverse reachable (WRR) sets. Each WRR
set R is a subset of V , and an example of such a WRR set
generation is shown in Fig. 5. Fig. 5(a) presents a weighted
random graph with ten nodes. Each node is associated with
a weight. Then the generation process first selects a random
node z and a sample graph is generated according to the
probability on each edge. Fig. 5(b) shows a sample graph.
Based on the reverse reachable technique, {z, v, t, s} can reach
node z. Then, R = {z, v, t, s} is a WRR set with weight
w(R) = f (z) = 6 as shown in Fig. 5(c).

Reverse influence sampling method has been proven effi-
ciently since it does not need to compute the objective function
of a huge number of sample graphs. By generating a certain
number of WRR sets and applying the greedy algorithm
for weighted maximum coverage problem, RIS can estimate
the objective function and output an efficient approximation
solution. The details of this extended case can be found in
[17], and they also proposed an extended D-SSA algorithm
(Algorithm ED-SSA) for solving the WIM problem which also
guaranteed the (1− 1/e)-approximation.

C. Estimation of Objective Function ρ(S)

According to the definition of (�, δ)-approximation, ρ(S)
could be estimated by Monte Carlo method for a given node
set S. Given an instance of GIM G = (V , E, P), for any
realization g, ρg(S) could be computed by applying breadth-
first search (BFS) procedure for a given node set S. For
any given absolute error � and confidence degree 1 − δ,
Algorithm 1 shows the detailed estimation process and the
running time is O(�(nm + nl)) where � is the number of
sample graphs for given � and δ, n and m are the number of
nodes and edges, respectively, and l is the number of groups.

D. Group Coverage Maximization Algorithm

In this section, we will present an algorithm for solving
GIM based on group coverage maximization method. Given
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Algorithm 1 Estimation of Objective Function ρ(S) (EOF)
Input: An instance of GIM G = (V , E, P), 0 ≤ �, δ ≤ 1,

seed set S.
Output: ρ̂(S) such that (1 − �)ρ(S) ≤ ρ̂(S) ≤ (1 + �)ρ(S)

with at least (1− δ)-probability.
1: �← 4(e− 2)(1+ �)2 ln(2/δ)(1/�2)
2: G ← generate � realization of random graph G =

(V , E, P)
3: ρ̂(S) = 1

�

∑
g∈G ρg(S)

4: return ρ̂(S)

Algorithm 2 GCMA
Input: An instance of GIM G = (V , E, P), the number of

initial seed users k.
Output: a set of seed nodes, Sk .
1: Sk = ∅
2: for i = 1 to k do
3: v∗ ← arg maxv∈V (|U(S ∪ {v})| − |U(S)|)
4: Add v∗ to Sk

5: end for
6: return Sk

Algorithm 3 Sandwich Approximation Framework
Input: an instance of GIM G = (V , E, P), the number of

seeds k, �, δ.
Output: a set of seed nodes, S.
1: Assume SL is the seed set by solving the lower bound

problem with Algorithm ED-SSA [17].
2: Assume SX is the seed set by solving the upper bound

problem with Algorithm ED-SSA [17].
3: Assume SA is the seed set by solving G = (V , E, P) with

Algorithm 2.
4: S = arg maxS0∈{SL ,SX ,SA}EOF(G, S0, �, δ)
5: return S

G = (V , E, P) and the set of groups U , let U(S) be the set
of groups that contains any one of nodes in S, i.e., U(S) =
{U ∈ U |U ∩ S �= ∅}. Algorithm 2 is shown by selecting the
maximum marginal gain at each step and at most O(knl) time
complexity. Greedy algorithm may give a better solution, but
the running time is O(kn�(nm+nl)). We will compare several
different strategies by experiments.

E. Sandwich Approximation Framework

For GIM, we have formulated a lower bound and an upper
bound for ρ(·). Then, Algorithm 3 shows the whole sandwich
approximation framework. The main idea is to solve the lower
bound and upper bound problems in order to obtain a solution
which can be bounded.

We can prove that there exists the following theoretical
result for sandwich approximation framework.

Theorem 6: Assume S is the seed set obtained from Algo-
rithm 3, then we have

ρ(S) ≥ max

{
ρ(SX )

ρ(SX )
,
ρ(S∗L)

ρ(S∗)

}
1− �

1+ �

(
1− 1

e
− �

)
ρ(S∗)

(5)

where S∗L is the optimal solution for solving the lower bound
IM problem and S∗ is the optimal solution for the original
GIM.

Proof: Let S∗X be the optimal solution for solving the
upper bound IM problem. Since Algorithm ED-SSA [17]
guarantees a (1− (1/e)− �)-approximation, we have ρ(SX ) ≥
(1− (1/e)− �)ρ(S∗X ). Then, we have

ρ(SX ) = ρ(SX )

ρ(SX )
ρ(SX ) ≥ ρ(SX )

ρ(SX )

(
1− 1

e
− �

)
ρ(S∗X )

where S∗X is the optimal solution for upper bound, which yields
ρ(S∗X ) ≥ ρ(S∗). Also, ρ(S∗) ≥ ρ(S∗) because the objective
function ρ(·) is an upper bound of ρ(·) for any given seed set
S ⊆ V . Then

ρ(SX ) ≥ ρ(SX )

ρ(SX )

(
1− 1

e
− �

)
ρ(S∗)

≥ ρ(SX )

ρ(SX )

(
1− 1

e
− �

)
ρ(S∗).

On the other hand, Algorithm ED-SSA [17] also guarantees
a (1− (1/e)− �)-approximation for solving the lower bound
problem, and we have

ρ(SL) ≥ ρ(SL) ≥
(

1− 1

e
− �

)
ρ(S∗L)

≥ ρ(S∗L)

ρ(S∗)

(
1− 1

e
− �

)
ρ(S∗).

Let Smax = arg maxS0∈{SL ,SX ,SA} ρ(S0) which means Smax
represents the set with the maximum expected objective value
among {SL , SX , SA}, then

ρ(Smax) ≥ max

{
ρ(SX )

ρ(SX )
,
ρ
(
S∗L

)
ρ(S∗)

}(
1− 1

e
− �

)
ρ(S∗)

Since for any S0 ∈ {SL , SX , SA}, (1 − �)ρ(S0) ≤ ρ̂(S0) ≤
(1+ �)ρ(S0) satisfies because the sampling method is (�, δ)-
approximation. In addition, ρ̂(S) = maxS0∈{SL ,SX ,SA} ρ̂(S0)
according to step 4. We have

(1+ �)ρ(S) ≥ ρ̂(S) ≥ ρ̂(Smax) ≥ (1− �)ρ(Smax).

It follows that

ρ(S) ≥ 1− �

1+ �
ρ(Smax)

≥ max

{
ρ(SX )

ρ(SX )
,
ρ(S∗L)

ρ(S∗)

}
1− �

1+ �

(
1− 1

e
− �

)
ρ(S∗).

From Theorem 6, we can find the difference between ρ(S∗)
and ρ(S∗L) has a significant influence on the performance of
Algorithm 3. Iyer and Bilmes [27] have studied the problem
of minimizing the difference of two submodular functions and
proved that the difference between ρ(S∗) and ρ(S∗L) could be
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bounded. Then, the following result of the theoretical gap is
true.

Theorem 7: Assume S∗L is the optimal solution for the lower
bound IM problem, and S∗ is the optimal solution for the
original GIM, then we have the following result:

ρ(S∗)− ρ
(
S∗L

) ≤ max
S,|S|=k

(ρ(S)− ρ(S)). (6)

Proof: According to the definition of S∗L and S∗, ρ(S∗L ) ≥
ρ(S∗) satisfies since S∗L is the optimal solution of the lower
bound problem. Then, we have

ρ(S∗)− ρ
(
S∗L

) ≤ ρ(S∗)− ρ(S∗).

On other hand, ρ(·) is an upper bound of ρ(·), which yields
ρ(S∗) ≤ ρ(S∗). In total, we have

ρ(S∗)− ρ
(
S∗L

) ≤ ρ(S∗)− ρ(S∗) ≤ max
S,|S|=k

ρ(S)− ρ(S)).

According to Theorem 7, the performance of Algorithm 3
is up to the quality of lower bound and upper bound. A dif-
ferent definition of these two bounds will lead to different
approximation ratios. We will analyze the proposed bounds
by real-world data experiments in the next section.

VI. EXPERIMENTS

In this section, we will verify our algorithms by testing on
real-world social networks. First, two data sets are described.
Then, three algorithms applied in the experiments will be
explained in detail. Finally, experiment results are shown and
our observations will be presented.

A. Data Description

In this article, we have used two data sets from [28]
and [29]. The first data set is Facebook-like Forum Network
which was collected from a similar online community like
the Facebook online social network. It records users’ activity
in the forum. This data set contains one-mode and two-
mode data. The two-mode data is an interesting network
of 899 users liking a topic among 522 topics. The one-mode
data represents the relationship among the 899 users. Each
topic is assumed to be one group and the people who like the
same topic are assumed to belong to a group. The second data
set is the Newman’s scientific collaboration network which
represents the coauthorship network based on preprints posted
to Condensed Matter section of arXiv E-Print Archive between
1995 and 1999. The two-mode data represents the relationship
between an authors and the article that they have written,
and the one-mode data represents the relationship among the
coauthors. Each article is considered as a group, and the
coauthors of an article are assumed to be in a group. The
details about the data are mentioned in Table II.

B. Procedure

For both data sets, the one-mode data is used to build
the graphs and all graphs are directed graphs. The influence
probability was assigned based on the degree of node. Assume
N is the number of indegree of a given node, then influ-
ence probability on its incoming edge is 1/N . This method

TABLE II

DATA STATISTICS USING IN OUR EXPERIMENTS

Fig. 6. Experimental results for data set 1.

is widely used in the previous works of literature. Three
approaches have been used to establish the input seed set. They
are Greedy, Maximum Coverage, and Maximum Outdegree.
All the programs are written in Python 3.6.3 and run on
a Linux server with 16 CPUs and 256-GB RAM. For each
strategy, we generated 10 000 sample graphs and iterated over
all these sample graphs to obtain the results.

1) Greedy: In the greedy approach, the k seed set is chosen
by iterating k times over the whole node set of the network
and choosing the k nodes that activate the maximum groups.
The output of this approach is comparatively the most optimal.
However, the run time of the algorithm is really high as the
algorithm iterates over the entire node set multiple times to
determine the node that activates the maximum number of
groups.

2) Maximum Coverage: In this approach, the k seed set is
determined by the nodes that have the maximum coverage of
groups. The seed set contains the top k nodes that are a part
of a large number of groups in the network. The seed set in
this approach is fixed and thus has a run time lower than the
greedy approach. However, the result is comparatively lower
than that of the greedy approach.

3) Maximum Outdegree: In this approach, the k seed set is
fixed and is given by the first k nodes of the graph that have the
maximum outdegree, i.e., the nodes that have the maximum
number of edges going out of it. This algorithm has a run
time lower than the greedy approach and almost similar to the
maximum coverage approach but the result is comparatively
lower than that of both the greedy approach and the maximum
coverage approach.

C. Experimental Results

The observations of the experimental results are shown
in Figs. 6 and 7 for data sets 1 and 2, respectively. From
the graphs, the following results are obtained.

1) Greedy Algorithm Outperforms the Other Approaches:
By comparing the three algorithms, it has been observed that
the greedy approach gives a comparatively higher output than
the maximum coverage and the maximum outdegree methods,
i.e., given a network, greedy approach activates more number
of groups compared to the others. The maximum outdegree
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Fig. 7. Experimental results for data set 2.

TABLE III

DATA STATISTICS OF YOUTUBE DATA SET

initially gives higher group activate count than the maximum
coverage but as the number of seed nodes increases, the maxi-
mum coverage approach outperforms the maximum outdegree
approach but is still lower than the greedy approach. The run
time of the greedy approach is however higher compared to
that of the maximum coverage and the maximum outdegree
approach as it iterates through the entire node set to get the k
seed set.

2) With Increase in Beta, Groups Activated Decreases:
The experiments are carried out with three values for beta
0.5, 0.8, and 1. As the beta increases, it is observed that the
number of groups activated for a given node decreases. The
seed set activates more groups but the activation by a single
node decreases.

3) Group Size Effects the Output: For groups with different
average sizes, the performance of the three algorithms is
affected. Large size groups tend to show a bigger gap between
the greedy approach and the other approaches, but small size
groups do not have that much of gap between the three
approaches.

D. Experiments on Large Data Set

In this experiment, we used the Youtube data set [30].
Youtube is a video-sharing web site that includes a social
network. In the Youtube social network, users form friendship
with each other and users can create groups where other users
can join. The data statistics are provided in Table III.

The data set had two files, one representing the edges
of the graph and the other was a list of the communities.
We experimented with the top 5000 community. The graphs
were sampled to give various subsets of the original graph and
the experiments were run on all the sample graphs to calculate
the count of groups activated. Finally, the average of the output
of all results was taken to plot the graph. The edge probability
was assigned based on the indegree of the node. For example,
p(u, v) = 1/d , for an edge between u and v and d is the
indegree of v. We also used the above three approaches for
the experiments.

1) Experimental Results: We experimented for 100 seed set
nodes. Fig. 8 shows the results.

1) The greedy algorithm outperforms the other approaches.
When we analyzed the output of the three algorithms,

Fig. 8. Experimental results for Youtube with β = 0.1.

it was observed that the greedy algorithm activated
the maximum number of groups as compared to the
other two methods. The maximum coverage algorithm
initially gave higher results, but as the size of the
seed set increased, the greedy algorithm gave better
results. However, the run time of the greedy approach
is comparatively higher.

2) Node set of maximum outdegree as seeds activated
a very low number of groups. It was observed that
for 100 seeds, the maximum outdegree nodes activated
roughly 52 groups compared to the 100 nodes of max-
imum coverage (which activated around 300 groups).
One possible reason for this happening could be the
nodes that are activated by the maximum outdegree
were not a part of any group. So even if the nodes
with maximum outdegree did activate a large number
of nodes, the resulting number of groups activated was
less.

VII. CONCLUSION

In this article, we investigated the GIM problem in social
networks. We proposed a new IM model with consideration
of group activation. The GIM was formulated to select k
nodes under IC model to maximize the number of influenced
groups. We have shown that GIM was NP-hard and the
objective function was neither submodular nor supermodular.
For solving GIM, a group coverage maximization strategy was
proposed. Finally, we formulate a sandwich approximation
framework which guarantees a theoretical result, and the
experiments show that the proposed algorithm is efficient
and effective. For future research, novel efficient methods for
solving nonsubmodular optimization problem are valuable to
study.
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