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Abstract 15 

Plume volcanism may sample mantle sources deeper than mid-ocean ridge and arc 16 

volcanism. Ocean island basalts (OIBs) are commonly related to plume volcanism, and 17 

their diverse isotopic and elemental compositions can be described using a limited 18 

number of mantle endmembers. However, the origins and depths of these mantle 19 

endmembers are highly debated. Here we show that the HIMU (high 238U/204Pb) 20 

endmember may reside in the transition zone. Specifically, we report the geochemical 21 

signature of a high-pressure multiphase diamond inclusion, entrapped at 420-440 km 22 

depth and 145050 K, which matches exactly the geochemical patterns of the HIMU-23 

rich OIBs. Since the HIMU component is variably sampled by almost all OIBs, our finding 24 

implies that the transition zone causes a major overprint of the geochemical features of 25 

mantle plumes. Some mantle plumes, like those feeding Bermuda, St Helena, Tubuai 26 

and Mangaia, appear to be dominated by this source. Furthermore, our finding 27 

highlights the importance of the transition zone in highly incompatible element budget 28 

of the mantle. 29 

 30 

1. Introduction 31 

The geochemical and isotopic features of ocean island basalts (OIBs) are different from 32 

those of mid-ocean ridge basalts (MORBs) and island arc basalts (IABs) [White, 2015], 33 

and they are thought to be produced by mantle plumes that may rise from the deep 34 

mantle or at least markedly greater depth than the MORB extraction regions [e.g., 35 
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White, 2015; Montelli et al., 2004; Humayun et al., 2004; Huang et al., 2011; Weis et al., 36 

2011; Trela et al., 2017; Rizo et al., 2019; Williams et al., 2019]. The diverse isotopic and 37 

elemental compositions of OIBs require a heterogeneous mantle, and only several 38 

mantle endmembers such as EM-I, EM-II (enriched mantle), HIMU (high 39 

238U/204Pb), DMM (depleted MORB mantle), and FOZO (FOcus ZOne, high 40 

3He/4He), are needed to explain the observed isotopic variations [e.g., White, 2015; 41 

Jackson and Dasgupta, 2008; Huang and Zheng, 2017]. While the isotopic and elemental 42 

compositions of mantle endmembers are well-constrained by the analysis of erupted 43 

lavas [White, 2015], their locations in the mantle are poorly understood. Correlations 44 

between OIB isotopic signatures observed at the Earth’s surface and seismic structures 45 

in the mantle suggest that some mantle endmembers may be located in the deep 46 

mantle [e.g., Hart, 1984; Huang et al., 2011; Weis et al., 2011; Chauvel et al., 2012; 47 

Williams et al., 2019]. Some geochemical and isotopic signatures in OIBs, such as high 48 

Fe/Mn [Humayun et al., 2004], high 186Os/188Os [Brandon and Walker, 2005], and low 49 

182W/184W [Rizo et al., 2019], have been used to infer an origin at the core-mantle 50 

boundary. More recently, some geochemical signatures, such as high K/U in EM-1 type 51 

Cenozoic potassic basalts from Northeastern China [Wang et al., 2017] and high U/Pb in 52 

SiO2-undersaturated HIMU lavas from Bermuda [Mazza et al., 2019], are attributed to 53 

the presence of residual liebermannite [Grassi et al., 2012], a high-pressure polymorph 54 

of K-feldspar previously called K-hollandite [Ringwood et al., 1967; Ma et al., 2018], in 55 

their mantle sources. Liebermannite is stable between 14 and 20 GPa in basaltic rocks 56 

[Litasov and Ohtani, 2005]. If present, mantle plumes that contribute to those basalts 57 
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[Wang et al., 2017; Mazza et al., 2019] have to originate from the transition zone. Here, 58 

we report that the elemental features of HIMU-rich OIBs, such as Bermuda, St Helena, 59 

and Cook-Austral, exactly match the geochemical signature of a multiphase inclusion of 60 

transition zone phases in a diamond. We show that HIMU represents an enriched layer 61 

or array of regions in the transition zone that is linked to subducted MORB. 62 

2. Sample studied and analytical techniques 63 

The studied single crystal diamond specimen was a 1.0 mm thick, polished, and 64 

triangular-shaped piece, with top and bottom faces normal to [111], which was 65 

obtained through cleaving of a so-called ‘coated’ octahedral diamond. The coating is a 66 

natural late-stage overgrowth of diamond on an existing diamond crystal, which is not 67 

visible in Figure 1a and not further studied here. The specimen belongs to the Caltech 68 

mineral collection with specimen number ON-ZiZ74a. The diamond inclusion was 69 

identified through synchrotron micro-X ray fluorescence (XRF) and diffraction (XRD) 70 

mapping. Subsequently, in-situ Laser Ablation Inductively Coupled Plasma Mass 71 

Spectrometry (LA-ICP-MS) was used for chemical analysis. 72 

XRF and XRD data were collected at the undulator beamline 34-IDE at the Advanced 73 

Photon Source, Argonne National Laboratory. The primary X-ray beam had an energy of 74 

24.000 keV. The beam was focused by elliptical mirrors to 0.4×0.6 m2 laterally. Grid 75 

size was set to 4×4 m2 for XRF mapping, and 2×2 m2 for diffraction mapping.  76 

The specimen was mounted on a motorized x-y-z stage with sub-m motion precision 77 

and centered in the beam waist of the focused X-ray beam based on a high-78 
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magnification optical system that was aligned previously with an X-ray fluorescent YAG 79 

crystal. The X-ray focal spot beam waist is ~300 m in depth and samples almost the 80 

entire thickness of the sample without significant loss of X-ray flux density. Diffraction 81 

data were collected in mapping mode over a 40×40 m2 grid in 2 m steps with 10s 82 

acquisition time per frame. Frames from adjacent diamond matrix were used for 83 

diffraction frame background subtraction. 84 

X-ray emission spectra were recorded with a Vortex Si drift detector for the K or –1 85 

lines, respectively, of Ca, Ti, Cr, Fe, Ni, and Cu. Diffraction data were recorded with a 86 

MAR165 CCD area detector, calibrated and corrected for geometric distortion with 87 

Dioptas [Prescher and Prakapenka, 2015]. Powder-like diffraction data were 88 

subsequently integrated with Dioptas and examined for phase identification, phase 89 

quantification, unit cell parameters, and site fractional occupancies with the Rietveld 90 

refinement method using the Powdercell algorithm [Kraus and Nolze, 1996]. 91 

Crystallites of spatial dimensions of the primary beam (0.4×0.6 m2) gave single-crystal 92 

diffraction patterns and were analyzed with the GSE-ADA and RSV software packages 93 

[Dera et al., 2013] for indexation and unit cell refinement. Subsequently, the |F(hkl)| of 94 

the observed reflections were used to assess site fractional occupancies (SFO) with the 95 

Endeavour reversed Monte Carlo algorithm for local optimization [Putz et al., 1999]. No 96 

charges and no potentials were used in the optimization. We assessed SFOs through 97 

equivalent relative electron densities at occupied Wyckoff sites, following the details 98 

presented in Ma et al. [2019]. 99 
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Infrared (IR) spectra were collected in transmission at beamline 1.4 at the Advanced 100 

Light Source, Lawrence Berkeley National Laboratory, with a Nicolet Magna 760 FTIR 101 

bench and a Nic-Plan IR microscope with a 32x magnification Schwarzschild objective, 102 

with 1 cm-1 resolution and a HgCdTe detector with a KBr beam splitter. Apertures were 103 

set to 40×60 m2 spatial resolution. Maps were collected over the same area as in the 104 

XRF map. A synthetic type II diamond was used for assessing the absorbance between 105 

1000 and 1500 cm-1.  106 

Elemental abundances of the diamond inclusion were measured using LA-ICP-MS 107 

technique, on a Thermo Element XR™ ICP-MS coupled with an ElectroScientific 108 

Instruments (ESI) New Wave™ UP193FX excimer (193 nm) laser ablation system at the 109 

Plasma Analytical Facility of the National High Magnetic Field Laboratory, Florida State 110 

University. The laser ablation system was operated using spot mode, with a spot size of 111 

150 m, 50 Hz repetition rate, and 80% energy output corresponding to 12.6 Jcm-2. In 112 

order to resolve the complicated carbon-related molecular interferences on low mass 113 

isotopes, all peaks were collected in medium mass resolution (m/m= 4,000). To 114 

compensate for the diminished signals, Jet Sampler and X-skimmer cones were used. 115 

Peaks of 7Li, 9Be, 12C, 13C, 16O, 23Na, 24Mg, 27Al, 28Si, 31P, 32S, 39K, 44Ca, 45Sc, 47Ti, 51V, 52Cr, 116 

55Mn, 56Fe, 59Co, 60Ni, 63Cu, 66Zn, 69Ga, 74Ge, 85Rb, 88Sr, 89Y, 90Zr, 93Nb, 133Cs, 138Ba, 139La, 117 

140Ce, 141Pr, 145Nd, 147Sm, 153Eu, 159Tb, 160Gd, 164Dy, 165Ho, 166Er, 169Tm, 174Yb, 175Lu, 180Hf, 118 

181Ta, 208Pb, 232Th, and 238U were monitored using magnet peak jumping technique and 119 

the Element’s EScan mode by varying the acceleration voltage. The mass window was 120 

10%, and the acquisition time was 0.1 second per peak. 40Ar40Ar peak was used as the 121 
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lock mass. Blanks were measured on a piece of broken diamond anvil provided by Dr. A. 122 

Salamat. The raw count rates were processed manually. Measured count ratios 123 

referenced to 28Si were converted to elemental abundance ratios referenced to Si using 124 

glass standard GSE-1G [Jochum et al., 2005]. The elemental compositions were then 125 

calculated assuming that the sum of all the major oxides is 100% [Yang et al., 2015], and 126 

are reported in Table 1. Note that the reported compositions are volatile-free, because 127 

volatiles such as CO2 and H2O could not be measured using our technique. The detection 128 

limits were estimated using three times the standard deviation of blank measurements.  129 

3. Results 130 

3.1 Synchrotron XRF elemental mapping and XRD patterns 131 

Figure 1 shows the visible light image and the corresponding map of the Fe K1 emission 132 

line. Various impurities and inclusions are visible: The outcrop of two parallel cracks in 133 

the diamond is noticeable both in the visible light image (Figure 1a) and through 134 

chemical impurities in the XRF map (Figure 1b). Another Fe-rich area in the bottom of 135 

the map above these two cracks and with similar strike is from the siderite-component 136 

of calcite that has penetrated along a crack into the diamond crystal. Its intersection 137 

with the surface is barely visible in Figure 1a. The entrapment pressure of this calcite is 138 

about ambient based on XRD measurement, and it is not further discussed in this study. 139 

One inclusion of very different orientation than those mentioned above was found to be 140 

from a silicate- and oxide inclusion with remnant pressure of 5-7 GPa (see below). As we 141 

will show, this high remnant pressure indicates entrapment in the deeper mantle and 142 
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this inclusion was analyzed by LA-ICP-MS. The studied multi-phase inclusion is not 143 

intersecting the surface, and its location is indicated through the red circle in Figure 1a. 144 

In the XRF map, it covers the region between -1755 and -1720 m (Height) and X = -460 145 

to -470 m. A representative diffraction image taken from the center of the inclusion is 146 

shown in Figure 2. Single crystal-like reflections in this image belong to garnet. Weaker 147 

Debye-fringes from fine-grained material are from the sodic 10Å phase (TAP) [Howe and 148 

Pawley, 2019], ilmenite, and a minor amount of liebermannite. At the upper border of 149 

the inclusion is an Fe-Ni-Cu-sulfide grain which is well separated from the silicate-oxide 150 

inclusion in the XRD maps but was ablated by LA-ICP-MS along with the silicate- and 151 

oxide phases. 152 

The compositions of individual phases in the silicate inclusion were assessed based on 153 

phase proportions (Figure 2), site occupancies, and bulk composition (Table 1), and are 154 

presented in Table 2. The phases are majorite-rich garnet, ilmenite, sodic TAP, and 155 

liebermannite. TAP occurs as fine-grained material of 20-30 nm average grain size 156 

(based on the Scherrer equation), and generates powder-like diffraction (Figure 2a). This 157 

diffraction signal was analyzed by Rietveld refinement (Figure 2b).  158 

Ilmenite occurs as fine-grained material, and gives powder-like diffraction. The 159 

integrated diffraction pattern and the Rietveld-refined model pattern are shown in 160 

Figure 2c. The refined unit cell volume was used for assessing a remnant pressure of 7 to 161 

10 GPa for ilmenite of 3 to 8 mol% geikielite component based on the equations of state 162 

by Tronche et al. [2010], Yamanaka et al. [2007], and Wechsler and Prewitt [1984]. 163 

Correction for elastic relaxation of surrounding diamond [Angel et al., 2014] would shift 164 
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the lower and upper bound by 1-2 GPa. However, ilmenite is part of an aggregate of 165 

four phases, and elastic relaxation is probably much smaller. Liebermannite amounts to 166 

less than 7 % of the aggregate based on modal composition, and cannot be clearly 167 

identified through XRD. Some weak features in the diffraction pattern can be assigned 168 

to liebermannite (Figure 2c) at a remnant pressure of 6 ± 1 GPa, based on its equation of 169 

state [Ballaran et al., 2009]. 170 

The garnet generates single crystal diffraction and was indexed as tetragonal (Figure 2a). 171 

Ca-rich majoritic garnet assumes commonly a tetragonal rather than cubic metric 172 

[Hazen et al., 1994]. Garnet composition was assessed through a) refinement of site 173 

occupancies, b) bulk elemental abundances of the diamond inclusion (Table 1), and c) 174 

the phase proportions of ilmenite, TAP and liebermannite as constraints on the 175 

remaining element budget. Rietveld refinement based on the powder-like diffraction of 176 

ilmenite and TAP gives the proportions of these two phases and site occupancies, and 177 

liebermannite was originally not considered. With these constraints on compositions 178 

and the relative amounts of ilmenite and TAP, a garnet composition was assessed to 179 

match the site occupancies obtained from XRD data. We note that refinement of site 180 

occupancies assesses relative electron density rather than chemical species. This relative 181 

electron density was used as constraint to assign site occupancies for elements as 182 

described above. Residual elemental abundance matches the composition of 183 

liebermannite (Table 2). The garnet composition and structure are given in Tables 3 and 184 

S1. 185 
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Rietveld refinement of ilmenite, sodic TAP, and liebermannite converged to a wRp of 186 

0.11 and an Rp of 0.08, with profile terms U = 0.040, V = 0.005, W = 0.007, and a 187 

Lorenzian mixing term of 0.38. The results are presented in Figures 3b and c. Single 188 

crystal structure refinement converged to RF = 0.097.  189 

3.2 Diamond formation temperatures inferred from nitrogen defects using IR spectra 190 

Infrared spectra of the diamond inclusion are shown in Figure 3. Spectra were 191 

background subtracted. Contribution of A-, B-, and D-type defect bands were assessed 192 

by using the pure defect type spectra reported by Taylor et al. [1990]. We used the 193 

calibrations by Boyd et al. [1994; 1995] for estimating the amount of nitrogen in A- and 194 

B-type defects and the calibration by Clark and Davey [1984] for D-type defects. The 195 

nitrogen abundance is assessed to 60-75 ppm and the percentage of A-defects of 78 -196 

84%. These values are consistent with formation and residence temperatures between 197 

1400 and 1460K, rather independent on age: For instance a mantle residence time of 3 198 

Ga would imply that the diamond grew at 1400 10 K, whereas a residence time of 0.1 199 

Ga corresponds to 1490 10 K [Taylor et al., 1990].  200 

3.3 Elemental abundances of the diamond inclusion 201 

The bulk elemental abundances of the studied inclusion are given in Table 1, and are 202 

plotted in Figures 4 and 5. The studied multiphase inclusion is silicate-undersaturated 203 

(Figure 5a), with Na2O + K2O up to 8.8 wt% (Table 1). The average elemental 204 

compositions of different OIB suites are correlated with their isotopic compositions 205 

[Jackson and Dasgupta, 2008; Huang and Zheng, 2017; Figures 4 and 5]. This allows us to 206 
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correlate the elemental features measured in the diamond inclusion with OIB 207 

endmembers normally characterized by their isotopic compositions. For example, 208 

CaO/Al2O3 and Th/Y are correlated with 206Pb/204Pb in global OIBs, with the newly found 209 

Bermuda HIMU lavas defining the high-206Pb/204Pb, -CaO/Al2O3 and -Th/Y end. Our 210 

diamond inclusion has even higher CaO/Al2O3 and Th/Y than HIMU OIBs, and plots on 211 

the extension of the CaO/Al2O3 vs. Th/Y trend defined by global OIBs (Figures 5b and 5c). 212 

In summary, this diamond inclusion either matches and/or plots at the extension of that 213 

of HIMU OIBs, such as Bermuda, St Helena, and Cook-Austral (Figures 4 and 5), and it is 214 

markedly different from that of inclusions in lithospheric and ultra-deep source 215 

diamonds (Figure 4b).  216 

In the chemical analysis, high Cu, Zn and Pb concentrations were found (Table 1). This is 217 

result of simultaneous ablation of the multiphase silicate-oxide inclusion and a sulfide 218 

inclusion, which is seen in the XRD map 6-8 m away from the multiphase inclusion. 219 

Consequently, the Pb data could not be interpreted as part of the multiphase inclusion 220 

chemistry.  221 

4. Discussions 222 

4.1 Diamond inclusion entrapment pressure-temperature conditions 223 

Pressures and temperature of diamond formation were obtained through two 224 

complementary methods shown in Figure 6a: 1) Garnet geobarometry [Collerson et al., 225 

2010; Wijbrans et al., 2014] (black rectangle), and 2) The isomeke pressure-temperature 226 

(P-T) path (P-T paths in strain-equilibrium of diamond host and inclusion) for ilmenite 227 
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(grey area), which was calculated based on known thermoelastic parameters of this 228 

mineral [Tronche et al. 2010]. Because of the compositional complexity of the garnet 229 

and sodic TAP, we only used ilmenite for combined isomeke P-T assessment following 230 

the approach used in Tschauner et al. [2018]. The phase boundary between ilmenite 231 

and liuite was taken from Ming et al. [2006]. We constrained the diamond formation P-T 232 

condition through the intersection of the ilmenite isomeke P-T path with the garnet 233 

barometric pressures (Figure 6a). The intersection starts at 14 GPa, and 1250 - 1800 K 234 

(Figure 6a).   235 

As an independent check, we used the nitrogen-aggregation state in the host diamond 236 

to constrain formation temperature. As shown in Section 3.2, we estimated a nitrogen 237 

content of 60-75 ppm, and the percentage of A-defects of 78-84%. These values infer 238 

the formation and residence temperatures between 1400 and 1460K, independent of 239 

the diamond age. As we show in Figure 6, this range of temperature matches closely the 240 

intersection point of the ilmenite P-T path with the lower limit of the garnet barometric 241 

estimate.  242 

All parameters taken together yield a pressure of 14.50.5 GPa and a temperature of 243 

145050 K for the diamond inclusion entrapment. This is shown in Figure 6. Entrapment 244 

in diamond indicates that the fluid also contained carbonate, which was reduced to 245 

diamond-forming carbon [Rohrbach and Schmidt, 2011; Thomson et al., 2016]. The 246 

diamond inclusion entrapment conditions of 14.50.5 GPa and 145050 K plot right on 247 

top of the solidus of alkaline carbonated MORB [Figure 6b; Litasov et al., 2013; Thomson 248 
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et al., 2016], and match the formation of carbonatitic melt from subducted slabs plus 249 

diamond formation from reaction of carbonate with iron [Rohrbach and Schmidt, 2011].  250 

4.2 HIMU geochemical signature from the transition zone  251 

As shown in Figures 4 and 5, our studied multiphase inclusion has a HIMU-type 252 

elemental pattern, and this geochemical signature is different from that of lithospheric 253 

and ultra-deep source diamond inclusions. The mineralogy of our inclusion, majorite-254 

rich garnet, sodic TAP, ilmenite, and liebermannite, is consistent with formation around 255 

14 GPa 1400-1500 K over an extensive range of alkaline rich bulk compositions [Litasov 256 

and Ohtani, 2005; Greaux et al. 2018]. At these conditions the stable phase assembly is 257 

garnet + ilmenite + liebermannite + clinopyroxene + stishovite + fluid [Litasov and 258 

Ohtani, 2005]. Upon ascent clinopyroxene, stishovite, and fluid reacted to form Na-259 

bearing TAP. Thus, the presence of TAP shows that the HIMU source is water-saturated. 260 

Hence, through this inclusion we can correlate HIMU component with a specific depth 261 

and a particular regime of temperature and petrology in the mantle. 262 

Overall, we have identified the endmember HIMU geochemical signature in a silicate 263 

inclusion entrapped in a diamond from the transition zone. It implies that the HIMU 264 

source is most likely a MORB-like material enriched in Ca and alkalis. This is fully 265 

consistent with previous geochemical assessments, which proposed the HIMU mantle 266 

source to be ancient recycled altered MORB [e.g., Chauvel et al., 1992; Mazza et al., 267 

2019], probably with ancient marine carbonates [e.g., Castillo, 2015; Weiss et al., 2016], 268 

and is potentially located in the transition zone [Wang et al. 2017, Mazza et al. 2019]. 269 

However, beyond these studies, we now show that the HIMU source region is located at 270 
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the upper limit of the transition zone. Moreover, we conclude that HIMU endmember 271 

lavas form at temperatures of average to hot subducting slabs. OIBs form a continuous 272 

isotopic and compositional spectrum, which can be explained using a limited number of 273 

mantle endmembers [White, 2015; Figures 4 and 5], and the HIMU endmember 274 

contributes variably to global OIBs. Our findings indicate that HIMU-dominated OIBs like 275 

Bermuda, St Helena, and Cook-Austral originate from the shallow transition zone, in 276 

conjunction with subduction of oceanic crust. Geophysical and geochemical findings 277 

indicate that some other OIBs originate from much greater depth than 420-440 km 278 

[White, 2015; Montelli et al., 2004; Humayun et al., 2004; Jackson and Dasgupta, 2008; 279 

Trela et al., 2017; Figures 4 and 5] but still exhibit a contribution from the HIMU 280 

component, though less dominant than in Bermuda, St Helena, and Cook-Austral. A 281 

plausible explanation is that upwellings of deep mantle plumes mobilize the HIMU-282 

source in the shallow transition zone during ascent. This suggests that HIMU source is a 283 

global layer equivalent to the fluid- and incompatible element-rich layer at the upper 284 

boundary of the transition zone that has been proposed by Bercovici and Karato [2003]. 285 

Our findings are consistent with this model.  286 

5. Summary 287 

We found that the geochemical signature of a multiphase inclusion in a diamond from 288 

the upper transition zone matches that of the HIMU OIBs. Pressure, temperature, and 289 

bulk composition of the inclusion indicate formation linked to subducted MORB at 290 

conditions of partial melting of wet carbonated MORB in the transition zone. HIMU-291 

dominated mantle plumes (e.g., Bermuda, St. Helena, Cook-Austral islands), many of 292 
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which are in the Atlantic Ocean, may originate predominantly from this region of the 293 

mantle. Subduction during the closing of the Atlantic Ocean may have loaded the 294 

transition zone beneath the Atlantic Ocean with HIMU source material. On the other 295 

hand, the ubiquitous presence of the HIMU geochemical signature in global OIBs is the 296 

result of entrainment of transition zone material by mantle plumes of deeper origin, and 297 

suggests HIMU to be a globally present layer or very common feature within the shallow 298 

transition zone.  299 

 300 

Figure Captions: 301 

Figure 1. a. Diamond ONZiZ-74. Red circle: area of inclusion. Blue rectangle: Area of XRF 302 

map (tilted by ~10). Each side of the rectangle is 200 m. b. X-ray fluorescence map of 303 

Fe with a 2 m  2 m grid. The elongated inclusion between -1755 and -1720 (Height) 304 

and X = -460 to -470 is the garnet-10Å phase-libermannite-ilmenite inclusion. Ilmenite is 305 

between X = -460 to -465 and Height = -1720 to -1740.  306 

Figure 2. a. Diffraction frame taken from the center of the inclusion. Garnet generates 307 

single crystal diffraction. The peaks (black boxes) were fitted and integrated and used 308 

for indexation and structure refinement. TAP, minor ilmenite, and possibly 309 

liebermannite generate the faint Debye fringes superimposed on the garnet single 310 

crystal pattern. b. Integrated diffraction pattern of ilmenite (black crosses), red: 311 

Rietveld-refined calculated pattern of ilmenite, green: residual of fit, tick marks indicate 312 

Bragg angles of allowed reflections. The refined unit cell of ilmenite is a = b= 5.04(1), 313 
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and c = 13.77(10) Å. c. Integrated diffraction pattern of fine-grained fraction from panel 314 

a (black crosses). The Rietveld-refined pattern of TAP, ilmenite, liebermannite, and 315 

garnet is shown in red. The fully |F(hkl)|-weighted portion of TAP is shown in blue with 316 

offset. Garnet single crystal reflections were masked but some minor reflections of 317 

smaller crystallites remain and were fitted with the LeBail approach.  Green: residual of 318 

fit. Tickmarks: blue = liebermannite, black = garnet, magenta = ilmenite. The unit cell 319 

dimensions of the sodic TAP are 5.344(6)9.22(4)9.64(6) Å3,  = 95.5(6).  320 

Figure 3. Representative infrared transmission spectrum (black) of diamond ONZiZ-74 321 

over the region of nitrogen-related defect bands. Red: Fitted spectrum of A-type 322 

defects, blue: B-type, green: D-type. 323 

Figure 4a. Primitive mantle (PM) [McDonough and Sun, 1995] normalized multiple trace 324 

element patterns for average OIBs. OIB data are from the compilation of Huang and 325 

Zheng [2017], and Bermuda data are from Mazza et al. [2019]. MORB averages are from 326 

Gale et al. [2013]. Only OIBs with 8%<MgO<16% are included to minimize crystal 327 

fractionation effect. 328 

Figure 4b. Primitive mantle [McDonough and Sun, 1995] and K double normalized 329 

multiple trace element patterns for the deep diamond inclusion (11-ON-ZIZ, this study) 330 

and the averages of HIMU lavas from Bermuda [Mazza et al., 2019], St Helena and Cook 331 

Austral (averages from summary in Huang and Zheng [2017]). Open symbols of 11-ON-332 

ZIZ data show values that are higher than background, but not resolvable at 3 standard 333 

deviation level (Table 1). The averages of several diamond inclusions from other studies 334 

are also shown for comparison. Specifically, high-Mg carbonatitic high-density fluids 335 
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(HDFs) in Siberian diamonds [Weiss et al., 2011] have a steeper trend. In contrast, 336 

Brazilian diamond inclusions [Timmerman et al., 2019], some of which have high 337 

3He/4He, have shallower trends. 338 

Figure 5. SiO2 vs. Na2O + K2O (a), Th/Y vs. 206Pb/204Pb (b) and CaO/Al2O3 (c) for OIB 339 

averages and the studied multiphase diamond inclusion. One standard deviations of OIB 340 

averages are plotted to show OIB variations. Our diamond inclusion plots on the 341 

extension of OIB trend. Legend: see Figure 4. Data source: see Figure 4 caption. 342 

Figure 6a. Pressure-temperature assessment of the inclusion in diamond ONZiZ-74. The 343 

horizontal open box shows the garnet formation pressure. The grey area shows the 344 

ilmenite-liuite isomeke P-T path. The vertical hatched bar shows the N-defect 345 

temperature. See text for details. b. The estimated entrapment P-T condition of 346 

diamond inclusion 11-ON-ZIZ plotting on a phase diagram of carbonated MORB 347 

[Thomson et al., 2016]. The red line shows the alkaline carbonatite solidus from Litasov 348 

et al. [2013]. The different solidus P-T of Thomson et al. [2016] (green) and Litasov et al. 349 

[2013] (red) may be caused by different starting compositions in two studies. Our 350 

estimated entrapment P-T condition of 11-ON-ZIZ plots right on the carbonatite solidus 351 

of Litasov et al. [2013].  352 
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 497 

 498 
Table 1. Composition of diamond inclusion 11-ON-ZIZ  

    11-ON-ZIZ Detection limit  

Na2O % 2.80 0.08  
MgO % 5.4 0.1  
Al2O3 % 9.5 0.2  
SiO2 % 40   
P2O5 ppm 17409 1328  
K2O % 6 2  
CaO % 21.8 0.7  
Sc ppm 23 1  

TiO2 % 1.80 0.05  
V ppm 131 23  
Cr ppm 1111 79  

MnO % 0.12 0.02  
FeOT % 12.6 0.1  

Co ppm 80 45  
Ni ppm 2075 797  
Cu ppm 6020 74  
Zn ppm 6506 138  
Ga ppm 83 14  
Rb ppm 181 87  
Sr ppm 4389 92  
Y ppm 165 38  
Zr ppm 967 89  
Nb ppm 413 33  
Cs ppm 10 27  
Ba ppm 6658 72  
La ppm 990 31  
Ce ppm 2067 13  
Pr ppm 203 35  
Nd ppm 813 236  
Sm ppm 116 150  
Eu ppm 32 14  
Tb ppm 13 32  
Gd ppm 107 30  
Dy ppm 63 88  
Ho ppm 15 39  
Er ppm 49 30  

Tm ppm 3 35  
Yb ppm 26 36  
Lu ppm 0.6 33  
Hf ppm 0 159  
Ta ppm 21 35  
Pb ppm 858 21  
Th ppm 80 34  
U ppm 9 23  

     
Detection limit is defined as 3 standard deviation above the background. 
 

 499 
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 500 

 501 

Table 2. Molar fractions and compositions of the minerals in the inclusion. Eskolaite is 502 

probably in solid solution with ilmenite and was not detected as free phase.  The Xmaj in 503 

garnet is between 0.54 and 0.71 [Collerson et al., 2010] that corresponds (with 504 

uncertainties) to a formation pressure of 14 – 20 GPa. Based on Wijbrans et al. [2014], 505 

one obtains a pressure of formation between 9 and 36 GPa. 506 

  Garnet TAP Liebermn Ilmenite Eskolaite 
Na2O 0.24(2) 0.14(1) 0.06(6) 0 0 

MgO 0.35(1) 2.63(1) 0 0.08(5) 0 

Al2O3 0.53(2) 0.21(1) 1 0 0 

SiO2 3.33(1) 3.79(1) 3 0 0 

K2O 0.4(4) 0.06(3) 0.95(5) 0 0 

CaO 2.35(0) 0 0 0 0 

Sc 0 0 0 0 0 

TiO2 0.13(6) 0 0 1 0.01(1) 

V 0 0 0 0 0 

Cr 0.06(6) 0 0 0 1.1(1.0) 

MnO 0.01 0 0 0 0 

FeOT 1.0(0) 0.19(2) 0 0.92(5) 0.10(7) 

       

mol% 77.8(2.0) 10.8(1.2) 6.5(2) 2.9(9) 1(1) 

 507 

Table 3. Atomic coordinates and isotropic displacement parameters (in Å2) of the 508 

garnet. The garnet is tetragonal with cell dimension of a = 11.23(4) and  c = 11.67(7) Å, 509 

which gives a volume of 1471(8) Å3. 510 
 511 
Atom Wyck. Occ. x y z U  512 
CaX1 8b  0.69(1) 0 0 1/4 0.0038(4)  513 
MgX1 8b  0.20(1) 0 0 1/4 0.0038(4)  514 
NaX1 8b  0.10(2) 0 0 1/4 0.0038(4)  515 
FeX1 8b  0.01(1) 0 0 1/4 0.0038(4)  516 
CaX2 16e  0.83(1) 1/4 1/8 0.875(1) 0.0038(4)  517 
MgX2 16e  0.07(1) 1/4 1/8 0.875(1) 0.0038(4)  518 
NaX2 16e  0.07(2) 1/4 1/8 0.875(1) 0.0038(4)  519 
FeX2 16e  0.04(2) 1/4 1/8 0.875(1) 0.0038(4)  520 
FeY 16c  0.455(15) 0 1/4 1/8 0.0038(4)  521 
AlY 16c  0.27(1) 0 1/4 1/8 0.0051(5)  522 
SiY 16c  0.17(2) 0 1/4 1/8 0.0051(5)  523 
Ti+Cr 16c  0.07(4) 0 1/4 1/8 0.0051(5)  524 
SiT1 8a  0 0 0 0.0063(3)  525 
SiT2 16e  1/4 1/8 0.125(4) 0.0063(3)  526 
O 32g  0.03(2) 0.80(2) 0.782(2) 0.006(2)  527 
O 32g  0.66(5) 0.78(2) 0.18(1) 0.006(1)  528 
O 32g  0.05(3) 0.407(3) 0.16(3) 0.006(1) 529 
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