Modeling periodic autoregressive time series
with multiple periodic effects

Harry Hurd and Vladas Pipiras

Abstract Two models of periodic autoregressive time series with multiple periodic
effects are introduced and studied. In the first model, the autoregression coefficients
vary periodically with several dominant components associated with two or more
periods (for example, day and week for hourly data). In the second model, the au-
toregression coefficients consist of the additive periodic effects of several nominal
variables (for example, the effect of hour in a given day and the effect of day in a
given week for hourly data). Truncated Fourier representations of different periods
are used to parametrize the autoregression coefficients in the two models. Model
estimation and inference through ordinary and weighted least squares, and model
selection based on diagnostics plots, in particular, are considered for the two ap-
proaches. An application to a real time series of hourly electricity volumes from the
Nord Pool Spot Exchange is also presented, where the nature and use of the two
models are contrasted.

1 Introduction

Many data collected in time exhibit cyclical variations, and call for time series mod-
els with cyclical features. One class of such models consists of time series with
periodically varying dependence structures. The periodicity could be in the mean,
the variance, but also in the model parameters such as with periodic autoregres-
sive (PAR) models that play a central role in this class of models. See Ghysels and
Osborne [13], Franses and Paap [12], Hurd and Miamee [16].
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In this work, we are interested in periodically correlated time series and, more
specifically, PAR series where periodicity is driven by two or more periods. Having
cyclical variations at multiple periods is expected in many data, especially when
they are associated with natural cycles of 24 hours, 1 week (when modeling human
related activity), 4 annual quarters or seasons, and so on. We shall introduce two
classes of periodically non-stationary time series that will operate at two or more
periods.

To motivate briefly the construction of the models and to explain the basic ideas,
suppose the goal is to model just the deterministic mean function u(z) of the series
as a function with two periodic effects. As with the application considered below in
this work, suppose time ¢ refers to hours and the two periodic effects are associated
with the 24 hours (1 day) and 168 hours (1 week) periods. Two natural candidates
for t(¢) operating at these two different periods come to mind, namely,

p(t) = poa(t) + ties (1), (1)
where, for example, in the first case,

27t 2t

,LL24(I) = 2+0'SCOS(H)’ /.1168(2‘) =-0.1 sin(ﬁ), 2)
and, in the second case,
[,L24(l) =1- (0-2)11AM(f) + (0-3)12AM(I) + (0.7)17PM(I),
Hies ([) = (O~3)1Monday([) - (0~1)1Wednesday (t) + (4)1Sunday (t)v 3

where 1g(¢) stands for the indicator function of “event” E, that is, it is equal to 1 if ¢
falls into E, and 0 otherwise. The mean function w(¢) in (1) and (2) consists of two
dominant components, one with period 24 and the other with period 168. The mean
function u(¢) in (1) and (3), on the other hand, expresses the idea that the mean
effect can be due to the hour of a given day or the day of a given week.

Our models for PAR time series with multiple periodic effects will allow for such
periodic behavior for all model parameters, not just the mean function. The model
extending (2) will be referred to as the model of Type A, and that extending (3) as
the model of Type B. As with (2), we shall use Fourier representations of periodic
model coefficients that will often require estimating fewer coefficients.

A number of other authors also considered various models exhibiting cyclical
variations at several periods. For example, Gould et al. [14], De Livera et al. [6] and
others consider models involving multiple periods based on exponential smoothing.
The use of double seasonal ARIMA models (that is, seasonal ARIMA models with
two periods) goes back at least to Box et al. [4]. Basawa et al. [3] do not quite
have multiple periods but consider a hybrid model exhibiting both seasonal and
periodic dependence for the same period. Neural networks in the context of multiple
periods were used by Dudek [10, 11] and others. Comparison of various available
methods involving multiple periods can be found in Taylor et al. [20]. Applications
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to electricity markets dominate many of these contributions; see also Weron [22],
Dannecker [5].

Our data application is also related to electricity markets. But we do not seek to
provide an exhaustive comparison of our approach to other methods. The goal is
to explain how one could think of periodic autoregressive time series with multiple
periods at a most basic level, and how the resulting models could be estimated and
manipulated in other ways. Though we also note that the introduced models do seem
relevant for the considered data set.

The structure of the paper is as follows. The models of Types A and B are defined
in Section 2 below. Estimation issues are discussed in Section 3, and inference,
model selection and other issues in Section 4. A data application is considered in
Section 5. Conclusions can be found in Section 6.

2 PAR models with multiple periodic effects

For the sake of clarity, we focus on PAR models with two periodic effects and com-
ment on the case of multiple periodic effects in Remarks 2 and 3 below. The two
periodic effects will be associated with two periods that are denoted s1,s,. We shall
suppose that s; < s7 and s, /s is an integer. For example, in the application in Sec-
tion 5 below, s; = 24 hours (1 day) and s, = 24 -7 = 168 hours (1 week).

2.1 Model A

To introduce our first model with two periodic effects, we need several preliminary
observations and definitions. A function f(t) is s-periodic if f(t +s) = f(¢) for all
t € Z. Note that an s;-periodic function is also sp-periodic (with the assumptions on
51,52 stated above). An sp-periodic function f(¢) can always be expressed through a
Fourier representation as

[52/2]
f=r+ Y (fl,m cos( 2mm) + fomsin( 2mmt )) , 4)
m=1

52 52

where fo, fi.m, f>,m € R. It can then also be expressed (uniquely) as

f(t) = fo+ fit) + f2(2), )

where
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B 21 (sy/s1)mt . 2m(sy/s1)myt
fit) = = (fl,(sz/sl)ml COS(T) +f2,(52/51)m1 SIH(T))

Ls1/2] 27myt 27mt

= (fl,(sz/sl)ml COS( 1 ) +fZ,(sz/sl)ml SIH(T1)> (6)
m1=1

and ) )
Tmt . Tmt
L) = Y <f1,m cos( )+ f2,msin( )). (7
m=1,...,[52/2];m/s1 &7 52 52

We shall refer to fj(r) as the s;-periodic component of f(¢), j = 1,2.
The following definition concerns our first model with two periodic effects.

Definition 1. A time series {X, },cz is type A periodic autoregressive of order p
(A-PAR(p)) with two periodic effects if

X, = .Ll(l‘)ﬁ*Y[, ®)
Vi =¢1(0)Y1+...+0,(1)Y,p+0(t)g ©)

with {&};ez ~ WN(0,1) (that is, a white noise series with Eg, = 0 and E¢? = 1)
and sy-periodic p(t), o(t)? and ¢,(t), r = 1,..., p, with the decompositions

w(t) = po+ () + ta(t)
o(t)? =of+ 61(2) (1) + 62(2 (1), (10)
t

)
(Pr(t) :¢r70+¢}gl(t)+¢r,2( bl r:17"'7p7

as in (5), where at least one of the s;-periodic components L (t),crl(z) (1), 91 (1),
r=1,...,p,is non-zero.

In practice, motivated by the representations (5)—(7), we shall model the coeffi-
cients ¢,(¢) and their components ¢, () and ¢, (z) as

i : 2mm;t j 2mmt
dry(©)= B, (athy cos(=555) + bl sin( =

mj:I J

). j=12 A

Sj

assuming Hp < s3/s1 (which ensures that indices m; in (11) are not multiples of
s2/s1). The indices j =1 and j =2 in (11) correspond to s;-periodic and s3-
periodic components, respectively. Modeling periodic time series through the (re-
duced) Fourier representations of their coefficients goes back at least to Jones and
Brelsford [17]. See also Dudek et al. [8] and references therein.

The parameters Lo, 1 (t), ta(t), 03, 61(2) (2), 2<2) (¢), on the other hand, will be
estimated in a nonparametric fashion, though a parametric route analogous to (11)
is also a possibility. Note also that 61(2) (1), 62(2) (¢) are not necessarily positive.
Remark 1. By the discussion above, the series {X;},cz in Definition 1 is also
PAR(p) with the larger period s,. We also note that our main interest here is in
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such series {X; };cz which are stable, that is, for which the multivariate VAR rep-
resentation of the sy-vector series { (X, —1)41,X,(7—1)4+2- - - X5,7) }7ez 18 stable.
Here and throughout, a prime indicates a vector or matrix transpose. Conditions for
the latter are well-known in the literature; see, for example, Liitkepohl [19].

Remark 2. The framework described above can be extended straightforwardly to the
case of multiple periods s1,s2,...,5k, assuming that s; < s < ... < sg and sg/s;
are integers. Though some caution would need to be exercised in how many terms
in the Fourier representations are included when some multiples of two periods s,
and s, are the same (and smaller than sg).

2.2 Model B

We now turn to a different PAR model that builds on the idea behind the model (1)
and (3) for the mean discussed in Section 1. We adopt the following quite general
framework concerning two periodic effects.

We think of each time ¢ and observation X; as associated with two nominal vari-
ables, that vary periodically in time, and are interested to model their effects. We
assume that the two variables have k; and k; levels, respectively. We shall represent
the two nominal variables by two functions g (¢) and g»(¢), assuming that they are
s1-periodic and s,-periodic, respectively, and take values {1,...,k;} and {1,... k2 },
respectively, that are associated with respective levels. As above, we assume that
s1 < sy and s /s is an integer. It is not necessarily the case that s j = kj, as the
following examples illustrate.

Example 1. In the application to hourly data in Section 5 below, the two periodic
effects will be the effect of the hour in a day and the effect of the day in a week.
For hourly data, these effects are periodic with periods s; = 24 hours (1 day) and
s =24 -7 =168 hours (1 week), respectively. The corresponding nominal variables
have k| = 24 (hours 1 through 24) and k, = 7 (Monday through Sunday) levels,
respectively. The effects can be captured through the two corresponding functions
g1(t) and g (¢) with the properties described above. They can also be represented as

t
gait)y=t, t=1,...,24, gz(t):[ﬂL t=1,...,168, (12)

where [x] denotes the ceiling integer part of x, and then extended periodically with
their respective periods.

Example 2. One could have the second variable (function) in Example 1 having
only k; = 2 levels (values), for workdays and weekends. Similarly, the first vari-
able (function) in Example 1 could have k, = 4 levels (values), for night hours (1-
6AM), morning hours (6AM-12PM), afternoon hours (12-6PM) and evening hours
(6PM-12AM).
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Definition 2. A time series {X;};cz is type B periodic autoregressive of order p
(B-PAR(p)) with two periodic effects if
Xp = u(t)+Y, (13)
Y =01 (t)Y1+...+¢,(1)Y—p+0(t)& (14)

Wlth {EI}IEZ ~ WN(O, 1) and

p(t) = uo+ui(g1(t)) + Ha(ga(t)),
(1) = o3 + 07 (81(1) + 03 (82(1)). (15)
O-(t) = ¢ro+0r1(81(2)) + ¢r2(82(2)), r=1,....p,

where the functions g;(¢) and g () are defined before Example 1, are associated
with two nominal variables and are s;-periodic and s,-periodic, respectively.

Definition 2 requires further clarification. With f(¢) denoting u(t), o (¢)? or ¢,(t),
let
f@)=fo+ fi(g1(2)) + f2(g2(1)) (16)

be the decomposition analogous to those in (15). Recall from above that g;(r) takes
an integer value from 1 to k;, which we shall denote by u;. Thus, f; acts on a value
ujas fj(u;), where u; = g;(t). For identifiability purposes, we assume that

kj

Y filu)=0, j=12. (17)

We also note that the function f;(g;())) is sj-periodic, j = 1,2, and hence, with our
assumptions on sy, 2, the function f(r) is s-periodic with the larger s;.

The function fj(u;), j=1,2, uj=1,...,k;, can be expressed through a Fourier
representation as

/2] ,
filw) =Y. (A1), cos(

7 cos( ity 1 gD sin(%)). (18)

mj=1 J J

In practice, to have fewer coefficients to estimate, we shall model the coefficients
¢,(¢) and their components as

H;

i 2nmiu; oL 2mmiu;

O j(uj) =Y, (dﬁ,’%jCOS(i’ L) 4 by, sin(——2 ’)), (19)
mi=1 J kj

where H; < |k;/2]. The parameters p;(u;), G]@(uj), Jj = 1,2, on the other hand,
will be estimated in a nonparametric fashion, though again a parametric route anal-

ogous to (19) is also a possibility.

Example 3. We continue with the setting of Example 1. In this example, by combin-
ing (12) and (19), the functions ¢, ;(g;(¢)) are modeled as
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i 2wmt 2wmt
_ (1) 1 (1) 1
(pral(gl(t)) - mlzj] (arxml COS( 24 )+br7m] Sln( 24 )) (20)
and
H 2 24 2 24
0220 = X (a2 cos ) Ly an 2T )

my=1

We note again that the function ¢, (g;(¢)) is 24-periodic, and that ¢.2(g2(¢)) is
168-periodic but also constant over successive intervals of length 24.

Remark 3. The framework described above can be extended straightforwardly to the
case of multiple periodic effects, by introducing additional functions g;(¢) associ-
ated with these effects.

Remark 4. As A-PAR(p) models discussed in Remark 1, B-PAR(p) models are also
PAR(p) models with the larger period s;. It is instructive here to contrast the two
introduced models from the perspective of these standard PAR models. A PAR(p)
model with period s, has its coefficients vary periodically with period s,. These
coefficients can always be expressed through a Fourier representation. In the appli-
cations of the A—-PAR model, only a small number of these Fourier coefficients are
assumed to be non-zero, more specifically, the first few in the Fourier representation
and also the first few in the component of the representation that is s-periodic. The
B-PAR model, on the other hand, assumes that the periodicity consist of two addi-
tive effects associated with two periodic nominal variables. The latter effects do not
need to be components of the Fourier representation of the model coefficients (as,
for example, the coefficients (21) above).

Remark 5. The preceding remark also suggests that A—-PAR and B-PAR models
might serve quite different purposes. By increasing the number of non-zero coef-
ficients in the A—PAR model Fourier representation, one could effectively get any
PAR model with period s,. From this perspective, the A—-PAR model is quite flex-
ible. With the B-PAR model, on the other hand, one might be more interested in
which effects and which of their levels are more pronounced in the dynamics of the

PAR process. This is illustrated further in our application to a real data set in Section
5.

3 Estimation procedure

We discuss here estimation of the parameters (), o(t)* and ¢,(t) of the A-PAR
and B-PAR models, using the Fourier representations (11) and (19) of the parame-
ters. The way the A—-PAR and B-PAR models were introduced allows us to present
essentially a unified estimation framework. We suppose that the observed data con-
sist of observations Xi,...,Xr, where the sample size T is a multiple of both s; and
s, for simplicity.



8 Harry Hurd and Vladas Pipiras

3.1 Estimation of mean

For an A-PAR model, we estimate the means as fiy = X (the overall mean),

. 1 T/s1 o
Nl(f):W;(Xrﬂl(n—l)—X), t=1,...,s1, (22)

and extended periodically with period s; for other #’s, and

R 1 T /sy N
pa(t) = (T/s2) Y Kipiyony —Hi(), 1=1,....8, (23)
n=1

and extended periodically with period s for other #’s. Once can check that [i(¢) =
Ho + Wi (t) + Ha(¢) is just the periodic mean at period s;. For a B-PAR model, the
mean effects are estimated through a least squares regression of X; on the two nomi-
nal variables described in the beginning of Section 2.2. Again, let [i(¢) be the overall
estimated mean which is generally different from that for the A—PAR model (see
Figure 1 in Section 5 for an illustration).

3.2 OLS estimation

LetY, =X, — [i(). In applying the ordinary least squares (OLS), the model param-
eters are estimated as

{‘Er,Oa Zig‘,jf’ll] I ,I;E',jrzl]

= argmin Y (Y —¢i(0)Yi1—...— §p()Yi )%, (24)

bl il

where ¢,(t) = ¢.0+ ¢-1(t) + (1),,2(1) and ¢, ;(r) are given in (11) or (19), depend-

ing on the type of the model. Let ¢,() be the resulting OLS parameter estimators.
Consider also the errors

=Y =01 —...— 0p(1)Y . (25)

The model parameter o(¢)? and its components o, 0'l<2) (1), 62(2) (t) could then be
estimated analogously to the mean pt(¢) and its three components as in Section 3.1
but replacing X; with 177. We shall refer to 77, /G (¢) as the residuals from the OLS
estimation.

Remark 6. There are several potential issues with the suggested estimation of o (z)?
that, in particular, are encountered in the application in Section 5. When 7' /s, is
small (e.g. T /s> = 6 in the application considered below) and &(¢)? is computed
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as the sp-periodic sample mean, note that the estimation of each o (¢)? involves
just T /s, error terms (e.g. 6 in the application below). The quality of estimation of
o (t)? is then dubious, and we try to rectify this by slightly smoothing the estimates
over time. This procedure does have some minor effect on the estimates and their
standard errors, and might call for further investigation in the future. (We do not
perform smoothing when estimating the mean (i (r) since we expect these estimates
to be already quite smooth.) On the other hand, for Model B, we also note that
the suggested procedure is not guaranteed to yield nonnegative estimates of ()2,
which also happens in our application. In this case, we use the estimates of o (t)?
obtained for Model A.

3.3 WLS estimation

Having the OLS estimate & (¢)? of the variance of the error terms, the model param-
eters could be reestimated by using the weighted least squares (WLS) as

o A0 p0)
{¢r,07 ar,mj 9 br,mj
r=1,..,pm;=1

= argmin Y (% —¢1(1)¥—1 —...— $p(1)¥,— )2 /(1) (26)

q)r,()wag‘jn)lj hm/ !

Likewise, the variance o (¢)? could be reestimated as & (¢)? by using the model errors
based on the WLS estimates (and this process could be iterated till convergence
occurs), with possible modifications discussed in Remark 6 above. Letting 7; be the
error terms from the WLS estimation, defined similarly to (25), the WLS residuals
are defined as 1),/G (¢).

4 Inference and other tasks

In the implementation of the OLS and WLS estimation, a PAR(p) model is ex-
pressed in the form of a linear regression as

Y=Ro+Z 27

For example, for an A—PAR(p) model, ¥ = (Ypy1,...,Yr) is a (T — p)-vector of
periodically demeaned observations ¥;, o = (o ... )" is a ((1+2H; +2H,)p)-
vector of parameters with

1 1 1 1 2 2 2 2
o = (9n0,a), . alpy BBl alY L aG b
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the regressors R can be expressed as a (T — p) x ((1 + 2H; + 2H;)p) matrix

(Rp+l .. -RT)/ with R, = (Ip ®Bt)Yt.lags’ Yt,lags = (thlw .. 7Yt7p)/,
2mt 2rH t 2mt 2nH t
B = (l,cos(—)7...,cos( Ty sin(Zhy, . sin(ZEE,
S1 51
2mt 2mH,t 27t 2nHyt \/
cos(—),...,cos( 2 ),sin(—),...,sin( 2 ))
52 52 52 52

and Z refers to the error terms. Within the linear formulation (27), the OLS and
WLS parameter estimators and their standard errors have well-known expressions
in terms of R and Y, which we use here as well but omit for the shortness sake.

In addition to the OLS and WLS estimation as outlined above, we also use their
counterparts when some of the coefficients are set to 0. We shall refer to the cor-
responding models as restricted PAR models. Estimation and computing standard
errors for restricted PAR modelds are carried out in a standard way by expressing
zero constraints through

a=Cy, (28)

where 7 is a k—vector of non-zero coefficients and C is a ((1 +2H; +2H,)p) x k
restriction matrix, with rows of zeros corresponding to the zero elements of o, and
rows with a single entry of 1 corresponding to non-zero elements of . The OLS
and WLS estimation and inference are then performed essentially by replacing R by
RC.

If needed, model selection can be guided by some information criterion, such as
BIC and AIC defined in the usual way as (—2) multiplied by the log-likelihood, with
an appropriate penalty. In the data application below, we shall be guided by looking
at parameter “significance” and suitable diagnostics plots of model residuals. Simi-
larly, the introduced PAR models can be used in forecasting in a straightforward way
as with standard AR models and their PAR extensions. Out-of-sample forecasting
performance could also be employed as another tool for selecting a model.

Remark 7. Under mild assumptions on the residuals {& } in the A—-PAR and B-PAR
models (with typical assumptions being the i.i.d. property and finiteness of the 4th
moment), the parameter estimators {@07&{& I,Zﬁf,,l /.} in (24) and {q?,_yoﬁﬁj,zl j,gﬁj,,), j}
in (26) (assuming the true variance 62(¢) is used in estimation) are expected to be
asymptotically normal. Indeed, these estimators are linear transformations of the
analogous PAR model parameter estimators {¢,(¢)} and {¢,(¢)}. The asymptotic
normality of the latter under mild assumptions is proved in Basawa and Lund [2],
Anderson and Meerschaert [1]. The analogous linear transformation argument to
establish the asymptotic normality of the coefficient estimators in the Fourier repre-
sentation of the parameters is also used in Tesfaye et al. [21].
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Nordspot Hourly Electricity Volumes (weekly demeaned) Electricity Volumes with Fitted Means
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-8000 -6000 -4000 -2000

Fig. 1 Left: Weekly demeaned energy volume series for 6 weeks. Right: The volume series for
Week 2 with estimated means according to Models A and B.

5 Data application

To illustrate our proposed models, we shall work with a time series of hourly elec-
tricity volumes from Nord Pool Spot Exchange.! This data was considered in a
number of other works related to periodically correlated series, for example, Dudek
et al. [7]. We consider the series for 6 weeks in 2008, and remove the weekly mean
from the data. The length of the series is thus 7 = 1,008. Note that 6 weeks (1 week
being the period of the underlying PAR model) are sufficient for our modeling pur-
poses since the number of parameters is reduced considerably through the Fourier
representations. For example, a small number of non-zero coefficients in the Fourier
representation could be estimated, in principle, even from the data covering just one
period. The resulting series is presented in Figure 1, left plot. The right plot of the
figure presents one week of the series with the mean effects estimated according
to Models A and B. In the rest of the section, we shall fit Models A and B to the
periodically demeaned series, that is, the difference between the observed and fitted
values in Figure 1, right plot.

5.1 Fitting Model A

Figure 2 depicts the periodically demeaned series according to Model A, and its
sample PACF. The sample PACF suggests including lags 1, 2 and 24 into an au-
toregressive model. Figure 3 presents two commonly used plots to detect periodic
correlations: the spectral coherence plot according to Hurd and Gerr [15] (left plot
of the figure), and a related test statistic with a critical value line from Lund [18]
(right plot; with a tuning parameter M = 10 in Lund [18]). See also Hurd and Mi-

! http://www.npspot.com
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Periodically Demeaned Volumes Periodically Demeaned Volumes

series
1000 2000

0
Partial ACF
4

-1000

-2000
I

-3000
L

day Lag

Fig. 2 Left: Periodically demeaned volume series for 6 weeks (Model A). Right: The correspond-
ing sample PACF.

amee [16], Sections 10.4 and 10.5 The spectral coherence is plotted using the R
package perARMA [9].

If a series exhibits periodic correlations at period s, the spectral coherence plot
should have diagonal lines emerging at multiples of the index 7 /s. Here, T /s =
1,008 /s. The plot in Figure 3 suggests the first major diagonal line around the index
40. In fact, it corresponds to the period s; = 24 with T /s; = 42. There are also
traces of diagonal lines at indices smaller than 42 but it is difficult to say for sure
what these indices are. The latter could be determined easier from the Lund test
statistic plot, which essentially averages the spectral coherence statistic at different
indices along the corresponding diagonals, and also provides a critical value (the
horizontal dashed line in the plot). As expected, the Lund test statistic has a large
value at index 42. But note also that the values are larger, some above the critical
values, at multiples of the index 6. This index corresponds to the period 55 = 168 (1
week) since 7' /s, = 6. We thus conclude from these plots that periodic correlations
are present in the periodically demeaned series at both periods s; = 24 and s, = 168.

We also see the presence of periodic correlations at the two periods s; = 24 and
s» = 168 when fitting Model A. We shall report here on our fitting attempts for
A-PAR(p) models of orders p =2 and p = 26, to accomodate the partial auto-
correlations seen at these lags in Figure 2. Experimenting with various restricted
A-PAR(2) models, we settled on the model with the following non-zero WLS esti-
mated coefficients, with the standard errors indicated in the parentheses: at lag 1,

0.202(0.036), B\'") =0.081(0.041),

s

ay) = 0.023(0.012)
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Squared Coherence Statistic Lund Test Statistic

0.25

0.20

frequency_q
statistic
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o il
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frequency_p index
dataname= data form= 15
Fig. 3 Left: The spectral coherence plot for periodically demeaned volume series for 6 weeks
(Model A). Right: The Lund test statistic for the same series with a horizontal dashed line indicat-
ing the critical value.

and at lag 2,
$20 = —0.178(0.025),
a') = 0.245(0.038), @'}, =0.084(0.037),
by = ~0.195(0.036), bblg = —0.082(0.040).

~(2)

Note that only one non-zero coefficient, namely alzl, is included in the component

for period s, = 168. The resulting WLS estimated parameter functions 61 () and
¢, (1) are plotted in Figure 4. The component of the mean with the non-zero coeffi-

cient c’zﬁzz at period s, = 168 produces a “global” trend in the coefficients 51 (t) over
the 168 hours, which is clearly visible in the left plot. Without this global trend, the
coefficients can be checked to be close to what one would get from fitting a standard
PAR(2) model with period s = 24.

Figure 5 depicts the sample ACF and the Lund test statistic for the WLS residuals
of the fitted A-PAR(2) model. Note some remaining autocorrelations around lag 24,
which should not be surprising since we fitted a PAR model of order p = 2. The plot
with the Lund test statistic is depicted using the same vertical scale as in Figure 3:
the peaks at dominant indices have become smaller in general but are not completely
negligible.

To remove the remaining autocorrelations in the residuals, one could fit an A—
PAR(p) model of higher order p. (Another possibility would be to use a seasonal
PAR model as in Basawa et al. [3].) In analogy to non-periodic seasonal models,
we have experimented with fitting restricted A-PAR(26), by allowing some of the
coefficients at lags 24, 25 and 26 to be non-zero. We shall not report here the fitted
models but rather indicate several key observations. We found significant periodic-
ity in the coefficients ¢x4(t), ¢5(¢) and ¢6(2), but also only in the component with
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A-PAR(2) coefficient §,(t) A-PAR(2) coefficient ,(t)

coeff
coeff

T T T T T T T T 7 T T T T T T T T
0 24 48 72 96 120 144 168 0 24 48 72 96 120 144 168

hour hour

Fig.4 The WLS estimated parameter functions @; (t) and @ (¢) of the fitted A—-PAR(2) model.

A-PAR(2) residuals Lund Test Statistic

|
0.15 0.20 0.25
I 1

statistic

0.10

0.05
L

Lag index

Fig. 5 The sample ACF and the Lund test statistic for the WLS residuals of the fitted A—-PAR(2)
model.

period s1 = 24. Typical sample ACF and Lund statistic plots for the WLS residuals
of a fitted restricted A—PAR(26) are presented in Figure 6. Note the smaller auto-
correlations around multiples of lag 24 compared to those in Figure 5. The Lund
statistic plot continues having several peaks above the critical value line but their
locations are no longer multiples of 6. (For example, the largest peak is no longer
at 42.) It remains to clarify what might cause this shift in indices where peaks are
present.

5.2 Fitting Model B

We now turn to fitting Model B and follow a similar presentation structure as for
Model A in the previous section. Figure 7 presents similarly the periodically de-
meaned volume series according to Model B and its sample PACF. Figure 8 depicts
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Fig. 6 The sample ACF and the Lund test statistic for the residuals of the fitted restricted A—
PAR(26) model.
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Fig.7 Left: Periodically demeaned volume series for 6 weeks (Model B). Right: The correspond-
ing sample PACF.

the spectral coherence and Lund statistic plots. Note that the diagonal lines at the
multiples of the indices 6 and 42 in the coherence plot, as well as the peaks at these
indices in the Lund statistic plot, are much more pronounced compared to those in
Figure 3. This interesting difference is due to the way the mean effect is computed
in Model B.

When fitting a B-PAR(2) model with H; = 10 and H, = 3 in the representations
(20) and (21), and then reestimating it through a restricted B-PAR(2) model when
including only the significant coefficients from the non-restricted model, leads to
the following significant non-zero coefficients: at lag 1, ¢; o,

a(lf}?nl - my :273767778;97 bglgl’ll cmp = 3,4,6,9710,
2)

2
agerZ my =1,3, bg,mz tmp =2,
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Fig. 8 Left: The spectral coherence plot for periodically demeaned volume series for 6 weeks
(Model B). Right: The Lund test statistic for the same series with a horizontal dashed line indicating
the critical value.
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Fig.9 The estimated parameter functions @ (¢) and ¢»(¢) of the fitted B-PAR(2) model.

and at lag 2, ¢,
as cm=1,2,3,7,8,10, b)) im;=4,610, af) my=13.

We shall not indicate here the values and standard errors of the corresponding WLS
estimates but rather present a few revealing plots of the coefficient functions. More
specifically, Figure 10 shows the WLS estimated parameter functions ¢;(7) and
(1) of the fitted B-PAR(2) model. Note that the effect of the day of a week, es-
pecially that of Sunday, is more apparent in the figure when compared to Figure 4.
This can also be seen clearer through the two components ¢,.1(g1(¢)) and ¢,2(g2(7))
depicted in Figure 9, where the effects of the day (solid line) is more pronounced
towards Sunday for lag 1 and Saturday through Monday for lag 2 coefficients.
Figure 11 depicts the sample ACF and the Lund test statistic for the WLS residu-
als of the fitted B-PAR(2) model. The conclusions are not very different from those
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Fig. 10 The estimated parameter functions @y x(gx(r)) and @Tk(gk(t)) of the fitted B-PAR(2)
model.
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Fig. 11 The sample ACF and the Lund test statistic for the WLS residuals of the fitted B-PAR(2)
model.

for the A—-PAR(2) model from Figure 5. In particular, as with Model A above, one
could fit a B-PAR(p) model with higher order p to remove the remaining autocor-
relations around lag 24 in the WLS nresiduals.

6 Conclusions

In this work, we introduced two periodic autoregression models with two or more
periodic effects, discussed their inference and presented an application, showing
their relevance for real data. Some of the issues that can be explored in the future
include: incorporating moving average components into our models, comparing out-
of-sample forecasting performance between the introduced and among competing
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models, applications to other data sets, clarifying the role of the used estimation
methods for error variances, and others.
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