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ABSTRACT

Alzheimer’s disease (AD) is a multi-factor neurodegenerative dis-
ease that selectively affects certain regions of the brain while other
areas remain unaffected. The underlying mechanisms of this selec-
tivity, however, are still largely elusive. To address this challenge,
we propose a novel longitudinal network analysis method employ-
ing sparse logistic regression to identify frequency-specific oscilla-
tion patterns which contribute to the selective network vulnerability
for patients at risk of advancing to the more severe stage of dementia.
We fit and apply our statistical method to more than 100 longitudi-
nal brain networks, and validate it on synthetic data. A set of critical
connectome pathways are identified that exhibit strong association
to the progression of AD.

Index Terms— Brain network, graph spectrum, sparse logistic
regression, Alzheimer’s disease.

1. INTRODUCTION

Alzheimer’s disease, the most common neurodegenerative disorder,
leads to gradually progressive memory loss, decline in other cogni-
tive domains, altered behavior, loss of functional abilities, and death.
Although progressive neuron loss is a hallmark of AD [1], some
neurological impairment may reflect dysfunction rather than loss of
neurons [2]. In this regard, AD can be understood as a disconnec-
tion syndrome where the brain network is progressively disrupted by
neuropathological processes that are not fully understood.

Recent developments in diffusion MRI and network neuro-
science allow us to characterize the white matter pathways that
connect gray matter regions in the context of the large-scale brain
network. The network degeneration hypothesis – significant changes
might occur in the topological properties of the structural brain net-
work as AD progresses – is supported by many neuroimaging studies
[3]. In addition, convergent evidence shows that the presence of AD
pathology burden exhibits a unique spatial pattern that is highly
correlated with the region-to-region connections in the network. In
this context, it is important to improve our current understanding of
AD by characterizing how neuropathological events that result in
cognitive decline spread across brain networks.

Longitudinal analysis is of particular interest in AD neu-
roimaging studies, since the measured subject-specific network
alterations allow us to develop highly sensitive and specific con-
nectome biomarkers for early AD diagnosis. With the increasing
availability of large public longitudinal databases such as ADNI
(http://adni.loni.usc.edu/), more and more studies have shown the
advantages of longitudinal network analyses methods over conven-
tional cross-sectional methods in characterizing network alterations
due to AD [4, 5, 6]. Due to the high dimensionality of brain
networks, however, it is common practice to use node-wise mea-
surements such as local clustering coefficient and small-world-ness,

Table 2.1. Subjects and scans used in each step of model building
Participant cohort size Number of scans
Average MCI Lasso Average MCI Lasso

Total 68 48 234 114
Gender
Male 44 30 146 69
Female 24 18 88 45
Education
11 - 16 years 39 25 127 60
17 - 20 years 29 23 107 54
APOE4
0 copies 32 22 112 53
1 copy 26 18 87 45
2 copies 10 8 35 16

instead of whole-brain connectivity information. In simplifying the
data, though, these node-wise features can obscure information em-
bedded in the links, making it difficult to unravel spatially localized
effects of AD pathology on connectivity. Conversely, many ap-
proaches apply significance tests at each link separately [7]. Due to
a large number of links in the network, severe multiple-comparison
correction is needed to control false discovery rate, which might
result in discarding the links that are scientifically meaningful.

To address these challenges, we propose a novel statistical
model to discover the critical connectomic pathway in the graph
spectrum domain which consists of two major steps. (1) Align-
ment of longitudinal networks. For each subject, we first align their
longitudinal networks into a common graph spectrum domain. (2)
Inter-subject variable selection in the graph spectrum domain. We
propose a novel sparse regression model to identify the critical fre-
quency patterns which contribute to selective network vulnerability.

2. DATA

We build our method on 234 DTI scans from the ADNI database.
These scans are of 68 subjects diagnosed at the times of these scans
with Mild Cognitive Impairment (MCI). 56 of these subjects have
multiple scans at different times while diagnosed with MCI. For each
scan, we parcellate the cortical surface into 148 regions of the De-
strieux Atlas using FreeSurfer on T1-weighted MRI scans. Then we
apply probabilistic fiber tractography on DWI and T1-weighted im-
ages using FSL software library to obtain 148 × 148 connectivity
matrices of the structural networks, where each element reflects the
number of white matter fibers traveling between two brain regions.

This is a subset of a larger dataset in which we also have scans
where subjects (including those in our subset) have other diagnoses
at the time the scan is taken, including ”Normal.” Unfortunately,
the diagnostic categories at the time of first diagnosis don’t match
up with the diagnoses at time of later scans. Due to this disparity,



Fig. 3.1. Starting with the matrices Gst, keep only scans where the
diagnosis is MCI, then calculate the average MCI graph ḠMCI . In
the simplified illustration, each subject’s scans are kept on a single
row, and scans with diagnoses of Normal or AD are discarded.

we consider “Early Mild Cognitive Impairment,” “Late Mild Cog-
nitive Impairment,” and “Mild Cognitive Impairment” as a single
diagnosis. We do the same for “Alzheimer’s Disease” and “De-
mentia.” From this point forward, “Mild Cognitive Impairment” and
“Alzheimer’s Disease” will be referred to as “MCI” and “AD” re-
spectively.

Many scans are missing either diagnostic data or MMSE and
CDRSB scores. Where data is missing, information from the last
scan where the data is available for a given subject is used as a
substitute (interpolating the data does not substantively change the
results). For constructing the average basis, only scans that had a di-
agnosis of MCI, or which had a missing diagnosis but the last avail-
able diagnosis was MCI were included. For the logistic regression
using LASSO, any scans excluded from basis construction are still
excluded, but there are stricter rules in place to remove uncertainty.

3. METHOD

We start by symmetrizing and taking the log of the 148× 148 matri-
ces representing the structural brain networks of patients at different
points in time, where each entry in the original matrix represents the
count of fibers connecting the region in the row and the region in the
column. Let Gst be the tth processed matrix observed for subject s.

For the 234 scans where the diagnosis at time of scan is MCI,
we calculate the “average MCI graph” ḠMCI ,

ḠMCI =
∑
s,t

Diagnosis = MCI

Gst

/ ∑
s,t

Diagnosis = MCI

1 .

From here we calculate the Laplacian of ḠMCI denoted as
L̄MCI = I − D̄− 1

2 ḠMCID̄− 1
2 where D̄ is the degree matrix of

ḠMCI , which has the degree of each node on the diagonal. We
use this normalized version of the Laplacian to avoid issues with
eigenvector localization in graphs with wide degree distributions.
Decompose L̄MCI as

L̄MCI = BΛ̄MCIB
T ,

where B is a matrix whose columns are the eigenvectors of L̄MCI ,
and Λ̄MCI is a diagonal matrix containing the eigenvalues of L̄MCI .

We map every scanGst into the subspace spanned byB. Instead
of regressing each individual scan onto the orthonormal eigenbasis
of the average MCI graph ḠMCI , to control for differences in the
total number of edges observed in each scan, we project each degree-
normalized graph ontoB by choosing a Λ̂st vector which minimizes
the Frobenius norm between the observed degree-normalized matrix
and the estimated matrix. Formally, we solve

Λ̂st = arg min
Λ

||I − (Dst)−1/2Gst(Dst)−1/2 −BΛBT ||F

Fig. 3.2. From the average MCI graph ḠMCI (top left), calculate the
orthonormal basis B of the average Laplacian. Project each degree-
corrected scan diagnosed with MCI onto the subspace spanned byB.
Take longitudinal differences of the projection coefficients, include
these differences in an L1 regularized logistic regression. In the sim-
plified illustration, changes along the basis vector with weight con-
centrated on the left hemisphere outside of the frontal lobe (in green)
indicate an elevated risk of transitioning to AD.

= BT (I − (Dst)−1/2Gst(Dst)−1/2)B.

As Λ is in principle supposed to be a diagonal matrix, we can
treat each Λ̂st as the 148 length vector taken from the diagonal. We
look at the changes in these estimated Λ̂ vectors for a given subject
from one time to another, rather than only observing the snapshot at
the time of the scan. Formally, define

∆st = Λ̂st − Λ̂st−1.

We perform L1 regularized logistic regression [8] to sparsely
select variables which predict whether a patient will transition to
AD within 400 days. Potential covariates include the ∆st values
as well as patient information including age, gender, education, eth-
nicity, race, marital status, CDRSB score, MMSE score, time since
last scan, change in MMSE score from last observed MMSE score,
change in CDRSB score from last observed CDRSB score, and these
last two variables interacting with time since last scan.

There are a few novel aspects to this method. First, it incor-
porates subject specific changes over time, regressing clinical out-
comes on ∆st’s rather than on Λ̂st’s. Second, the Λ̂st’s themselves
do not correspond to the eigenvectors of each Gst, but approximate
the original Gst’s using B. Finally, we do not restrict our method to
choosing from exclusively the first several values in the 148 length
∆st, as the more informative structural changes may occur along
“later” vectors in the basis B outside of the first few columns.

4. RESULTS

4.1. Main result

Due to data availability, we consider any scan where a patient is
currently diagnosed as MCI and subsequently diagnosed with AD
by their next scan within the next 400 days as a “success,” and any
scan where the patient is not diagnosed with AD by their next scan
as a “failure.” When keeping only those relevant scans, this leaves
114 scan differences, 9 of which represent patients who subsequently
transition to AD, while the rest remain in MCI.

The procedure above selects four variables which are useful in
predicting those patients who may transition to AD: The current
(backfilled) CDRSB scores, the change in MMSE scores, and the



Fig. 4.1. Visualizations of the 108th (top) and 125th (bottom) eigen-
vectors projected onto the cortical surface, with views of each hemi-
sphere from above, left, and right. The 108th is more concentrated
on the right hemisphere, while the 125th is basically symmetric.

108th and 125th vectors from the basis B. Since each element in
the recovered vectors is associated with a particular brain region,
we visualize the harmonic basis on the cortical surface, as shown
in Fig. 4.1, where red and blue regions correspond to positive and
negative values in the eigenvectors, respectively. The purpose of us-
ing LASSO is to filter out irrelevant variables, so the selection of
variables derived from brain scans indicates that these scans con-
tain information which incrementally improve the model’s fit. As
the CDRSB and MMSE scores are used to diagnose AD, we expect
to see them as predictors for transitions. Incorporating the selected
vectors into a similar model without brain scan information results
in a 66% improvement of the deviance ratio from .15 to .25 (a true
“apples to apples” comparison is difficult, as the choice of tuning
parameter and included variables depends on available covariates).

Major oscillations occur at temporal lobe and parietal lobe,
which are aligned with the default mode network. The 108th eigen-
vector puts a lot of positive weight on the right superior frontal
gyrus, and negative weight concentrates on the right central sulcus
and right subcallosal cingulate gyrus. As the parameter estimate on
this vector is negative, observing growth in the regions with nega-
tive weights relative to those with positive weights may indicate an
elevated risk of transitioning from MCI to AD in the next 400 days.
The 125th eigenvector is more evenly distributed, concentrating pos-
itive weight on the right and left vertical ramus of the lateral sulcus,
left collateral transverse anterior sulcus, left parietal superior gyrus,
and right precuneous gyrus. The parameter estimate on this vector
is positive, so relative growth in the positive regions may indicate
increased risk.

4.2. Contemporaneous brain scan statistics

The methodology relies on differencing, requiring at least two scans
per subject, which has two drawbacks. First, a patient needs to come
in for a second scan to diagnose potential issues, so results will not
be available immediately. Second, since every second scan has a cor-
responding first scan that can’t be used, there are fewer data points

Table 4.1. Kinds of variables selected in 100 synthetic model trials
True Model Other variables

MMSE Vector Vector Other Other
CDRSB change 108 125 vectors traits Count

Y Y Y Y N N 1
Y Y Y Y Y N 2
Y Y Y Y Y Y 14
Y Y Y N N N 8
Y Y Y N Y N 3
Y Y Y N Y Y 3
Y Y N Y Y Y 1
Y Y N N N N 3
Y Y N N Y N 2
Y Y N N Y Y 1
Y N Y N N N 17
Y N Y N Y N 2
Y N N Y N N 1
Y N N N N N 24
Y N N N Y N 3
N N N N N N 15

available for model training. To alleviate these issues, as an alterna-
tive to the main method, one can use the Λ̂st values in place of the
∆st values. As first scans can be used in this alternative, we have a
slightly different dataset for this regression. In this version, we don’t
include time since last scan, change in MMSE scores, change in
CDRSB scores, and the relevant interaction terms, as they would not
be available for certain data points. Unfortunately, the LASSO se-
lects only current CDRSB scores, but no variables from brain scans.
This bolsters the case for using our proposed methodology based on
longitudinal differences, which finds useful incremental data from
brain scans, at the cost of requiring multiple scans.

4.3. Synthetic dataset

A more complex test was also designed to see if, assuming we know
the underlying mechanism, the approach we described would re-
cover the true result, similar to the power examinations performed
in [9]. The idea is to simulate graphs gst (for the rest of this section,
lowercase letters will represent synthetic versions of uppercase let-
ters used when describing the methodology with real data) that are
explicitly generated according to the model we recover, then use our
procedure to see if it captures this “true” result. If the brain actually
changes in accordance with the model recovered from the real data,
would our approach be able to detect the described mechanism?

As our approach relies on finding Λ for each scan, the key to
creating the synthetic dataset is randomly assigning each synthetic
scan a random λ. Every subject’s first scan’s λ is Normally dis-
tributed with mean and covariance equal to the sample mean and
sample covariance values of Λst restricted to scans corresponding to
a diagnosis of MCI. There are two different cases for generating the
λ values for the later scans (t >1). In either case, we begin with
the previously assigned λst−1 value and add a random δst vector to
represent change over time. For those graphs that do not represent a
subject who transitions to AD in the next 400 days, δst is distributed
normally with mean and covariance equal to the sample mean and
sample covariance values (call these µ1 and Σ1, respectively) of ∆st

restricted to scans where both the previous and current diagnoses are
MCI. For those graphs that do represent a subject who transitions to
AD in the next 400 days, δst is also normally distributed with mean
µ2 and covariance Σ2. µ2 is identical to µ1 except at the 108th and
125th locations, where those entries in µ2 are equal to the 108th
and 125th entries in sample mean of the ∆st values where the pre-



vious scan (st − 1) is diagnosed as MCI, but the current scan (st)
is diagnosed as AD. Σ2 is identical to Σ1 except in the 108th and
125th rows and columns. The entries in the 108th and 125th rows
and columns of Σ2 are all set to 0 except at the 108th and 125th
locations, respectively, where they equal to the sample variance of
the 108th and 125th entry in the ∆s,t where the previous scan is
diagnosed as MCI, but the current scan is diagnosed as AD. After
generating all these λst’s, calculate gst as

gst = D̄
1
2 (I −BλstBT )D̄

1
2 ,

where the vector λst is treated as a diagonal matrix to get a 148×148
graph. We also set the diagonal of each gst to be 0.

In the synthetic dataset, each subject s and scan t correspond to
the same subject s and scan t as in the original dataset. The diagnosis
and patient information is taken from the original dataset, but the
λst values and hence the synthetic brain networks gst are randomly
constructed without direct reference to the Gst matrices. We know
the “true” generating mechanism for the synthetic data, as it’s the
estimated mechanism for the real data, so when we run the proposed
analysis, we can see if we recover this mechanism.

Simulations reveal that about 85% of the time the LASSO will
select variables, and if it does, it will always choose the current
CDRSB score, about half the time it will select change in MMSE
score, and also about half the time it will select a variable corre-
sponding to a basis vector from b that nearly identically matches the
108th eigenvector ofB (calculated usingL2 distance), and 1/5 of the
time chooses a vector matching the 125th eigenvector. More detailed
results can be seen in table 4.1. Since the only things being simulated
are the brain networks, and the 108th eigenvector has a much higher
parameter estimate than the 125th eigenvector, these results comport
with expectations given the generative model. In the case that the
brain is deteriorating in this particular way, the proposed procedure
using the LASSO and the differences along the constructed basis
appears able to frequently recover this “true” mode of change. Fur-
thermore, the methodology infrequently selects incorrect variables.
However, it should be noted that this is a relatively simple simulation
featuring many assumptions.

4.4. Discussion

Due to the complex structure of the data, we have tried to identify
changes to areas that may indicate elevated risk for transitioning
to AD. We intentionally designed a method that, while accounting
for known heterogeneities in brain structure, can learn from the ob-
served dataset while remaining flexible enough to handle new scans.
This analysis does not purport to describe any mechanism by which
the brain deteriorates, but rather notes that when certain changes are
observed, they may be harbingers for a changing diagnosis. Fur-
thermore, our analysis relies on a relatively small sample size focus-
ing on very few subjects who transitioned from MCI to AD. Future
work may observe whether changes in cortical thickness in the rele-
vant regions can also be used to predict transitions to AD. With these
caveats in mind, our results furnish evidence that observing physical
changes in particular regions of the brain may provide incremental
information for detecting a subject’s risk of transitioning to AD.
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