Tensaurus: A Versatile Accelerator for
Mixed Sparse-Dense Tensor Computations

Nitish Srivastava'”, Hanchen Jin!, Shaden Smith?, Hongbo Rong?,
David Albonesi'*, Zhiru Zhang'*
LCornell University
2Microsoft Al & Research
3Intel Parallel Computing Lab
*{nks45, dha7, zhiruz}@cornell.edu

ABSTRACT

Tensor factorizations are powerful tools in many machine
learning and data analytics applications. Tensors are often
sparse, which makes sparse tensor factorizations memory
bound. In this work, we propose a hardware accelerator
that can accelerate both dense and sparse tensor factor-
izations. We co-design the hardware and a sparse storage
format, which allows accessing the sparse data in vectorized
and streaming fashion and maximizes the utilization of
the memory bandwidth. We extract a common computa-
tion pattern that is found in numerous matrix and tensor
operations and implement it in the hardware. By design-
ing the hardware based on this common compute pattern,
we can not only accelerate tensor factorizations but also
mixed sparse-dense matrix operations. We show significant
speedup and energy benefit over the state-of-the-art CPU
and GPU implementations of tensor factorizations and over
CPU, GPU and accelerators for matrix operations.

1. INTRODUCTION

Tensor algebra lives at the heart of machine learning
(ML). Classical ML techniques such as embedding gener-
ation in recommender systems, dimensionality reduction,
latent Dirichlet allocation, compression on neural networks
and detecting cliques in social networks make use of tensor
factorizations [1-4]. Tensor factorizations have traditionally
been used in recommender systems [5,6] to produce factor
matrices that represent an embedding into the reduced
latent space. While deep neural networks are expensive to
train, require a large number of labeled data and have lim-
ited interpretability, tensor factorizations provide a faster,
more interpretable, yet competitive method for producing
embedding for recommender systems [7]. Recently, ten-
sor factorizations have also achieved promising results in
compressing deep neural networks [8-10].

There are two popular methods for tensor factoriza-
tions [11]: canonical polyadic decomposition (CPD) and
Tucker decomposition. CPD approximates the tensor as a
sum of rank-one tensors, whereas Tucker approximates it
by a core tensor (weights) and factor matrices (principal
components) along each mode [11]. The two most expensive
computation kernels for these factorizations are matricized

tensor times Khatri Rao product (MTTKRP) and tensor
times matrix chain (TTMc).

Traditionally, tensor factorizations have been done on
CPUs and GPUs, both of which have low energy efficiency
as they allocate excessive hardware resources to flexibly
support various workloads [12-14]. Hardware specialization
has become a common means to improve the compute
efficiency. However, there are two key challenges with de-
signing an accelerator for tensor factorizations. First, many
of the real-world tensors such as Netflix movie ratings [15]
and never-ending language learning (NELL) [16] are sparse,
which makes tensor factorizations memory bound. Sec-
ond, the compute and memory access patterns of different
tensor factorizations can be very different, which makes
it necessary to reduce these computations into some basic
operations and implement them in the hardware.

In this work, we propose Tensaurus, a new hardware ac-
celerator for highly efficient processing of mixed sparse and
dense tensor computations. Tensaurus accelerates a compu-
tation pattern that we observe in common across different
tensor factorization kernels as well as several widely used
matrix operations. Our accelerator further exploits a new
sparse storage format that we introduce to allow accessing
of sparse data in a vectorized and streaming manner to
achieve high memory bandwidth utilization. Thus, with the
co-design of the accelerator architecture and sparse storage,
Tensaurus is both versatile and adaptable. It is versatile in
the sense that it can accelerate both tensor factorizations
and common matrix operations such as matrix-matrix and
matrix-vector multiplications, which are key compute prim-
itives in many ML applications. It can also easily adapt to
different levels of sparsity found in these computations.

To the best of our knowledge, no prior work has pro-
posed a hardware accelerator for sparse tensor factorizations
and previous efforts have been focusing on dense tensor
factorizations (e.g., T2S-Tensor [17] and [18]).

The key technical contributions of this paper are:

1. We are the first to propose a hardware accelerator
that is capable of accelerating not only sparse tensor fac-
torizations, but also dense tensor factorizations and other
common mixed sparse-dense (sparse-dense and dense-dense)
matrix operations for a wide range of sparsity.

2. We introduce a new sparse storage format, com-
pressed interleaved sparse slice (CISS), which allows ac-
cessing sparse data in a vectorized and streaming manner
and thus achieves high memory bandwidth utilization and
performance for sparse tensor kernels.

3. We achieve significant speedup and energy reduc-
tion for tensor factorizations over the state-of-the-art CPU
and GPU implementations. We also compare our acceler-
ator against CPU, GPU, and the state-of-the-art hardware
accelerator for sparse CNNs and demonstrate higher per-
formance and energy efficiency.

2. BACKGROUND

2.1 Tensor Notations

A tensor is a generalization of a matrix to multiple di-
mensions. A scalar is a tensor of dimension zero, a vector is
a tensor of dimension one and a matrix is a tensor of dimen-
sion two. We denote tensors with three or more dimensions
using capital calligraphic letters (e.g., A), matrices using
boldface capital letters (e.g., A), vectors using boldface
letters (e.g., a), and scalars using Greek letters (e.g. «).

The dimensions of a tensor are also called its modes and
colon(:) is used to indicate all the elements of a mode.
Thus a 3-dimensional (3-d) tensor is a tensor with 3 modes.
Fig. 3a shows an example of a 4 x2x2 3-d tensor where
i, 7 and k are the mode 0, mode 1 and mode 2 indices of
the data elements. Fibers are building blocks of tensors. A
fiber is the result of holding all but one index constant. For
a 3-d tensor \A, its fibers are A(:,5,k), A(i,:,k), and A(7,j,:).
Similarly, for a matrix A its rows A(4,:) and columns A(:,5)
are its fibers. A slice of a tensor is the resultant matrix by
holding all but two indices constant. Slices of a 3-d tensor

A would be A(i,:,:), A(:,7,:) and A(:,:,k).

2.2 MTTKRP

MTTKRP is the key computation kernel in the alternat-
ing least square (ALS) method, which is the most popular
method for finding the factor matrices in CPD [1,11]. The
computation for MTTKRP consists of multiplication of a
tensor with IV —1 factor matrices, where IV is the mode of
the tensor, to produce an output matrix. Eq. (1) and Fig. 1
show the MTTKRP kernel for a 3-d tensor along mode 0 (i),
where - denotes multiplication. Since MTTKRP is used for
both sparse and dense tensor factorizations [19], we refer to
MTTKRP on sparse tensors as SpMTTKRP and on dense
tensors as DMTTKRP. The operand matrices and the
output matrix in both SpMTTKRP and DMTTKRP are
dense. Even with very efficient data structures [20,21], the
arithmetic intensity of Sp)MTTKRP remains low, making
this kernel memory bound [22].

The Hadamard product, denoted by o, is the element-
wise multiplication of two matrices with the same size. It
is distributive and can be used to factor out the operand
matrices in MTTKRP [20] as shown in Eq. (2). Here the
Hadamard product operates on two vectors instead of two
matrices. Such factorization reduces the number of multipli-
cations in DMTTKRP from 2-7-J-K-F to [-J-F-(K+1).
Here I, J and K are the sizes of the three dimensions of
the tensor and F' is the desired rank for tensor factorization

(normally in the order of 10s or 100s). Similar reductions
are observed in the case of SpMTTKRP [20]. Eq. (2) can
be easily generalized to MTTKRP on tensors with more
than three dimensions as shown in Eq. (3).

J—1 K—1
=Y Y Ak BGSH-CES (1)
j=0 k=0
/
A B C
—=—-—
P) K
x Y Y

Figure 1: MTTKRP
J-1
Y(i)=> B(j)

(ZA k1)) @)
7=0
Y(z’l,:):ZMQ(iQ,;)o...oZA(il,...,in)-Mn(in,:) (3)

in

23 TTMc

TTMec is the key computation kernel in higher-order or-
thogonal iterations (HOOI) [23], which is the most popular
method for finding the core tensor and factor matrices in
Tucker decomposition [1,11]. TTMc involves a sequence
of tensor times matrix operations, which compresses the
tensor. The output of TTMc is another tensor compressed
for all but one mode. Eq. (4) shows the TTMc kernel for a
3-d tensor along mode 0 (). Similar to MTTKRP, TTMc
is used for both dense and sparse tensors [24-26]. For now,
we refer to TTMc on sparse tensors as SpTTMc and on
dense tensors as DTTMec. For both SpTTMc and DTTMe,
the operand matrices and output tensor are dense.

The Kronecker product, denoted by ®, is the generaliza-
tion of vector outer product to matrices and tensors. It is
also distributive and can be used to factor out the operand
matrices in TTMc as shown in Eq. (5). Such factorization
reduces the number of multiplications in DTTMc from
2-1-J-K-Fy-F; to I-J-(KFy+ F F») and similar reduc-
tions are observed in the case of SpTTMc [27]. Here F}
and Fy are the desired ranks for tensor factorization and
are on the order of 10s or 100s. Eq. (5) can also be easily
generalized to tensors with more than three dimensions as
shown in Eq. (6).

J—-1 K-1
(7f1af2 Z ZA Z]a J fl) (kva) (4)
J=0 k=0
J—1 —
=ZB<.¢,:>®(ZA@J,M-C@,:)))
=0 k=0

Vitsie) = Ma(in)@..® D Ali1,.e.vin) My (i)

(6)

ViY== Vi Y, = Vi Y=
B(,:) ©O Z AQLj, k) o C(k,) B(,:) ® AQ,j, k) o C(k,:) A, /) *B(,:)
jegak k € {k:AGLj, k):o}T 7 j EU 3k ke {k: A(L/ k)¢0] je U:A(i.j)ﬂ}‘/
st. A(i,j k)#0} st. A(i,j,k)#0}
.« ®
O.O00T1710 I:I:I:I:I@ jeuatineo
kefk: A(L j,k)=0} , ke {k: A(u k)*O} | (c) SpMM
T Y
T o e o i) E [TTT®
v ' Viye=) AGD«bO)
J € GiAG.H#0}
CLLT 2
J €Uj3 ke SEA(Ljl)#0) J e(jia k SEAGLIK)#0) . 0o
j € (4L.)) %0)
(a) SPMTTKRP (b) SpTTMC (d) SpmMV

Figure 2: SpMTTKRP, SpTTMec, SpMM, and SpMV expressed using the SF? compute pattern in Eq. (9).

2.4 Matrix-Matrix Multiplication

Matrix-matrix multiplication involves multiplication of
two matrices to produce an output matrix as shown in
Eq. (7). Matrix-matrix multiplication involving two dense
matrices is known as GEMM, and a sparse matrix and a
dense matrix is known as SpMM. GEMM and SpMM are
building blocks of many algorithms such as graph learn-
ing [28,29] and CNNs [30].

J—1
)=> A(i.j)-B(y) (7)
j=0

2.5 Matrix-Vector Multiplication

Matrix-vector multiplication involves multiplication of a
matrix with a vector to produce an output vector as shown
in Eq. (8). Matrix-vector multiplication involving a dense
matrix and a dense vector is known as GEMYV, and a sparse
matrix and a dense vector is known as SpMV. GEMV and
SpMV are used in applications such as PageRank [31],
RNNSs, minimal spanning tree, single-source shortest path
and ML algorithms such as support vector machine [32]
and text analytics [33].

J—1
y(0)=> A(i.j)-b(j) 8)

Jj=0

3. COMPUTE PATTERN

We observe that a common compute pattern can be ex-
tracted across all the aforementioned kernels, namely, MT-
TKRP, TTMc, matrix-matrix multiplication, and matrix-
vector multiplication. We name this compute pattern as
scalar-fiber product followed by fiber-fiber products (SF®)
and it is expressed in the following form:

= Z fiber; op Z(scalar - fibery) 9)

D, Do

Here, fibers,,; represent one or more output fibers of
a tensor, fibersy and fibers; represent a single fiber from
two tensors, scalar represents a scalar value from a tensor,
op is either a Hadamard product of two vectors (o) or a
Kronecker product of two vectors (®), and Dy and Dy are
domains over which the two summations are performed.

Table 1 shows how different tensor computations map
to SF? compute pattern. For DMTTKRP, fibers,,; is a

fibers,,;

row from Y matrix, fiber; is a row from B matrix, op is
o, scalar is data value from A tensor and fibery is a row
from C matrix. For DTTMc, all the notations are the same
as DMTTKRP, except fibers,,; are more than one fiber
(one slice Fy x Fy) from Y tensor and op is ®. For GEMM,
the scalar is data from A matrix, fiber is a row from B
matrix, fibers,,; is a row from Y matrix and op and fiber;
are not applicable (NA). GEMV is same as GEMM except
fibers,,; and fibersy consist of only one element. Since
all these computations are dense, the domains Dy and D,
for each of these computations are also continuous ranges.

Table 1 and Fig. 2 also show how SpMTTKRP, SpTTMc,
SpMM, and SpMV map to SF? compute pattern. Here the
mapping of each sparse kernel to Eq. (9) is the same as
that of their dense counterparts except for the domains Dy
and Dy, which are non-continuous ranges and determined
by the position of non-zero entries in the sparse tensor.
Although shown for 3-d tensors, Eq. (9) can be easily ex-
tended to support tensor computations involving tensors
with more than three dimensions.

The formulation in Eq. (9) exhibits coarse-grained par-
allelism, where different output fibers can be computed in
parallel and fine-grained single instruction multiple data
(SIMD) parallelism where the computation of a single fiber
can be performed in a vectorized manner.

4. SPARSE FORMATS

Sparse tensor computations require a sparse storage for-
mat that is efficient for both load balancing and parallel
data accesses in order to accelerate them on spatial hard-
ware. The existing sparse storage formats such as com-
pressed sparse row (CSR) [34], compressed sparse fiber
(CSF) [20], co-ordinate (COO) and their variants [35, 36]
allocate data needed by different processing elements (PEs)
at far away locations in memory, resulting in low memory
bandwidth utilization.

Figs. 3a and 3b show a sparse tensor and how it is stored
in an extended CSR format. In this format, all the non-zero
entries in the tensor are stored contiguously in the memory
along with their mode 1 and mode 2 indices j and k. An
array of slice pointers whose length is equal to the number
of slices in the tensor (4 in this example) stores the pointers
to the beginning of each slice in the array of non-zero entries.
Fig. 3c depicts cycle-by-cycle execution of two PEs, each of

Table 1: Mapping of DMTTKRP, SpMTTKRP, DTTMc, SpTTMc, GEMM, SpMM, GEMV, and SpMV kernels to the
SF? compute pattern in Eq. (9). Here NA means not applicable.

fibers,,: fiber; D, op scalar fiberg Dy

DMTTKRP Y (i,:) B(j,}) [0,J) o A(ij.k) C(k,:) [0,K)
SpMTTKRP Y (i,:) B(j,:) {j|3k st. A(i,5,k)#0} o A(ij.k) C(k;:) {k]|.A(i,j,k)#0}
DTTMc V(i) B(j,:) [0,J) ® A(igk) C(k,) [0,K)
SpTTMc Y(::) By {jl3kst. AGgk)#0} @ A(igk) Clky) {k|].A(ij,k)#0}
GEMM Y (i,:) NA NA NA A(i,5) B(j5,:) [0,J)
SpMM Y(i;) NA NA NA A(ij) BGo) {i]AG5)#0}
GEMV y(2) NA NA NA A(i,5) b(j) [0,J)
SpMV ¥() NA NA NA A(ij) b(G) {ilAG5)#0}

which reads a different slice of the tensor from the memory
in a streaming fashion. As it can be seen in each cycle
the two PEs read the data from non-contiguous memory
locations.

The compressed interleaved sparse row (CISR) format
proposed by Fowers et al. [37] tackles this issue by storing
the sparse data accessed by different PEs at the same time in
contiguous memory locations; however, this format requires
centralized row decoding, lock-step execution, and applies
only to matrices. Partly inspired by CISR, we propose a
new sparse storage format called compressed interleaved
sparse slice (CISS). With this new format, we overcome
the limitations of CISR and extend it to tensors with more
than two dimensions. Fig. 3d shows the tensor in Fig. 3a
stored in the CISS format, which consists of an array of
CISS entries. Each entry is (dw+2-iw)- P bits long, where
dw (data width) and 4w (index width) are the bitwidths of
the non-zero elements and their mode indices, respectively
and P is the number of PEs in hardware. For each PE,
a CISS entry consists of three fields: nnz (non-zero data
value), i/j (mode 0 or mode 1 index) and k (mode 2 index).
Since nnz is supposed to carry only non-zero data values, a
0 in nnz indicates that the i/j field consists of ¢ value and
a non-zero in nnz indicates that ¢/ consists of a j value.

To store a sparse tensor in CISS format, first each PE
is assigned a slice of the tensor corresponding to its ID.
For example, in Fig. 3d PEO is assigned slice 0 and PE1
is assigned slice 1 in the first cycle. The slice indices for
each PE are written to the i/j and the nnz is set to 0. In
the next few cycles, the CISS entries for a PE are filled
with the non-zero entries from the slice by assigning the
non-zero data elements to nnz, mode 1 indices to i/j and
mode 2 indices to k. When all the non-zero elements in the
slice assigned to a PE are scheduled, the next available slice
is assigned to that PE and its slice index and data values
are inserted into the array of CISS entries. For example,
in Fig. 3d when all the non-zero entries from the slice i=1
are inserted into the array, the next available slice is slice
1=2 and hence it gets assigned to PE1.

Since CISS assigns the non-zeros accessed from different
PEs at the same time in contiguous memory locations, it
achieves high spatial locality and memory bandwidth uti-
lization. CISS format also schedules the next available slice
of the tensor to the PE with the least data that ensures a
load balanced schedule where each PE is assigned a similar
number of non-zero entries. Although described for 3-d

tensors, the CISS format can be easily generalized to 2-d
matrices and tensors with more than three dimensions.

Fig. 3e also shows the achieved bandwidth when multiple
PEs stream a 3-d tensor stored in extended CSR, and CISS
formats from the off-chip memory with a peak bandwidth
of 16 GB/s. As it can be seen, the achieved bandwidth for
extended CSR saturates at 1.9 GB/s for 8 PEs while CISS
achieves a bandwidth of 11.2 GB/s, very close to the peak
bandwidth.

5. TENSAURUS ARCHITECTURE

In this section, using SpMTTKRP as a driving example,
we explain the implementation of the SF? compute pattern
described in Section 3.

Fig. 4 shows the execution of SP)MTTKRP kernel using
the same tensor as in Fig. 3a on two PEs. The slices :=0
and =3 are assigned to PEO and slices t=1 and ¢=2 are
assigned to PE1 (same as in Fig. 3). Each PE reads a non-
zero data element a;j, from the sparse tensor A, the kP row
from matrix C (cg.) and performs a scalar-vector multipli-
cation to produce tfj: All the partial results tf’j: for different
values of k are accumulated together and then multiplied by
the j*" row of matrix B (bj.) to produce the partial results
y,.. All the y?. vectors are then summed together for differ-
ent values of j to produce the i row of the output matrix Y.
From this example, it can be seen that the core operations in
the SP)MTTKRP are scalar-vector multiplication (a;jx-Ck:),
element-wise vector-vector multiplication (tfj: ob,.) and

element-wise vector-vector addition (t;, —l—tg: and y?, —l—y{).
There are also two types of intermediate results produced
in the Sp)MTTKRP computation: t;, and y7..

For the SF? compute pattern in Eq. (9), the scalar-vector
multiplications arise from scalar - fibery; the element-
wise vector-vector multiplication (VVMUL) operations
arises from op; and the element-wise vector-vector addition
(VVADD) arises from the two summations over Dy and D;.
The intermediate results in Eq. (9) correspond to the par-
tial results of the computations scalar-fiber, and fiber;
op > p,Scalar-fiberg. Thus, using the three major oper-
ations: scalar-vector multiplication, VVMUL and VVADD
and two sets of storage registers for the two kinds of partial
results, we can design the micro-architecture of a PE in
Tensaurus. For scalability, we can further split a single
vector operation into multiple small vector operations, each
of vector length VLEN.

Non-contiguous
memory accesses

] k nnz J k Cycl Data A
i . cle ata Accesses
k J | - 2w | 01011 *
j 3000 0| & a |11 PEO PE1
4 011 A 1| & a;, |11 0 0‘ & | ‘1| &
i=0 i=1 2| & 3,0 (0|0 | PE1 1 éaooooo|a111|1 1|
2 A
2] 2 3 .&\\ 3y, | O 17 2 am |1]1]2] &
-~ slice 330 | 1] 0 | [PO 3 | [3]&] [amlo]0]
2 EE R + | [ewlilo)eulols]
i=2 i=3 a 1/0(|a 0|1
(b) Extended CSR like format — o
4x2x2 S T A
(a) 4x2x2 Sparse Tensor for tensor (c) Two PEs accessing the sparse tensor
X (extended CSR format)
Contiguous memory
accesses every cycle PEO PE1 Peak: 16 GB/s
A A -
PEO [| o PE1 =12 11.2 11.2
cycles | "2 i/j k nnz i/j k i1 U
0 N Lol xl o i) xle e 6.1
Qoo £ 4.3
1 . Qg [0 0|3, 1)1 a 'g N 1.8 1.9 1.9
2 o | T (310 T3] k. 1 s, ml m| m| m]
3 i=3 -4 0 |3|x|apg|0]O0 - i=2 o 2 4 8 16
4 Q30| 1] 0 @y, |01 Q200 | A201 Number of PEs
310 M Extended CSR @ CISS

(d) Sparse Tensor in CISS format

(e) Achieved bandwidth extended CSR vs CISS

Figure 3: Storage formats — (a) a 4x2x2 sparse tensor \A; (b) the sparse tensor stored in extended CSR format. Here
the slice pointers point to beginning of a slice in the array consisting of non-zero data elements and their mode 1 and mode 2
indices j and k. The data in sparse tensor is split across two PEs, where PEQ accesses data from the first slice =0 and i =3,
and PE1 accesses data from slices i =1 and ¢ =2. The reference sign & inside the white boxes represent pointer values; (c) two
PEs accessing the data from sparse tensor stored in extended CSR format shown in (b). Here each PE first reads a slice pointer
and then the non-zero values from that slice. The data accessed by the two PEs in the same cycle is stored in non-contiguous
memory locations; (d) the sparse tensor stored in the CISS format. Here a single CISS entry contains data from both PEs; thus
memory accesses for both PEs in each cycle are done at contiguous memory locations. “x” denotes don't cares; (e) achieved
bandwidth comparison between extended CSR and CISS for different numbers of PEs using a single channel DDR4 memory.
Here the utilized bandwidth for CSR saturates at 1.9 GB/s for 8 PEs, while CISS is able to achieve 70% of the peak bandwidth.

5.1 Implementation Details of Tensaurus

Fig. 5 shows the architecture of Tensaurus, which consists
of a 2-D array (rxc) of compute PEs, a tensor load unit
(TLU), a matrix load unit (MLU), an array of scratchpad
memories (SPM) and a matrix store unit (MSU). TLU
reads the first operand tensor, which is either stored in
CISS format for sparse-dense kernels or dense format for
dense-dense kernels from the main memory. MLU reads the
dense operand matrices from the main memory and sends
them to the SPMs. The SPMs receive the matrix data
from the MLU and cache them in the double buffers. Each
PE gets the data from the TLU and the SPM, performs
VVMUL and VVADD operations in SIMD fashion (with
vector length as VLEN) and accumulates the results in
either a temporary shift register (TSR) or output shift reg-
ister (OSR) depending on the type of accumulation. When
the partial results for the current input tiles are completely
evaluated, the PE drains the result to the MSU. Although
each PE accumulates all the partial sums in local shift
registers for the current input tiles, different input tiles may
still update the same output element. Hence the MSU
accumulates the drained results from the compute PEs and
stores it in an output double buffer to perform reductions

across different tiles. When all the input tiles for an output
tile are processed, the MSU writes the results from the
output buffer to main memory.

5.2 Implementation of SF? Compute Pattern

5.2.1 Tensor Load Unit (TLU)

The TLU reads the data for the first kernel operand from
the main memory, which is either a sparse tensor stored in
CISS format or a dense tensor stored in dense format. The
read data is then pushed to the hardware queues connecting
the TLU and the boundary PEs. The queues between the
TLU and the boundary PEs ensure that the TLU and PEs
can work asynchronously. To enable non-blocking mem-
ory accesses, the TLU is capable of handling out-of-order
memory responses. It tries to send a load request to the
main memory every clock cycle and pushes the request ID
to a hardware queue in-order. When the response for a
memory request arrives (out-of-order), the response data is
written to the hardware queue and the corresponding entry
is marked as completed. In each cycle, the TLU polls the
head of the hardware queue and pops the data if marked
as completed and sends it to the boundary PEs. Since the
CISS format ensures that the data accessed by the PEs

" e '
J
%00 3 . 3 B f C f i Yoo | Yo1
i=0 1| i=1 111 j le: b k ol Vao | ¥as
3200 | 3201 byg | by, | €10 €11 | Y20 | Y21
i=2 i=3 [0 Y30 | Y21
X | €oo | Coa | = [%000 | 001 PEO X | C10 | C11 | = | thio | thy | PE1
X X
| by | boy | = |y000 y°01| | byo | by, |= | Yo | V111| = | Y10 | Yu |
X |c10|C11|=|tlo1o|tlo11| -X |c00|co1|—|tzcc|tzc1
X
|b1o|b11|=|V100|V101|=|V00|Vo1 -X|'::10|c11|—|tzm)|tzm}/v
A0 X [Coo | Cor | = | %10 | %1 zo1
(20 X [con] or| = [0 2] (0] 0
X
|blo|b11|=|V130|V131|=|V30|Y31| |b°°| b°1|_|y020|y21 _|y2°|y21|

Figure 4: Execution of SpMTTKRP on two PEs.

at the same time is stored contiguously in the memory,
the TLU sends wide read requests (one CISS entry) to the
main memory to saturate the memory bandwidth.

5.2.2 Matrix Load Unit (MLU)

The MLU reads the data for the dense operand matrices
from the main memory. Similar to the TLU, it consists
of hardware queues to perform out-of-order memory reads.
The MLU reads data in chunks of ¢-VLEN -dw bits from
the main memory and sends the data to the SPMs.

5.2.3 Scratchpad Memories

The SPMs are responsible for two major tasks: they read
the matrix data from MLU and store it in the local buffers,
and they serve a read request from the PEs in the corre-
sponding column of the PE array. To avoid serialization
between read and write to the buffers, the local buffers are
implemented as double buffers. Each SPM receives data in
chunks of VLEN -dw bits from the MLU and stores it into
one of the buffers. The read and write port width of each
buffer is VLEN -dw bits. Inside an SPM, a tile of a matrix
is banked such that consecutive rows from the matrix are
assigned to different buffers. Since a PE can request the
data from any row of the matrix, a crossbar is used to
connect different buffers to the PEs as shown in Fig. 5.

For SpMTTKRP and DMTTKRP, each SPM stores a
tile of both the dense operand matrices B and C. For
SpTTMc and DTTMc, only the SPM in the first column
stores a tile of both the first and second dense operand
matrices while the rest of the SPMs store only the tiles of
the second operand matrix C. Thus, the SPM in the first
column has 2x the amount of buffer capacity as compared
to other SPMs. For SpMM and GEMM, each SPM stores
tiles of the dense operand matrix B; and for SpMV and
GEMYV, only the SPM in the first column of PE array is
active, and stores a tile of dense input vector b.

5.2.4 Compute PEs

The compute PEs are designed for efficient computation
of the SF? compute pattern in Eq. (9). Fig. 5b shows
the design of a single compute PE. It consists of a control

processor (CP); two shift-registers: temporary shift register
(TSR) and output shift register (OSR); a VVMUL unit;
and a VVADD unit. The VVMUL and VVADD units
process vectors of size VLEN. The TSR and OSR consist of
TLEN and OLEN number of shift-registers, each of which
is VLEN -dw bit wide. TSR is used to store the result of
>_p,scalar-fiberq in Eq. (9) and OSR stores the partial
sums for the output fibers,,;. Since for SpMM and SpMV,
fiber; and op are not applicable, TSR is not used and OSR
stores the value of the computation p, Scalar - fibery,
which also is the fibers,,;. The PEs in the same row
form a systolic array where the PEs on the left boundary
read the (scalar,j,k) triplets (in the case of SPMTTKRP,
DMTTKRP, SpTTMc and DTTMc) and (scalar,j) pairs
(in the case of SpMM, GEMM, SpMV and GEMV), and
forward it to the PEs in the same row. Here the scalar is
the non-zero element from the sparse tensor operand.

For SpMTTKRP, each PE requests the data from the k"
row of the C matrix from the SPM. The SPM receives the
request and sends VLEN elements from that row to the PE.
The PE then replicates the scalar to perform a VVMUL op-
eration corresponding to (D) in Fig. 2a and accumulates the
results in TSR. When all the non-zero entries in A(3,j,:) are
processed, the PE requests the SPM for the data from the
3" row of matrix B, performs a VVMUL operation with the
partial results in TSR followed by a VVADD with the par-
tial results in OSR (2), and accumulates the result in OSR.
When all the non-zeros in the 5" slice of the tensor (A(i,:,:))
are processed, the results in the OSR are sent to the MSU,
which writes them to the output buffer. Fig. 6 shows the
execution of SP)MTTKRP kernel for the sparse tensor in
Fig. 3a on a 2x2 PE array. Here, the dense matrices are
tiled along the columns, banked along rows and stored in
different local buffers (VLEN is assumed to be one).

For SpTTMc, each PE acts in the exact same way as
in SpMTTKRP; however, when all the non-zero entries in
A(i,j,:) are processed and it has requested the data from
the j'* row of matrix B, instead of directly performing
VVMUL with TSR as in case of SpMTTKRP, it streams
the values from the j*" row of matrix B one by one. It then
replicates these values to perform VVMUL with TSR and

fiber, op) (..)
or D,
(scalar . fiber)

fiber, or fiber,

D[l Double Buffer Crossbar (a)

(b)

Figure 5: Tensaurus architecture — (a) architecture diagram of Tensaurus; (b) design of a single PE.

PE,, PEy, PE,,
o [oxoeo) [

.

PE,, PE, PE,,

Dense Matrix B

Bank1| by, | boy

Bank2 | by | by

Dense Matrix C

PE,, Switch
slice

Cycle 2 Cycle 5 Cycle 6
PEy o Switch
slice
pEJ,ﬂ Pl 1,1

Cycle 3 Cycle 6 Cycle 7

-
@
2

Il
X

O
’
el

o
m

1}

o
£l

X m

Bank1

Global mem

PE,, PEo;
(o] [om] ¥ o] [el

-]
]
3
=

Il

@ I
g
g

X X®

°
M

PE.
Cycle 4 Cycle 7 w0 Cycle 8

|as1o| 3 |an11|anoa| 0 |

Reduction occurs in each PE

PE,,
X

IEI Bank EI
conflict PE, , conflict

PEU,B
IR
e Lor] 2, Lom]} o] = [oor] x
pE,, slice PE,,

Cycle 5 Cycle 8 Cycle 9

L

A X

1,0

o)
]

(a)

(b)

Figure 6: SpMTTKRP on Tensaurus — (a) 2x2 PE array in Tensaurus where dense matrix B is tiled, banked and
stored in the buffers of different SPMs. The data from sparse tensor A is stored in the memory in CISS format (only
data values shown); (b) cycle by cycle execution of SpMTTKRP kernel on the 2x 2 PE array. This is the exact same
computation as the one shown in Fig. 4, however, here we chunk the vector computations (with VLEN=2) in PEO of Fig. 4
into small chunks (with VLEN=1) and perform them in PEgy and PEg;. Similarly, the chunks of vector computations

in PE1 are performed in PE;q and PEq;.

accumulates the results in one of the shift-registers in OSR.
The number of shift registers in OSR, (OLEN) is thus set
to be VLEN. This approach in effect computes the outer-
product of the row from matrix B and the value in TSR (2).

For SpMM, each PE sends the column index j to its
SPM, which reads VLEN elements from the j%* row of ma-
trix B and sends them to the PE. The PE then replicates
the scalar value from sparse matrix, performs VVMUL
operation corresponding to (1) in Fig. 2c and accumulates
the result in OSR. When all the non-zero entries in the
current row of the sparse matrix A(i,:) are processed, the
PE drains the OSR data to the MSU.

For SpMV, since the second operand is a dense vector
instead of a dense matrix, only the first column of PEs
in the systolic array is active. Each PE sends the column
index j of the non-zero entry A(z,5) to the SPM similar
to SpMM. However, this time the SPM reads only one
element from the 7" index of the dense vector b and sends
it to the PE. The PE then performs a scalar multiplication
between the scalar value from sparse matrix A and the

dense vector element, corresponding to (D) in Fig. 2d, and
accumulates the result in a single register of OSR. When all
the non-zero entries in the current row of the sparse matrix
are processed, the PE drains the OSR data to MSU.

For dense operations (DMTTKRP, DTTMc¢, GEMM
and GEMV), the TLU reads the data in dense format,
constructs a CISS representation on the fly and sends it to
the PEs. The PEs and other units remain unaware that
they are performing a dense computation. Since in the case
of dense operations each PE from the same column would
request the same entry from the SPM, these requests can
get serialized by the crossbar. To avoid such serialization,
for dense operations, only the PE in the first row is respon-
sible for sending row addresses to the SPM and the crossbar
broadcasts the response to all the PEs in the same column.

5.2.5 Matrix Store Unit (MSU)

The MSU is responsible for receiving the partial results
from the PEs and accumulating them in the output buffer.
The MSU drains the output buffer to the main memory

Table 2: Area and power breakdown of Tensaurus.

Component Area(mm?) % Power (mW) %
PE 0.625 272 % 402.30 40.9 %
Xbar 0.066 2.8 % 24.27 2.5%
SPM 0.832 36.2 % 296.05 30.1 %
MSU 0.759 33.0 % 247.03 25.2 %
TLU 0.009 0.4 % 6.28 0.6%
MLU 0.009 0.4 % 6.28 0.6 %
Total 2.3 100 % 982.21 100 %

when all the input tiles corresponding to an output tile
have been processed. Although buffering the intermediate
results in the output buffer reduces the number of off-chip
memory accesses, it also limits the tile size of the sparse
input tensor. Since for very sparse tensors the benefit of
storing the intermediate results in the buffer is outweighed
by the larger tile size of the tensor (as it results in more reuse
of the dense operand matrices), the MSU can be configured
to directly accumulate the results in the main memory.

6. EXPERIMENTAL SETUP

Simulation Infrastructure — To evaluate the perfor-
mance of Tensaurus, we model our architecture consisting
of TLU, MLU, SPMs, PEs, MSU and HBM using the gem5
simulator [38]. We use an 8x8 PE array with VLEN =4.
Each SPM except the first consists of a double buffer of
size 2 x 16 K B where each side of the double buffer is di-
vided into 8 2K B banks. The SPM in the first column
has a double buffer of size 2x 32K B divided into 16 2K B
banks. The MSU consists of an output double buffer of size
2x 128 K B, which is further divided into 8 16 K B banks.
For HBM, we use the gemb model, which supports up to
8 128-bit physical channels, runs at 1GHz clock frequency
and provides a peak memory bandwidth of 128 GB/s. Ten-
saurus is attached to a CPU as a co-processor, where the
CPU executes instructions to configure Tensaurus to run a
specific tensor kernel. The configuration instructions config-
ure Tensaurus for: (1) mode of operation like Sp)MTTKRP,
SpMM, ete. and (2) size of tensors and matrices.

Measurements — We implemented the PEs and the cross-
bar in RTL using PyMTL [39] and synthesized them using
the Synopsys Design Compiler using TSMC 28nm library
and placed-and-routed using Cadence Innovus. For the
SPM and MSU, since the majority of area and power is
dominated by scratchpads, we used CACTI 7.0 [40] to
model SRAM latencies, area and power. For TLU, we
pessimistically assumed the same area and power as a sin-
gle PE. Table 2 shows the area and power breakdown of
different components of the design. For HBM we use the
energy numbers from Shilov et al. [41].

Baselines — We compare our design against four baselines:
CPU, GPU, Cambricon-X [35] and T2S-Tensor [17].

CPU: We use SPLATT [20] and Sparse BLAS [42] to
evaluate our benchmarks on a single core of an Intel(R)
Xeon(R) CPU E7-8867 running at 2.40 GHz with 32 KB L1
cache, 256 KB L2 cache and 45 MB of L3 cache. For energy
estimates we use McPAT 1.3 [43] CPU energy models.

Table 3: Tensors with their dimensions, number of
non-zeros (nnz), density and problem domain.

Tensor Dimensions nnz Density Domain
nell-2 12K x 9K x 28K 77TM 2.5e-5 NLP

netflix 480K x 18K x 2K 100M 5.7e-6 Rec. Sys.
poisson3D 3K x 3K x 3K 99M 3.6e-3 Synthetic

Table 4: Weight matrices from AlexNet and VGG-16 with
their dimensions, number of non-zeros (nnz) and density.

Layer Dim. Density Layer Dim. Density
® cl 96 x 363 0.84 c2 256 x 1200 0.38
Z 3 384 x 2304 0.35 c4 384 x 1728 0.37
_113 c5 256 x 1728 0.37 fc6 9216 x 4096 0.09
< fc7 4096 x 4096 0.09 fc8 4096 x 1000 0.25

cl1 64 x 27 0.58 cl2 64 x 576 0.22
© €21 128 x 1152 0.34 c2.2 128 x 1152 0.36
7 31 256 x 1152 0.53 c3.2 256 x 2304 0.24
U ¢33 256 x 2304 0.42 c41 512 x 2304 0.32
g c4 2 512 x 4608 0.27 c43 512 x 4608 0.34

c5.1l 512 x 4608 0.35 c5 2
c5.3 512 x 4608 0.36 fc6
fc7 4096 x 4096 0.02 fc8

512 x 4608 0.29
25088 x 2096 0.01
4096 x 1000 0.09

GPU: We use ParTI [44,45] and cuSPARSE [46] to eval-
uate the benchmarks on a modern GPU Titan Xp, which
has GDDR5x DRAM with a peak bandwidth of 547.6
GB/s and a peak 32-bit performance of 12.15 TFLOP/s.
We use CUDA 9.1 for programming the GPU. For power
estimation, we use thermal design power (TDP) from the
GPU datasheet.

Accelerator: For SpMM, we also compare our work against
the Cambricon-X [35] state-of-the-art CNN accelerator,
which uses sparse weights and dense activations. We imple-
ment the architecture of Cambricon-X in gemb and scale
it to have the same bitwidth, clock frequency, number of
multiply-accumulate (MAC) units, size of on-chip RAM
and DRAM bandwidth as our accelerator. For energy
comparisons, we use the power numbers from [35] which
are in 65nm technology node and scale them to 28nm us-
ing [47,48]. For DRAM energy, we measure the number
of DRAM accesses from our simulator and use the HBM
energy from Shilov et al. [41].

For DMTTKRP, DTTMc and GEMM we compare our
design against T2S-Tensor [17], which implements these
kernels on an FPGA. We scale their design to use the same
number of MAC units and clock frequency as our design.

Datasets — For SpMTTKRP and SpTTMc, we use the
tensor datasets shown in Table 3. NELL-2 tensor is a
snapshot of the Never Ending Language Learner knowledge
base that attempts to create a computer system that learns
how to read the web [16]. The Netflix dataset is taken
from Netflix Prize competition [15] and Poisson3D is taken
from [27]. NELL-2 and Netflix are public datasets and
taken from Smith et al. [50].

For SpMM, we use the pruned models for AlexNet and
VGG-16 [51]. We did not use any of the newer CNN models
for this study as their pruned weights are not publicly avail-
able. Table 4 shows the sparse weight matrices in these
CNN models with their size and densities. For SpMM,
we also use the sparse matrices from SuiteSparse [49] and
graph benchmarks from GraphSAGE [28]. Table 5 shows

~
dense

ell-2-m0 "\
_nell-2-m1 poisson3D-m0,
¥ poisson3D-m1,
A nell2-m2 poisson3D-m2
102 ‘f netflix-m0,

5 netflix-m1

102
etflix-m!

Performance (GOP/s)
Performance (GOP/s)

10! 10!

poisson3D-m0 c2 lcj*zc]
nell-2-m0 /£

netflix-m2

+ nell-2-m2 dense
* %+ +__ poisson3D-ml, £ ‘?‘\
i o poi 2 g2 c3.cdc5
N netflix-mo0 poisson3D-m2 2 . o
netflix-m1 c3_1,¢3_3,
c4 1,c4 2.c43
10° poisson3Da /- Wiki-Vote ¢5_1,¢5.2,¢5 3

10°

dense

scircuit R Dcubes sphere

lemail-Enron\ Y3 filter3D Ay_
Sé:lr(ahom i
cor . —amazon(3
citeseayeX g cagel2
X L 3
p2p-Gnutella3 1
\m133-b3

cl_1

Performance (GOP/s)

1071 100 X 10!
Operation intensity (OPs/byte)

(a) Roofline for SP)MTTKRP.

0° 10t
Operation intensity (OPs/byte)

(b) Roofline for SpTTMe.

00 . 10* 10%
Operation intensity (OPs/byte)

(c) Roofline for SpMM.

Figure 7: Roofline evaluation of SpMTTKRP, SpTTMc and SpMM on Tensaurus — the x-axis shows operation
intensity which is number of operations (multiply and add) performed for each byte of data accessed from the off-chip

memory; the y-axis shows the performance in GOP/s.

Table 5: Matrices from SuiteSparse [49] with their
dimensions, number of non-zeros (nnz), density and
problem domain.

Matrix Dim nnz Density Domain
amazon0312 401K x 401K 3.2M 1.9e-5 Copurchase network
m133-b3 200K x 200K 801K 2.0e-5 Combinatorics
scircuit 171K x 171K 959K 3.2e-5 Circuit simulation

p2pGnutelladl 63K x 63K 148K 3.7e-5 p2p network

offshore 260K x 260K 4.2M 6.2e-5 EM Problem
cagel2 130K x 130K 2.0M 1.le-4 Weighted graph
2cubes-sphere 101K x 101K 1.6M 1.5e-4 EM Problem

filter3D 106K x 106K 2.7M 2.4e-4 Reduction problem
emailEnron 36.7K X 36.7TK 368K 2.7e-4 Email network
citeseer 3.3K x 3.3K 4.7K 4.2e-4 Graph Learning

cora 27K x 2.7TK 5.3K 7.2e-4 Graph Learning
wikiVote 8.3K x 83K 104K 1.5e-3 Wikipedia network
poisson3Da 14K x 14K 353K 1.8e-3 Fluid Dynamics

the sparse matrices from SuiteSparse and GraphSAGE. For
SpMV, we use the same matrices from SuiteSparse and
GraphSAGE as in SpMM.

7. EVALUATION

7.1 Roofline Evaluation

Fig. 7 shows the throughput of Sp)MTTKRP, DMT-
TKRP, SpTTMc, DTTMc, SpMM, and GEMM, under
the roofline [52] of our accelerator. The horizontal line
towards the right of the plot shows the peak attainable
performance from the design when the operation intensity
is high (kernel is compute bound) and the inclined line
(with slope 1) towards the left shows the peak attainable
performance when the operation intensity is low (kernel is
memory bound). The value of throughput for operation
intensity of 1 represents the peak memory bandwidth (in
GB/s). The gap between the roofline and the achieved per-
formance of a kernel indicates the inefficiencies within the
hardware. Our design consists of an 8 x8 PE array, each
with 4 SIMD MAC units and hence it has 8 x8x4x2=512
scalar multipliers and adders. Since we simulate our design
for a 2GHz clock frequency, assume that the scratchpads
are synchronous, and that each PE spends every other clock
cycle to access the scratchpads instead of doing a MAC, the
peak attainable throughput is 512x2x0.5=512 GOP/s.
For peak memory bandwidth, we use the peak bandwidth
of HBM1 which is 128 GB/s.

Fig. 7a shows the achieved throughput for Sp)MTTKRP
along all the three modes of the three tensors shown in
Table 3. Here, SpMTTKRP is memory bound for all the
tensors except poisson3D, where it is compute bound due
to the highest density of poisson3D among all the ten-
sors. For all the SpMTTKRP kernels Tensaurus is able to
perform close to the peak throughput.

Fig. 7b shows the achieved throughput for SpTTMec
for the three tensors along each mode. Here, nell-2-mo0,
nell-2-m1 and poisson3D are compute bound while the
others are memory bound and the achieved performance on
each kernel is very close to the peak throughput. It can also
be seen from Figs. 7a and 7b that the operation intensity for
the same tensor along the same mode is higher for SpTTMc
as compared to SpMTTKRP. The reason behind this is
SpTTMc performs a Kronecker product as an intermedi-
ate operation as shown in Fig. 2d, which has more MAC
operations compared to the Hadamard product in Fig. 2c.

Fig. 7c shows the achieved throughput for sparse convo-
lution layers in AlexNet and VGG-16 and sparse matrices
from SuiteSparse [49] and GraphSAGE [28] for the SpMM
kernel. For all the layers except cl1_1 and c1_2 the achieved
throughput is very close to the peak throughput. For c1_1
and cl_2; since the sparse weight matrices are very small
(Table 4), the scratchpads and MAC units in Tensaurus
are underutilized. For the SuiteSparse and GraphSAGE
matrices since the densities of these matrices are very low
(Table 5), the SpMM kernel is memory bound and Ten-
saurus achieves very close to the peak throughput in the
memory bound region.

Figs. 7a, Tb and T7c also show the achieved throughput
for DMTTKRP, DTTMc and GEMM on our accelerator
(labeled as “dense”). It can be seen that all the dense kernels
are compute bound and our accelerator achieves close to
the peak throughput for each of them.

7.2 Performance Evaluation

Fig. 8a shows the speedup of Tensaurus and GPU (ParTT)
on SpMTTKRP for the three tensors along each mode over
the CPU (SPLATT) baseline. Tensaurus achieves a ge-
omean speedup of 22.9x over CPU and 3.1x over GPU.

Fig. 9a shows the speedup of Tensaurus, and GPU
(ParTT) for SpTTMc on three tensors along each mode over
the CPU (SPLATT) baseline. Here, Tensaurus achieves

I Tensaurus [/ GPU

10?

Speedup over CPU

e, op oy oy 9

Wy, Uy, s, lsg, s, O

Q0 LhQIJ *"bg O”JQ O”GO o”«?o‘ lbee;]
2o Ry w2

By, Pou, Tou, e, e

. A 3 8

alo &[1 2712? .,
Benchmarks

(a) Speedup for SpPMTTKRP.

I Tensaurus [GPU

103

Energy Benefit over CPU

20y Rop Bep. Ry, Rogy ey, Do Lo Do e,
3 o, Sy ; ; ; s, sg, s~
P Py iy g oy e 3, 90,

{ 4

Benchmarks

(b) Energy benefit for SpMTTKRP.

Figure 8: Speedup and energy benefit of Tensaurus and GPU (PaRTI) over CPU (SPLATT) baseline for

SpMTTKRP on sparse tensors in Table 3.

I Tensaurus [GPU
10?
=
a
Q 101.
]
g
g
g 10°4 -
(=}
7]
1071_
2), ey Rery Rep, lop, Lo Loy Doy e,
el/‘%qz Lo, o, gy Uy g, 1&‘9011 I&S"Iz 01&8011 ° g
0 Rz TR g TRy e M3 9 %p,
2o TRy %2

Benchmarks

(a) Speedup for SpTTMec.

B Tensaurus [GPU

102

Energy Benefit over CPU

20y Ry . Ry Qp,. Rep, Rep, Lo;. Lo, Pop, e
Wiy 2y Py gy g, W, S, o, S 2

o QIQ 00 30

3011 2, e,
'3 W
2o Ry 2 22

Benchmarks

(b) Energy benefit for SpTTMc.

Figure 9: Speedup and energy benefit of Tensaurus and GPU (PaRTI) over CPU (SPLATT) baseline for

SpTTMc on sparse tensors in Table 3.

6.02x speedup over CPU. However, Tensaurus achieves
0.1x of the performance of the GPU baseline (PaRTI); in
PaRTI, a significant portion of the SpTTMc algorithm runs
on the host CPU, but for comparison with Tensaurus we do
not take into account the CPU execution time. After taking
CPU execution time into account, Tensaurus would achieve
a 5x speedup over GPU. Unlike Sp)MTTKRP, where the
speedup of Tensaurus is more than 20x over CPU, we also
achieve a lower speedup of 6.02x in the case of SpTTMec.
The reason behind this is SpTTMc benefits significantly
from the operand factorization as discussed in Section 2.
A smaller tile size and on-chip memory limits operand fac-
toring opportunities, and Tensaurus uses just 512KB of
on-chip memory as compared to 45MB of L3 cache in the
case of the CPU.

Fig. 10a shows the speedup of Tensaurus, GPU (cuS-
PARSE) and Cambricon-X over the CPU (SparseBLAS)
baseline for AlexNet and VGG-16. For most of the convolu-
tion layers Tensaurus performs better than all the baselines.
On average, Tensaurus is 349.2x, 1.8x and 1.9x faster
than CPU, GPU, and Cambricon-X, respectively.

Fig. 11a shows the speedup of Tensaurus, GPU and
Cambricon-X over CPU baseline for benchmarks from
SuiteSparse and GraphSAGE. Unlike CNNs where the
matrices have low sparsity (high density), these matrices
have really high sparsity (low density). Tensaurus per-
forms better than Cambricon-X on all the matrices and

often beats GPU. Overall Tensaurus achieves 125.8x and
119.7x speedup over CPU and Cambricon-X, respectively
and achieves 0.87x of the performance of GPU for these
matrices.

To further analyse the performance of Tensaurus for dif-
ferent densities of sparse matrix, we generate synthetic ma-
trices and measure SpMM performance for Tensaurus and
all the baselines. Fig. 13 shows the speedup of Tensaurus,
GPU and Cambricon-X over CPU baseline for different
densities of sparse matrix. As it can be seen, Tensaurus
performs consistently better than all the baselines and the
performance of GPU is very similar to the performance of
Tensaurus.

Fig. 12a shows the speedup of Tensaurus, GPU (cuS-
PARSE) and Cambricon-X over CPU (SparseBLAS) base-
line for benchmarks from SuiteSparse and GraphSAGE
for SpMV kernel. Overall Tensaurus achieves 7.7x and
0.45x speedup over CPU and GPU. Since SpMV is highly
memory bound and GPU has 5x more bandwidth and
more on-chip memory the performance of SpMV is better
on GPU as compared to Tensaurus.

We further compare the performance of DMTTKRP,
DTTMc and GEMM with T2S-Tensor. Table 6 shows the
throughput of our accelerator in dense mode (Tensaurus-
dense) compared to T2S-Tensor. As it can be seen for DMT-
TKRP, DTTMc and GEMM, Tensaurus-dense achieves
close to 0.5x of the performance of T2S-Tensor, which is

I Tensaurus [GPU [Cambricon-X

103

AlexNet :

102 4 TREIE TR ‘Bt

10! 4 B S 4. -| o
100 3-——— - i d I
107t -

Speedup

VGG-16

(o) Q o] [a) [a) @ s o) o) Q o] o] o] o3 a3 a3 Q [} o) o) 4 2 L
R % % v % B G 7,00, %, %, %, %, %, %, ‘\’e v, T, B, @ G ‘(z% N
% Ve
Convolution Layers
(a) Speedup over CPU.
104 I Tensaurus 1 GPU [Cambricon-X
AlexNet | VGG-16! |
1 1
% 103 4 p - Hm- B RN AN :
o] I
K 102 4 HE R R : ‘IR IR IR AR AR AR E R AR AR : i
| |
EloL : Br B iR i B R AR EEEREREE RS o
LE] 100 +——— - . - oL I oL . - 5 | o Bl SRS | , - J—
Il I |
1071 - I

C, O C O Q8 B, By B, C ©C C
290?6‘5\)&{\,{9:\3[

€ G 0 0, 0, O Os Cn On & B &
fz‘fef@f;geg@‘?zfe‘?a‘? >

Convolution Layers

(b) Energy benefit over CPU.

Figure 10: Speedup and energy benefit of Tensaurus, GPU (cuSPARSE) and Cambricon-X over CPU
(Sparse BLAS) baseline for SpMM (convolution layers) and SpMV (fully connected layers) on sparse

matrices from AlexNet and VGG-16.

a pessimistic estimate since we assume perfect scaling for
T2S-Tensor.

Table 6: Comparison between the performance of
Tensaurus-dense and T2S-Tensor [17].

Benchmark Throughput (GOP/s)

Tensaurus-dense T2S-Tensor

Speedup

DMTTKRP 511.9 986.3 0.52x
DTTMc 498.9 926.6 0.54x
GEMM 506.5 1019.8 0.49x

7.3 Energy Evaluation

Figs. 8b and 9b show the energy benefit of our accel-
erator and GPU over the CPU baseline for Sp)MTTKRP
and SpTTMc on three tensors along each mode. Overall
our accelerator is 223.2x and 292.8x more energy efficient
than CPU and GPU for SpMTTKRP and 23.2x and 30.9x
more energy efficient than CPU and GPU for SpTTMec.

Fig. 10b shows the energy benefit of our accelerator,
GPU and Cambricon-X over the CPU baseline for AlexNet
and VGG-16. On average, our accelerator is 1983.7x,
226.6x and 1.7x more energy efficient than CPU, GPU
and Cambricon-X. Fig. 11b shows the energy benefit of our
accelerator for SpMM on SuiteSparse and GraphSAGE ma-
trices. Overall our accelerator is 405.6 %, 62.5x, and 101.5x
more energy efficient than CPU, GPU and Cambricon-X.

Fig. 12b shows the energy benefit of our accelerator and
GPU over the CPU baseline for SpMV on matrices from
SuiteSparse. For SpMV, our accelerator is 46.4x and 60.1 x
more energy efficient than CPU and GPU.

8. RELATED WORK

Sparse Storage Formats — Many sparse storage formats
have been proposed in the literature. CSR, (Compressed
Sparse Row), CSC (Compressed Sparse Column) and COO
(Co-ordinate) are the most commonly used sparse storage
formats for CPUs. Liu et al. [53] proposed a sparse tensor
storage format F-COOQO, which is similar to the co-ordinate
format and used it for GPUs. CSF [20] and Hi-COO [21] are
other sparse tensor storage formats that are are based on
CSR and COO, respectively. OuterSPACE [36] uses a vari-
ant of CSR and CSC formats called CR and CC for sparse-
sparse matrix-matrix multiplication (SpGEMM). For ma-
chine learning hardware, researchers have proposed multiple
variants of CSR and CSC formats. For example, Cambricon-
X [35] proposed a modification of CSR, format where the
non-zeros are compressed and stored in contiguous memory
and index vectors are used to decode the row and column
indices. EIE [54] uses a variant of CSC storage format
where instead of storing the row indices they store the num-
ber of zeros before a non-zero element. However, since these
works focus on deep learning, especially CNNs, their sparse
storage format is specialized for low sparsity (high density).

Software Frameworks — TACO [55] is a language and
compiler framework to generate high-performance code for
sparse matrix and tensor kernels for CPUs. Kjolstad et
al. [56] introduced workspace optimizations in TACO to
implement operand factoring optimizations in tensor ker-
nels. SPLATT [20,27] introduced a C library implementing
SpMTTKRP and SpTTMc with shared memory paralleliza-
tion. Bhaskaran et al. [57] proposed various techniques to
reduce memory usage and execution time for sparse ten-
sor factorization algorithms. Ballard et al. [19] and Choi

I Tensaurus — GPU I Cambricon-X

107 5

101 4

Speedup over CPU

10° 4

10714

Benchmarks
(a) Speedup for SpMM.

I Tensaurus 1 GPU [Cambricon-X

=
[=]
w

=

o
Y
"

Energy Benefit over CPU
=
A

107
Q, S, D5 Qo O < Q) O O o O, O
%, 225, %% %, Vo, 0, U, %0, e,y M % %o
0, R U Q) ‘0, X By By Ky, U8, L S %
. By & T, g X ® D T, o 2, 8.
0, (7 Nt \% I %
) % 2, % 2,
%> % %, % ?
u} o
Benchmarks

(b) Energy benefit for SpMM.

Figure 11: Speedup and energy benefit of Tensaurus, GPU (cuSPARSE) and Cambricon-X over CPU
(Sparse BLAS) baseline for SpMM on sparse matrices from SuiteSparse and GraphSAGE.

10 B Tensaurus [GPU
B
O 10?4
1
o 1
3 10 4 ~|
2 |
5 H
3
g 10°7
[72]

1014

Benchmarks
(a) Speedup for SpMV.

I Tensaurus [/ GPU

Energy Benefit over CPU

Benchmarks

(b) Energy benefit for SpMV.

Figure 12: Speedup and energy benefit of Tensaurus, GPU (cuSPARSE) and Cambricon-X over CPU
(Sparse BLAS) baseline for SpMV on sparse matrices from SuiteSparse and GraphSAGE.

—@®- Tensaurus GPU —®- Cambricon-X
10° o
Lie®
‘yom.‘.‘ﬂ:’ﬂv 9
~ ”
3
102 4 ./'.“ . F
£y 'y o7 e a4
3 eo0000y0? o*
1]
@ 101 .,or‘o’
o
-
“.‘
100 'L.'. b
YRR C T
o o o o o o o °o,C ¥ ¥ & &
2% %% =20
Densities
Figure 13: Speedup of Tensaurus, GPU (cuS-

PARSE) and Cambricon-X over CPU (Sparse
BLAS) baseline for SpMM on synthetic matrices
with density varying from 0.0001 to 0.9.

et al. [26] proposed methods to perform DMTTKRP and
DTTMc on CPU and GPU, respectively.

Hardware Accelerators — Srivastava et al. [17] proposed
a language and compilation framework called T2S-Tensor
to generate high performance hardware for dense tensor
computations such as GEMM, DMTTKRP and DTTMc.
Zhang et al. [18] proposed a hardware accelerator for
DTTMec. Hegde et al. [58] proposed a hardware accel-
erator called ExTensor for sparse tensor algebra using the
ideas of merge lattice proposed in TACO [55]. This work,

however, does not accelerate sparse tensor factorizations
as they involve more than two operands and their per-
formance are significantly affected by operand factoring
optimizations. ExTensor also uses significantly more on-
chip storage than Tensaurus (30 MB as compared to 0.5
MB). This allows ExTensor to read an entire tile of the
sparse input tensor on-chip in a streaming manner, avoiding
the need for a special sparse storage format. However, this
comes at the cost of area and energy where ExTensor is
40x larger than Tensaurus for the same technology node.
Kanellopoulos et al. proposed a hardware-software coopera-
tive mechanism to accelerate sparse matrix operations. For
SpMM and GEMM, prior works involving ASIC implemen-
tations include Cambricon-X [35], Cambricon-S [59], Cn-
vlutin [60], SCNN [61], SparTen [62] and OuterSPACE [36].
Cambricon-X [35] and Cambricon-S [59] implement hard-
ware accelerators for SpMM and SpGEMM in CNNs where
either the weight matrices or both weight matrices and
neurons are sparse. SCNN [61] proposes a SpGEMM ac-
celerator for CNNs which can exploit the sparsity in both
weights and neurons. OuterSPACE [36] proposed an accel-
erator design for S\ GEMM. EIE [54] proposes the SpMSpV
(sparse matrix sparse vector multiplication) accelerator for
fully connected layers in CNN and show significant perfor-
mance gains over CPU and GPU. TPU [63] implemented a
2-d systolic array for GEMM. Prior work involving FPGA
implementations for sparse-dense and sparse-sparse matrix-

matrix and matrix-vector accelerators include [64], ESE [65]
and [37]. Lu et al. [64] proposed a CNN accelerator with
sparse weights. ESE [65] proposed an FPGA-accelerator
for SpMV in LSTMs. Fowers et al. [37] proposed SpMV
accelerator for sparse matrices.

9. CONCLUSION

In this work, we propose a new sparse storage format
which allows accessing sparse data in vectorized manner
and co-design a hardware accelerator for sparse and dense
tensor factorizations. We extracted a common compute
pattern among different tensor factorizations and matrix op-
erations, and implemented the pattern in hardware. With
such hardware software co-design we achieve significant
speedup and energy benefit over multiple hardware and
software baselines.

Acknowledgement

We thank Ayoub Benkhoris and Congyang Li for their
contributions to the RTL simulation and verification. We
also appreciate the help from Ritchie Zhao, who provided
the models for CNN benchmarks. This research was funded
in part by CRISP, one of six centers in JUMP, a Semicon-
ductor Research Corporation (SRC) program sponsored
by DARPA, under NSF Awards #1453378, #1512937,
#1909661, NSF/Intel CAPA Award #1723773, and by
AFRL and DARPA under agreement number FA8650-18-
2-7863. The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes notwith-
standing any copyright notation thereon. The views and
conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied,
of AFRL and DARPA or the U.S. Government.

10. REFERENCES

[1] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E.
Papalexakis, and C. Faloutsos, “Tensor Decomposition for
Signal Processing and Machine Learning,” IEEE Trans. on
Signal Processing, 2017.

A. Cichocki, D. Mandic, L. De Lathauwer, G. Zhou, Q. Zhao,
C. Caiafa, and H. A. Phan, “Tensor Decompositions for Signal
Processing Applications: From Two-Way to Multiway
Component Analysis,” IEEE Signal Processing Magazine, 2015.

2

3

M. A. O. Vasilescu and D. Terzopoulos, “Multilinear Analysis of
Image Ensembles: Tensorfaces,” Furopean Conf. on Computer
Vision, 2002.

E. E. Papalexakis, C. Faloutsos, and N. D. Sidiropoulos,
“ParCube: Sparse Parallelizable Tensor Decompositions,” Joint
European Conf. on Machine Learning and Knowledge Discovery
in Databases, 2012.

[5] J.-T. Sun, H.-J. Zeng, H. Liu, Y. Lu, and Z. Chen, “CubeSVD:
A Novel Approach to Personalized Web Search,” Int’l Conf. on
World Wide Web, 2005.

[6] T. Kolda and B. Bader, “The TOPHITS Model for Higher-order
Web Link Analysis,” Workshop on Link Analysis,
Counterterrorism and Security, 2006.

J. C. Ho, J. Ghosh, and J. Sun, “Marble: High-throughput
Phenotyping from Electronic Health Records via Sparse
Nonnegative Tensor Factorization,” Int’l Conf. on Knowledge
Discovery and Data Mining, 2014.

Y. Cheng, D. Wang, P. Zhou, and T. Zhang, “Model
Compression and Acceleration for Deep Neural Networks: The

4

7

8

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

22]

(23]

24]

[25]

[26]

[27]

28]

Principles, Progress, and Challenges,” IEEE Signal Processing
Magazine, 2018.

E. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus,
“Exploiting Linear Structure Within Convolutional Networks for
Efficient Evaluation,” Int’l Conf. on Neural Information
Processing Systems (NIPS), 2014.

V. Lebedev, Y. Ganin, M. Rakhuba, I. V. Oseledets, and V. S.
Lempitsky, “Speeding-up Convolutional Neural Networks Using
Fine-tuned CP-Decomposition,” arXiv preprint
arXiw:1412.6553, 2014.

T. G. Kolda and B. W. Bader, “Tensor Decompositions and
Applications,” SIAM Review, 2009.

A. Coates, B. Huval, T. Wang, D. Wu, B. Catanzaro, and
N. Andrew, “Deep Learning with COTS HPC Systems,” Int’l
Conf. on Machine Learning, 2013.

H. Esmaeilzadeh, P. Saeedi, B. N. Araabi, C. Lucas, and S. M.
Fakhraie, “Neural Network Stream Processing Core (NnSP) for
Embedded Systems,” Int’l Symp. on Circuits and Systems, 2006.

V. Vanhoucke, A. Senior, and M. Z. Mao, “Improving the Speed
of Neural Networks on CPUs,” Workshop on Deep Learning
and Unsupervised Feature Learning, NIPS, 2011.

J. Bennett, S. Lanning, et al., “The Netflix Prize,” Proceedings
of KDD Cup and Workshop, 2007.

A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R.
Hruschka Jr., and T. M. Mitchell, “Toward an Architecture for
Never-Ending Language Learning.,” AAAI 2010.

N. Srivastava, H. Rong, P. Barua, G. Feng, H. Cao, Z. Zhang,
D. Albonesi, V. Sarkar, W. Chen, P. Petersen, G. Lowney, A. H.
Herr, C. Hughes, T. Mattson, and P. Dubey, “T'2S-Tensor:
Productively Generating High-Performance Spatial Hardware
for Dense Tensor Computations,” IEEE Symp. on Field
Programmable Custom Computing Machines (FCCM), 2019.

K. Zhang, X. Zhang, and Z. Zhang, “Tucker Tensor
Decomposition on FPGA,” arXiv preprint arXiv:1907.01522,
2019.

G. Ballard, K. Hayashi, and K. Ramakrishnan, “Parallel
Nonnegative CP Decomposition of Dense Tensors,” Int’l Conf.
on High Performance Computing (HiPC), 2018.

S. Smith, N. Ravindran, N. D. Sidiropoulos, and G. Karypis,
“SPLATT: Efficient and Parallel Sparse Tensor-Matrix
Multiplication,” Int’l Parallel and Distributed Processing Symp.
(IPDPS), 2015.

J. Li, J. Sun, and R. Vuduc, “HiCOO: Hierarchical Storage of
Sparse Tensors,” Int’l Conf. for High Performance Computing,
Networking, Storage and Analysis, 2018.

J. Choi, X. Liu, S. Smith, and T. Simon, “Blocking
Optimization Techniques for Sparse Tensor Computation,” Int’l
Parallel and Distributed Processing Symp. (IPDPS), 2018.

L. De Lathauwer, B. De Moor, and J. Vandewalle, “On The
Best Rank-1 and Rank-(r 1, r 2,..., rn) Approximation of
Higher-Order Tensors,” SIAM Journal on Matriz Analysis and
Applications, 2000.

V. T. Chakaravarthy, J. W. Choi, D. J. Joseph, X. Liu,

P. Murali, Y. Sabharwal, and D. Sreedhar, “On Optimizing
Distributed Tucker Decomposition for Dense Tensors,” Int’l
Parallel and Distributed Processing Symp. (IPDPS), 2017.

G. Ballard, A. Klinvex, and T. G. Kolda, “TuckerMPI: A
Parallel C++/MPI Software Package for Large-Scale Data
Compression via the Tucker Tensor Decomposition,” arXiv
preprint arXiw:1901.06043, 2019.

J. Choi, X. Liu, and V. Chakaravarthy, “High-performance
dense tucker decomposition on GPU clusters,” Int’l Conf. for
High Performance Computing, Networking, Storage, and
Analysis, 2018.

S. Smith and G. Karypis, “Accelerating the Tucker
Decomposition with Compressed Sparse Tensors,” European
Conference on Parallel Processing, 2017.

‘W. Hamilton, Z. Ying, and J. Leskovec, “Inductive
Representation Learning on Large Graphs,” Advances in Neural
Information Processing Systems, 2017.

29]

(30]

[31]

32]

[33]

(34]

(35]

[36]

[37]

(38]

(39]

[40]

[41]

[42]

(43]

(44]

(45]

[46]
(47]
(48]

[49]

T. N. Kipf and M. Welling, “Semi-Supervised Classification with
Graph Convolutional Networks,” arXiv preprint
arXiw:1609.02907, 2016.

S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran,
B. Catanzaro, and E. Shelhamer, “cuDNN: Efficient Primitives
for Deep Learning,” arXiwv preprint arXiv:1410.0759, 2014.

S. Brin and L. Page, “The Anatomy of a Large-Scale
Hypertextual Web Search Engine,” Computer Networks and
ISDN Systems, 1998.

E. Nurvitadhi, A. Mishra, and D. Marr, “A Sparse Matrix
Vector Multiply Accelerator for Support Vector Machine,” Int’l
Conf. on Compilers, Architecture and Synthesis for Embedded
Systems, 2015.

A. K. Mishra, E. Nurvitadhi, G. Venkatesh, J. Pearce, and
D. Marr, “Fine-Grained Accelerators for Sparse Machine
Learning Workloads,” Asia and South Pacific Design
Automation Conf. (ASP-DAC), 2017.

A. Bulug, J. T. Fineman, M. Frigo, J. R. Gilbert, and C. E.
Leiserson, “Parallel Sparse Matrix-Vector and
Matrix-Transpose-Vector Multiplication Using Compressed
Sparse Blocks,” Int’l Symp. on Parallelism in Algorithms and
Architectures, 2009.

S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo,
T. Chen, and Y. Chen, “Cambricon-x: An Accelerator for
Sparse Neural Networks,” Int’l Symp. on Microarchitecture
(MICRO), 2016.

S. Pal, J. Beaumont, D.-H. Park, A. Amarnath, S. Feng,

C. Chakrabarti, H.-S. Kim, D. Blaauw, T. Mudge, and

R. Dreslinski, “OuterSPACE: An Outer Product Based Sparse
Matrix Multiplication Accelerator,” Int’l Symp. on
High-Performance Computer Architecture (HPCA), 2018.

J. Fowers, K. Ovtcharov, K. Strauss, E. S. Chung, and G. Stitt,
“A High Memory Bandwidth FPGA Accelerator for Sparse
Matrix-Vector Multiplication,” IEEE Symp. on Field
Programmable Custom Computing Machines (FCCM), 2014.

N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti,
et al., “The gemb Simulator,” ACM SIGARCH Computer
Architecture News, 2011.

D. Lockhart, G. Zibrat, and C. Batten, “PyMTL: A Unified
Framework for Vertically Integrated Computer Architecture
Research,” Int’l Symp. on Microarchitecture (MICRO), 2014.

N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi,
“CACTI 6.0: A Tool to Model Large Caches,” HP laboratories,
2009.

A. Shilov., “JEDEC Publishes HBM2 Specification.”
http://www.anandtech.com/show/9969/jedec-publisheshbm2-
specification, 2016.

I. S. Duff, M. A. Heroux, and R. Pozo, “An Overview of the
Sparse Basic Linear Algebra Subprograms: The New Standard
from the BLAS Technical Forum,” ACM Trans. on
Mathematical Software (TOMS), 2002.

S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen,
and N. P. Jouppi, “McPAT: An Integrated Power, Area, and
Timing Modeling Framework for Multicore and Manycore
Architectures,” Int’l Symp. on Microarchitecture (MICRO),
2009.

J. Li, Y. Ma, and R. Vuduc, “ParTI! : A Parallel Tensor
Infrastructure for multicore CPUs and GPUs,” 2018.

Y. Ma, J. Li, X. Wu, C. Yan, J. Sun, and R. Vuduc,
“Optimizing Sparse Tensor Times Matrix on GPUs,” Journal of
Parallel and Distributed Computing, 2019.

M. Naumov, L. Chien, P. Vandermersch, and U. Kapasi,
“CuSPARSE Library,” GPU Technology Conference, 2010.

“28 nm lithography process.”
https://en.wikichip.org/wiki/28_nm_lithography_process.

“65 nm lithography process.”
https://en.wikichip.org/wiki/65_nm_lithography_process.

T. A. Davis and Y. Hu, “The University of Florida Sparse
Matrix Collection,” ACM Trans. on Mathematical Software

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

(62]

[63]

[64]

[65]

(TOMS), 2011.

S. Smith, J. W. Choi, J. Li, R. Vuduc, J. Park, X. Liu, and
G. Karypis, “The Formidable Repository of Open Sparse
Tensors and Tools.” http://frostt.io/tensors/, 2017.

S. Han, J. Pool, J. Tran, and W. Dally, “Learning Both Weights
and Connections for Efficient Neural Network,” Advances in
Neural Information Processing Systems, 2015.

S. Williams, A. Waterman, and D. Patterson, “Roofline: An
Insightful Visual Performance Model for Multicore
Architectures,” Commun. ACM, 2009.

B. Liu, C. Wen, A. D. Sarwate, and M. M. Dehnavi, “A Unified
Optimization Approach for Sparse Tensor Operations on GPUs,”
Int’l Conf. on Cluster Computing (CLUSTER), 2017.

S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz,
and W. J. Dally, “EIE: Efficient Inference Engine on
Compressed Deep Neural Network,” Int’l Symp. on Computer
Architecture (ISCA), 2016.

F. Kjolstad, S. Kamil, S. Chou, D. Lugato, and S. Amarasinghe,
“The Tensor Algebra Compiler,” Intl’l Conf. on Object-Oriented
Programming, Systems, Languages, and Applications, 2017.

F. Kjolstad, P. Ahrens, S. Kamil, and S. Amarasinghe, “Sparse
Tensor Algebra Optimizations with Workspaces,” arXiv preprint
arXiw:1802.10574, 2018.

M. Baskaran, T. Henretty, B. Pradelle, M. H. Langston,

D. Bruns-Smith, J. Ezick, and R. Lethin, “Memory-Efficient
Parallel Tensor Decompositions,” IEEE High Performance
Extreme Computing Conference (HPEC), 2017.

K. Hegde, H. Asghari-Moghaddam, M. Pellauer, N. Crago,
A. Jaleel, E. Solomonik, J. Emer, and C. W. Fletcher,
“ExTensor: An Accelerator for Sparse Tensor Algebra,” Int’l
Symp. on Microarchitecture (MICRO), 2019.

X. Zhou, Z. Du, Q. Guo, S. Liu, C. Liu, C. Wang, X. Zhou,
L. Li, T. Chen, and Y. Chen, “Cambricon-S: Addressing
Irregularity in Sparse Neural Networks through A Cooperative
Software/Hardware Approach,” Int’l Symp. on
Microarchitecture (MICRO), 2018.

J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E.
Jerger, and A. Moshovos, “Cnvlutin: Ineffectual-Neuron-Free
Deep Neural Network Computing,” ACM SIGARCH Computer
Architecture News, 2016.

A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan,
B. Khailany, J. Emer, S. W. Keckler, and W. J. Dally, “SCNN:
An Accelerator for Compressed-Sparse Convolutional Neural

Networks,” Int’l Symp. on Computer Architecture (ISCA), 2017.

A. Gondimalla, N. Chesnut, M. Thottethodi, and

T. Vijaykumar, “SparTen: A Sparse Tensor Accelerator for
Convolutional Neural Networks,” Int’l Symp. on
Microarchitecture (MICRO), 2019.

N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal,

R. Bajwa, S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle,
P.-1. Cantin, C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau,
J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Gottipati,

W. Gulland, R. Hagmann, C. R. Ho, D. Hogberg, J. Hu,

R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan,
H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy,

J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke,

A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller,
R. Nagarajan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie,
M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross,

A. Salek, E. Samadiani, C. Severn, G. Sizikov, M. Snelham,

J. Souter, D. Steinberg, A. Swing, M. Tan, G. Thorson, B. Tian,
H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W. Wang,

E. Wilcox, and D. H. Yoon, “In-Datacenter Performance
Analysis of a Tensor Processing Unit,” Int’l Symp. on Computer
Architecture (ISCA), 2017.

L. Lu, J. Xie, R. Huang, J. Zhang, W. Lin, and Y. Liang, “An
Efficient Hardware Accelerator for Sparse Convolutional Neural
Networks on FPGAs,” IEEE Symp. on Field Programmable
Custom Computing Machines (FCCM), 2019.

S. Han, J. Kang, H. Mao, Y. Hu, X. Li, Y. Li, D. Xie, H. Luo,
S. Yao, Y. Wang, et al., “ESE: Efficient Speech Recognition
Engine with Sparse LSTM on FPGA,” Int’l Symp. on
Field-Programmable Gate Arrays (FPGA), 2017.

	Introduction
	Background
	Tensor Notations
	MTTKRP
	TTMc
	Matrix-Matrix Multiplication
	Matrix-Vector Multiplication

	Compute Pattern
	Sparse Formats
	Tensaurus Architecture
	Implementation Details of Tensaurus
	Implementation of SF3 Compute Pattern
	Tensor Load Unit (TLU)
	Matrix Load Unit (MLU)
	Scratchpad Memories
	Compute PEs
	Matrix Store Unit (MSU)

	Experimental Setup
	Evaluation
	Roofline Evaluation
	Performance Evaluation
	Energy Evaluation

	Related Work
	Conclusion
	References

