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ABSTRACT

Tensor factorizations are powerful tools in many machine
learning and data analytics applications. Tensors are often
sparse, which makes sparse tensor factorizations memory
bound. In this work, we propose a hardware accelerator
that can accelerate both dense and sparse tensor factor-
izations. We co-design the hardware and a sparse storage
format, which allows accessing the sparse data in vectorized
and streaming fashion and maximizes the utilization of
the memory bandwidth. We extract a common computa-
tion pattern that is found in numerous matrix and tensor
operations and implement it in the hardware. By design-
ing the hardware based on this common compute pattern,
we can not only accelerate tensor factorizations but also
mixed sparse-dense matrix operations. We show significant
speedup and energy benefit over the state-of-the-art CPU
and GPU implementations of tensor factorizations and over
CPU, GPU and accelerators for matrix operations.

1. INTRODUCTION

Tensor algebra lives at the heart of machine learning
(ML). Classical ML techniques such as embedding gener-
ation in recommender systems, dimensionality reduction,
latent Dirichlet allocation, compression on neural networks
and detecting cliques in social networks make use of tensor
factorizations [1–4]. Tensor factorizations have traditionally
been used in recommender systems [5,6] to produce factor
matrices that represent an embedding into the reduced
latent space. While deep neural networks are expensive to
train, require a large number of labeled data and have lim-
ited interpretability, tensor factorizations provide a faster,
more interpretable, yet competitive method for producing
embedding for recommender systems [7]. Recently, ten-
sor factorizations have also achieved promising results in
compressing deep neural networks [8–10].
There are two popular methods for tensor factoriza-

tions [11]: canonical polyadic decomposition (CPD) and
Tucker decomposition. CPD approximates the tensor as a
sum of rank-one tensors, whereas Tucker approximates it
by a core tensor (weights) and factor matrices (principal
components) along each mode [11]. The two most expensive
computation kernels for these factorizations are matricized

tensor times Khatri Rao product (MTTKRP) and tensor
times matrix chain (TTMc).
Traditionally, tensor factorizations have been done on

CPUs and GPUs, both of which have low energy efficiency
as they allocate excessive hardware resources to flexibly
support various workloads [12–14]. Hardware specialization
has become a common means to improve the compute
efficiency. However, there are two key challenges with de-
signing an accelerator for tensor factorizations. First, many
of the real-world tensors such as Netflix movie ratings [15]
and never-ending language learning (NELL) [16] are sparse,
which makes tensor factorizations memory bound. Sec-
ond, the compute and memory access patterns of different
tensor factorizations can be very different, which makes
it necessary to reduce these computations into some basic
operations and implement them in the hardware.

In this work, we propose Tensaurus, a new hardware ac-
celerator for highly efficient processing of mixed sparse and
dense tensor computations. Tensaurus accelerates a compu-
tation pattern that we observe in common across different
tensor factorization kernels as well as several widely used
matrix operations. Our accelerator further exploits a new
sparse storage format that we introduce to allow accessing
of sparse data in a vectorized and streaming manner to
achieve high memory bandwidth utilization. Thus, with the
co-design of the accelerator architecture and sparse storage,
Tensaurus is both versatile and adaptable. It is versatile in
the sense that it can accelerate both tensor factorizations
and common matrix operations such as matrix-matrix and
matrix-vector multiplications, which are key compute prim-
itives in many ML applications. It can also easily adapt to
different levels of sparsity found in these computations.
To the best of our knowledge, no prior work has pro-

posed a hardware accelerator for sparse tensor factorizations
and previous efforts have been focusing on dense tensor
factorizations (e.g., T2S-Tensor [17] and [18]).
The key technical contributions of this paper are:

1. We are the first to propose a hardware accelerator
that is capable of accelerating not only sparse tensor fac-
torizations, but also dense tensor factorizations and other
common mixed sparse-dense (sparse-dense and dense-dense)
matrix operations for a wide range of sparsity.







Table 1: Mapping of DMTTKRP, SpMTTKRP, DTTMc, SpTTMc, GEMM, SpMM, GEMV, and SpMV kernels to the
SF3 compute pattern in Eq. (9). Here NA means not applicable.

fibersout fiber1 D1 op scalar fiber0 D0

DMTTKRP Y(i,:) B(j,:) [0,J) ◦ A(i,j,k) C(k,:) [0,K)

SpMTTKRP Y(i,:) B(j,:) {j | ∃k st.A(i,j,k) 6=0} ◦ A(i,j,k) C(k,:) {k |A(i,j,k) 6=0}

DTTMc Y(i,:,:) B(j,:) [0,J) ⊗ A(i,j,k) C(k,:) [0,K)

SpTTMc Y(i,:,:) B(j,:) {j | ∃k st.A(i,j,k) 6=0} ⊗ A(i,j,k) C(k,:) {k |A(i,j,k) 6=0}

GEMM Y(i,:) NA NA NA A(i,j) B(j,:) [0,J)

SpMM Y(i,:) NA NA NA A(i,j) B(j,:) {j |A(i,j) 6=0}

GEMV y(i) NA NA NA A(i,j) b(j) [0,J)

SpMV y(i) NA NA NA A(i,j) b(j) {j |A(i,j) 6=0}

which reads a different slice of the tensor from the memory
in a streaming fashion. As it can be seen in each cycle
the two PEs read the data from non-contiguous memory
locations.
The compressed interleaved sparse row (CISR) format

proposed by Fowers et al. [37] tackles this issue by storing
the sparse data accessed by different PEs at the same time in
contiguous memory locations; however, this format requires
centralized row decoding, lock-step execution, and applies
only to matrices. Partly inspired by CISR, we propose a
new sparse storage format called compressed interleaved
sparse slice (CISS). With this new format, we overcome
the limitations of CISR and extend it to tensors with more
than two dimensions. Fig. 3d shows the tensor in Fig. 3a
stored in the CISS format, which consists of an array of
CISS entries. Each entry is (dw+2·iw)·P bits long, where
dw (data width) and iw (index width) are the bitwidths of
the non-zero elements and their mode indices, respectively
and P is the number of PEs in hardware. For each PE,
a CISS entry consists of three fields: nnz (non-zero data
value), i/j (mode 0 or mode 1 index) and k (mode 2 index).
Since nnz is supposed to carry only non-zero data values, a
0 in nnz indicates that the i/j field consists of i value and
a non-zero in nnz indicates that i/j consists of a j value.
To store a sparse tensor in CISS format, first each PE

is assigned a slice of the tensor corresponding to its ID.
For example, in Fig. 3d PE0 is assigned slice 0 and PE1
is assigned slice 1 in the first cycle. The slice indices for
each PE are written to the i/j and the nnz is set to 0. In
the next few cycles, the CISS entries for a PE are filled
with the non-zero entries from the slice by assigning the
non-zero data elements to nnz, mode 1 indices to i/j and
mode 2 indices to k. When all the non-zero elements in the
slice assigned to a PE are scheduled, the next available slice
is assigned to that PE and its slice index and data values
are inserted into the array of CISS entries. For example,
in Fig. 3d when all the non-zero entries from the slice i=1
are inserted into the array, the next available slice is slice
i=2 and hence it gets assigned to PE1.

Since CISS assigns the non-zeros accessed from different
PEs at the same time in contiguous memory locations, it
achieves high spatial locality and memory bandwidth uti-
lization. CISS format also schedules the next available slice
of the tensor to the PE with the least data that ensures a
load balanced schedule where each PE is assigned a similar
number of non-zero entries. Although described for 3-d

tensors, the CISS format can be easily generalized to 2-d
matrices and tensors with more than three dimensions.

Fig. 3e also shows the achieved bandwidth when multiple
PEs stream a 3-d tensor stored in extended CSR and CISS
formats from the off-chip memory with a peak bandwidth
of 16 GB/s. As it can be seen, the achieved bandwidth for
extended CSR saturates at 1.9 GB/s for 8 PEs while CISS
achieves a bandwidth of 11.2 GB/s, very close to the peak
bandwidth.

5. TENSAURUS ARCHITECTURE

In this section, using SpMTTKRP as a driving example,
we explain the implementation of the SF3 compute pattern
described in Section 3.
Fig. 4 shows the execution of SpMTTKRP kernel using

the same tensor as in Fig. 3a on two PEs. The slices i=0
and i=3 are assigned to PE0 and slices i=1 and i=2 are
assigned to PE1 (same as in Fig. 3). Each PE reads a non-
zero data element aijk from the sparse tensorA, the kth row
from matrix C (ck:) and performs a scalar-vector multipli-
cation to produce tkij: All the partial results t

k
ij: for different

values of k are accumulated together and then multiplied by
the jth row of matrix B (bj:) to produce the partial results

y
j
i:. All the y

j
i: vectors are then summed together for differ-

ent values of j to produce the ith row of the output matrixY.
From this example, it can be seen that the core operations in
the SpMTTKRP are scalar-vector multiplication (aijk ·ck:),

element-wise vector-vector multiplication (tkij: ◦bj:) and

element-wise vector-vector addition (tkij:+tk
′

ij: and y
j
i:+y

j′

i: ).
There are also two types of intermediate results produced
in the SpMTTKRP computation: tkij: and y

j
i:.

For the SF3 compute pattern in Eq. (9), the scalar-vector
multiplications arise from scalar · fiber0; the element-
wise vector-vector multiplication (VVMUL) operations
arises from op; and the element-wise vector-vector addition
(VVADD) arises from the two summations over D0 and D1.
The intermediate results in Eq. (9) correspond to the par-
tial results of the computations scalar·fiber0 and fiber1
op

∑
D0

scalar·fiber0. Thus, using the three major oper-
ations: scalar-vector multiplication, VVMUL and VVADD
and two sets of storage registers for the two kinds of partial
results, we can design the micro-architecture of a PE in
Tensaurus. For scalability, we can further split a single
vector operation into multiple small vector operations, each
of vector length VLEN.









Table 2: Area and power breakdown of Tensaurus.

Component Area(mm
2) % Power (mW) %

PE 0.625 27.2 % 402.30 40.9 %
Xbar 0.066 2.8 % 24.27 2.5%
SPM 0.832 36.2 % 296.05 30.1 %
MSU 0.759 33.0 % 247.03 25.2 %
TLU 0.009 0.4 % 6.28 0.6%
MLU 0.009 0.4 % 6.28 0.6 %

Total 2.3 100 % 982.21 100 %

when all the input tiles corresponding to an output tile
have been processed. Although buffering the intermediate
results in the output buffer reduces the number of off-chip
memory accesses, it also limits the tile size of the sparse
input tensor. Since for very sparse tensors the benefit of
storing the intermediate results in the buffer is outweighed
by the larger tile size of the tensor (as it results in more reuse
of the dense operand matrices), the MSU can be configured
to directly accumulate the results in the main memory.

6. EXPERIMENTAL SETUP

Simulation Infrastructure – To evaluate the perfor-
mance of Tensaurus, we model our architecture consisting
of TLU, MLU, SPMs, PEs, MSU and HBM using the gem5
simulator [38]. We use an 8×8 PE array with V LEN=4.
Each SPM except the first consists of a double buffer of
size 2×16KB where each side of the double buffer is di-
vided into 8 2KB banks. The SPM in the first column
has a double buffer of size 2×32KB divided into 16 2KB
banks. The MSU consists of an output double buffer of size
2×128KB, which is further divided into 8 16KB banks.
For HBM, we use the gem5 model, which supports up to
8 128-bit physical channels, runs at 1GHz clock frequency
and provides a peak memory bandwidth of 128 GB/s. Ten-
saurus is attached to a CPU as a co-processor, where the
CPU executes instructions to configure Tensaurus to run a
specific tensor kernel. The configuration instructions config-
ure Tensaurus for: (1) mode of operation like SpMTTKRP,
SpMM, etc. and (2) size of tensors and matrices.

Measurements – We implemented the PEs and the cross-
bar in RTL using PyMTL [39] and synthesized them using
the Synopsys Design Compiler using TSMC 28nm library
and placed-and-routed using Cadence Innovus. For the
SPM and MSU, since the majority of area and power is
dominated by scratchpads, we used CACTI 7.0 [40] to
model SRAM latencies, area and power. For TLU, we
pessimistically assumed the same area and power as a sin-
gle PE. Table 2 shows the area and power breakdown of
different components of the design. For HBM we use the
energy numbers from Shilov et al. [41].

Baselines – We compare our design against four baselines:
CPU, GPU, Cambricon-X [35] and T2S-Tensor [17].

CPU: We use SPLATT [20] and Sparse BLAS [42] to
evaluate our benchmarks on a single core of an Intel(R)
Xeon(R) CPU E7-8867 running at 2.40 GHz with 32 KB L1
cache, 256 KB L2 cache and 45 MB of L3 cache. For energy
estimates we use McPAT 1.3 [43] CPU energy models.

Table 3: Tensors with their dimensions, number of
non-zeros (nnz), density and problem domain.

Tensor Dimensions nnz Density Domain

nell-2 12K × 9K × 28K 77M 2.5e-5 NLP
netflix 480K × 18K × 2K 100M 5.7e-6 Rec. Sys.
poisson3D 3K × 3K × 3K 99M 3.6e-3 Synthetic

Table 4: Weight matrices from AlexNet and VGG-16 with
their dimensions, number of non-zeros (nnz) and density.

Layer Dim. Density Layer Dim. Density

A
le
x
N
e
t c1 96 × 363 0.84 c2 256 × 1200 0.38

c3 384 × 2304 0.35 c4 384 × 1728 0.37
c5 256 × 1728 0.37 fc6 9216 × 4096 0.09
fc7 4096 × 4096 0.09 fc8 4096 × 1000 0.25

V
G
G
-1

6

c1 1 64 × 27 0.58 c1 2 64 × 576 0.22
c2 1 128 × 1152 0.34 c2 2 128 × 1152 0.36
c3 1 256 × 1152 0.53 c3 2 256 × 2304 0.24
c3 3 256 × 2304 0.42 c4 1 512 × 2304 0.32
c4 2 512 × 4608 0.27 c4 3 512 × 4608 0.34
c5 1 512 × 4608 0.35 c5 2 512 × 4608 0.29
c5 3 512 × 4608 0.36 fc6 25088 × 2096 0.01
fc7 4096 × 4096 0.02 fc8 4096 × 1000 0.09

GPU: We use ParTI [44,45] and cuSPARSE [46] to eval-
uate the benchmarks on a modern GPU Titan Xp, which
has GDDR5x DRAM with a peak bandwidth of 547.6
GB/s and a peak 32-bit performance of 12.15 TFLOP/s.
We use CUDA 9.1 for programming the GPU. For power
estimation, we use thermal design power (TDP) from the
GPU datasheet.

Accelerator: For SpMM, we also compare our work against
the Cambricon-X [35] state-of-the-art CNN accelerator,
which uses sparse weights and dense activations. We imple-
ment the architecture of Cambricon-X in gem5 and scale
it to have the same bitwidth, clock frequency, number of
multiply-accumulate (MAC) units, size of on-chip RAM
and DRAM bandwidth as our accelerator. For energy
comparisons, we use the power numbers from [35] which
are in 65nm technology node and scale them to 28nm us-
ing [47,48]. For DRAM energy, we measure the number
of DRAM accesses from our simulator and use the HBM
energy from Shilov et al. [41].
For DMTTKRP, DTTMc and GEMM we compare our

design against T2S-Tensor [17], which implements these
kernels on an FPGA. We scale their design to use the same
number of MAC units and clock frequency as our design.

Datasets – For SpMTTKRP and SpTTMc, we use the
tensor datasets shown in Table 3. NELL-2 tensor is a
snapshot of the Never Ending Language Learner knowledge
base that attempts to create a computer system that learns
how to read the web [16]. The Netflix dataset is taken
from Netflix Prize competition [15] and Poisson3D is taken
from [27]. NELL-2 and Netflix are public datasets and
taken from Smith et al. [50].
For SpMM, we use the pruned models for AlexNet and

VGG-16 [51]. We did not use any of the newer CNN models
for this study as their pruned weights are not publicly avail-
able. Table 4 shows the sparse weight matrices in these
CNN models with their size and densities. For SpMM,
we also use the sparse matrices from SuiteSparse [49] and
graph benchmarks from GraphSAGE [28]. Table 5 shows











matrix and matrix-vector accelerators include [64], ESE [65]
and [37]. Lu et al. [64] proposed a CNN accelerator with
sparse weights. ESE [65] proposed an FPGA-accelerator
for SpMV in LSTMs. Fowers et al. [37] proposed SpMV
accelerator for sparse matrices.

9. CONCLUSION

In this work, we propose a new sparse storage format
which allows accessing sparse data in vectorized manner
and co-design a hardware accelerator for sparse and dense
tensor factorizations. We extracted a common compute
pattern among different tensor factorizations and matrix op-
erations, and implemented the pattern in hardware. With
such hardware software co-design we achieve significant
speedup and energy benefit over multiple hardware and
software baselines.
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