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STRONG APPROXIMATION
OVER FUNCTION FIELDS

QILE CHEN AND YI ZHU

Abstract

By studying Al-curves on varieties, we propose a geometric approach to
the strong approximation problem over function fields of complex curves.
We prove that strong approximation holds for smooth, low degree affine
complete intersections with smooth boundary at infinity.

1. Introduction

Given a variety X over a number field, the existence of rational points (in-
tegral points) and their distributions (Hasse’s principle, weak approximation,
and strong approximation) are extensively studied by number theorists. In
general, these problems are very difficult and lacking of complete solutions.

Those questions have been studied over function fields over the past fifteen
years. Let X be a smooth projective variety defined over the function field K
of a complex algebraic curve. If X is rationally connected [Cam92, KMM92],
then X admits rational points [GHS03,dJS03]. If X is rationally simply con-
nected, weak approximation holds for X; see [dJS06,Has10] for the definitions
and results. Furthermore, it is expected that weak approximation holds for
rationally connected varieties [HT06].

While the results above focus on the projective case, number theorists study
arithmetics of open varieties such as linear algebraic groups and affine hyper-
surfaces as well [PR94,Sko01,HT01,CTX09]. The study of integral points over
geometric function fields was initiated by Hassett-Tschinkel [HT08]. They
proved that for certain log Fano varieties, integral points are dense.

This paper is an attempt to build a parallel theory of integral points on open
varieties over K. The natural candidates that satisfy strong approximation
are log rationally connected varieties, that is, varieties on which a general
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pair of points can be connected by an Al-curve. Examples of log rationally
connected varieties include:

e interior of smooth log Fano complete intersection pairs [CZ14b];

e semisimple linear algebraic groups, more generally, sober spherical
homogeneous spaces of type (b) [CZ14a];

e smooth surfaces with no global higher tensor of log 1-forms [Zhul6].

In [CZ16a], we applied log rational connectedness to give another proof of
Hassett-Tschinkel’s theorem [HT08] and proposed the following question.

Question 1.1 ([CZ16a]). Does strong approximation hold for log ratio-
nally connected varieties over K?

Before this work, affine spaces were the only examples that satisfied strong
approximation [Ros02, Theorem 6.13]. In this paper, we affirm strong ap-
proximation for smooth, low degree affine complete intersections.

Notation 1.2. Let X be a smooth complete intersection in P™ (n > 2) of
type (di,---,d.) with d; > 2. Let D C X be a smooth hypersurface section
of degree k. We call the pair X := (X, D) a smooth complete intersection pair
of type (dy,- - ,dc; k). We denote by X the log scheme associated to the pair

(X, D).
Theorem 1.3. Strong approximation holds for the interior of any smooth
complete intersection pair of type (di,--- ,d¢; 1) in P with

i d? <n.
i=1

Corollary 1.4. Hasse’s priniciple holds for integral points of the interior
of any smooth complete intersection pair of type (di,--- ,dc; k) in P with

S d+E <n+l
i=1

Theorem 1.3 and Corollary 1.4 give a satisfactory answer on the existence
and density of integral (rational) points for low degree affine hypersurfaces
defined over C[t]. Such results are new even for affine quadric hypersurfaces
with dimension at least three. In the number theoretic set up, the analogues
for affine quadrics are already nontrivial theorems.

Our results on strong approximation provide an interesting geometric ap-
plication.

Corollary 1.5. Let (X, D) be a smooth complete intersection pair of type
(di, -+ de; k) in PR with >, d?+k? < n+1. Then there exists an A'-curve
passing through any m-tuple of points on X \ D.
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STRONG APPROXIMATION OVER FUNCTION FIELDS 705

It is known that over C, there exist rational curves on a smooth rationally
connected variety through any finite number of points. But the analogues
problem for log rationally connected varieties is widely open.

1.1. Idea of the proof. In this paper, we introduce the notion of A'-
simple-connectedness using the stable log map compactification. This is a key
to our approach for the strong approximation conjecture over K. Our proposal
is parallel to the approach of de Jong-Starr [dJS06] and Hassett [Has10] for
weak approximation of rationally simply connected varieties.

Theorem 1.6. Let K be the function field of a smooth, irreducible complex
algebraic curve. Let X = (X, D) be a log smooth projective variety over K.
Assume the following hold:

(1) X satisfies weak approzimation over K.
(2) There exists a curve class 8 and a geometrically irreducible component
M of the moduli space Az (X, B) of two pointed A'-curves defined over
K such that
o a general point of M parametrizes a smoothly embedded A' -curve.
o The 2-pointed evaluation morphism

ev: M —XxX

18 dominant with rationally connected geometric generic fiber.

Then strong approximation holds for the interior X\D over K.

We refer to Section 1.3 for the notation and terminologies of the above
theorem. The formulation of strong approximation is defined in Section 2.
If we call Condition (2) above A!-simple-connectedness (with respect to the
curve class ), the theorem above states that strong approximation holds for
Al-simply connected K-varieties if weak approximation holds. Furthermore,
Al-simple-connectedness is a geometric condition, and only depends on the
interior.

Affine spaces are the first class of examples of A'-simply connected varieties
because any pair of points can be joined by a unique affine line.

Proposition 1.7. Affine spaces are Al-simply connected. Thus strong
approximation holds for affine spaces over K. (I

By studying the geometry of A'-conics on complete intersection, we give
a bound for low degree smooth complete intersection pairs to be Al-simply
connected.

Theorem 1.8. Let X := (X, D) be a smooth complete intersection pair of
type (dy, -+ ,de; 1) in P™. Assume that X \ D is not the affine space. Denote
by a the line class on X. Then the general fiber of the evaluation morphism
defined in (1.3.1),

ev: AQ(X72O‘) - X x X,
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18 a smooth complete intersection in P™ of type
(1717"' adl _17d1 - 17dla"' alalv"' adc—lvdc_ 1ad0)'

In particular, a general fiber is rationally connected if Zle d? <n.

Proof of Theorem 1.3. Combining the hypothesis with the works of [dJS06,
Has10], we know that weak approximation holds for X. Now Theorem 1.3
follows from Theorems 1.6 and 1.8. O

Remark 1.9. The authors thank the anonymous referee, who pointed out
to us that there might be an approach to the proof of Theorem 1.8 by taking
the closures of the loci of Al-lines and A'-conics in the stacks of usual stable
maps. Then similar to the strategy of this paper, one needs to analyze the
geometry of the compactified loci of Al-curves. However, such compactifica-
tions seem to be less convenient to study for (1) the deformation theory for
the degenerated A'-curves in such compactification has not been well studied
to the knowledge of the authors; and (2) when the boundary D of the tar-
get has higher degree or multiple components, such compactification will be
rather singular, not even normal in general. The authors haven’t worked out
the details in this setting as it might require some foundational work beyond
the current scope of this paper. On the other hand, the logarithmic approach
provides a better control of the boundary; see [CZ16b] for an example in case
of boundaries with multi-components. The authors’ further study of integral
points and the strong approximation problem along the logarithmic approach
in more general settings is currently a work in progress.

1.2. Organization of the paper. In Section 2, we state the geometric
formulation of strong approximation and prove Theorem 1.6. In Sections 3
and 4, we analyze the moduli space of Al-lines and A'-conics, and conclude
the proof of Theorem 1.3. We prove Corollaries 1.4 and 1.5 in Section 5.

1.3. Notation and terminology. Capital letters such as X, Y, Z, and
C, etc., are reserved for log schemes with the corresponding underlying
schemes denoted by X, Y, Z, and C. For any log scheme X, denote by
X° C X the open locus with the trivial log structure.

An A'-map is a genus zero stable log map with precisely one marked point
with a nontrivial contact order. An A'-curve is an A'-map with an irreducible
source curve, whose image has nontrivial intersection with the open locus of
the target with the trivial log structure. We call an Al-curve an A!-line or
an A'-conic if the curve class of the Al-curve is the class of a line or a conic
respectively.

Recall that the stack of stable log maps, viewed as a category fibered over
the category of schemes, parameterizes minimal stable log maps. The defini-
tion of minimality can be found in [Chel4, Definition 3.5.1] in the rank one
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STRONG APPROXIMATION OVER FUNCTION FIELDS 707

case that is needed for this paper, and more generally in [AC14, Section 4]
and [GS13, Section 1.5].

For any log scheme Z, any curve class § on Z, and any positive integer e,
denote by A,,(Z, e3) the moduli stack of A'-maps to Z with curve class ef,
and m markings with the trivial contact order. Then A,,(Z,ef) is a log stack
with the canonical log structure. Denote by A, (Z,ef) the underlying stack
obtained by removing the log structure of A,,(Z, e3). We have the evaluation
morphism induced by the m-markings with the trivial contact order

(131) @;Am(zjeﬁ)—)XX...xl

where the right hand side is m-copies of X.

Let R, (Z,ef) be the moduli space of m-pointed, genus zero stable maps
to Z with curve class ef.

We refer to [Kat89] for the basics of logarithmic geometry, and [Kat00,
01s07] for the canonical log structures on curves. For the detailed development
of stable log maps, the reader should consult [Chel4, AC14, GS13].

2. Strong approximation

2.1. The arithmetic formulation. We first recall the adelic formulation
of strong (weak) approximation over function fields of curves; see [Has10].

Let B a smooth irreducible projective curve over C with function field
F = C(B). For each place v € B, denote by K, the completion of K at v.
Let S be a nonempty finite set of places of K, ok s the ring of S-integers.
Denote by Ak s := H;eB\{S} K, the ring of adeles over all places outside
S, where the product is the restricted product, i.e. all but finite number of
factors are in o0,. The ring Ak s has two natural topologies: the first one is
the product topology, and the second one is the adelic topology, with a basis
of open sets given by va g Ry where R, = o, for all but finitely many v.

Let U be a geometrically integral algebraic variety over K. Denote by
U(K) the set of K-rational points, and U(Ag, g) be the restricted product
HL@ZS U(K,). Thus, the set of adelic points U(Ak,g) admits the product
topology and adelic topology locally inherited from that of adelic affine spaces.

Definition 2.1. We say that strong approximation (respectively, weak ap-
prozimation) holds for U if for any S # (), the inclusion

U(K) — U(AKﬂs)

is dense in the adelic topology (respectively, product topology). To be more
precise, this is equivalent to saying that for any finite set T" of places containing

Licensed to Boston Coll. Prepared on Fri Jul 3 12:33:54 EDT 2020 for download from IP 136.167.36.233.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



708 QILE CHEN AND YI ZHU

S, any integral model U over o g of U, and any open set W,, C U(K,) under
the adelic topology for each place v € T\S, the image of U (K) via the diagonal
map in

(2.1.1) H W, x HU(OU) (respectively, H W, x H U(K,))

veT\S vgT veT\S vgT

is not empty. We say that Hasse’s principle holds for integral points of U if
for any S # () and any model U as above,

H U(o,) # 0 implies U(og) # 0.

vgS

The above definition does not depend on the choice of model. Strong
approximation implies weak approximation. The converse also holds when U
is proper over K.

2.2. The geometric formulation. The geometric setting of weak ap-
proximation has been formulated and studied in [HT06]. We next translate
Definition 2.1 into the geometric setting. To apply logarithmic geometry, we
would like to replace the open variety U by a proper log smooth variety X
with the log trivial part U.

Definition 2.2. Let X be a smooth, proper, and log smooth variety over
K. Denote by U = X° its log trivial open subset. A proper model of X is a
family of log schemes:

T: X —> B
such that

(1) B is a smooth projective curve with the trivial log structure;
(2) m: X — B is proper flat over B;
(3) the generic fiber of 7 is X.

We say such a model is regular if X is a smooth variety. This can always be
achieved via resolution of singularities.

Proposition 2.3. Let U be the log trivial open subset of a proper, smooth,
log smooth variety X defined over K. Then strong approzimation holds for U
away from S is equivalent to the following statement:

Given any proper reqular model of X as in Definition 2.2, any finite set of
places T = S U{by,--- ,bi} such that ™ is smooth and log smooth over ok T,
any smooth points x; in Xy fori=1,---,k can be realized by a section of
7 which is integral (i.e., away from the boundary) over o .

Proof. With the same notation as in (2.1), since U(0,) is open in X (K,)
for any v ¢ T, we may enlarge the set T such that the integral model & can
be embedded into a regular proper model X of X over ox v and X' is smooth
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STRONG APPROXIMATION OVER FUNCTION FIELDS 709

and log smooth over ox 1. The rest is done by the iterated blow-ups of the
jet datum [HTO06, 2.3], [Has10, 1.5]. O
2.3. Proof of Theorem 1.6.

Step 1. To prove the theorem, it suffices to verify the statement in Propo-
sition 2.3. Let V C X x X denote the open subset over which ev has ge-
ometrically irreducible, and rationally connected fibers whose general points
parametrize Al-curves.

Step 2. By assumption, we know that X is A'-connected. In particular,
X is rationally connected. By [GHS03, KMM92], the rational points of X over
K are dense. After enlarging T, there exists a rational section

s:B—X

such that

e s is integral over ox 7;
e the associated rational point, still denoted by s, is general in X.

Step 3. Since weak approximation holds over K, we may choose a general
section

t:B—X
such that
o t(b)=wx;fori=1,--- k;
e the associated rational point, still denoted by t, is general in X;
e we may assume that the point (s, t) lies in the open subset V' C X x X.

Step 4. The fiber ev~!(s,t) is a geometrically irreducible rationally con-
nected variety defined over K whose general points parametrize Al-curves.
By [GHS03,KMM92], there exists a rational point of ev~!(s,t) parametrizing
a smooth embedded A'-curve. This rational point gives a generic A'-ruled
surface in X, denoted by H — B. By construction, the surface H contains:

e the section s integral over ox 7, and
e the section ¢. In particular, H admits a local section over b; passing
through z; for all 7.

Let T” be the place of bad reductions of H outside T. Since strong ap-
proximation holds for Ak away from S [Ros02, Theorem 6.13], we can find a
section o : B — H — X such that

e o(b;) = x; for all 4;
e o(b) =s(b) for all b € T";
e o is integral away from T U T".

In particular, o is integral away from T and o(b;) = =; for all 7. O
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3. Al-lines through a general point

3.1. A deformation result.

Proposition 3.1. Let X be a projective log smooth variety. For any
curve class f € Hz(X) and a subscheme B € X° with B either a closed
point or the empty set, there are finitely many sub-varieties {Y;} of X° such
that if f : (P',00) — X is an Al-curve with curve class ( through B, and
fPL\{oc}) ¢ Y,, then f is free. In particular, an A'-curve through B and
a general point of X° with curve class B is free.

Proof. Denote by

Ag(Xaﬁ)v it B= Q)a or

A% (X, 8) =
al%.8) {ﬂl(B), if B is a point,

where ev : AY(X, ) — X is the evaluation morphism induced by the marking
with the trivial contact order.

Let Z; be the irreducible component of A% (X, ) with the universal mor-
phism f?: C? := C; ~ {oo} — X. Let

=

_ {f 2(C?), if f? is not dominant, and

X°\U;, if f? is dominant,

where U; C X° is an open and dense subset such that f° is smooth over U,,
and all closures are taken in X°.

Consider an Al-curve f : (P!, 00) — X of curve class 3 with f(P! < {cc}) ¢
Y, for any i. Let Z; be the component containing f. By construction, the
universal morphism f; is dominant, and f intersects U,. Same argument as
in [Kol96, Chapter 1T 3.10] implies that f is free. O

Corollary 3.2. Notation and assumptions as in Proposition 3.1, any A'-
curve passing through B and a very general point of X° is free.

Proof. This follows from Proposition 3.1 by taking into account all choices
of curve classes. O

3.2. Al-lines on smooth complete intersection pairs. Consider the
smooth complete intersection pair X = (X, D) as in Notation 1.2. In this
subsection, we study the evaluation morphism

ev: A (X, a) > X.

Proposition 3.3.

(1) A general fiber of ev is smooth and projective.
(2) Fvery nonempty connected component of a general fiber is of expected
dimension n —d where d =dy +--- +d. + k.
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STRONG APPROXIMATION OVER FUNCTION FIELDS 711

Proof. The first statement follows from Proposition 3.1. Since every A'-
map with line class in a general fiber is free, the dimension is calculated by
the Euler characteristic of the pullback of the log tangent bundle.

a(TX)a+dmX+2-3—-dimX=n+1-d—-1=n-—d.

O
Next we would like to describe the general fiber of ev explicitly in equations.
Fix a general point © € X°. Let L, be the fiber over x of the evaluation
morphism:
ev: A (X,a) > X.
We consider the restriction of the boundary evaluation morphism on L_:

V:L,— D.

Proposition 3.4. Ifd = dy + -+ +d. + k < n, the morphism V' is a
closed immersion, and the image of L, is an irreducible, smooth complete
intersection in P™ of type

(17"'adla"'71a"'7d0717"'7k)'

Let W = Spec R be any affine scheme. For any scheme Z, we denote by
Zy =ZxW.
The scheme L, is determined by its W-points:

L,(W) = {A'-lines in Xy;, through xy }.

Assume for simplicity z =[1:0:---:0] € X°. Consider a W-point ¢ = [z :
X1 Ty) € D(W). A W-line £ joining zw and ¢ can be expressed as
[t+x0:@1 - Xy,

where t is the parameter of the line and x; € R for each 1.
Let F; be the defining equation of X for ¢ = 1,--- ,¢ with deg F; = d;.
Restricting them on the line equation of [, we have

(321) Fz‘(t‘i-Io,Il, e 7l‘n) = PiO . tdi +P11 . tdiil “+ - +Pidia

where P;; € R[zg,---,xy) is a homogeneous polynomial of degree j. The
condition x € X implies that Pjp = 0. The condition ¢ C Xy is equivalent to
the vanishing of Py, --- , P, for each i, which gives a complete intersection
of type
(1,2,--- ,dy,---,1,2,---d.).
Similarly, let G be the defining equation of D. Restricting them on the line
equation of £, we have:

(32.2) G(t+xo, a1, ,25) = Qo - t4 + Q1 - t4 71+ 4+ Qp,
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712 QILE CHEN AND YI ZHU

where Q; € R[zo, - -, xy] is a homogeneous polynomial of degree j. The point
xw lying outside Dy, implies that Qo # 0. Note that Q) is indeed G. The
condition being an A'-line is equivalent to the vanishing of the polynomials
Q1, -+ ,Qk, i.e., a complete intersection of type

1, k).

Now we define a complete interesection Z in Pjj, defined by the following
equations:

Plla"'>P1d17"'7PCI7"'>PCdC>Q17"'7Qk'

Since Qr = G, Z is automatically a closed subscheme of D.
To summarize, we proved the following.
Lemma 3.5. The image of the morphism

V:L,— D

lies in Z.

Proof of Proposition 3.4. It suffices to prove that L, is isomorphic to Z
under ¥, i.e., every W-point of Z is the image of a unique W-point of L,
under b'. This follows from the fact that any W-point of Z gives a W-family
of lines via the projection:

pr: Py —{aw} — [P”Vlv_l,

where the target is the Hilbert scheme of lines through xy,. Furthermore,
such a family of lines meet the boundary exactly once, hence is a family of
Al-lines. O
Corollary 3.6. A general fiber of ev is a nonempty, irreducible, and
smooth complete intersection if X is log Fano, or equivalently, d < n.
Proof. This follows from Propositions 3.3 and 3.4. (]

4. Moduli of A'-conics through two general points

For the rest of this section, we work with the following assumption.

Assumption 4.1. Let X = (X, D) be a smooth complete intersection pair
in PE of type (di,--- ,dc; 1) with d; > 2 for each 3.

The goal of this section is to study general fibers of the 2-pointed evaluation
morphism

(4.0.1) ev: Ay(X,20) > X x X

given by the two marked points with the trivial contact order. The proof of
Theorem 1.8 will be concluded at the end of this section.
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STRONG APPROXIMATION OVER FUNCTION FIELDS 713

For later use, denote by F,, .y the fiber of (4.0.1), and F{,, ) the correspond-
ing log scheme with the minimal log structure pulled back from As(X, 2a).
When there is no confusion of the pair of points (p, ¢), we will simply write F'
and F', and omit the subscripts.

4.1. Smoothness of the moduli.

Lemma 4.2. For a general pair of points (p,q) € X° x X°, let A be the
closed substack of F parametrizing reducible A'-conics. Then every geometric
point f in A satisfies the following properties:

(1) The underlying curve C over S = SpecC consists of three irreducible
genus zero components Z; for ¢ = 0,1,2, with precisely two nodes z;
joining Zy and Z; fori=1,2.

(2) Each component Z, contains a marking o; with the trivial contact
order fori=1,2.

(3) Z, has three special points given by the contact marking and two
nodes.

(4) f contracts the component Z, to a point x5 := f(Z,) € D.

(5) The restriction f|z. is an embedding of two free Al-lines fori=1,2.

(6) The characteristic sheaf M p|a is a locally constant sheaf with fiber
N.

(7) Let C* — S* be the canonical log structure on C — S; see [Kat00,
01s07]. Then the canonical morphism Mg: — Mg is fiberwise given
by N> = N, (a,b) — a +b.

Proof. By Assumption 4.1, the line through a general pair of points p, ¢ in
X is not contained in X. Therefore, the boundary A parameterizes stable log
maps with property (1) — (4). Statement (5) of f|z. follows from Proposition
3.1 and the general choice of p, q.

Property (6) and (7) follow from the definition of minimality as in [Chel4,
Construction 3.3.3], [AC14, Section 4], and [GS13, Construction 1.16]. In-
deed, the minimality is defined fiberwise over each geometric point. Thus
to calculate the fiber of the characteristic sheaf Mp|a, it suffices to study
the combinatorial structure of each geometric fiber f. Following the no-
tation in [Chel4, Definition 3.3.2] and [AC14, Section 4.1.1], the marked
graph of f, denoted by G, has three vertices v; corresponding to the three
components Z; for ¢ = 0,1,2, and two edges I; corresponding to the two
nodes zj, oriented from v; to vy with contact order 1 for j = 1,2. A di-
rect calculation following [Chel4, Construction 3.3.3] shows that M p[(s = N.
Furthermore, by the edge equation [Chel4, (3.3.2)], the canonical morphism
Msn%N2—>MS :Mphf]:NiS given by (a,b)l—>a+b. O

Lemma 4.3. For a general pair of points p,q, the fiber F' is a log smooth
scheme with the smooth boundary divisor A .
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714 QILE CHEN AND YI ZHU

Proof. We may assume that F is nonempty. Let U C A2(X,2a) be the
open sub-stack parameterizing free A'-maps with the curve class 2c.. Thus,
the log stack U is log smooth. Recall that a log smooth scheme with a locally
free log structure has a smooth underlying scheme. This follows directly from
[Kat89, Theorem (3.5)]. Lemma 4.2(6) implies that U has the locally free log
structure along the boundary divisor A, hence U is smooth along A. Since
p, q are general, any A'-map in F is either an A'-conic or a reducible A'-map
described in Lemma 4.2. By Proposition 3.1, any A'-conic through p and ¢
is free. Combining with Lemma 4.2(4) and (5), it implies that F C U. In
particular, we have F = ev~!|y(p,q). Thus, the smoothness of U implies
that the morphism ev|y : U — X x X is smooth along the boundary divisor
parametrizing reducible A'-conics. By generic smoothness, we conclude that
F is smooth. In particular, the pair F' = (F, A) is log smooth. O

4.2. A lifting property in the transversal case. We pause here to
study the lifting of a special type of usual stable maps to stable log maps.
Here is a slightly general result that fits our need.

Let Z be a log smooth variety over C with a smooth boundary divisor D.
This means that the log structure Mz on Z is defined by

Mz(V):={h e '(Oy) | hly<p € Oy _p},

where V. C Z is an arbitrary open set in Zariski topology.

Proposition 4.4. Consider a family of genus zero usual stable maps f :
C — Z with two markings o1 and oo over an arbitrary base scheme S such
that:

(1) The family C — S is obtained by gluing two families of smooth ratio-
nal curves C; — S and Cy — S along the markings co; C C and
009 C QQ.
(2) Fach C; — S has two markings o; and co; fori=1,2.
(3) The restriction f|c, is a family of Al-curves over S intersecting D
transversally along co; for i =1,2.
Then there exists up to a unique isomorphism, a unique family of genus zero
minimal stable log maps f : C~'/S — Z such that:
(i) The underlying scheme of S is S.
(ii) The family of stable log maps has one contact marking oo, and two
other markings 01,09 with the trivial contact order.
(iii) The family of usual stable maps obtained by removing log structures
on f, Jorgetting the contact marking oo, and then stabilizing, is f.
Remark 4.5. One could modify the above statement by assuming that
C; — S and Cy — S are two families of smooth irreducible curves of genus
g1 > 0 and g2 > 0 respectively. Then the same proof as below would imply
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the existence of a unique family of minimal stable log maps f of genus g1 + go
with the properties (i), (ii), and (iii) as in Proposition 4.4. Since this general
result is not needed in this paper, we leave the verification to the readers who
are interested.

We divide the proof into the following two lemmas. We first prove the local
existence.

Lemma 4.6. With notation as in Proposition 4.4, the existence in Propo-
sition 4.4 holds locally over S.

Proof. Our construction here is similar to the case of [CZ16a, Proposition
2.2] but for a family of maps. We take a family of smooth rational curves
Cy — S with three markings co, oo}, and ooh. Such a family is necessarily
trivial, and we thus have C; & P! x S. We have a family of nodal rational
curves

-8
obtained by gluing C; with C via the identification of the markings
00; ool fori=1,2.

Now the underlying stable map f over S lifts uniquely to the underlying stable
map

(4.2.1) f:C' -z

over S by contracting the component C|,.

Consider the projectivized normal bundle P := Pp(Np,z © Op) with two
boundary divisors D_ and D corresponding to the normal bundles N /z
and Np,z respectively. Here Np,z is the normal bundle of D in Z. Consider
the expansion Z[1] obtained by gluing Z and PP via the identification D = D_.
We next want to lift f to a stable map f : C" — Z[1] such that

1 i

c, =1, fori=1.2,
(2) the compogition Cy, — P — D is compatible with ﬂQov
(3) f|Q0 : Cy — P is a family of a relative stable map tangent to D4
only along co with multiplicity 2 and intersecting D_ transversally
only along co; and cos.

Replacing S by a Zariski open subset, we may assume that the pullback
Ps = S xp P along co; — D is a trivial family of rational curves over S.
Note also that the required morphism i /\ ¢, factors through Pg with the cor-
responding tangency along D_ g := S xp D_ and D4 g := 5 xp D,. Since
Cy =P xS — Sis also a trivial family, to construct fCo’ it suffices to select

a meromorphic section on P! with two simple zeros along oo} and oo}, and
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a pole of order 2 along co. Such a meromorphic section clearly exists. This
yields the usual stable map f with the desired properties.

Finally, by [Kim09] (see also the construction of [CZ16a, Proposition 2.2]),
since the usual stable map f " intersects the boundary transversally along oo;,
it lifts to a unique log stable map f’ : ¢’ — Z[1] over a log scheme S in the
sense of [Kim09]. Here Z[1] is the log scheme with the underlying structure
Z[1], and the canonical log structure as in [Ols03], and S has underlying
structure S. Since there is a natural projection of log schemes Z[1] — Z,

composition of this projection with f " gives us the stable log map f as needed.
O

Lemma 4.7. The uniqueness in Proposition 4.4 holds.

Proof. 1t suffices to show the uniqueness locally. Shrinking S, we may
again assume base scheme S = Spec R is affine. It suffices to verify that the
lift constructed in Lemma 4.6 is unique.

Assume that we have two different liftings f; : C}/S1 — Z and fy :
C%/Sy — Z. We first notice that except for the freeness in (5), all other
statements in Lemma 4.2 apply to both fl and fg. In particular, the two lift-
ings fl and fg have the same underlying stable map (4.2.1) over S constructed
in the proof of Lemma 4.6.

We first compare the two stable log maps over the contracted component
Cy. Since the underlying morphism is uniquely determined by f, it remains
to study the morphisms on the level of log structures. Shrinking S, we may
assume that f*/\/lz\go is generated by a global section 6. By Lemma 4.2(6)
and further shrinking S, we may assume that Mg, is generated by a global
section e; for ¢ = 1,2. By choosing the generators appropriately, we may
assume that the morphism ff|gﬁ : fi*/\/lz|go — MC‘;|Q0 on the level of log
structures is given by the following;:

(4.2.2) f2(0) =e; +1logo, fori=1,2,

where o is a meromorphic function on C, with only poles along oo} and oo},
and second order zero along oco. Since f |Qi intersects D transversally, the
contact order at both nodes are equal to 1 [Chel4, Definition 3.2.6], hence o
has only simple poles along oo} and oo%.

We now focus on the node oco; of Ql for i = 1,2. Let Mgy and Mz,
be the canonical log structure on S and C associated to the family C = S.
Shrinking S again, we assume Mgy is generated by global sections a; and
ag corresponding to smoothing nodes co; and ooy respectively. By Lemma
4.2(7), the log curves C, — Sy and Cy — S5 are defined by the following
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morphisms of log structures respectively:

(4.2.3) Mgy — Mg, a; —e; +logu;, fori=12,
and
(4.2.4) Mg = Mg, a;+— es+logv;, fori=1,2,

where u;, v; € R* are some invertible elements.
Since f|¢, is an embedding of a family of A'-curves, the two sections f7(d)

and f3(8) are identified with the image of f*(exp(é)), where exp(6) € Op is
the image of §. This in particular means that we have a canonical identification

(4.2.5) 11(8) = f3(6)

along the node oco; for i = 1,2. A calculation combining (4.2.5) with (4.2.2),
(4.2.3) and (4.2.4) implies that

U; = V;.

We thus obtain an isomorphism of log structures Mg, — Mg, induced by
the correspondence e; — e; which fits in a commutative diagram

Msn

2N

M, M,

with the two skew arrows given by (4.2.3) and (4.2.3). This commutative
diagram induces an isomorphism of the two log curves C} — S; and C} — Ss.
In view of (4.2.2), this further induces an isomorphism of the two stable
log maps fl = fz. Such an isomorphism is canonical from the discussion
above. O

To prove Proposition 4.4, we may first construct the log lifts locally using
Lemma 4.6, then glue the local construction together using Lemma 4.7. This
proves the existence of lifting. The uniqueness follows from Lemma 4.7. [

4.3. Forgetful morphism to moduli of usual stable maps. Now con-
sider the moduli space of usual stable maps with two markings R, (X, 2«).
Consider the 2-evaluation morphism

(4.3.0) ev: Ry(X,20) » X x X

induced by the two markings. Given a pair of points (p, ¢) € X x X, denote by
FY{, , the fiber of (4.3.1) over (p, q). When there is no danger of confusion, we
will write F’ instead of E'(p,q). Denote by A’ € F’ the locus parameterizing
maps with reducible domain curves. Recall that
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Lemma 4.8 ([dJS06, Lemma 5.1]). For a general choice of (p,q), the
scheme F' is smooth with a smooth divisor A’.
We then consider the forgetful morphism

D A (X, 20) = Ry(X, 20x)

obtained by sending a stable log map to its underlying stable map, forgetting
the marking co with nontrivial contact order, then stabilizing. This induces
a forgetful morphism of the fibers

(4.3.2) ¢:F— F.

Proposition 4.9. Fizing a general choice of (p,q), the forgetful morphism
¢ is an embedding of a closed sub-scheme. Furthermore, it induces an embed-
ding of closed sub-scheme A — A,

Proof. Note that if a usual stable map intersects the boundary of X at a
single smooth point of the source curve, then it lifts to an A'-map in a unique
way. Thus, the morphism F ~ A — F’' ~ A’ is an embedding. It remains to
consider around the locus of stable log maps with reducible domain curves.

By Assumption 4.1 and Proposition 4.4, the forgetful morphism ¢ is injec-
tive on the level of closed points. Since by our assumptions both F and F’
are smooth, it remains to verify the injectivity of the tangent map.

We fix a minimal stable log map f : C/S — X over a geometric point
S = SpecC € F. It suffices to consider the case that C is reducible, and
denote by f': C’/S" — X the image of f in F’.

Consider the morphism between tangent spaces do(s) : Tk 5] — Trr 11
Recall that for any smooth variety Y, the tangent bundle Ty can be identified
with Hom(Spec C[e]/(€?),Y). Now the injectivity of the tangent map follows
from applying the uniqueness of Proposition 4.4 to the trivial families over
Sle] := Spec Cle]/(€2). O

4.4. Pullback of the boundary divisor. Denote by F’ the log scheme
with underlying structure F’, and log structure given by the canonical one
associated to the underlying curves; see [Kat00, Ols07]. We note that

Lemma 4.10. Fiz a general choice of (p,q). The log smooth scheme F’
has its log structure given by the boundary divisor A’.

Proof. Since the locus of F’ with reducible domain curves form the smooth
divisor A’, to show that the log structure of F’ is the same as the log struc-
ture given by the smooth divisor A’, it suffices to verify F” is log smooth.
Thus, it suffices to verify F’ — Mg 2 is log smooth, where M o is the Artin
stack of genus zero pre-stable curves with two markings equipped with the
canonical log structure of curves. Since the morphism F' — 9o is strict,
the log smoothness is equivalent to the smoothness of the underlying maps

Licensed to Boston Coll. Prepared on Fri Jul 3 12:33:54 EDT 2020 for download from IP 136.167.36.233.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



STRONG APPROXIMATION OVER FUNCTION FIELDS 719

F - M, ». This follows from the fact that £’ parameterizes free usual stable
maps. (I

Proposition 4.11. Fiz a general choice of (p,q). There is a canonical
morphism of log schemes

(4.4.1) ¢:F — F'

compatible with ¢ in (4.3.2). Furthermore, ¢*[A'] =2 [A].

Proof. Now consider a family of minimal stable log maps f : C/S — X
corresponding to an S-point of F. Let f : C' — X be the underlying stable
map over S, and i1 : C; — X be the image of f in F’. Denote by C* — S*
and C’g — Sg the family of log curves over C — S and C; — S with the
canonical log structure. We first notice that there is a canonical commutative
diagram of log schemes

(4.4.2) ct—— ¢t

||

St — 6

To see this, we may shrink S and put two auxiliary markings on the non-
contracted component of C such that C' — S is stable, and the components
contracted by f have no auxiliary markings.

Indeed, we have a commutative diagram of log stacks

(4.4.3) Cos — Coa

.

M075 — M074

where Cy , = My, is the universal family of genus zero stable curves with the
canonical log structure. Here the horizontal arrows are obtained by forgetting
a marking, and we view Mg s as the universal curve over Mg 4. Thus, the
diagram (4.4.2) is induced by first pulling back (4.4.3), then removing the
auxiliary markings.

Denote by F* the log scheme with underlying structure F, and log structure
given by the canonical one of the universal curves. The above argument
implies that (4.4.1) is given by the composition

Fo Ft S

where the first arrow removes the minimal log structure and installs the canon-
ical log structure from the curves, and the second one is given by (4.4.2). This
is compatible with (4.3.2).
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Finally, to compute the pullback of A’, we consider the morphism F* — F”.
Since the boundary A parameterizes curves with two nodes, we have M g A
is locally constant with fibers isomorphic to N2. In view of (4.4.3), fiberwise
over A, the morphism Q*MFI — M gy is given by

N — N2 1+ (1,1).

Combining with Lemma 4.2, we have the morphism Q*Mp/ — M over each
geometric point of A is given by

N—- N1~ 2.

Since both F and F’ are log smooth with smooth boundary divisors A and
A respectively, this implies that ¢*[A'] =2 - [A]. O

4.5. Identifying the boundary A as a complete intersection. Fix-
ing a general (p,q), the geometry of the pair (F',A’) has been studied in
[Pan13]. Let us recall the basic construction. Let £,, be the line through p, g,
and let

o: F —Ppr?

be the morphism sending each conic to the plane containing it. We may
assume that P"~2 is the intersection of the tangent hyperplanes 7, X and
T,X. Consider the following diagram:

A——F

Proposition 4.12. The composition

(4.5.1) A2y A F2 pr-2 cpr

identifies A as a complete intersection in P™ of type
(4.5.2) (1,1,---,dy — 1,dy — 1,dy,--- ,1,1,--- ;d. — 1,d. — 1,d,, 1).

Proof. By [Pan13, Proposition 3.3], the morphism ¢ : F' — P"~2 is a closed
embedding. It follows from Proposition 4.9 that the composition (4.5.1) is a
closed embedding.

The complete intersection type follows from the Al-line case, and Proposi-
tion 4.4. Indeed, we define the functor

R : Sche — Sets
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parametrizing families of reducible conics as in the hypothesis of Proposition
4.4. By Proposition 4.4, the functor R is isomorphic to the functor associated
to A under the map ¢.

Since every T-point of R is uniquely determined by the node of the cor-
responding family of conics, R is isomorphic to the scheme parametrizing
the nodes of reducible conics. By Proposition 3.4, the locus of the boundary
marking of Al-lines through p (or ¢) is a complete intersection of type

(17"'adla"'vla"'vdwl)'

After combining these polynomials, there is a redundancy (dy,-- - ,d., 1) say-
ing that r lies on D. Now the proposition follows. O

4.6. Degree of A'. Let M C Hilb***1(P") be the moduli space of conics
in P™ passing through p, ¢. Let P"~2 be any projective subspace in P* which
does not intersect £,,. We have a canonical morphism

h:M—P"?

which maps a conic to the plane it expands. It follows that M is a P3-bundle
over P"~2 as the conics need to pass through two general points p,q. Let &
be the relative O(1)-bundle of h corresponding to conics containing l,,.
Lemma 4.13. Let M, be the open subset of M parameterizing conics which
do not contain the line £p,. Let A(My) C M, be the closed subset of reducible
conics. Let A(M) be the closure of A(Mp) in M. Then we have the following:

(1) M, is an A3-bundle over P"2.
(2) A(M) is a smooth quadric surface bundle over P"~2.
(3) A(M) is linearly equivalent to 2k + 2h*(Opn-2(1)). In particular,
A(My) as a divisor in M is linearly equivalent to 2h*(Opn-2(1)).
Proof. The first two statements follow from computation of plane conics.
Indeed, fix a plane in P containing p,q. Let p=[0:1:0] and ¢ =1[0:0:1].
A plane conic through p and ¢ is of the form

alxz + asxy + azxz + agyz = 0.

It is reducible if and only if either a4 = 0 or ajaq4 = asas. The first case cor-
responds to the locus parameterizing conics containing ¢4, while the second
case does not. This proves statements (1) and (2).

From the above calculation, the divisor A(M) is linearly equivalent to
2k 4 ¢ - h*(Opn-2(1)) for some coefficient ¢. To determine ¢, we construct
a testing curve, and check its intersection number with A(M) as follows.
We pick a general line L on P"~2 and a smooth quadric hypersurface @ in
P™ containing p,q but not £,,. For any point ¢ on L, the plane Hpy = P?
spanned by the three points p,q, and ¢ intersects @ at a conic C; through
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p,q. Furthermore, P := {C}} is a pencil of conics lying on the quadric surface
which is the intersection of ) and the span of £,, and L. Therefore, there are
two reducible conics in this pencil.

Since ) does not contain ¢,,, the pencil P lies in M. In particular,
P.x = 0. On the other hand, we have P.h*(Opn-2(1)) = 1 by projection
formula. Hence we have P.A(M) = k.

To finish the proof, it suffices to show that P and A(M) intersect transver-
sally. Let Cy, be a singular fiber of P. Since the pencil {C;} gives a smoothing
of its singular fibers with the smooth total space, the first order deformation
of P at C}, lies outside the tangent space of A(M). O

Proposition 4.14. The smooth divisor A" C F' is cut out by a homoge-
neous polynomial of degree two.

Proof. This is proved in [Panl3, Proposition 5.14]. Here we present a
simple proof. Consider the commutative diagram

P —
[N
A(Mp) —— My —"s P2

where the left square is Cartesian. Since A(Mp) = h*(Opn-2(2)),sois A. O
4.7. Proof of Theorem 1.8.
Proposition 4.15. The smooth divisor A C F is cut out by a linear form

in P72,
Proof. This follows from Propositions 4.11 and 4.14. O
Proof of Theorem 1.8. By [Panl3, Proposition 3.3], Propositions 4.12 and
4.15, we have:

e [ C P2 C P" is a smooth projective variety.
o A=W CP" 2 CP"is a complete intersection of type

(1717"' 7d1_17d1_17d17"' 71717"' >dc_17dc_1>d671)‘

e A is cut out by a linear form on F.

Now the theorem follows from [Panl3, Proposition 6.1]. O

5. Proof of Theorem 1.3 and its corollaries

Proof of Theorem 1.3. Since affine spaces satisfy strong approximation
[Ros02, Theorem 6.13], it remains to prove under Assumption 4.1. By Theo-
rem 1.8 and the hypothesis on the degree, the general fiber of the evaluation
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morphism
ev: Ay(X,20) > X x X

is a smooth Fano complete intersection. Therefore, the general fiber is ra-
tionally connected by [Cam92, KMM92]. On the other hand, we know that
weak approximation holds for X [dJS06, Has10]. Now the theorem follows
from Theorem 1.6. O

Proof of Corollary 1.4. For any smooth complete intersection pair X =
(X, D) in P™ with coordinate [zg : - - : x,], we assume that

XZ{FIZFQZZFCZO}

where deg F; = d; and the boundary D = {G = 0} where degG = k. The
universal cover of X \. D can be constructed in P"*! with the coordinate
[xo : -+ : 2y : y] by taking the complete intersection

with the boundary divisor
(5.0.2) E = {y=0}.

We check that (Y, E) is a smooth complete intersection pair in P"*! of type
(dy,--+ ,de, k;1). Furthermore the natural projection to P" defined by y =0
gives a cyclic branched cover of degree k over X. This yields the universal
cover Y N\ E — X \ D. Now the corollary follows from strong approximation
on Y \ FE by Theorem 1.3. O

Proof of Corollary 1.5. Let Y = (Y, E) be the universal cover constructed
in (5.0.1) and (5.0.2). For each given point z; € X°, i = 1,--- ,m, we may
choose a lift of y; € Y°. Since strong approximation holds for the constant
family 7 : Y x P! — P! away from S = {oo} by Corollary 1.4, there exists an
integral section curve C passing through (y1,t1), -+, (Ym,tm), where ¢;’s are
distinct points on P! — {co}. The projection p;(C) gives an Al-curve on Y
passing through 1, , 4. Composing it with the map from Y to X gives
the desired Al-curve. O
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