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PRINCIPAL BOUNDARY OF MODULI SPACES OF

ABELIAN AND QUADRATIC DIFFERENTIALS

by Dawei CHEN & Qile CHEN (*)

Abstract. — The seminal work of Eskin–Masur–Zorich described the prin-
cipal boundary of moduli spaces of abelian differentials that parameterizes flat
surfaces with a prescribed generic configuration of short parallel saddle connec-
tions. In this paper we describe the principal boundary for each configuration in
terms of twisted differentials over Deligne–Mumford pointed stable curves. We also
describe similarly the principal boundary of moduli spaces of quadratic differentials
originally studied by Masur–Zorich. Our main technique is the flat geometric de-
generation and smoothing developed by Bainbridge–Chen–Gendron–Grushevsky–
Möller.

Résumé. — Le travail fondateur d’Eskin–Masur–Zorich a décrit la limite prin-
cipale des espaces de modules des différentielles abéliennes qui paramètre les sur-
faces plates possédant une configuration générique de petites connexions de selles
parallèles prescrite. Dans cet article, nous décrivons la limite principale pour chaque
configuration en terme de différentielles entrelacées sur les courbes stables pointées
de Deligne–Mumford. Nous décrivons également la limite principale des espaces de
modules des différentielles quadratiques étudiée à l’origine par Masur–Zorich. Nos
principaux outils sont la dégénérescence géométrique plate et le lissage développés
par Bainbridge–Chen–Gendron–Grushevsky–Möller.

1. Introduction

Many questions about Riemann surfaces are related to study their flat

structures induced from abelian differentials, where the zeros of differentials

correspond to the saddle points of flat surfaces. Loci of abelian differentials

with prescribed type of zeros form a natural stratification of the moduli

space of abelian differentials. These strata have fascinating geometry and

can be applied to study dynamics on flat surfaces.
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Given a configuration of saddle connections for a stratum of flat surfaces,

Veech and Eskin–Masur ([11, 23]) showed that the number of collections of

saddle connections with bounded lengths has quadratic asymptotic growth,

whose leading coefficient is called the Siegel–Veech constant for this config-

uration. Eskin–Masur–Zorich ([12]) gave a complete description of all pos-

sible configurations of parallel saddle connections on a generic flat surface.

They further provided a recursive method to calculate the corresponding

Siegel–Veech constants. To perform this calculation, a key step is to de-

scribe the principal boundary whose tubular neighborhood parameterizes

flat surfaces with short parallel saddle connections for a given configuration.

As remarked in [12], flat surfaces contained in the Eskin–Masur–Zorich

principal boundary can be disconnected and have total genus smaller than

that of the original stratum. Therefore, as the underlying complex curves

degenerate by shrinking the short saddle connections, the Eskin–Masur–

Zorich principal boundary does not directly imply the limit objects from

the viewpoint of algebraic geometry. In this paper we solve this problem

by describing the principal boundary in the setting of the strata compact-

ification [4] and consequently in the Deligne–Mumford compactification.

Main Result

For each configuration we give a complete description for the principal

boundary in terms of twisted differentials over pointed stable curves.

This result is a combination of Theorems 2.1 and 3.4. Along the way

we deduce some interesting consequences about meromorphic differentials

on P
1 that admit the same configuration (see Propositions 2.3 and 3.8).

Moreover, when a stratum contains connected components due to spin or

hyperelliptic structures ([19]), Eskin–Masur–Zorich ([12]) described how to

distinguish these structures nearby the principal boundary via an analytic

approach. Here we provide algebraic proofs for the distinction of spin and

hyperelliptic structures in the principal boundary under our setting (see

Sections 4.6 and 4.7 for related results).

Masur–Zorich ([20]) described similarly the principal boundary of strata

of quadratic differentials. Our method can also give a description of the

principal boundary in terms of twisted quadratic differentials in the sense

of [3] (see Section 5 for details).

Twisted differentials play an important role in our description of the

principal boundary, so we briefly recall their definition (see [4] for more

details). Given a zero type µ = (m1, . . . , mn), a twisted differential η of
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type µ on an n-pointed stable curve (C, σ1, . . . , σn) is a collection of (pos-

sibly meromorphic) differentials ηi on each irreducible component Ci of C,

satisfying the following conditions:

(0) η has no zeros or poles away from the nodes and markings of C and

η has the prescribed zero order mi at each marking σi.

(1) If a node q joins two components C1 and C2, then ordq η1+ordq η2 =

−2.

(2) If ordq η1 = ordq η2 = −1, then Resq η1 + Resq η2 = 0.

(3) If C1 and C2 intersect at k nodes q1, . . . , qk, then ordqi
η1 − ordqi

η2

are either all positive, or all negative, or all equal to zero for i =

1, . . . , k.

Condition (3) provides a partial order between irreducible components

that are not disjoint. If one expands it to a full order between all irreducible

components of C, then there is an extra global residue condition which

governs when such twisted differentials are limits of abelian differentials of

type µ. A construction of the moduli space of twisted differentials can be

found in [2].

By using η on all maximum components and forgetting its scales on

components of smaller order, [4] describes a strata compactification in the

Hodge bundle over the Deligne–Mumford moduli space Mg,n. As remarked

in [4], if one forgets η and only keeps track of the underlying pointed stable

curve (C, σ1, . . . , σn), it thus gives the (projectivized) strata compactifica-

tion in Mg,n. Hence our description of the principal boundary in terms of

twisted differentials determines the corresponding boundary in the Deligne–

Mumford compactification. To illustrate our results, we will often draw such

stable curves in the Deligne–Mumford boundary.

For an introduction to flat surfaces and related topics, we refer to the

surveys [8, 24, 25]. Besides [4], there are several other strata compacti-

fications, see [13] for an algebraic viewpoint, [9, 16] for a log geometric

viewpoint and [21] for a flat geometric viewpoint. Algebraic distinctions of

spin and hyperelliptic structures in the boundary of strata compactifica-

tions are also discussed in [7, 9, 14].

This paper is organized as follows. In Sections 2 and 3 we describe the

principal boundary of type I and of type II, respectively, following the

roadmap of [12]. In Section 4 we provide algebraic arguments for distin-

guishing spin and hyperelliptic structures in the principal boundary. Fi-

nally in Section 5 we explain how one can describe the principal boundary

of strata of quadratic differentials by using twisted quadratic differentials.
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Throughout the paper we also provide a number of examples and figures

to help the reader quickly grasp the main ideas.

Notation

We denote by µ the singularity type of differentials, by H(µ) the stratum

of abelian differentials of type µ and by Q(µ) the stratum of quadratic

differentials of type µ. An n-pointed stable curve is generally denoted by

(C, σ1, . . . , σn). We use (C, η) to denote a twisted differential on C. The

underlying divisor of a differential η is denoted by (η). Configurations of

saddle connections are denoted by C and all configurations considered in

this paper are admissible in the sense of [12].

Acknowledgements. We thank Matt Bainbridge, Alex Eskin, Quentin

Gendron, Sam Grushevsky, Martin Möller and Anton Zorich for inspiring

discussions on related topics. We also thank the referee for carefully reading

the paper and many useful comments.

2. Principal boundary of type I

2.1. Configurations of type I: saddle connections joining distinct

zeros

Let C be a flat surface in H(µ) with two chosen zeros σ1 and σ2 of order

m1 and m2, respectively. Suppose C has precisely p homologous saddle

connections γ1, . . . , γp joining σ1 and σ2 such that the following conditions

hold:

• All saddle connections γi are oriented from σ1 to σ2 with identical

holonomy vectors.

• The cyclic order of γ1, . . . , γp at σ1 is clockwise.

• The angle between γi and γi+1 is 2π(a′
i + 1) at σ1 and 2π(a′′

i + 1)

at σ2, where a′
i, a′′

i > 0.

Then we say that C has a configuration of type C = (m1, m2, {a′
i, a′′

i }p
i=1).

We emphasis here that this configuration C is defined with the two chosen

zeros σ1 and σ2. If p = 1, we also denote the configuration by C = (m1, m2)

for simplicity. Since the cone angle at σi is 2π(mi + 1) for i = 1, 2, we

necessarily have

(2.1)

p∑

i=1

(a′
i + 1) = m1 + 1 and

p∑

i=1

(a′′
i + 1) = m2 + 1.
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2.2. Graphs of configurations

Given two fixed zeros σ1 and σ2 and a configuration C = (m1, m2,

{a′
i, a′′

i }p
i=1) as in the previous section, to describe the dual graphs of the

underlying nodal curves in the principal boundary of twisted differentials,

we introduce the configuration graph G(C) as follows:

(1) The set of vertices is {vR, v1, · · · , vp}.

(2) The set of edges is {l1, · · · , lp}, where each li joins vi and vR.

(3) We associate to vR the subset of markings LR = {σ1, σ2} and to

each vi a subset of markings Li ⊂ {σj} such that LR t L1 t · · · t Lp

is a partition of {σ1, . . . , σn}.

(4) We associate to each vi a positive integer g(vi) such that
p∑

i=1

g(vi) = g and
∑

σj∈Li

mj + (a′
i + a′′

i ) = 2g(vi) − 2.

Figure 2.1 shows a pointed nodal curve whose dual graph is of type G(C):

R

C1

Cp

σ1

σ2

L1

Lp

Figure 2.1. A curve with dual graph of type C.

2.3. The principal boundary of type I

Denote by ∆(µ, C) the space of twisted differentials η satisfying the fol-

lowing conditions:

• The underlying dual graph of η is given by G(C), with nodes qi and

components Ci corresponding to li and vi, respectively.

• The component R corresponding to the vertex vR is isomorphic to

P
1 and contains only σ1 and σ2 among all the markings.

• Each Ci has markings labeled by Li and has genus equal to g(vi).

• For each i = 1, . . . , p, ordqi
ηCi

= a′
i+a′′

i and ordqi
ηR = −a′

i−a′′
i −2.
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• For each i = 1, . . . , p, Resqi
ηR = 0.

• ηR admits the configuration C of saddle connections from σ1 to σ2.

Recall that the twisted differential η defines a flat structure on R (up to

scale). Thus it makes sense to talk about the configuration C on R. We say

that ∆(µ, C) is the principal boundary associated to the configuration C.

Suppose Cε ∈ H(µ) has the configuration C = (m1, m2, {a′
i, a′′

i }p
i=1) such

that the p homologous saddle connections γ1, . . . , γp of C have length at

most ε. We want to determine the limit twisted differential as the length

of all γi shrinks to zero. To avoid further degeneration, suppose that Cε

does not have any other saddle connections shorter than 3ε (the locus of

such Cε is called the thick part of the configuration C in [12]). Take a small

disk under the flat metric such that it contains σ1, σ2, all γi, and no other

zeros (see [12, Figure 5]). Within this disk, shrink γi to zero while keeping

the configuration C, such that all other periods become arbitrarily large

compared to γi.

Theorem 2.1. — The limit twisted differential of Cε as γi → 0 is

contained in ∆(µ, C). Conversely, twisted differentials in ∆(µ, C) can be

smoothed to of type Cε.

Proof. — Since γi and γi+1 are homologous and next to each other, they

bound a surface Cε
i with γi and γi+1 as boundary (see the lower right

illustration of [12, Figure 5] where Cε
i is denoted by Si). The inner angle

between γi and γi+1 at σ1 is 2π(a′
i + 1) and at σ2 is 2π(a′′

i + 1). Shrinking

the γj to zero under the flat metric, the limit of Cε
i forms a flat surface

Ci, and denote by qi the limit position of σ1 and σ2 in Ci. This shrinking

operation is the inverse of breaking up a zero, see [12, Figure 3], which

implies that the cone angle at qi is 2π(a′
i + a′′

i + 1), hence Ci has a zero of

order a′
i + a′′

i at qi.

On the other hand, instead of shrinking the γj , up to scale it amounts

to expanding the other periods of Cε
i arbitrarily long compared to the γj .

Since a small neighborhood Ni enclosing both γi and γi+1 in Cε
i consists

of 2(a′
i + a′′

i + 1) metric half-disks, under the expanding operation they

turn into 2(a′
i + a′′

i + 1) metric half-planes that form the basic domain

decomposition for a pole of order a′
i + a′′

i + 2 in the sense of [6]. Moreover,

the boundary loop of Ni corresponds to the vanishing cycle around qi in

the shrinking operation, which implies that the resulting pole will be glued

to qi as a node in the limit stable curve, hence we still use qi to denote the

pole. See Figure 2.2 for the case p = 2 and m1 = m2 = 0.
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γ1γ1 γ2γ2L+

1 R+

1
L−

1 R−

1
L+

2 R+

2 L−

2
R−

2

Figure 2.2. The flat geometric neighborhood of γ1 and γ2 for the case

p = 2 and m1 = m2 = 0. Here we identify L−
1 = L+

2 , L+
1 = L−

2 ,

R+
1 = R−

2 , and R−
1 = R+

2 . As γ1, γ2 → 0, the middle two half-disks

form a neighborhood of an ordinary point and the remaining two half-

disks form a neighborhood of another ordinary point. Alternatively as

L±
i and R±

j → ∞, the middle two half-planes form a neighborhood of

a double pole and the remaining two half-planes form a neighborhood

of another double pole. Both poles have zero residue.

Let (R, ηR) be the limit meromorphic differential out of the expanding

operation. We thus conclude that

(ηR) = m1σ1 + m2σ2 −

p∑

i=1

(a′
i + a′′

i + 2)qi.

By the relation (2.1), the genus of R is zero, hence R ∼= P
1. Since qi = Ci∩R

is a separating node, it follows from the global residue condition of [4] that

Resqi
ηR = 0. Finally, in the expanding process the saddle connections γi

are all fixed, hence the configuration C is preserved in the limit meromorphic

differential ηR. Summarizing the above discussion, we see that the limit

twisted differential is parameterized by ∆(µ, C).

The other part of the claim follows from the flat geometric smoothing

of [4], as twisted differentials in ∆(µ, C) satisfy the global residue condition

and have the desired configuration of saddle connections. �

Remark 2.2. — For the purpose of calculating Siegel–Veech constants,

the Eskin–Masur–Zorich principal boundary only takes into account the

non-degenerate components Ci and discards the degenerate rational com-

ponent R, though it is quite visible — for instance, R can be seen as the

central sphere in [12, Figure 5].

2.4. Meromorphic differentials of type I on P
1

Recall that for a twisted differential η in ∆(µ, C), its restriction ηR on

the component R ∼= P
1 has two zeros and p poles, where the residue at
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each pole is zero. Up to scale, ηR is uniquely determined by the zeros and

poles. In this section we study the locus of P
1 marked at such zeros and

poles.

Given integers m1, m2 > 1 and n1, . . . , np > 2 with m1 +m2 −
∑p

i=1 ni =

−2, let Z ⊂ M0,p+2 be the locus of pointed rational curves (P1, σ1, σ2, q1,

. . . , qp) such that there exists a differential η0 on P
1 satisfying that

(η0) = m1σ1 + m2σ2 −

p∑

i=1

niqi and Resqi
η0 = 0

for each i = 1, . . . , p.

For a given (admissible) configuration C = (m1, m2, {a′
i, a′′

i }p
i=1), consider

the subset Z(C) ⊂ Z parameterizing differentials η0 on P
1 (up to scale) that

admit a configuration of type C.

Proposition 2.3. — Z is a union of Z(C) for all possible (admissible)

configuration C and each Z(C) consists of a single point.

Proof. — We provide a constructive proof using the flat geometry of

meromorphic differentials. Let us make some observation first. Suppose η0

is a differential on P
1 whose underlying divisor corresponds to a point in

Z. Since η0 has zero residue at every pole, for any closed path γ that does

not contain a pole of η0, the Residue Theorem says that
∫

γ

η0 = 0.

In particular, if α and β are two saddle connections joining σ1 to σ2, then

α − β represents a closed path on P
1, hence

∫

α

η0 =

∫

β

η0,

and α and β necessarily have the same holonomy. It also implies that η0 has

no self saddle connections. Collect the saddle connections from σ1 to σ2,

list them clockwise at σ1, and count the angles between two nearby ones.

Since the saddle connections have the same holonomy, the angles between

them are multiples of 2π, and hence they give rise to a configuration C. It

implies that the underlying divisor of η0 corresponds to a point in Z(C).

Therefore, Z is a union of Z(C).

Now suppose η0 admits a configuration of type C = (m1, m2, {a′
i, a′′

i }p
i=1),

i.e., up to scale it corresponds to a point in Z(C). Recall that σ1, σ2, and

qi are the zeros and poles of order m1, m2, and a′
i + a′′

i + 2, respectively,

where i = 1, . . . , p, and γ1, . . . , γp are the saddle connections joining σ1 to

σ2 such that the angle between γi and γi+1 in the clockwise orientation at
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σ1 is 2π(a′
i +1), and at σ2 is 2π(a′′

i +1). By the preceding paragraph, there

are no other saddle connections between σ1 and σ2.

Rescale η0 such that all the γi have holonomy equal to 1, that is, they

are in horizontal, positive direction, and of length 1. Cut the flat surface η0

along all horizontal directions through σ1 and σ2, such that η0 is decom-

posed into a union of half-planes as basic domains in the sense of [6]. These

basic domains are of two types according to their boundary half-lines and

saddle connections. The boundary of the basic domains of the first type

contains exactly one of σ1 and σ2 that emanates two half-lines to infin-

ity on both sides. The boundary of the basic domains of the second type,

from left to right, consists of a half-line ending at σ1, followed by a saddle

connection γi, and then a half-line emanating for σ2.

Since the angle between γi and γi+1 is given for each i, the configuration

C determines uniquely how these basic domains are glued together to form

η0. More precisely, start from an upper half-plane S+
1 of the second type

with two boundary half-lines L+
1 to the left and R+

1 to the right, joined by

the saddle connection γ1. Turn around σ1 in the clockwise orientation. Then

we will see a lower half-plane S−
1 of the second type with two boundary

half-lines L−
1 and R−

1 joined by γ1. If a′
1 = 0, i.e., if the angle between γ1

and γ2 in the clockwise orientation is 2π, then next we will see an upper

half-plane S+
2 of the second type with two boundary half-lines L+

2 and R+
2

joined by γ2, which is glued to S−
1 by identifying L+

2 with L−
1 . See Figure 2.2

above for an illustration of this case.

On the other hand if a′
1 > 0, we will see a′

1 pairs of upper and lower

half-planes of the first type containing only σ1 in their boundary, and then

followed by the upper half-plane of the second type containing γ2 in the

boundary. Repeat this process for each pair γi and γi+1 consecutively, and

also use the angle between γi and γi+1 at σ2 to determine the identification

of the R±
i -edges emanated from σ2. We conclude that the gluing pattern

of these half-planes is uniquely determined by the configuration C.

Finally, since the angle between γi and γi+1 at σ1 is 2π(a′
i + 1) and at

σ2 is 2π(a′′
i + 1), it determines precisely a′

i + a′′
i + 1 pairs of upper and

lower half-planes that share the same point at infinity. In other words, they

form a flat geometric neighborhood of a pole with order a′
i + a′′

i + 2, which

is the desired pole order of qi for i = 1, . . . , p. We have thus verified that

Z(C) is nonempty and all differentials up to scale parameterized by Z(C)

have the same basic domain decomposition, hence Z(C) consists of a single

point. �
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Example 2.4. — Consider the case m1 = 1, m2 = 1, n1 = 2 and n2 = 2.

The only admissible configuration is

a′
1 = a′′

1 = a′
2 = a′′

2 = 0,

hence Z consists of a single point. As a cross check, take σ1 = 1, q1 = 0,

and q2 = ∞ in P
1, and let z be the affine coordinate. Then up to scale η0

can be written as
(z − 1)(z − σ2)

z2
dz.

It is easy to see that Resqi
η0 = 0 if and only if σ2 = −1.

Example 2.5. — Consider the case m1 = 1, m2 = 3 and n1 = n2 = n3 =

2. There do not exist nonnegative integers a′
1, a′

2, a′
3 satisfying that

(a′
1 + 1) + (a′

2 + 1) + (a′
3 + 1) = m1 + 1 = 2,

because the left-hand side is at least 3. Since there is no admissible config-

uration, we conclude that Z is empty. As a cross check, let q1 = 0, q2 = 1,

and q3 = ∞. Up to scale η0 can be written as

(z − σ1)(z − σ2)3

z2(z − 1)2
dz.

One can directly verify that there are no σ1, σ2 ∈ P
1 \ {0, 1, ∞} such that

Resqi
η0 = 0.

3. Principal boundary of type II

3.1. Configurations of type II: saddle connections joining a zero

to itself

Let C be a flat surface in H(µ). Suppose C has precisely m homolo-

gous closed saddle connections γ1, . . . , γm, each joining a zero to itself. Let

L ⊂ {1, . . . , m} be an index subset such that the curves γl for l ∈ L bound

q cylinders. After removing the cylinders along with all the γk, the remain-

ing part in C splits into p = m − q disjoint surfaces C1, . . . , Cp, where the

boundary of the closure Ck of each Ck consists of two closed saddle connec-

tions αk and βk. These surfaces are glued together in a cyclic order to form

C. More precisely, each Ck is connected to Ck+1 by either identifying αk

with βk+1 (as some γi in C) or inserting a metric cylinder with boundary

αk and βk+1. The sum of genera of the Ck is g−1, because the cyclic gluing

procedure creates a central handle, hence it adds an extra one to the total

genus (see [12, Figure 7]).
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There are two types of the surfaces Ck according to their boundary com-

ponents. If the boundary saddle connections αi and βi of Ci are disjoint,

we say that Ci has a pair of holes boundary. In this case αi contains a

single zero zi with cone angle (2ai + 3)π inside Ci, and βi contains a single

zero wi with cone angle (2bi + 3)π inside Ci, where ai, bi > 0. We also take

into account the special case m = 1, i.e., when we cut C along γ1, we get

only one surface C1 with two disjoint boundary components α1 and β1. In

this case z1 is identified with w1 in C, and we still say that C1 has a pair

of holes boundary.

For the remaining case, if αj and βj form a connected component for the

boundary of Cj , we say that Cj has a figure eight boundary. In this case

αj and βj contain the same zero zj . Denote by 2(c′
j + 1)π and 2(c′′

j + 1)π

the two angles bounded by αj and βj inside Cj , where c′
j , c′′

j > 0, and let

cj = c′
j + c′′

j .

In summary, the configuration considered above consists of the data

(L, {ai, bi}, {c′
j , c′′

j }).

Conversely, given the surfaces Ck along with some metric cylinders, lo-

cal gluing patterns can create zeros of the following three types (see [12,

Figure 12] and [5, Figures 6-8]):

(i) A cylinder, followed by k > 1 surfaces C1, . . . , Ck, each of genus

gi > 1 with a figure eight boundary, followed by a cylinder. The

total angle at the newborn zero is

π +

k∑

i=1

(2c′
i + 2c′′

i + 4)π + π,

hence its zero order is
k∑

i=1

(ci + 2).

(ii) A cylinder, followed by k > 0 surfaces Ci, each of genus gi > 1

with a figure eight boundary, followed by a surface Ck+1 of genus

gk+1 > 1 with a pair of holes boundary. The total angle at the

newborn zero is

π +

k∑

i=1

(2c′
i + 2c′′

i + 4)π + (2bk+1 + 3)π,

hence its zero order is
k∑

i=1

(ci + 2) + (bk+1 + 1).
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(iii) A surface C0 of genus g0 > 1 with a pair of holes boundary, followed

by k > 0 surfaces Ci, each of genus gi > 1 with a figure eight

boundary, followed by a surface Ck+1 of genus gk+1 > 1 with a pair

of holes boundary. The total angle at the newborn zero is

(2a0 + 3)π +

k∑

i=1

(2c′
i + 2c′′

i + 4)π + (2bk+1 + 3)π,

hence its zero order is
k∑

i=1

(ci + 2) + (a0 + 1) + (bk+1 + 1).

For example, the flat surface in [12, Figure 7] is constructed as follows: S1

with a pair of holes boundary, followed by S2 with a pair of holes boundary,

then a cylinder, followed by S3 with a figure eight boundary, then another

cylinder, followed by S4 with a figure eight boundary, and finally back to S1.

3.2. The principal boundary of type II

Suppose Cε ∈ H(µ) has the configuration C = (L, {ai, bi}, {c′
j , c′′

j }) with

the m homologous saddle connections γ1, . . . , γm of length at most ε. More-

over, suppose that Cε does not have any other saddle connections shorter

than 3ε. As before, we degenerate Cε by shrinking γi to zero while keeping

the configuration, such that the ratio of any other period to γi becomes ar-

bitrarily large. Let ∆(µ, C) be the space of twisted differentials that arise as

limits of such a degeneration process. Recall the three types of gluing pat-

terns and newborn zeros in the preceding section. We will analyze the types

of their degeneration as building blocks to describe twisted differentials in

∆(µ, C).

For the convenience of describing the degeneration, we view a cylinder

as a union of two half-cylinders by truncating it in the middle. Then as

its height tends to be arbitrarily large compared to the width, each half-

cylinder becomes a half-infinite cylinder, which represents a flat geometric

neighborhood of a simple pole. Moreover, the two newborn simple poles

have opposite residues, because the two half-infinite cylinders have the

same width with opposite orientations.

Proposition 3.1. — Consider a block of surfaces of type (i) in Cε,

that is, a half-cylinder, followed by k > 1 surfaces Cε
1 , . . . , Cε

k, each of

genus gi > 1 with a figure eight boundary, followed by a half-cylinder. Let

σ be the newborn zero of order
∑k

i=1(ci + 2). As ε → 0, we have
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• The limit differential consists of k disjoint surfaces C1, . . . , Ck at-

tached to a component R ∼= P
1 at the nodes q1, . . . , qk, respectively.

• R contains only σ among all the markings.

• For each i = 1, . . . , k, ordqi
ηCi

= ci and ordqi
ηR = −ci − 2.

• For each i = 1, . . . , k, Resqi
ηR = 0.

• ηR has two simple poles at q0 and qk+1 ∈ R \ {σ, q1, . . . , qk} with

opposite residues ±r.

• ηR admits a configuration of type (i), i.e., it has precisely k + 1

homologous self saddle connections with angles 2(c′
i + 1)π and

2(c′′
i + 1)π in between consecutively for i = 1, . . . , k, and with ho-

lonomy equal to r up to sign.

See Figure 3.1 for an illustration of the underlying curve of the limit

differential.

R

C1 Ck

σq0 q1 qk qk+1

Figure 3.1. The underlying curve of the limit differential in Proposition 3.1.

Proof. — As ε → 0, the limit of each Cε
i is a flat surface Ci, where the

figure eight boundary of Cε
i shrinks to a single zero qi with cone angle

(2ci + 2)π, i.e., qi is a zero of order ci. This shrinking operation is the

inverse of the figure eight construction, see [12, Figure 10]. On the other

hand, instead of shrinking the boundary saddle connections αi, βi of the Cε
i ,

up to scale it amounts to expanding the other periods of the Cε
i arbitrarily

long compared to the αi, βi. Since a small neighborhood Ni enclosing both

αi and βi in Cε
i consists of 2(c′

i + c′′
i + 1) metric half-disks, under the

expanding operation they turn into 2(c′
i + c′′

i + 1) = 2(ci + 1) metric half-

planes that form the basic domain decomposition for a pole of order ci+2 in

the sense of [6]. The boundary loop of Ni corresponds to the vanishing cycle

around qi in the shrinking operation, which implies that the resulting pole

will be glued to qi as a node in the limit. In addition, the two half-cylinders

expand to two half-infinite cylinders, which create two simple poles q0 and

qk+1 with opposite residues ±r, where r encodes the width of the cylinders.
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Let (R, ηR) be the limit meromorphic differential out of the expanding

operation. We thus conclude that

(ηR) =

(
k∑

i=1

(ci + 2)

)
σ −

k∑

i=1

(ci + 2)qi − q0 − qk+1,

and hence the genus of R is zero. Since qi = Ci ∩ R is a separating node,

it follows from the global residue condition of [4] that Resqi
ηR = 0. As a

cross check,

k+1∑

i=0

Resqi
ηR = Resq0

ηR + 0 + · · · + 0 + Resqk+1
ηR = 0,

hence ηR satisfies the Residue Theorem on R. Finally, the cylinders are

glued to the figure eight boundary on both sides, hence the k + 1 homol-

ogous self saddle connections have holonomy equal to r up to sign. Their

configuration (holonomy and angles in between) is preserved in the expand-

ing process, hence the limit differential ηR possesses the desired configura-

tion. �

Proposition 3.2. — Consider a block of surfaces of type (ii) in Cε,

that is, a half-cylinder, followed by k > 0 surfaces Cε
1 , . . . , Cε

k, each of

genus gi > 1 with a figure eight boundary, followed by a surface Cε
k+1 of

genus gk+1 > 1 with a pair of holes boundary. Let σ be the newborn zero

of order
∑k

i=1(ci + 2) + (bk+1 + 1). As ε → 0, we have

• The limit differential consists of k+1 disjoint surfaces C1, . . . , Ck+1

attached to a component R ∼= P
1 at the nodes q1, . . . , qk+1, respec-

tively.

• R contains only σ among all the markings.

• For each i = 1, . . . , k, ordqi
ηCi

= ci and ordqi
ηR = −ci − 2.

• ordqk+1
ηCk+1

= bk+1 and ordqk+1
ηR = −bk+1 − 2.

• For each i = 1, . . . , k, Resqi
ηR = 0.

• ηR has a simple pole at q0 ∈ R \ {σ, q1, . . . , qk+1} with Resq0
ηR =

− Resqk+1
ηR = ±r.

• ηR admits a configuration of type (ii), i.e., it has precisely k + 1

homologous self saddle connections with angles 2(c′
i + 1)π and

2(c′′
i + 1)π in between consecutively for i = 1, . . . , k, and with ho-

lonomy equal to r up to sign.

See Figure 3.2 for an illustration of the underlying curve of the limit

differential.
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R

C1 Ck

Ck+1

σq0 q1 qk qk+1

Figure 3.2. The underlying curve of the limit differential in Proposition 3.2.

Proof. — The proof is almost identical with the preceding one. The only

difference occurs at the last surface. A small neighborhood Nk+1 enclosing

βk+1 in Cε
k+1 consists of 2(bk+1 + 1) half-disks, one of which is irregular as

in [12, Figure 8], hence in the expanding process they turn into 2(bk+1 + 1)

half-planes, giving a flat geometric neighborhood for a pole of order bk+1+2.

Moreover, Nk+1 is homologous to the γi. The orientation of Nk+1 is the

opposite to that of N0 enclosing the boundary α0 of the beginning half

cylinder, hence their homology classes add up to zero. We thus conclude

that Resq0
ηR = − Resqk+1

ηR. Alternatively, it follows from the Residue

Theorem applied to R, since Resqi
ηR = 0 for all i = 1, . . . , k. The holonomy

of the saddle connections and the angles between them are preserved in the

expanding process, hence ηR has the configuration as described. �

Proposition 3.3. — Consider a block of surfaces of type (iii) in Cε,

that is, a surface Cε
0 of genus gk+1 > 1 with a pair of holes boundary,

followed by k > 0 surfaces Cε
1 , . . . , Cε

k, each of genus gi > 1 with a figure

eight boundary, followed by a surface Cε
k+1 of genus gk+1 > 1 with a pair

of holes boundary. Let σ be the newborn zero of order
∑k

i=1(ci + 2) +

(a0 + 1) + (bk+1 + 1). As ε → 0, we have

• The limit differential consists of k+2 disjoint surfaces C0, . . . , Ck+1

attached to a component R ∼= P
1 at the nodes q0, . . . , qk+1, respec-

tively.

• R contains only σ among all the markings.

• For each i = 1, . . . , k, ordqi
ηCi

= ci and ordqi
ηR = −ci − 2.

• ordq0
ηC0

= a0 and ordq0
ηR = −a0 − 2.

• ordqk+1
ηCk+1

= bk+1 and ordqk+1
ηR = −bk+1 − 2.

• For each i = 1, . . . , k, Resqi
ηR = 0.

• Resq0
ηR = − Resqk+1

ηR = ±r.

• ηR admits a configuration of type (iii), i.e., it has precisely k + 1

homologous self saddle connections with angles 2(c′
i + 1)π and
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2(c′′
i + 1)π in between consecutively for i = 1, . . . , k, and with ho-

lonomy equal to r up to sign.

See Figure 3.3 for an illustration of the underlying curve of the limit

differential.

R

C1 Ck

Ck+1C0

σq0 q1 qk qk+1

Figure 3.3. The underlying curve of the limit differential in Proposition 3.3.

Proof. — Since the beginning and ending surfaces both have a pair of

holes boundary, the proof follows from the previous two. �

Let us call the limit twisted differentials in Propositions 3.1, 3.2, and 3.3

surfaces of degenerate type (i), (ii), and (iii), respectively. In order to glue

them to form a global twisted differential, the above proofs (and also the

definition of twisted differentials) imply the following gluing pattern. The

simple pole q0 (or qk+1) in a surface of degenerate type (i) has to be glued

with a simple pole in another surface of type (i) or (ii), and the same

description holds for q0 in a surface of type (ii). For a surface of type (ii),

the component Ck+1 has to be contained in another surface of type (ii)

or (iii). Namely, it has a zero of order b′
k+1 that is glued with a pole q′

k+1

of order b′
k+1 + 2 in the rational component R′ of the other surface. The

same description holds for C0 and Ck+1 in a surface of type (iii).

Theorem 3.4. — In the above setting, ∆(µ, C) parameterizes twisted

differentials constructed by gluing surfaces of degenerate type (i), (ii),

and (iii).

Proof. — Since Cε admits the configuration C = (L, {ai, bi}, {c′
j , c′′

j }), it

can be constructed by gluing blocks of surfaces of type (i), (ii), and (iii).

By applying Propositions 3.1, 3.2, and 3.3 simultaneously, we thus conclude

that the limit twisted differential is formed by gluing surfaces of degenerate

type (i), (ii), and (iii) as above. �

We summarize some useful observation out of the proofs.
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Remark 3.5. — If the homologous closed saddle connections in a con-

figuration C of type II contains k distinct zeros, then a curve in ∆(µ, C)

contains k rational components. Moreover, if two rational components in-

tersect, then each of them has a simple pole at the node, and the residues

at the two branches of the node add up to zero. In general, at the polar

nodes the residues are ±r for a fixed nonzero r ∈ C, such that their signs

are alternating along the (unique) circle in the dual graph of the entire

curve, and that the holonomy of the saddle connections is equal to r up to

sign.

Example 3.6. — The limit of the surface in [12, Figure 7] as the γi shrink

to zero is of the following type: S1, followed by a marked P
1, followed by S2,

followed by a marked P
1, followed by a marked P

1 with an S3 tail, followed

by a marked P
1 with an S4 tail, and back to S1, see Figure 3.4, where R1

is of type (iii), R2 is of type (ii), R3 is of type (i) and R4 is of type (ii).

S1

R1

S2

R2

R3

S3

S4

R4

Figure 3.4. The underlying curve of the degeneration of [12, Figure 7].

Example 3.7. — The limit of the surface in [12, Figure 11] as the γi

shrink to zero is of the following type: a flat torus E1, followed by a chain

of two P
1, each with a marked simple zero, followed by a flat torus E2,

followed by a chain of two P
1, each with a marked simple zero, and back

to E1, see Figure 3.5. Moreover, the differential on each P
1 has a double

pole at the intersection with one of the tori and has a simple pole at the

intersection with one of the P
1. Finally, the residues at the two poles of

each P
1 are ±r for some fixed nonzero r ∈ C, such that their signs are

alternating along the cyclic dual graph of the entire curve.
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E1 E2

Figure 3.5. The underlying curve of the degeneration of [12, Figure 11].

3.3. Meromorphic differentials of type II on P
1

Recall in Proposition 2.3 we showed that differentials on P
1 admitting

a given configuration of type I are unique up to scale. The same result

holds for differentials on P
1 admitting a given configuration of type (i),

(ii), or (iii) as above.

Proposition 3.8. — Let η0 be a differential on P
1 that admits a config-

uration of type either (i), (ii), or (iii) as described in Propositions 3.1, 3.2,

and 3.3. Then up to scale such η0 is unique.

Proof. — We provide a constructive proof for the case of type (i), which

is analogous to the proof of Proposition 2.3. The other two types follow

similarly.

Let us make some observation first. Suppose η0 is a differential on P
1

with a unique zero σ and k + 2 poles q0, . . . , qk+1 such that Resqi
η0 = 0

for i = 1, . . . , k, and that Resq0
η0 = − Resqk+1

= ±r for a nonzero r. Let

α and β be two self saddle connections of η0. Treat them as closed loops

in C = P
1 \ {qk+1}. Then the indices of α and β to q0 cannot be zero, for

otherwise the integral of η0 along them would be zero, contradicting that

they are saddle connections of positive length. Therefore, both of them

enclose q0 in C, hence by the Residue Theorem∫

α

η0 =

∫

β

η0 = ±r.

We conclude that in this case all saddle connections of η0 are homologous

with holonomy equal to ±r.

Now suppose η0 admits the configuration of type (i) (as the description

for ηR in Proposition 3.1). Rescale η0 such that the holonomy of the saddle

connections γ1, . . . , γk+1 is 1. By the preceding paragraph, η0 has no other

saddle connections. Cut the flat surface η0 along all horizontal directions

through the unique zero σ. Since η0 has two simple poles with opposite

residues equal to ±1, we see two half-infinite cylinders with boundary given
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by the first and the last saddle connections γ1 and γk+1, respectively. The

rest part of η0 splits into half-planes as basic domains in the sense of [6],

which are of two types according to their boundary. The boundary of the

half-planes of the first type contains σ that emanates two half-lines to

infinity on both sides. The boundary of the half-planes of the second type,

from left to right, consists of a half-line ending at σ, followed by a saddle

connection γi, and then a half-line emanated from σ.

Since the angles between γi and γi+1 are given on both sides inside the

open surface (after removing the two half-infinite cylinders), this configu-

ration determines how these half-planes are glued together. More precisely,

say in the counterclockwise direction the angle between γi and γi+1 is

2π(c′
i + 1). Then starting from the upper half-plane S+

i of the second type

containing γi in the boundary and turning counterclockwise, we will see c′
i

pairs of lower and upper half-planes of the first type, and then the lower

half-plane S−
i+1 of the second type containing γi+1 in the boundary. Repeat

this process for each i on both sides. We conclude that the gluing pattern of

these half-planes is uniquely determined by the configuration. After gluing,

the resulting open surface has a single figure eight boundary formed by γ1

and γk+1 at the beginning and at the end, which is then identified with the

boundary of the two half-infinite cylinders to recover η0. Finally, since the

angles between γi and γi+1 are 2π(c′
i + 1) and 2π(c′′

i + 1) on both sides, it

determines precisely c′
i +c′′

i +1 = ci +1 paris of upper and lower half-planes

that share the same point at infinity. In other words, they give rise to a

flat geometric representation of a pole of order ci + 2, which is the desired

pole order for i = 1, . . . , k. �

4. Spin and hyperelliptic structures

For special µ, the stratum H(µ) can be disconnected. Kontsevich and

Zorich ([19]) classified connected components of H(µ) for all µ. Their result

says that H(µ) can have up to three connected components, where the extra

components are caused by spin and hyperelliptic structures.

4.1. Spin structures

We first recall the definition of spin structures. Suppose µ = (2k1, . . . ,2kn)

is a partition of 2g − 2 with even entries only. For an abelian differential

(C, ω) ∈ H(µ), let

(ω) = 2k1σ1 + · · · + 2knσn
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be the associated canonical divisor. Then the line bundle

L = O(k1σ1 + · · · + knσn)

is a square root of the canonical line bundle, hence L gives rise to a spin

structure (also called a theta characteristic). Denote by

h0(C, L) (mod 2)

the parity of ω. By Atiyah ([1]) and Mumford ([22]), parities of theta char-

acteristics are deformation invariant. We also refer to ω along with its parity

as a spin structure, which can be either even or odd, and denote the parity

by φ(ω).

Alternatively, there is a topological description for spin structures using

the Arf invariant, due to Johnson ([18]). For a smooth simple closed curve

α on a flat surface, let Ind(α) be the degree of the Gauss map from α to

the unit circle. Namely, 2π · Ind(α) is the total change of the angle of the

unit tangent vector to α under the flat metric as it moves along α one time.

Let {ai, bi}
g
i=1 be a symplectic basis of C, i.e., ai · aj = bi · bj = 0 and

ai · bj = δij for 1 6 i, j 6 g. When ω has only even zeros, the parity φ(ω)

can be equivalently defined as

φ(ω) =

g∑

i=1

(Ind(ai) + 1)(Ind(bi) + 1) (mod 2).

In particular if ai crosses a zero σj from one side to the other, since the

zero order of σj is even, Ind(ai) remains unchanged mod 2.

4.2. Hyperelliptic structures

Next we recall the definition of hyperelliptic structures. There are two

cases: µ = (2g − 2) and µ = (g − 1, g − 1). For (C, ω) ∈ H(2g − 2), if C is

hyperelliptic and the unique zero σ of ω is a Weierstrass point, i.e., σ is a

ramification point of the hyperelliptic double cover C → P
1, then we say

that (C, ω) has a hyperelliptic structure. For (C, ω) ∈ H(g−1, g−1), if C is

hyperelliptic and the two zeros σ1 and σ2 of ω are hyperelliptic conjugates

of each other, i.e., σ1 and σ2 have the same image under the hyperellip-

tic double cover, then we say that (C, ω) has a hyperelliptic structure. In

particular, the hyperelliptic involution exchanges them.
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4.3. Connected components of H(µ)

Now we can state precisely the classification of connected components of

H(µ) in [19]:

• Suppose g > 4. Then

– H(2g − 2) has three connected components: the hyperelliptic

component Hhyp(2g−2), the odd spin component Hodd(2g−2),

and the even spin component Heven(2g − 2).

– H(g−1, g−1), when g is odd, has three connected components:

the hyperelliptic component Hhyp(g − 1, g − 1), the odd spin

component Hodd(g − 1, g − 1), and the even spin component

Heven(g − 1, g − 1).

– H(g − 1, g − 1), when g is even, has two connected compo-

nents: the hyperelliptic component Hhyp(g − 1, g − 1) and the

nonhyperelliptic component Hnonhyp(g − 1, g − 1).

– All the other strata of the form H(2k1, . . . , 2kn) have two

connected components: the odd spin component Hodd(2k1, . . .

, 2kn) and the even spin component Heven(2k1, . . . , 2kn).

– All the remaining strata are connected.

• Suppose g = 3. Then

– H(4) has two connected components: the hyperelliptic compo-

nent Hhyp(4) and the odd spin component Hodd(4), where the

even spin component coincides with the hyperelliptic compo-

nent.

– H(2, 2) has two connected components: the hyperelliptic com-

ponent Hhyp(2, 2) and the odd spin component Hodd(2, 2),

where the even spin component coincides with the hyperel-

liptic component.

– All the other strata are connected.

• Suppose g = 2. Then both H(2) and H(1, 1) are connected. Each

of them coincides with its hyperelliptic component.

4.4. Degeneration of spin structures

Let Sg be the moduli space of spin structures on smooth genus g curves.

The natural morphism Sg → Mg is an unramified cover of degree 22g.

Moreover, Sg is a disjoint union of S+
g and S−

g , parameterizing even and

odd spin structures, respectively. Cornalba ([10]) constructed a compacti-

fied moduli space of spin structures Sg = S
+

g t S
−

g over Mg, whose bound-

ary parameterizes degenerate spin structures on stable nodal curves and
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distinguishes their parities. We first recall spin structures on nodal curves

of compact type. Suppose a nodal curve C consists of k irreducible compo-

nents C1, . . . , Ck such that each of the nodes is separating, i.e., removing it

disconnects C. Let Li be a theta characteristic on Ci, i.e., L⊗2
i = KCi

. At

each node of C, insert a P
1-bridge, called an exceptional component, and

take the line bundle O(1) on it. Then the collection {(Ci, Li)}
k
i=1 along with

O(1) on each exceptional component gives a spin structure on C, whose

parity is determined by

h0(C1, L1) + · · · + h0(Ck, Lk) (mod 2).

In particular, if Ci has genus gi, then g1 + · · · + gk = g. On each Ci there

are 22gi distinct theta characteristics, hence in total they glue to 22g spin

structures on C, which equals the number of theta characteristics on a

smooth curve of genus g. One can think of the exceptional P1-component

intuitively as follows. For simplicity suppose C consists of two irreducible

components C1 and C2 meeting at one node q by identifying q1 ∈ C1 with

q2 ∈ C2. Then the dualizing line bundle ωC restricted to Ci is KCi
(qi),

whose degree is odd, hence one cannot directly take its square root. Instead,

we insert a P
1-component between C1 and C2, and regard O(q1+q2) as O(2)

on P
1 so that its square root is O(1). Then an ordinary theta characteristic

Li on Ci along with O(1) on P
1 gives a Cornalba’s spin structure on C,

where deg L1 + deg L2 + deg O(1) = g − 1 is the same as the degree of an

ordinary theta characteristic on a smooth genus g curve.

If C is not of compact type, the situation is more complicated, because

there are two types of spin structures. For example, consider the case when

C is an irreducible one-nodal curve, by identifying two points q1 and q2

in its normalization C ′ as a node q. For the first type, one can take a

square root L of the dualizing line bundle ωC , which gives 22g−1 such spin

structures. Equivalently, pull back L to L′ on C ′. Then L′ is a square

root of KC′(q1 + q2), and there are 22g−2 such L′ on C ′. By Riemann–

Roch, h0(C ′, L′) − h0(C ′, L′(−q1 − q2)) = 1, hence neither q1 nor q2 is a

base point of L′, and any section s of L′ that vanishes at one of the qi

must also vanish at the other. Therefore, the space of sections H0(C ′, L′)

has a decomposition V0 ⊕ 〈s〉, where V0 is the subspace of sections that

vanish at q1 and q2, and s is a section not vanishing at the qi. Note that

L⊗2 = ωC , whose fibers over q1 and q2 have a canonical identification by

Resq1
ω + Resq2

ω = 0, where ω is a stable differential with at worst simple

poles at the qi, treated as a local section of ωC at q. In other words, there is

a canonical way to glue the fibers of L′⊗2 over q1 and q2 to form ωC on C.

Due to the sign ± when taking a square root, it follows that there are two
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choices to glue the fibers of L′ over q1 and q2 to form L on C, and exactly

one of the two choices preserves s as a section of L. One can intuitively

think of s with an evaluation at qi such that s(q1)2 = s(q2)2 6= 0. Then the

choice of gluing the two fibers induced by s(q1) = s(q2) preserves s as a

section of L, while the other choice induced by s(q1) = −s(q2) does not. We

thus conclude that this way gives 22g−1 spin structures on C, where half

of them are even and the other half are odd. For the second type, insert

an exceptional P1-component connecting q1 and q2 in C ′. Take an ordinary

theta characteristic L′ on C ′ and the bundle O(1) on P
1 as before. In this

way one obtains 22g−2 such L′. For a fixed L′, there is no extra choice

of gluing L′ to O(1) at q1 and q2, due to the automorphisms of O(1) on

P
1, and hence the parity of the resulting spin structure equals that of η′.

Nevertheless, the morphism Sg → Mg is simply ramified along the locus

of such η′ of the second type. Therefore, taking both types into account

along with the multiplicity factor for the second type, we again obtain the

number 22g, which is equal to the degree of Sg → Mg.

Below we describe a relation between degenerate spin structures and

twisted differentials. Suppose a twisted differential (C, η) is in the closure

of a stratum H(µ) that contains a spin component, i.e., when µ has even

entries only. For a node q joining two components C1 and C2 of C, by

definition ordq η1 + ordq η2 = −2. If both orders are odd, we do nothing at

q. If both orders are even, we insert an exceptional P1 at q. In particular if

q is separating, in this case ordq η1 and ordq η2 are both even, because each

side of q contains even zeros only, and hence we insert a P
1 at q, which

matches the preceding discussion on curves of compact type. Now suppose

ηi on a component Ci of C satisfies that

(ηi) =
∑

j

2mjσj +
∑

k

2nkqk +
∑

l

(2hl − 1)ql,

where the σj are the zeros in the interior of Ci, the qk are the nodes of

even order in Ci, and the ql are the nodes of odd order in Ci. Consider the

bundle

(4.1) Li = O


∑

j

mjσj +
∑

k

nkqk +
∑

l

hlql




on Ci. Then a spin structure L on C consists of the collection (Ci, Li) and

the exceptional components with O(1). However, if (C, η) has a node of

odd order, i.e., a node without inserting an exceptional component, then

there are two gluing choices at such a node, as described above, hence L

is only determined by (C, η) up to finitely many choices, and its parity
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may vary with different choices. From the viewpoint of smoothing twisted

differentials, it means that different choices of opening up nodes of C may

deform (C, η) into different connected components of H(µ).

The idea behind the above description is as follows. For a node q joining

two components C1 and C2, if there is no twist at q, i.e., if ordq η1 =

ordq η2 = −1, then locally at q one can directly take a square root of

ωC . If ordq η1 and ordq η2 are both odd, i.e., if the twisting parameter

ordq ηi − (−1) is even, then its one-half gives the twisting parameter for

the limit spin bundle on C. On the other hand if ordq η1 and ordq η2 are

even, then the twisting parameter ordq ηi −(−1) is not divisible by 2, hence

one has to insert an exceptional P1 at q, which is twisted once to make the

twisting parameters at the new nodes even. As a consequence, the resulting

twisted differential restricted to P
1 is O(2), hence its one-half is the bundle

O(1) encoded in the degenerate spin structure. The reader may refer to [13]

for a detailed explanation.

4.5. Degeneration of hyperelliptic structures

Next we describe how hyperelliptic structures degenerate. Recall that

the closure of the locus of hyperelliptic curves of genus g in Mg can be

identified with the moduli space M̃0,2g+2 parameterizing stable rational

curves with 2g + 2 unordered markings, where the markings correspond

to the 2g + 2 branch points of hyperelliptic covers. On the boundary of

the moduli spaces, hyperelliptic covers degenerate to admissible double

covers of stable genus zero curves in the setting of Harris–Mumford ([17]).

Therefore, Weierstrass points on smooth hyperelliptic curves degenerate to

ramification points in such admissible hyperelliptic covers, and the limits

of a pair of hyperelliptic conjugate points remain to be conjugate in the

limit admissible cover, see Figure 4.1.

Figure 4.1. A limit of Weierstrass points (labeled by red) and a limit of

pairs of conjugate points (labeled by blue) in a hyperelliptic admissible

double cover.
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4.6. Spin and hyperelliptic structures for the principal

boundary of type I

Let C = (m1, m2, {a′
i, a′′

i }p
i=1) be an admissible configuration of type

I for a stratum H(µ). Suppose (C, η) is a twisted differential contained

in ∆(µ, C). By the description of ∆(µ, C) in Section 2.3, C consists of p

components C1, . . . , Cp, each of genus gi > 1 with g1+· · ·+gp = g, attached

to a rational component R, and ηi is the differential of η restricted to Ci

satisfying that (ηi) =
∑

σj∈Ci
mjσj + (a′

i + a′′
i )qi, where qi is the node

joining Ci with R.

Consider the case when µ has even entries only. Then H(µ) contains an

even spin component and an odd spin component (and possibly a hyperel-

liptic component). This parity distinction can be extended to the principal

boundary ∆(µ, C), see [12, Lemma 10.1] for a proof using the Arf invariant.

For the reader’s convenience, below we recap the result and also provide

an algebraic proof.

Proposition 4.1. — Let (C, η) be a twisted differential in ∆(µ, C) de-

scribed as above, with even zeros only. Then the parity of η is

φ(η) = φ(η1) + · · · + φ(ηp) (mod 2).

Proof. — Since (ηi) =
∑

σj∈Ci
mjσj +(a′

i+a′′
i )qi and the mj are all even,

it implies that a′
i + a′′

i is even for all i and the degenerate spin structure

on Ci is given by O((ηi)/2) in the sense of Cornalba ([10]). Moreover, on

the rational component R, any theta characteristic has even parity (given

by zero). Since C is of compact type, the parity of η is equal to the sum of

the parities of the ηi, as claimed. �

Corollary 4.2. — Suppose C is of type I and µ contains only even

zeros. Then differentials in the thick part of H(µ) degenerate to twisted

differentials in ∆(µ, C) with the same parity.

Note that for the parity discussion we only require that a′
i + a′′

i is even

for each i, and there is no other requirement for the individual values of a′
i

and a′′
i .

Next we consider hyperelliptic components. Since configurations of type

I require at least two distinct zeros, here we only need to treat the case

µ = (g−1, g−1), which contains a hyperelliptic component Hhyp(g−1, g−1)

(and possibly spin components if g is odd).

The following result is a reformulation of [12, Lemma 10.3]. Here we

again provide an algebraic proof.
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Proposition 4.3. — Suppose (C, η) is a twisted differential contained

in ∆(g−1, g−1, C). Then differentials in the thick part of Hhyp(g−1, g−1)

can degenerate to (C, η) if and only if either

• p = 1, (C1, η1) ∈ Hhyp(2g − 2), a′
1 = a′′

1 = g − 1, or

• p = 2, (Ci, ηi) ∈ Hhyp(2gi − 2), a′
i = a′′

i = gi − 1 for i = 1, 2.

Proof. — Suppose (C, η) is a degeneration of differentials from Hhyp(g −

1, g − 1). Then C admits an admissible hyperelliptic double cover π, where

the two zeros σ1 and σ2 are conjugates under π. Since each Ci meets the

rational component R at a single node qi, and Ci is not rational, by the

definition of admissible covers, qi has to be a ramified node under π. By

the Riemann–Hurwitz formula, π restricted to R has only two ramification

points, which implies that p 6 2.

For p = 1, C1 has genus g, and it admits a hyperelliptic double cover

with q1 being a ramification point, hence (C1, η1) ∈ Hhyp(2g−2). Moreover,

there is only one saddle connection joining σ1 to σ2, so the angle condition

in the configuration C can only be a′
1 = a′′

1 = g − 1. See Figure 4.2 for this

case and the corresponding hyperelliptic admissible cover.

σ1

σ2

q1
q1

R

R

C1

C1

Figure 4.2. The case p = 1 in Proposition 4.3 and the corresponding

hyperelliptic admissible cover.

For p = 2, by the same argument as above we see that (Ci, ηi) ∈

Hhyp(2gi − 2) for i = 1, 2. In addition, since the hyperelliptic involution

interchanges σ1 and σ2, it also swaps the two saddle connections γ1 and

γ2 (even on the degenerate component R). It follows that a′
i = a′′

i for

i = 1, 2. Since a′
i + a′′

i = 2gi − 2, we thus conclude that a′
i = a′′

i = gi − 1.

See Figure 4.3 for this case and the corresponding hyperelliptic admissible

cover.

Conversely if (C, η) belongs to one of the two cases, the smoothing op-

eration in the proof of Theorem 2.1 implies that nearby flat surfaces after

opening up the nodes are contained in Hhyp(g − 1, g − 1). �
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C1

C1

C2

C2

σ1

σ2

q1
q1 q2

q2

R

R

Figure 4.3. The case p = 2 in Proposition 4.3 and the corresponding

hyperelliptic admissible cover.

Denote by ∆hyp( · ), ∆even( · ), and ∆odd( · ) the respective loci of twisted

differentials in the principal boundary that are degenerations from hyper-

elliptic and spin components as specified in the above propositions. We

summarize our discussion as follows.

Corollary 4.4. — Let C be an admissible configuration of type I for

H(µ). Then the principal boundary ∆(µ, C) satisfies the following descrip-

tion:

• Suppose g is odd.

– For C = (m1 = m2 = g − 1, p = 1, a′
1 = a′′

1 = g − 1) or

C = (m1 = m2 = g−1, p = 2, a′
i = a′′

i = gi−1) with g1+g2 = g,

∆(g − 1, g − 1, C) is a disjoint union of ∆hyp(g − 1, g − 1, C),

∆odd(g − 1, g − 1, C), and ∆even(g − 1, g − 1, C).

– For all the other types C, ∆(g − 1, g − 1, C) is a disjoint union

of ∆odd(g − 1, g − 1, C) and ∆even(g − 1, g − 1, C).

• Suppose g even.

– For C = (m1 = m2 = g − 1, p = 1, a′
1 = a′′

1 = g − 1) or

C = (m1 = m2 = g−1, p = 2, a′
i = a′′

i = gi−1) with g1+g2 = g,

∆(g −1, g −1, C) is a disjoint union of ∆hyp(g −1, g −1, C) and

∆nonhyp(g − 1, g − 1, C).

– For all the other types C, ∆(g − 1, g − 1, C) coincides with

∆nonhyp(g − 1, g − 1, C).

• For all the remaining types C and µ with even entries only, ∆(µ, C)

is a disjoint union of ∆odd(µ, C) and ∆even(µ, C).

Remark 4.5. — In the above corollary, each ∆hyp( · ), ∆even( · ), or

∆odd( · ) can be disconnected, since in general they are unions of prod-

ucts of strata in lower genera. Moreover for small g, some of them can also

be empty.
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4.7. Spin and hyperelliptic structures for the principal

boundary of type II

Let C = (L, {ai, bi}, {c′
j , c′′

j }) be a configuration of type II for a stratum

H(µ). Consider the case when µ has even entries only, i.e., a differential

in H(µ) has odd or even parity. The parity distinction can be extended to

the principal boundary ∆(µ, C), see [12, Section 14.1]. Below we recap the

results and also provide alternative algebraic proofs.

Recall the description for (C, η) in Theorem 3.4. Let us first simplify the

statement of [12, Lemma 14.1] in our setting.

Lemma 4.6. — Let (C, η) be a twisted differential contained in ∆(µ, C).

Suppose µ has even zeros only. Then the following conditions hold:

• η has even zero order at each marking of C.

• η has even zero and pole order at a separating node of C.

• For all non-separating nodes of C, the zero and pole orders of η are

either all even, or all odd.

Proof. — Because µ has even zeros only, and those zeros are the markings

of C, the first condition holds by definition of twisted differentials.

Suppose q is a separating node of C. By the description of C in Theo-

rem 3.4, q joins a component Ci with a rational component R. Since the

markings in the interior of Ci are even zeros, we conclude that ordq ηCi

has the same parity as 2gCi
− 2, hence it is even, which implies the second

condition.

Finally, recall that all non-separating nodes bound the (unique) cycle in

the dual graph of C. Since η has even order at all the other nodes and at

all markings, going along the edges of the cycle one by one, the parity of

the order of η at one vertex of the cycle determines that all the others have

the same parity, hence the last condition holds. �

Remark 4.7. — If η has even order at all non-separating nodes, then there

is no rational component R in the central cycle of C that has a simple polar

node. In that case types (i) and (ii) do not appear in the description of C,

which is exactly the way [12, Lemma 14.1] phrased.

Next, we interpret [12, Lemmas 14.2, 14.3, and 14.4] in terms of Cor-

nalba’s spin structures.

Lemma 4.8. — Suppose all rational components of (C, η) are of type (i).

Then the limit spin structure on (C, η) has parity

φ(C, η) =

p∑

i=1

φ(Ci, ηCi
) +

∑
(c′

i + 1) + 1 (mod 2).
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Proof. — We first remark that since η has even zeros only, c′
i +c′′

i is even

for all i, hence using c′
i or c′′

i does not matter for the parity formula.

Next, since only type (i) appears in the description of C, each Ci is a

tail of C, which is attached to C at a separating node, hence the limit

spin structure on Ci is generated by one-half of (ηCi
) (see (4.1)), and it

contributes φ(Ci, ηCi
) to the total parity.

The central cycle S of C is a loop of rational components R1, . . . , Rk in

a cyclic order. At each node qi joining Ri to Ri+1, η has a simple pole on

the two branches of qi with opposite residues ±r, hence in the limit spin

structure we preserve qi and do not insert an exceptional P1 component.

Therefore, the limit spin structure restricted to S is a square root L of

ωS , where S has arithmetic genus one, and L|Ri
= ORi

. Starting from R1,

identify the fibers of OR1
and OR2

at q1, then identify the fibers of OR2
and

OR3
at q2, so on and so forth. The last identification between the fibers

of ORk
and OR1

at qk has two choices, which makes h0(S, L) = 0 or 1.

Hence the parity of the spin structure on S varies with the gluing choice,

where the gluing choice is actually determined by the configuration data

{c′
i, c′′

i }. By analyzing the Arf invariant, the parity contribution from S is∑
(c′

i + 1) + 1, see the proof of [12, Lemma 14.2] for details. �

Now we consider the last alternate conditions in Lemma 4.6.

Lemma 4.9. — Suppose η has even order at all non-separating nodes of

C. Then the parity of the limit spin structure on (C, η) is

φ(C, η) =

p∑

i=1

φ(Ci, ηCi
),

where the Ci are the non-rational components of C.

Proof. — In this case on each Ci the limit spin structure is generated by

one-half of (ηCi
), because ηCi

has even zeros at the markings and nodes

(see (4.1)). The same analysis also holds for the rational components Ri,

hence one-half of (ηRi
) gives the limit spin structure O(−1) on Ri whose

parity is even (equal to zero). Therefore, the total parity is given by the

sum of the parities over all Ci. �

Lemma 4.10. — Suppose η has odd order at every non-separating node

of C. Let N be the total number of nearby flat surfaces under the previous

smoothing procedure. Then exactly N/2 of them have odd spin structure

and N/2 have even spin structure.

Proof. — Let S be the central cycle of C. Then η has odd zeros and

poles at all the nodes of S. Hence in the limit spin structure we do not
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insert an exceptional component at each node of S. Therefore, given the

spin structure on each component of S, we have different gluing choices to

form a global spin structure on C. When varying the gluing choice over

one node of S while keeping the others, the parity of the resulting spin

structure differs by one, hence the desired claim follows. See also the proof

of [12, Lemma 14.4] for an argument using the Arf invariant. �

Next we consider the principal boundary of type II for hyperelliptic com-

ponents. Below we recap [12, Lemmas 14.5 and 14.6] and provide algebraic

proofs using hyperelliptic admissible covers.

Lemma 4.11. — Suppose (C, η) is in the principal boundary ∆(2g−2, C)

for a configuration C of type II. Then (C, η) is in ∆hyp(2g − 2, C) if and

only if it is one of the following types:

(1) C has two components C1 and R meeting at two nodes q1 and q2,

(C1, ηC1
) ∈ Hhyp(g − 2, g − 2) with q1 and q2 as the two zeros, and

R contains the unique marking σ.

(2) C has two components C1 and E meeting at one node σ′, where E

is an irreducible one-nodal curve by identifying two points q1 and q2

in R, (C1, ηC1
) ∈ Hhyp(2g − 4) with σ′ as the zero, and E contains

the unique marking σ.

(3) C has three components C1, C2, and R, where C1 meets R at one

node σ′, C2 meets R at two nodes q1 and q2, (C1, ηC1
) ∈ Hhyp(2g1 −

2) with σ′ as the zero, (C2, ηC2
) ∈ Hhyp(g2 − 1, g2 − 1) with q1 and

q2 as the two zeros, where g1 + g2 = g − 1, and R contains the

unique marking σ.

See Figure 4.4 for the underlying curve C in the three cases above.

q1

q1

q2
q2

q1 ∼ q2

σ′σ′

σ

σ

σ

C2

C1C1

C1

RR E

Figure 4.4. The underlying curve C from left to right for cases (1), (2)

and (3) in Lemma 4.11.

Proof. — Suppose (C, η) is in ∆hyp(2g − 2, C). Then it admits a hyper-

elliptic admissible double cover π. Since C has a unique marking σ, it has
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only one rational component R, and R has to contain σ. The cover π re-

stricted to R has two ramification points, one of which is σ, and let σ′ be

the other. Denote by q1 and q2 the two polar nodes in R that arise in the

description of degeneration types (i), (ii), or (iii). By definition of admis-

sible cover, q1 and q2 are hyperelliptic conjugates under π. Moreover, any

tail of C attached to R has to be attached at the ramification point σ′.

Based on the above constraints, there are three possibilities for π as

follows. First, q1 and q2 join R to a different component, and there is no

tail attached at σ′, which gives case (1). On the other hand if there is a

tail attached at σ′, it gives case (3). Finally one can identify q1 and q2 to

form a self node of R, and attach a tail at σ′ to ensure that the genus

of the total curve is at least two, which gives case (2). By analyzing the

corresponding admissible cover in each case, we see that the newly added

components along with their differentials satisfy the desired claim.

Conversely if (C, η) is one of the three cases, one can easily construct the

corresponding hyperelliptic admissible cover, and we omit the details. �

Lemma 4.12. — Suppose (C, η) is in the principal boundary ∆(g − 1,

g−1, C) for a configuration C of type II. Then (C, η) is in ∆hyp(g−1, g−1, C)

if and only if it is one of the following types:

(1) C has three components C1, R1, and R2, where each Ri meets C1 at

one node, R1 and R2 meet at one node, (C1, ηC1
) ∈ Hhyp(g−2, g−2)

with the two zeros at the nodes of C1, and each Ri contains a

marking σi for i = 1, 2.

(2) C has four components C1, C2, R1, and R2, where each Ci meets

each Rj at one node for i, j = 1, 2, (Ci, ηCi
) ∈ Hhyp(gi − 1, gi − 1)

with the two zeros at the nodes of Ci and g1 + g2 = g − 1, and each

Rj contains a marking σj .

See Figure 4.5 for the underlying curve C in the two cases above.

q1

q1

q2
q2

q1 ∼ q2

σ′σ′

σ

σ

σ

C2

C1C1

C1

RR E

Figure 4.5. The underlying curve C from left to right for cases (1)

and (2) in Lemma 4.12.
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Proof. — The proof is similar to the previous one. Suppose (C, η) is in

∆hyp(g −1, g −1, C). Then it admits a hyperelliptic admissible double cover

π. Since η has two zeros σ1 and σ2, there are two rational components R1

and R2 in C, each containing one zero. Moreover, σ1 and σ2 are conjugates

under π, hence the degree of π restricted to each Ri is one. Consequently

there is no tail attached to Ri, for otherwise the attaching point in Ri

would be a ramification node of π by definition of admissible cover.

Based on the above constraints, there are two possibilities for π as follows.

Let pi and qi be the two nodes of Ri. First, if R1 and R2 meet at one node,

say, by identifying p1 with p2, then there is another component C1 that

joins R1 and R2 at q1 and q2, respectively, which gives case (1). If R1 and

R2 are disjoint, then there must be two components C1 and C2, where each

Ci connects R1 and R2 at pi and qi, respectively, which is case (2). Finally

notice that R1 and R2 cannot intersect at both nodes, for otherwise there is

no other component, and the genus of C would be one. Hence the above two

cases are the only possibilities. By analyzing the corresponding admissible

cover in each case, we see that the newly added components along with

their differentials satisfy the desired claim.

Conversely if (C, η) is one of the two cases, one can easily construct the

corresponding hyperelliptic admissible cover, and we omit the details. �

5. Principal boundary for quadratic differentials

In [20] Masur and Zorich carried out an analogous description for the

principal boundary of moduli spaces of quadratic differentials, which pa-

rameterizes quadratic differentials with a prescribed generic configuration

of short ĥomologous saddle connections, where “ĥomologous” is defined by

passing to the canonical double cover (see [20, Definition 1]). The com-

binatorial structure of configurations of ĥomologous saddle connections is

described in terms of ribbon graphs (see [20, Figure 6]), which can be used

as building blocks to construct a flat surface in the principal boundary.

As the lengths of these ĥomologous saddle connections approach zero,

we can also describe the principal boundary of limit differentials by using

twisted quadratic differentials (in the sense of twisted k-differentials in [2]

for k = 2). The definition of twisted quadratic differentials is almost the

same as that of twisted abelian differentials, with one exception that the

zero or pole orders on the two branches at every node sum to −4.

Since the idea of describing the principal boundary is similar and only

the combinatorial structure gets more involved, we will explain our method
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by going through a number of examples, in which almost all typical ribbon

graphs appear. Consequently the method can be adapted to any given

configuration without further difficulties.

5.1. Ribbon graphs of configurations

We briefly recall the geometric meaning of the ribbon graphs (see [20,

Section 1] and [15, Section 2]) for more details). A ribbon graph captures

the information of boundary surfaces after removing the ĥomologous saddle

connections in a given configuration and how these boundary surfaces are

glued to form the original surface. A vertex labeled by ◦, ⊕ or 	 in the

graph represents a cylinder, a boundary surface of trivial holonomy or a

boundary surface of non-trivial holonomy, respectively. Here whether or

not the holonomy is trivial corresponds to whether or not the quadratic

differential is the square of an abelian differential. An edge joining two

vertices represents a common saddle connection on the boundaries of the

corresponding two surfaces. The boundary of a ribbon graph is decorated

by integers that encode the information of cone angles between consecutive

ĥomologous saddle connections. Each vertex is decorated by a set of integers

(possibly empty) that encodes the type of singularities in the interior of the

corresponding boundary surface. Connected components of the boundary

of a ribbon graph correspond to newborn zeros after gluing the boundary

surfaces together.

5.2. Configurations in genus 2

In [20, Appendix B] Masur and Zorich described explicitly configurations

of ĥomologous saddle connections for holomorphic quadratic differentials

in genus 2. Below we will describe the corresponding principal boundary

of limit twisted quadratic differentials for the three configurations of the

stratum Q(2, 2) (see [20, Figure 22]).

The first ribbon graph on the left of [20, Figure 22] corresponds to a

flat surface on the left of Figure 5.1. If the saddle connection γ shrinks

to a point, we obtain a flat surface (E, ηE) ∈ Q(2, −1, −1) where the two

simple poles are identified as one point. Alternatively, cutting the surface

open along γ, we obtain a surface with two boundary components γ′ and

γ′′. If we expand the neighborhoods of γ′ and γ′′ to arbitrarily large, it

gives a meromorphic quadratic differential (R, ηR) ∈ Q(2, −3, −3), since
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the flat geometric neighborhood of a triple pole of a quadratic differen-

tial corresponds to a (broken) half-plane. Combining them together, we

conclude that the underlying pointed stable curve C of the limit differ-

ential consists of E union R at two nodes, where both E and R contain

a marked double zero, see the right side of Figure 5.1. Conversely given

such C and η = (ηE , ηR), since η is a twisted quadratic differential and

satisfies the global residue condition in [3], (C, η) can be smoothed into the

Masur–Zorich principal boundary for this configuration.

γ RE

Figure 5.1. The surface corresponding to the first ribbon graph on the

left of [20, Figure 22] and the underlying curve of its degeneration as

γ → 0.

The second ribbon graph on the left of [20, Figure 22] corresponds to a

flat surface on the left of Figure 5.2. When the saddle connections γi shrink,

the three cylinders all become arbitrarily long, hence they give rise to three

nodes, each of which is of pole type (−2, −2) in terms of twisted quadratic

differentials (or of pole type (−1, −1) in terms of twisted abelian differen-

tials locally). Moreover, the node q0 in the middle is separating, because

removing the core curve of the middle cylinder disconnects the surface.

Similarly we see that the other two nodes q1 and q2 are non-separating.

Therefore, we conclude that the underlying pointed stable curve C of the

limit differential consists of two nodal Riemann spheres R1 and R2, where

each (Ri, ηi) ∈ Q(2, −2, −2, −2) has the last two poles identified as qi and

R1, R2 are glued by identifying their first poles as q0, see the right side of

Figure 5.2. In addition, the half-infinite cylinders corresponding to ηi at qi

for i = 1, 2 have identical widths, both equal to one-half of the width of the

half-infinite cylinders at q0. Conversely given such C and η = (η1, η2), the

width condition in this case is precisely the matching residue condition in

the definition of twisted k-differentials in [3], hence (C, η) can be smoothed

into the Masur–Zorich principal boundary for this configuration.

The last ribbon graph on the left of [20, Figure 22] corresponds to a flat

surface on the left of Figure 5.3. One way to construct this surface is via the

following surgery (suggested to us by the referee). Take a flat torus (E, ηE)
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R1 R2

q1 q2

q0
γ1

γ2

γ3

γ4

Figure 5.2. The surface corresponding to the second ribbon graph on

the left of [20, Figure 22] and the underlying curve of its degeneration

as γi → 0.

with two vertical slits of the same length. Identify the left edge of the first

slit with the left edge of the second slit in opposite direction, and identify

their right edges in the same way. The two slits correspond to the saddle

connections γ1 and γ2, and their endpoints give rise to two double zeros. As

γi → 0, we recover the flat torus E with two ordinary marked points record-

ing the limit position of γi. Alternatively if we expand the neighborhoods

of γ1 and γ2 to arbitrarily large, it gives a meromorphic quadratic differ-

ential (R, ηR) ∈ Q(2, 2, −4, −4) where the poles have zero residue and the

configuration around γi is unchanged. Therefore, the underlying pointed

stable curve C of the limit differential η = (ηE , ηR) consists of E union R

at two nodes by pairing the two marked points in E with the two poles

in R, see the right side of Figure 5.3. Conversely given such (C, η), again

by [3] it can be smoothed into the Masur–Zorich principal boundary for

this configuration.

γ1

γ2

E R

Figure 5.3. The surface corresponding to the last ribbon graph on the

left of [20, Figure 22] and the underlying curve of its degeneration as

γi → 0.

5.3. A configuration in genus 13

We will convince the reader that our method works equally well in the

case of high genera by considering an example in genus 13 in [20, Figure 7].
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The underlying pointed stable curve C of the limit differential as γi → 0

consists of seven components S1, . . . , S5, R1, R2 meeting as described in

Figure 5.4.

S1

S2

S3
S4

S5

R1 R2

Figure 5.4. The underlying curve of the degeneration of the surface

corresponding to [20, Figure 7] as γi → 0.

The Si components are non-degenerate and carry holomorphic differen-

tials that were already described in [20, p. 939]. The rational component

R1 contains the marked zero of order 30 and carries a differential η1 ∈

Q(30, −2, −2, −4, −4, −6, −16). The other rational component R2 contains

the marked zero of order 8 and carries a differential η2 ∈ Q(8, −2, −2,

−4, −4). As before, the half-infinite cylinders for η1 and η2 at the nodes of

their intersection have equal widths. Let us explain how the components

R1, R2 and their poles appear. The two ◦ vertices in the ribbon graph

correspond to two cylinders. As they tend to arbitrarily long, we obtain

the two nodes with double poles between R1 and R2. Removing γ4 and

γ8 simultaneously disconnects the curve, which gives rise to R1. Similarly

removing γ5 and γ7 disconnects the curve, hence it gives rise to R2. The

surface S1 corresponds to the central ⊕ vertex, whose boundary has two

connected components given by the two connected components of its local

ribbon graph. Going around each connect boundary component takes a to-

tal angle of 2π by the number decorations, hence the expansion of its local

neighborhood to arbitrarily large consists of a pair of (broken) half-planes.

It follows that S1 meets R1 at two nodes, both having pole order 4 for the

limit twisted quadratic differential on R1. The intersections of the other Sj

with Ri can be analyzed in the same way.
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