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PRINCIPAL BOUNDARY OF MODULI SPACES OF
ABELIAN AND QUADRATIC DIFFERENTIALS

by Dawei CHEN & Qile CHEN (*)

ABSTRACT. —  The seminal work of Eskin—-Masur—Zorich described the prin-
cipal boundary of moduli spaces of abelian differentials that parameterizes flat
surfaces with a prescribed generic configuration of short parallel saddle connec-
tions. In this paper we describe the principal boundary for each configuration in
terms of twisted differentials over Deligne—-Mumford pointed stable curves. We also
describe similarly the principal boundary of moduli spaces of quadratic differentials
originally studied by Masur—Zorich. Our main technique is the flat geometric de-
generation and smoothing developed by Bainbridge—-Chen—Gendron—Grushevsky—
Moller.

RESUME. — Le travail fondateur d’Eskin—-Masur—Zorich a décrit la limite prin-
cipale des espaces de modules des différentielles abéliennes qui parametre les sur-
faces plates possédant une configuration générique de petites connexions de selles
paralléles prescrite. Dans cet article, nous décrivons la limite principale pour chaque
configuration en terme de différentielles entrelacées sur les courbes stables pointées
de Deligne-Mumford. Nous décrivons également la limite principale des espaces de
modules des différentielles quadratiques étudiée a ’origine par Masur—Zorich. Nos
principaux outils sont la dégénérescence géométrique plate et le lissage développés
par Bainbridge—Chen—Gendron—Grushevsky—Moller.

1. Introduction

Many questions about Riemann surfaces are related to study their flat
structures induced from abelian differentials, where the zeros of differentials
correspond to the saddle points of flat surfaces. Loci of abelian differentials
with prescribed type of zeros form a natural stratification of the moduli
space of abelian differentials. These strata have fascinating geometry and
can be applied to study dynamics on flat surfaces.
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Given a configuration of saddle connections for a stratum of flat surfaces,
Veech and Eskin-Masur ([11, 23]) showed that the number of collections of
saddle connections with bounded lengths has quadratic asymptotic growth,
whose leading coefficient is called the Siegel-Veech constant for this config-
uration. Eskin—-Masur—Zorich ([12]) gave a complete description of all pos-
sible configurations of parallel saddle connections on a generic flat surface.
They further provided a recursive method to calculate the corresponding
Siegel-Veech constants. To perform this calculation, a key step is to de-
scribe the principal boundary whose tubular neighborhood parameterizes
flat surfaces with short parallel saddle connections for a given configuration.

As remarked in [12], flat surfaces contained in the Eskin-Masur—Zorich
principal boundary can be disconnected and have total genus smaller than
that of the original stratum. Therefore, as the underlying complex curves
degenerate by shrinking the short saddle connections, the Eskin—-Masur—
Zorich principal boundary does not directly imply the limit objects from
the viewpoint of algebraic geometry. In this paper we solve this problem
by describing the principal boundary in the setting of the strata compact-
ification [4] and consequently in the Deligne-Mumford compactification.

Main Result

For each configuration we give a complete description for the principal
boundary in terms of twisted differentials over pointed stable curves.

This result is a combination of Theorems 2.1 and 3.4. Along the way
we deduce some interesting consequences about meromorphic differentials
on P! that admit the same configuration (see Propositions 2.3 and 3.8).
Moreover, when a stratum contains connected components due to spin or
hyperelliptic structures ([19]), Eskin-Masur—Zorich ([12]) described how to
distinguish these structures nearby the principal boundary via an analytic
approach. Here we provide algebraic proofs for the distinction of spin and
hyperelliptic structures in the principal boundary under our setting (see
Sections 4.6 and 4.7 for related results).

Masur—Zorich ([20]) described similarly the principal boundary of strata
of quadratic differentials. Our method can also give a description of the
principal boundary in terms of twisted quadratic differentials in the sense
of [3] (see Section 5 for details).

Twisted differentials play an important role in our description of the
principal boundary, so we briefly recall their definition (see [4] for more
details). Given a zero type u = (mq,...,my), a twisted differential n of
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type pu on an n-pointed stable curve (C,o1,...,0,) is a collection of (pos-
sibly meromorphic) differentials 7); on each irreducible component C; of C,
satisfying the following conditions:

(0) 1 has no zeros or poles away from the nodes and markings of C' and
1 has the prescribed zero order m; at each marking o;.

(1) If anode g joins two components C; and Cs, then ordg n1+ord, 72 =
—2.

(2) If ordg m = ord, e = —1, then Resqm + Resgne = 0.

(3) If Cy and O, intersect at k nodes g1, . .., gx, then ordy, m — ordg, 72
are either all positive, or all negative, or all equal to zero for i =
...,k

Condition (3) provides a partial order between irreducible components
that are not disjoint. If one expands it to a full order between all irreducible
components of C, then there is an extra global residue condition which
governs when such twisted differentials are limits of abelian differentials of
type p. A construction of the moduli space of twisted differentials can be
found in [2].

By using n on all maximum components and forgetting its scales on
components of smaller order, [4] describes a strata compactification in the
Hodge bundle over the Deligne-Mumford moduli space M, ,,. As remarked
in [4], if one forgets n and only keeps track of the underlying pointed stable
curve (C,01,...,0,), it thus gives the (projectivized) strata compactifica-
tion in Wg,n. Hence our description of the principal boundary in terms of
twisted differentials determines the corresponding boundary in the Deligne—
Mumford compactification. To illustrate our results, we will often draw such
stable curves in the Deligne-Mumford boundary.

For an introduction to flat surfaces and related topics, we refer to the
surveys [8, 24, 25]. Besides [4], there are several other strata compacti-
fications, see [13] for an algebraic viewpoint, [9, 16] for a log geometric
viewpoint and [21] for a flat geometric viewpoint. Algebraic distinctions of
spin and hyperelliptic structures in the boundary of strata compactifica-
tions are also discussed in [7, 9, 14].

This paper is organized as follows. In Sections 2 and 3 we describe the
principal boundary of type I and of type II, respectively, following the
roadmap of [12]. In Section 4 we provide algebraic arguments for distin-
guishing spin and hyperelliptic structures in the principal boundary. Fi-
nally in Section 5 we explain how one can describe the principal boundary
of strata of quadratic differentials by using twisted quadratic differentials.
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Throughout the paper we also provide a number of examples and figures
to help the reader quickly grasp the main ideas.

Notation

We denote by p the singularity type of differentials, by H(u) the stratum
of abelian differentials of type p and by Q(u) the stratum of quadratic
differentials of type pu. An n-pointed stable curve is generally denoted by
(C,o1,...,0n). We use (C,n) to denote a twisted differential on C. The
underlying divisor of a differential 7 is denoted by (7). Configurations of
saddle connections are denoted by C and all configurations considered in
this paper are admissible in the sense of [12].

Acknowledgements. We thank Matt Bainbridge, Alex Eskin, Quentin
Gendron, Sam Grushevsky, Martin Moller and Anton Zorich for inspiring
discussions on related topics. We also thank the referee for carefully reading
the paper and many useful comments.

2. Principal boundary of type I

2.1. Configurations of type I: saddle connections joining distinct
zeros

Let C be a flat surface in H(u) with two chosen zeros oy and o9 of order
m1 and meo, respectively. Suppose C has precisely p homologous saddle
connections 71, . ..,7, joining o, and o2 such that the following conditions
hold:

e All saddle connections ~; are oriented from o1 to oo with identical
holonomy vectors.
e The cyclic order of q,...,v, at o1 is clockwise.
e The angle between ~; and 7,11 is 27 (a) + 1) at o1 and 27 (a) + 1)
at oo, where a},al/ > 0.
Then we say that C has a configuration of type C = (mq,ma, {a},a}}_,).
We emphasis here that this configuration C is defined with the two chosen
zeros o1 and os. If p = 1, we also denote the configuration by C = (mq, ms2)
for simplicity. Since the cone angle at o; is 2m(m; + 1) for i = 1,2, we
necessarily have
P P
(2.1) d@+1)=mi+1 and Y (af +1)=mg+1.

i=1 i=1
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2.2. Graphs of configurations

Given two fixed zeros o1 and o9 and a configuration C = (my,ma,
{a},a}}’_,) as in the previous section, to describe the dual graphs of the
underlying nodal curves in the principal boundary of twisted differentials,
we introduce the configuration graph G(C) as follows:

(1) The set of vertices is {vgr,v1, -+ ,vp}.

(2) The set of edges is {l1,--- ,l,}, where each [; joins v; and vg.

(3) We associate to vg the subset of markings Lr = {01,02} and to
each v; a subset of markings L; C {o;} such that Lp UL, Ll---U Ly,
is a partition of {o1,...,0n}.

(4) We associate to each v; a positive integer g(v;) such that

P
Zg(vi) =g and Z m; + (a) + a) = 2g(v;) — 2.
i=1 o €L;

Figure 2.1 shows a pointed nodal curve whose dual graph is of type G(C):

L C
001
R
¢ 02
T G
Ly

Figure 2.1. A curve with dual graph of type C.

2.3. The principal boundary of type I

Denote by A(u,C) the space of twisted differentials 7 satisfying the fol-
lowing conditions:
e The underlying dual graph of 7 is given by G(C), with nodes ¢; and
components C; corresponding to [; and v;, respectively.
e The component R corresponding to the vertex vy is isomorphic to
P! and contains only o1 and ¢ among all the markings.
e Each C; has markings labeled by L; and has genus equal to g(v;).
e Foreachi=1,...,p, ordg, nc, = a;+a; and ordy, ng = —al—a;—2.

TOME 69 (2019), FASCICULE 1
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e For each i =1,...,p, Resy, ngp = 0.
e 1 admits the configuration C of saddle connections from o3 to os.

Recall that the twisted differential n defines a flat structure on R (up to
scale). Thus it makes sense to talk about the configuration C on R. We say
that A(u,C) is the principal boundary associated to the configuration C.

Suppose C¢ € H(p) has the configuration C = (my,mo, {a},a}’_;) such
that the p homologous saddle connections 71,...,7, of C' have length at
most . We want to determine the limit twisted differential as the length
of all ~; shrinks to zero. To avoid further degeneration, suppose that C*®
does not have any other saddle connections shorter than 3¢ (the locus of
such C°¢ is called the thick part of the configuration C in [12]). Take a small
disk under the flat metric such that it contains oy, o9, all 7;, and no other
zeros (see [12, Figure 5]). Within this disk, shrink ~; to zero while keeping
the configuration C, such that all other periods become arbitrarily large

compared to ;.

THEOREM 2.1. — The limit twisted differential of C¢ as ~v; — 0 is
contained in A(u,C). Conversely, twisted differentials in A(u,C) can be
smoothed to of type C*¢.

Proof. — Since ; and ;41 are homologous and next to each other, they
bound a surface C§ with 7; and ;41 as boundary (see the lower right
illustration of [12, Figure 5] where C? is denoted by .S;). The inner angle
between v; and ;11 at o1 is 2m(a; 4+ 1) and at o2 is 2m(a} + 1). Shrinking
the v; to zero under the flat metric, the limit of C7 forms a flat surface
C;, and denote by ¢; the limit position of 1 and o5 in C;. This shrinking
operation is the inverse of breaking up a zero, see [12, Figure 3], which
implies that the cone angle at g; is 27 (a; + a + 1), hence C; has a zero of
order a} + a at ¢;.

On the other hand, instead of shrinking the v;, up to scale it amounts
to expanding the other periods of Cf arbitrarily long compared to the ;.
Since a small neighborhood N; enclosing both «; and 7,41 in C§ consists
of 2(a; 4+ a + 1) metric half-disks, under the expanding operation they
turn into 2(a; 4+ af + 1) metric half-planes that form the basic domain
decomposition for a pole of order a} + a; + 2 in the sense of [6]. Moreover,
the boundary loop of NV; corresponds to the vanishing cycle around ¢; in
the shrinking operation, which implies that the resulting pole will be glued
to ¢; as a node in the limit stable curve, hence we still use g; to denote the
pole. See Figure 2.2 for the case p = 2 and m; = mgo = 0.

ANNALES DE L’INSTITUT FOURIER
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——— —_———
Lf m Rf Ly m Ry L3 2 Ry Ly 72 Ry
—_—

—e—oo——

Figure 2.2. The flat geometric neighborhood of v, and -y for the case
p = 2 and m; = my = 0. Here we identify Ly = Lj, L¥ = L;,
R = R, and R} = R; As 1,72 — 0, the middle two half-disks
form a neighborhood of an ordinary point and the remaining two half-
disks form a neighborhood of another ordinary point. Alternatively as
L;‘L and R;-‘L — 00, the middle two half-planes form a neighborhood of
a double pole and the remaining two half-planes form a neighborhood
of another double pole. Both poles have zero residue.

Let (R,nr) be the limit meromorphic differential out of the expanding
operation. We thus conclude that
P
(nr) = mioy + maoz — Z(a’/i +a +2)g;.
i=1
By the relation (2.1), the genus of R is zero, hence R = P*. Since ¢; = C;NR
is a separating node, it follows from the global residue condition of [4] that
Resy, nr = 0. Finally, in the expanding process the saddle connections ;
are all fixed, hence the configuration C is preserved in the limit meromorphic
differential nr. Summarizing the above discussion, we see that the limit
twisted differential is parameterized by A(u,C).
The other part of the claim follows from the flat geometric smoothing
of [4], as twisted differentials in A(u,C) satisfy the global residue condition
and have the desired configuration of saddle connections. |

Remark 2.2. — For the purpose of calculating Siegel-Veech constants,
the Eskin—-Masur—Zorich principal boundary only takes into account the
non-degenerate components C; and discards the degenerate rational com-
ponent R, though it is quite visible — for instance, R can be seen as the
central sphere in [12, Figure 5].

2.4. Meromorphic differentials of type I on P!

Recall that for a twisted differential n in A(u,C), its restriction ng on
the component R = P! has two zeros and p poles, where the residue at
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each pole is zero. Up to scale, g is uniquely determined by the zeros and
poles. In this section we study the locus of P! marked at such zeros and
poles.

Given integers mi,mg > 1 and ny,...,np, > 2 with m; +mo *Zi):l n; =
—2, let Z C Mg 42 be the locus of pointed rational curves (P!, 01,02, g1,

.., qp) such that there exists a differential 19 on P! satisfying that
P
(o) = mio1 + maoy — Zniqi and Resy, 1m0 =0
i=1

foreachi=1,...,p.

For a given (admissible) configuration C = (m1, mo, {a}, a/}?_,), consider
the subset Z(C) C Z parameterizing differentials 19 on P! (up to scale) that
admit a configuration of type C.

PROPOSITION 2.3. — Z is a union of Z(C) for all possible (admissible)
configuration C and each Z(C) consists of a single point.

Proof. — We provide a constructive proof using the flat geometry of
meromorphic differentials. Let us make some observation first. Suppose g
is a differential on P! whose underlying divisor corresponds to a point in
Z. Since 7 has zero residue at every pole, for any closed path v that does
not contain a pole of 79, the Residue Theorem says that

/77020-
.

In particular, if & and § are two saddle connections joining o1 to oo, then
o — f3 represents a closed path on P!, hence

/770:/7707
o B

and « and [ necessarily have the same holonomy. It also implies that ng has
no self saddle connections. Collect the saddle connections from oy to o3,
list them clockwise at o1, and count the angles between two nearby ones.
Since the saddle connections have the same holonomy, the angles between
them are multiples of 2, and hence they give rise to a configuration C. It
implies that the underlying divisor of 79 corresponds to a point in Z(C).
Therefore, Z is a union of Z(C).

Now suppose 7y admits a configuration of type C = (mq, ma, {a}, a/}_,),
i.e., up to scale it corresponds to a point in Z(C). Recall that o1, 09, and
g; are the zeros and poles of order my, mo, and a; + af + 2, respectively,
where 1 =1,...,p, and ~v1,...,7, are the saddle connections joining o to
o9 such that the angle between ~; and ;41 in the clockwise orientation at
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o1 is 2n(al + 1), and at o9 is 2w (a} +1). By the preceding paragraph, there
are no other saddle connections between o7 and os.

Rescale 1y such that all the «; have holonomy equal to 1, that is, they
are in horizontal, positive direction, and of length 1. Cut the flat surface 7
along all horizontal directions through oy and o3, such that 7y is decom-
posed into a union of half-planes as basic domains in the sense of [6]. These
basic domains are of two types according to their boundary half-lines and
saddle connections. The boundary of the basic domains of the first type
contains exactly one of o1 and o9 that emanates two half-lines to infin-
ity on both sides. The boundary of the basic domains of the second type,
from left to right, consists of a half-line ending at oy, followed by a saddle
connection ;, and then a half-line emanating for os.

Since the angle between ; and 7;41 is given for each i, the configuration
C determines uniquely how these basic domains are glued together to form
no. More precisely, start from an upper half-plane S; of the second type
with two boundary half-lines L] to the left and R] to the right, joined by
the saddle connection ;. Turn around oy in the clockwise orientation. Then
we will see a lower half-plane S; of the second type with two boundary
half-lines L] and Ry joined by v1. If af = 0, i.e., if the angle between v,
and 2 in the clockwise orientation is 27, then next we will see an upper
half-plane S5 of the second type with two boundary half-lines L3 and Ry
joined by 72, which is glued to S; by identifying LJ with L] . See Figure 2.2
above for an illustration of this case.

On the other hand if a} > 0, we will see a) pairs of upper and lower
half-planes of the first type containing only ¢; in their boundary, and then
followed by the upper half-plane of the second type containing 7, in the
boundary. Repeat this process for each pair v; and ~;41 consecutively, and
also use the angle between v; and ;41 at o2 to determine the identification
of the Rf—edges emanated from os. We conclude that the gluing pattern
of these half-planes is uniquely determined by the configuration C.

Finally, since the angle between 7; and «;41 at oy is 2w(a} + 1) and at
o2 is 2m(al + 1), it determines precisely a} + a + 1 pairs of upper and
lower half-planes that share the same point at infinity. In other words, they
form a flat geometric neighborhood of a pole with order a} + a} + 2, which
is the desired pole order of g; for i« = 1,...,p. We have thus verified that
Z(C) is nonempty and all differentials up to scale parameterized by Z(C)
have the same basic domain decomposition, hence Z(C) consists of a single
point. O
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Example 2.4. — Consider the case m; =1, mg =1, ny = 2 and no = 2.
The only admissible configuration is
ay =a =ay=al =0,
hence Z consists of a single point. As a cross check, take o1 =1, ¢ = 0,

and gz = oo in P!, and let z be the affine coordinate. Then up to scale 19
can be written as
(z—=1)(z—092)

2
z
It is easy to see that Resg, no = 0 if and only if o = —1.

dz.

Example 2.5. — Consider the case m; =1, ms =3 and ny = ny = ng =
2. There do not exist nonnegative integers a}, ab, aj satisfying that

(@ +1D+(ea+ D+ (az+1)=m+1=2,

because the left-hand side is at least 3. Since there is no admissible config-
uration, we conclude that Z is empty. As a cross check, let ¢ =0, g2 =1,
and g3 = oo. Up to scale 19 can be written as

(z—01)(z — 02)3d

22(z —1)2

One can directly verify that there are no oy,09 € P\ {0,1, 00} such that
Resg, mo = 0.

3. Principal boundary of type I1

3.1. Configurations of type II: saddle connections joining a zero
to itself

Let C be a flat surface in H(u). Suppose C has precisely m homolo-
gous closed saddle connections 71, ..., Vm, each joining a zero to itself. Let
L c{1,...,m} be an index subset such that the curves 7; for [ € L bound
q cylinders. After removing the cylinders along with all the 7., the remain-
ing part in C splits into p = m — ¢ disjoint surfaces C4, ..., C,, where the
boundary of the closure C}, of each C}, consists of two closed saddle connec-
tions oy and [i. These surfaces are glued together in a cyclic order to form
C. More precisely, each C} is connected to Cy41 by either identifying ay
with Sr11 (as some ~; in C) or inserting a metric cylinder with boundary
ay, and Pgy1. The sum of genera of the Cf, is g— 1, because the cyclic gluing
procedure creates a central handle, hence it adds an extra one to the total
genus (see [12, Figure 7]).
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There are two types of the surfaces Cy according to their boundary com-
ponents. If the boundary saddle connections a; and f3; of C; are disjoint,
we say that C; has a pair of holes boundary. In this case a; contains a
single zero z; with cone angle (2a; 4+ 3)7 inside C;, and §; contains a single
zero w; with cone angle (2b; + 3)7 inside C;, where a;,b; > 0. We also take
into account the special case m = 1, i.e., when we cut C along 1, we get
only one surface C; with two disjoint boundary components «; and §;. In
this case z; is identified with w; in C, and we still say that C; has a pair
of holes boundary.

For the remaining case, if a;; and 3; form a connected component for the
boundary of C;, we say that C; has a figure eight boundary. In this case
a; and f3; contain the same zero z;. Denote by 2(c} + 1)m and 2(c] + 1)m
the two angles bounded by «; and j; inside Cj, where ¢}, ¢ > 0, and let
cj =c;+cf.

In summary, the configuration considered above consists of the data

(L, {ai, bi}, {c}, ¢ }).

Conversely, given the surfaces Cj along with some metric cylinders, lo-
cal gluing patterns can create zeros of the following three types (see [12,
Figure 12] and [5, Figures 6-8]):

(i) A cylinder, followed by k > 1 surfaces Ci,...,C%, each of genus
g; = 1 with a figure eight boundary, followed by a cylinder. The
total angle at the newborn zero is

k
T+ Z(Qc; +2¢] + YT+,
i=1
hence its zero order is
k

Z(Ci =+ 2).
i=1
(ii) A cylinder, followed by k > 0 surfaces C;, each of genus g; > 1
with a figure eight boundary, followed by a surface Cjy1 of genus
gk+1 = 1 with a pair of holes boundary. The total angle at the

newborn zero is
k
T+ Y (20 + 26 + 47 + (2bgs1 + 3),
i=1
hence its zero order is
Kk

Z(Ci +2) + (g1 + 1).

i=1
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(iii) A surface Cy of genus go > 1 with a pair of holes boundary, followed
by k > 0 surfaces Cj, each of genus g; > 1 with a figure eight
boundary, followed by a surface Cj1 of genus gi41 > 1 with a pair
of holes boundary. The total angle at the newborn zero is

k
(2a0 + 3)m + Z(ch + 2] + 4)m + (2b41 + 3),
i=1
hence its zero order is
k
> (e +2) + (a0 + 1) + (begr + 1).
i=1
For example, the flat surface in [12, Figure 7] is constructed as follows: Sy
with a pair of holes boundary, followed by So with a pair of holes boundary,
then a cylinder, followed by S3 with a figure eight boundary, then another
cylinder, followed by S4 with a figure eight boundary, and finally back to S;.

3.2. The principal boundary of type II

Suppose C° € H(u) has the configuration C = (L, {a;, b;}, {c}, ¢}/ }) with
the m homologous saddle connections 71, ..., ¥, of length at most €. More-
over, suppose that C° does not have any other saddle connections shorter
than 3e. As before, we degenerate C¢ by shrinking 7; to zero while keeping
the configuration, such that the ratio of any other period to =; becomes ar-
bitrarily large. Let A(u,C) be the space of twisted differentials that arise as
limits of such a degeneration process. Recall the three types of gluing pat-
terns and newborn zeros in the preceding section. We will analyze the types
of their degeneration as building blocks to describe twisted differentials in
A, C).

For the convenience of describing the degeneration, we view a cylinder
as a union of two half-cylinders by truncating it in the middle. Then as
its height tends to be arbitrarily large compared to the width, each half-
cylinder becomes a half-infinite cylinder, which represents a flat geometric
neighborhood of a simple pole. Moreover, the two newborn simple poles
have opposite residues, because the two half-infinite cylinders have the
same width with opposite orientations.

PROPOSITION 3.1. — Consider a block of surfaces of type (i) in C¢,
that is, a half-cylinder, followed by k > 1 surfaces Cf,...,C}, each of
genus g; > 1 with a figure eight boundary, followed by a half-cylinder. Let
o be the newborn zero of order Zle(ci +2). Ase — 0, we have
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e The limit differential consists of k disjoint surfaces C1,...,C} at-
tached to a component R = P! at the nodes qi, . . ., qx, respectively.

e R contains only o among all the markings.

e Foreachi=1,...,k, ordy, nc, = ¢; and ordy, ngp = —¢; — 2.

e Foreachi=1,...,k, Resg, nr = 0.

e 7 has two simple poles at qo and qx+1 € R\ {0,q1,...,qx} with

opposite residues +r.

e nr admits a configuration of type (i), i.e., it has precisely k + 1
homologous self saddle connections with angles 2(c, + 1)m and
2(c + 1)m in between consecutively for i = 1,...,k, and with ho-
lonomy equal to r up to sign.

See Figure 3.1 for an illustration of the underlying curve of the limit
differential.

Ch Chk

Figure 3.1. The underlying curve of the limit differential in Proposition 3.1.

Proof. — As ¢ — 0, the limit of each Cf is a flat surface C;, where the
figure eight boundary of Cf shrinks to a single zero g; with cone angle
(2¢; + 2)m, i.e., ¢ is a zero of order ¢;. This shrinking operation is the
inverse of the figure eight construction, see [12, Figure 10]. On the other
hand, instead of shrinking the boundary saddle connections «;, 8; of the C7,
up to scale it amounts to expanding the other periods of the C} arbitrarily
long compared to the «;, 5;. Since a small neighborhood N; enclosing both
a; and f; in Cf consists of 2(¢; + ¢/ + 1) metric half-disks, under the
expanding operation they turn into 2(c + ¢ + 1) = 2(¢; + 1) metric half-
planes that form the basic domain decomposition for a pole of order ¢; 42 in
the sense of [6]. The boundary loop of N; corresponds to the vanishing cycle
around ¢; in the shrinking operation, which implies that the resulting pole
will be glued to ¢; as a node in the limit. In addition, the two half-cylinders
expand to two half-infinite cylinders, which create two simple poles ¢y and
qk+1 With opposite residues +r, where r encodes the width of the cylinders.
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Let (R,nr) be the limit meromorphic differential out of the expanding
operation. We thus conclude that

k k
(nr) = <Z(Cz + 2)) o= (i +2)a — 4o — G,

=1 i=1

and hence the genus of R is zero. Since ¢; = C; N R is a separating node,
it follows from the global residue condition of [4] that Res,, ng = 0. As a
cross check,

k+1

ZReSmWR = Resgynr +0+ -+ + 0+ Resq,,, nr =0,

i=0
hence ng satisfies the Residue Theorem on R. Finally, the cylinders are
glued to the figure eight boundary on both sides, hence the k& + 1 homol-
ogous self saddle connections have holonomy equal to r up to sign. Their
configuration (holonomy and angles in between) is preserved in the expand-
ing process, hence the limit differential np possesses the desired configura-
tion. ]

PROPOSITION 3.2. — Consider a block of surfaces of type (ii) in C®,
that is, a half-cylinder, followed by k > 0 surfaces Cf,...,C}, each of
genus g; > 1 with a figure eight boundary, followed by a surface Cy_, of
genus gry1 > 1 with a pair of holes boundary. Let o be the newborn zero
of order Zf:l(ci +2) + (bg+1 +1). Ase — 0, we have

e The limit differential consists of k+1 disjoint surfaces C1, . ..,Ck11
attached to a component R = P! at the nodes qx,. .., qny1, respec-
tively.

e R contains only ¢ among all the markings.

e Foreachi=1,...,k, ordg, nc, = ¢; and ordy, np = —c¢; — 2.

e ordy, ., Nc,, = bry1 and ordy, ,, Nr = —bpy1 — 2.

e Foreachi=1,...,k, Resg, nr = 0.

e 1r has a simple pole at qo € R\ {o,q1,-..,qr+1} with Resq, nr =

—Resg,,, Nr = £7.

e nr admits a configuration of type (ii), i.e., it has precisely k + 1
homologous self saddle connections with angles 2(c, + 1)m and
2(c + 1) in between consecutively for i = 1,...,k, and with ho-
lonomy equal to r up to sign.

See Figure 3.2 for an illustration of the underlying curve of the limit
differential.
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Figure 3.2. The underlying curve of the limit differential in Proposition 3.2.

Proof. — The proof is almost identical with the preceding one. The only
difference occurs at the last surface. A small neighborhood N1 enclosing
Bry1 in Cf ., consists of 2(bg1 + 1) half-disks, one of which is irregular as
in [12, Figure 8], hence in the expanding process they turn into 2(by41 + 1)
half-planes, giving a flat geometric neighborhood for a pole of order by1+2.
Moreover, N1 is homologous to the «;. The orientation of Ny41 is the
opposite to that of Ny enclosing the boundary ag of the beginning half
cylinder, hence their homology classes add up to zero. We thus conclude
that Resy, nr = — Resg,, nr. Alternatively, it follows from the Residue
Theorem applied to R, since Resy, ng = 0foralli =1,..., k. The holonomy
of the saddle connections and the angles between them are preserved in the
expanding process, hence ng has the configuration as described. g

PROPOSITION 3.3. — Consider a block of surfaces of type (iii) in C®,
that is, a surface C§ of genus gr+1 > 1 with a pair of holes boundary,
followed by k > 0 surfaces Cf,...,C}, each of genus g; > 1 with a figure
eight boundary, followed by a surface C, of genus gx4+1 > 1 with a pair
of holes boundary. Let o be the newborn zero of order Zle(ci +2) +
(ap+ 1) + (bg41+1). Ase — 0, we have

e The limit differential consists of k+2 disjoint surfaces Cy, . ..,Ck11
attached to a component R = P! at the nodes qq, . . ., qx+1, respec-
tively.

e R contains only o among all the markings.

e Foreachi=1,...,k, ordg, nc, = ¢; and ordy, ngp = —¢; — 2.

e ordg, ¢, = ag and ordg, nr = —ap — 2.

e ordg,., Moy, = bry1 and ordy, ,, Nr = —bpy1 — 2.

e Foreachi=1,...,k, Resg, nr = 0.

e Resy, nr = — Resy,,, nr = L.

e nr admits a configuration of type (iii), i.e., it has precisely k + 1

homologous self saddle connections with angles 2(c, + 1)m and
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2(c + 1) in between consecutively for i = 1,...,k, and with ho-
lonomy equal to r up to sign.

See Figure 3.3 for an illustration of the underlying curve of the limit
differential.

Figure 3.3. The underlying curve of the limit differential in Proposition 3.3.

Proof. — Since the beginning and ending surfaces both have a pair of
holes boundary, the proof follows from the previous two. O

Let us call the limit twisted differentials in Propositions 3.1, 3.2, and 3.3
surfaces of degenerate type (i), (ii), and (iii), respectively. In order to glue
them to form a global twisted differential, the above proofs (and also the
definition of twisted differentials) imply the following gluing pattern. The
simple pole qo (or gr41) in a surface of degenerate type (i) has to be glued
with a simple pole in another surface of type (i) or (ii), and the same
description holds for ¢o in a surface of type (ii). For a surface of type (ii),
the component Cj41 has to be contained in another surface of type (ii)
or (iii). Namely, it has a zero of order b}, that is glued with a pole ¢;
of order b}, + 2 in the rational component R’ of the other surface. The
same description holds for Cy and Cj41 in a surface of type (iii).

THEOREM 3.4. — In the above setting, A(u,C) parameterizes twisted
differentials constructed by gluing surfaces of degenerate type (i), (ii),
and (iii).

Proof. — Since C* admits the configuration C = (L, {a;, b;}, {c},c}}), it
can be constructed by gluing blocks of surfaces of type (i), (ii), and (iii).
By applying Propositions 3.1, 3.2, and 3.3 simultaneously, we thus conclude
that the limit twisted differential is formed by gluing surfaces of degenerate
type (i), (ii), and (iii) as above. O

We summarize some useful observation out of the proofs.
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Remark 3.5. — If the homologous closed saddle connections in a con-
figuration C of type II contains k distinct zeros, then a curve in A(u,C)
contains k rational components. Moreover, if two rational components in-
tersect, then each of them has a simple pole at the node, and the residues
at the two branches of the node add up to zero. In general, at the polar
nodes the residues are +r for a fixed nonzero r € C, such that their signs
are alternating along the (unique) circle in the dual graph of the entire
curve, and that the holonomy of the saddle connections is equal to r up to
sign.

Example 3.6. — The limit of the surface in [12, Figure 7] as the ; shrink
to zero is of the following type: S, followed by a marked P!, followed by Ss,
followed by a marked P!, followed by a marked P! with an S5 tail, followed
by a marked P! with an S, tail, and back to S;, see Figure 3.4, where R,
is of type (iii), Rs is of type (ii), R3 is of type (i) and Ry is of type (ii).

S3
R3
Sy )

Ry Ry

51 52

Ry

Figure 3.4. The underlying curve of the degeneration of [12, Figure 7].

Example 3.7. — The limit of the surface in [12, Figure 11] as the ~;
shrink to zero is of the following type: a flat torus E1, followed by a chain
of two P!, each with a marked simple zero, followed by a flat torus Es,
followed by a chain of two P!, each with a marked simple zero, and back
to Ey, see Figure 3.5. Moreover, the differential on each P! has a double
pole at the intersection with one of the tori and has a simple pole at the
intersection with one of the P'. Finally, the residues at the two poles of
each P! are +r for some fixed nonzero r € C, such that their signs are
alternating along the cyclic dual graph of the entire curve.
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Ey E,

Figure 3.5. The underlying curve of the degeneration of [12, Figure 11].
3.3. Meromorphic differentials of type II on P!

Recall in Proposition 2.3 we showed that differentials on P! admitting
a given configuration of type I are unique up to scale. The same result
holds for differentials on P* admitting a given configuration of type (i),
(i), or (iii) as above.

PROPOSITION 3.8. — Let g be a differential on P! that admits a config-
uration of type either (i), (ii), or (iil) as described in Propositions 3.1, 3.2,
and 3.3. Then up to scale such 7y is unique.

Proof. — We provide a constructive proof for the case of type (i), which
is analogous to the proof of Proposition 2.3. The other two types follow

similarly.

Let us make some observation first. Suppose 7 is a differential on P!
with a unique zero ¢ and k + 2 poles qq, ..., qr+1 such that Resg, no = 0
for i = 1,...,k, and that Resy, o = — Res,, ., = £r for a nonzero r. Let

a and (B be two self saddle connections of 7y. Treat them as closed loops
in C =P\ {qx+1}. Then the indices of @ and 3 to go cannot be zero, for
otherwise the integral of 7y along them would be zero, contradicting that
they are saddle connections of positive length. Therefore, both of them
enclose qg in C, hence by the Residue Theorem

/n():/no:j:r.
@ B

We conclude that in this case all saddle connections of 7 are homologous
with holonomy equal to +r.

Now suppose 1y admits the configuration of type (i) (as the description
for ng in Proposition 3.1). Rescale g such that the holonomy of the saddle
connections vi,...,Vk+1 is 1. By the preceding paragraph, 79 has no other
saddle connections. Cut the flat surface 7y along all horizontal directions
through the unique zero o. Since 7y has two simple poles with opposite
residues equal to 1, we see two half-infinite cylinders with boundary given
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by the first and the last saddle connections y; and k41, respectively. The
rest part of 7o splits into half-planes as basic domains in the sense of [6],
which are of two types according to their boundary. The boundary of the
half-planes of the first type contains ¢ that emanates two half-lines to
infinity on both sides. The boundary of the half-planes of the second type,
from left to right, consists of a half-line ending at o, followed by a saddle
connection v;, and then a half-line emanated from o.

Since the angles between ~; and 7;41 are given on both sides inside the
open surface (after removing the two half-infinite cylinders), this configu-
ration determines how these half-planes are glued together. More precisely,
say in the counterclockwise direction the angle between ~; and ;41 is
27(c; + 1). Then starting from the upper half-plane S;r of the second type
containing ; in the boundary and turning counterclockwise, we will see ¢}
pairs of lower and upper half-planes of the first type, and then the lower
half-plane S;_ ; of the second type containing ~; 11 in the boundary. Repeat
this process for each ¢ on both sides. We conclude that the gluing pattern of
these half-planes is uniquely determined by the configuration. After gluing,
the resulting open surface has a single figure eight boundary formed by v,
and v;+1 at the beginning and at the end, which is then identified with the
boundary of the two half-infinite cylinders to recover 7. Finally, since the
angles between ~; and ;41 are 27(c; + 1) and 27(c¢; 4+ 1) on both sides, it
determines precisely ¢, +c/ +1 = ¢; 41 paris of upper and lower half-planes
that share the same point at infinity. In other words, they give rise to a
flat geometric representation of a pole of order ¢; 4+ 2, which is the desired
pole order for i =1,... k. a

4. Spin and hyperelliptic structures

For special pu, the stratum H(p) can be disconnected. Kontsevich and
Zorich ([19]) classified connected components of H(u) for all p. Their result
says that 7 () can have up to three connected components, where the extra
components are caused by spin and hyperelliptic structures.

4.1. Spin structures

We first recall the definition of spin structures. Suppose p = (2k1, ..., 2k,)
is a partition of 2g — 2 with even entries only. For an abelian differential
(C,w) € H(p), let

(w) =2ki01 + - - + 2k, 04,
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be the associated canonical divisor. Then the line bundle
L= O(k101 —+ -4 kncrn)

is a square root of the canonical line bundle, hence £ gives rise to a spin
structure (also called a theta characteristic). Denote by

h%(C, L) (mod 2)

the parity of w. By Atiyah ([1]) and Mumford ([22]), parities of theta char-
acteristics are deformation invariant. We also refer to w along with its parity
as a spin structure, which can be either even or odd, and denote the parity
by ¢(w).

Alternatively, there is a topological description for spin structures using
the Arf invariant, due to Johnson ([18]). For a smooth simple closed curve
« on a flat surface, let Ind(«) be the degree of the Gauss map from « to
the unit circle. Namely, 27 - Ind(«) is the total change of the angle of the
unit tangent vector to o under the flat metric as it moves along « one time.

Let {a;,b;}7_; be a symplectic basis of C, i.e., a; - a; = b; - b; = 0 and
a; - b; = 9;; for 1 < 4,5 < g. When w has only even zeros, the parity ¢(w)
can be equivalently defined as

g

¢(w) =Y (Ind(a;) + 1)(Ind(b;) + 1) (mod 2).

i=1

In particular if a; crosses a zero ¢; from one side to the other, since the
zero order of o; is even, Ind(a;) remains unchanged mod 2.

4.2. Hyperelliptic structures

Next we recall the definition of hyperelliptic structures. There are two
cases: p= (29 —2)and p= (g — 1,9 — 1). For (C,w) € H(2g — 2), if C is
hyperelliptic and the unique zero o of w is a Weierstrass point, i.e., o is a
ramification point of the hyperelliptic double cover C' — P!, then we say
that (C,w) has a hyperelliptic structure. For (C,w) € H(g—1,9—1),if C'is
hyperelliptic and the two zeros o7 and o9 of w are hyperelliptic conjugates
of each other, i.e., 01 and o have the same image under the hyperellip-
tic double cover, then we say that (C,w) has a hyperelliptic structure. In
particular, the hyperelliptic involution exchanges them.
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4.3. Connected components of H (1)

Now we can state precisely the classification of connected components of
H(w) in [19]:
e Suppose g > 4. Then

— H(2g — 2) has three connected components: the hyperelliptic
component H"™P(2g—2), the odd spin component H°44(2g—2),
and the even spin component H¢Ve"(2g — 2).

— H(g—1,9—1), when g is odd, has three connected components:
the hyperelliptic component H™P(g — 1,g — 1), the odd spin
component H°d (g— 1,9 — 1), and the even spin component
Hever (g — 1,9 —1).

— H(g — 1,9 — 1), when g is even, has two connected compo-
nents: the hyperelliptic component H™P(g —1,g — 1) and the
nonhyperelliptic component H""W¥P(g — 1, g — 1).

— All the other strata of the form H(2kq,...,2k,) have two
connected components: the odd spin component H°4(2ky, ...
,2ky,) and the even spin component HV™(2kq, ..., 2k,).

— All the remaining strata are connected.

e Suppose g = 3. Then

— H(4) has two connected components: the hyperelliptic compo-
nent H"P(4) and the odd spin component H°4(4), where the
even spin component coincides with the hyperelliptic compo-
nent.

— H(2,2) has two connected components: the hyperelliptic com-
ponent H"™P(2,2) and the odd spin component H°4(2,2),
where the even spin component coincides with the hyperel-
liptic component.

— All the other strata are connected.

e Suppose g = 2. Then both H(2) and #(1,1) are connected. Each
of them coincides with its hyperelliptic component.

4.4. Degeneration of spin structures

Let Sy be the moduli space of spin structures on smooth genus g curves.
The natural morphism S, — M, is an unramified cover of degree 2%9.
Moreover, Sy is a disjoint union of S; and S, parameterizing even and
odd spin structures, respectively. Cornalba ([10]) constructed a compacti-
fied moduli space of spin structures Eg = gg I_IS; over ﬂg, whose bound-
ary parameterizes degenerate spin structures on stable nodal curves and
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distinguishes their parities. We first recall spin structures on nodal curves
of compact type. Suppose a nodal curve C consists of k irreducible compo-
nents C1, ..., Cy such that each of the nodes is separating, i.e., removing it
disconnects C. Let L; be a theta characteristic on Cj, i.e., LZ@Q = K¢,. At
each node of C, insert a P!-bridge, called an exceptional component, and
take the line bundle O(1) on it. Then the collection {(C;, L;)}¥_, along with
O(1) on each exceptional component gives a spin structure on C, whose
parity is determined by

hO(Cy,Ly) + -+ h°(Ck, Ly) (mod 2).

In particular, if C; has genus g;, then g1 + --- + g = g. On each C; there
are 229¢ distinct theta characteristics, hence in total they glue to 229 spin
structures on C, which equals the number of theta characteristics on a
smooth curve of genus g. One can think of the exceptional P!-component
intuitively as follows. For simplicity suppose C' consists of two irreducible
components C7 and C5 meeting at one node ¢ by identifying ¢; € C7 with
g2 € Ca. Then the dualizing line bundle we restricted to C; is K¢, (¢:),
whose degree is odd, hence one cannot directly take its square root. Instead,
we insert a P'-component between C; and Cy, and regard O(q;+q2) as O(2)
on P! so that its square root is O(1). Then an ordinary theta characteristic
L; on C; along with O(1) on P! gives a Cornalba’s spin structure on C,
where deg Ly + deg Lo + deg O(1) = g — 1 is the same as the degree of an
ordinary theta characteristic on a smooth genus g curve.

If C' is not of compact type, the situation is more complicated, because
there are two types of spin structures. For example, consider the case when
C is an irreducible one-nodal curve, by identifying two points ¢; and g5
in its normalization C’ as a node ¢. For the first type, one can take a
square root L of the dualizing line bundle w¢, which gives 2291 such spin
structures. Equivalently, pull back L to L’ on C’. Then L' is a square
root of Kci(q1 + ¢2), and there are 22972 such L’ on C’. By Riemann—
Roch, h%(C’, L") — h°(C’", L’'(—q1 — ¢2)) = 1, hence neither g; nor ¢ is a
base point of L', and any section s of L’ that vanishes at one of the ¢;
must also vanish at the other. Therefore, the space of sections H°(C”, L)
has a decomposition Vy @ (s), where Vj is the subspace of sections that
vanish at ¢; and g2, and s is a section not vanishing at the ¢;. Note that
L®? = we, whose fibers over ¢; and g2 have a canonical identification by
Resg, w + Resy, w = 0, where w is a stable differential with at worst simple
poles at the g;, treated as a local section of we at ¢g. In other words, there is
a canonical way to glue the fibers of L'®2 over ¢; and ¢2 to form we on C.
Due to the sign + when taking a square root, it follows that there are two
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choices to glue the fibers of L' over ¢; and g2 to form L on C, and exactly
one of the two choices preserves s as a section of L. One can intuitively
think of s with an evaluation at g; such that s(g1)? = s(g2)? # 0. Then the
choice of gluing the two fibers induced by s(q1) = s(g2) preserves s as a
section of L, while the other choice induced by s(¢1) = —s(g2) does not. We
thus conclude that this way gives 22971 spin structures on C, where half
of them are even and the other half are odd. For the second type, insert
an exceptional P'-component connecting ¢; and ¢, in C’. Take an ordinary
theta characteristic L' on C” and the bundle O(1) on P! as before. In this
way one obtains 22972 such L’. For a fixed L', there is no extra choice
of gluing L’ to O(1) at ¢; and g2, due to the automorphisms of O(1) on
P!, and hence the parity of the resulting spin structure equals that of 7’.
Nevertheless, the morphism gg — ﬂg is simply ramified along the locus
of such 1’ of the second type. Therefore, taking both types into account
along with the multiplicity factor for the second type, we again obtain the
number 229, which is equal to the degree of 39 — ﬂg.

Below we describe a relation between degenerate spin structures and
twisted differentials. Suppose a twisted differential (C,n) is in the closure
of a stratum H(u) that contains a spin component, i.e., when p has even
entries only. For a node ¢ joining two components C; and Cs of C, by
definition ord, m; + ord, n2 = —2. If both orders are odd, we do nothing at
g. If both orders are even, we insert an exceptional P! at ¢. In particular if
q is separating, in this case ord, 1, and ord, 772 are both even, because each
side of ¢ contains even zeros only, and hence we insert a P! at ¢, which
matches the preceding discussion on curves of compact type. Now suppose
n; on a component C; of C satisfies that

(m) = 2mio5+ Y 2nkagr + > (2h — gy,
j k l

where the o; are the zeros in the interior of C;, the g are the nodes of
even order in Cj, and the ¢; are the nodes of odd order in C;. Consider the
bundle

(4.1) L,=0 ijUj + anQk + th(ﬂ
j k l

on C;. Then a spin structure £ on C consists of the collection (C;, L;) and
the exceptional components with O(1). However, if (C,7n) has a node of
odd order, i.e., a node without inserting an exceptional component, then
there are two gluing choices at such a node, as described above, hence £
is only determined by (C,n) up to finitely many choices, and its parity
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may vary with different choices. From the viewpoint of smoothing twisted
differentials, it means that different choices of opening up nodes of C' may
deform (C,n) into different connected components of H ().

The idea behind the above description is as follows. For a node ¢ joining
two components C; and Co, if there is no twist at ¢, i.e., if ordgnm =
ordgn2 = —1, then locally at ¢ one can directly take a square root of
we. If ordgm and ordyme are both odd, i.e., if the twisting parameter
ordgn; — (—1) is even, then its one-half gives the twisting parameter for
the limit spin bundle on C. On the other hand if ord,7; and ord, n. are
even, then the twisting parameter ord, n; — (—1) is not divisible by 2, hence
one has to insert an exceptional P! at ¢, which is twisted once to make the
twisting parameters at the new nodes even. As a consequence, the resulting
twisted differential restricted to P! is O(2), hence its one-half is the bundle
O(1) encoded in the degenerate spin structure. The reader may refer to [13]
for a detailed explanation.

4.5. Degeneration of hyperelliptic structures

Next we describe how hyperelliptic structures degenerate. Recall that
the closure of the locus of hyperelliptic curves of genus g in M, can be
identified with the moduli space MO,QQJ,_Q parameterizing stable rational
curves with 2g + 2 unordered markings, where the markings correspond
to the 2g + 2 branch points of hyperelliptic covers. On the boundary of
the moduli spaces, hyperelliptic covers degenerate to admissible double
covers of stable genus zero curves in the setting of Harris—-Mumford ([17]).
Therefore, Weierstrass points on smooth hyperelliptic curves degenerate to
ramification points in such admissible hyperelliptic covers, and the limits
of a pair of hyperelliptic conjugate points remain to be conjugate in the
limit admissible cover, see Figure 4.1.

Figure 4.1. A limit of Weierstrass points (labeled by red) and a limit of
pairs of conjugate points (labeled by blue) in a hyperelliptic admissible
double cover.
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4.6. Spin and hyperelliptic structures for the principal
boundary of type I

Let C = (my,mo,{a},a/}’_;) be an admissible configuration of type
I for a stratum H(u). Suppose (C,n) is a twisted differential contained
in A(u,C). By the description of A(u,C) in Section 2.3, C' consists of p
components C1, ..., ), each of genus g; > 1 with g1 +---+g, = g, attached
to a rational component R, and 7; is the differential of n restricted to C;
satisfying that (n;) = >, cc, mjo; + (aj + af)qi, where ¢; is the node
joining C; with R.

Consider the case when p has even entries only. Then H (i) contains an
even spin component and an odd spin component (and possibly a hyperel-
liptic component). This parity distinction can be extended to the principal
boundary A(u,C), see [12, Lemma 10.1] for a proof using the Arf invariant.
For the reader’s convenience, below we recap the result and also provide
an algebraic proof.

PROPOSITION 4.1. — Let (C,n) be a twisted differential in A(u,C) de-
scribed as above, with even zeros only. Then the parity of 1 is

() = p(m) +---+¢(np) (mod 2).

Proof. — Since (n;) = Zajeci m;o;+(a,+a})q; and the m; are all even,
it implies that a} 4+ af is even for all ¢ and the degenerate spin structure
on C; is given by O((n;)/2) in the sense of Cornalba ([10]). Moreover, on
the rational component R, any theta characteristic has even parity (given
by zero). Since C is of compact type, the parity of 1 is equal to the sum of
the parities of the 7;, as claimed. O

COROLLARY 4.2. — Suppose C is of type I and p contains only even
zeros. Then differentials in the thick part of H(u) degenerate to twisted
differentials in A(p,C) with the same parity.

Note that for the parity discussion we only require that a} + a is even
for each 4, and there is no other requirement for the individual values of a
and af .

Next we consider hyperelliptic components. Since configurations of type
I require at least two distinct zeros, here we only need to treat the case
u = (g—1,g—1), which contains a hyperelliptic component H™P?(g—1, g—1)
(and possibly spin components if g is odd).

The following result is a reformulation of [12, Lemma 10.3]. Here we
again provide an algebraic proof.
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PROPOSITION 4.3. — Suppose (C,n) is a twisted differential contained
in A(g—1,9—1,C). Then differentials in the thick part of H™P(g—1,g—1)
can degenerate to (C,n) if and only if either

® D= 15 (Olanl) € thp(2g - 2)5 all = CLlll =9 - 17 or
e p=2, (Ci,m) € HWP(2g; — 2), al = al! = g; — 1 fori =1,2.

Proof. — Suppose (C,7) is a degeneration of differentials from H™P (g —
1,9 —1). Then C admits an admissible hyperelliptic double cover 7, where
the two zeros o1 and o9 are conjugates under 7. Since each C; meets the
rational component R at a single node ¢;, and C; is not rational, by the
definition of admissible covers, ¢; has to be a ramified node under 7. By
the Riemann-Hurwitz formula, 7 restricted to R has only two ramification
points, which implies that p < 2.

For p = 1, C; has genus g, and it admits a hyperelliptic double cover
with ¢; being a ramification point, hence (Cy,1n1) € H™P(2g—2). Moreover,
there is only one saddle connection joining oy to o3, so the angle condition
in the configuration C can only be a} = af = g — 1. See Figure 4.2 for this
case and the corresponding hyperelliptic admissible cover.

q1 c «
7 Rm
g2 /\ |
R

Figure 4.2. The case p = 1 in Proposition 4.3 and the corresponding
hyperelliptic admissible cover.

For p = 2, by the same argument as above we see that (Cj,7;) €
HMWP(2g; — 2) for i = 1,2. In addition, since the hyperelliptic involution
interchanges o1 and o3, it also swaps the two saddle connections v; and
v2 (even on the degenerate component R). It follows that a) = a} for
i =1,2. Since a; + a} = 2g; — 2, we thus conclude that o = a/ = g; — 1.
See Figure 4.3 for this case and the corresponding hyperelliptic admissible
cover.

Conversely if (C,n) belongs to one of the two cases, the smoothing op-
eration in the proof of Theorem 2.1 implies that nearby flat surfaces after
opening up the nodes are contained in H™P(g — 1,9 — 1). O
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q1 c,

01

02

% Oy ﬁ\

Figure 4.3. The case p = 2 in Proposition 4.3 and the corresponding
hyperelliptic admissible cover.

Denote by AMP(.) Acven(.) and A°dd(.) the respective loci of twisted
differentials in the principal boundary that are degenerations from hyper-
elliptic and spin components as specified in the above propositions. We
summarize our discussion as follows.

COROLLARY 4.4. — Let C be an admissible configuration of type I for
H(w). Then the principal boundary A(u,C) satisfies the following descrip-
tion:

e Suppose g is odd.

—ForC=(m =mg =g—1,p=1a, =df =g—1) or
C=(m1=my=g-1,p=2a;=a] =g;—1) with g1 +g2 = g,
A(g — 1,9 — 1,C) is a disjoint union of AMP(g — 1,9 — 1,C),
A°Y(g—1,g—1,C), and A" (g — 1,9 — 1,C).

— For all the other types C, A(g — 1,9 — 1,C) is a disjoint union
of A°¥(g —1,9—1,C) and A**"(g — 1,9 — 1,C).

e Suppose g even.

—ForC=(m =mg =g—1,p=1a, =df =g—1) or
C=(mi=mg=g-1,p=20a;=aqa =g;—1) withgi+g2 = g,
A(g—1,9—1,0C) is a disjoint union of A®™P(g—1,g—1,C) and
Arorhyp (g1 g —1,C).

— For all the other types C, A(g — 1,9 — 1,C) coincides with
Arontyp (g 1 g —1.C).

e For all the remaining types C and u with even entries only, A(u,C)
is a disjoint union of A°(p,C) and AV (1, C).

Remark 4.5.— In the above corollary, each AMWP(.) Aeven(.) or
A°d4(.) can be disconnected, since in general they are unions of prod-
ucts of strata in lower genera. Moreover for small g, some of them can also
be empty.
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4.7. Spin and hyperelliptic structures for the principal
boundary of type II

Let C = (L,{a;,b;},{c},c]}) be a configuration of type II for a stratum
H (). Consider the case when p has even entries only, i.e., a differential
in H () has odd or even parity. The parity distinction can be extended to
the principal boundary A(u,C), see [12, Section 14.1]. Below we recap the
results and also provide alternative algebraic proofs.

Recall the description for (C,n) in Theorem 3.4. Let us first simplify the

statement of [12, Lemma 14.1] in our setting.

LEMMA 4.6. — Let (C,n) be a twisted differential contained in A(p,C).
Suppose p has even zeros only. Then the following conditions hold:

e 1) has even zero order at each marking of C.

e 1 has even zero and pole order at a separating node of C.

e For all non-separating nodes of C, the zero and pole orders of n are
either all even, or all odd.

Proof. — Because p has even zeros only, and those zeros are the markings
of C, the first condition holds by definition of twisted differentials.

Suppose q is a separating node of C'. By the description of C' in Theo-
rem 3.4, q joins a component C; with a rational component R. Since the
markings in the interior of C; are even zeros, we conclude that ord, n¢,
has the same parity as 2g¢, — 2, hence it is even, which implies the second
condition.

Finally, recall that all non-separating nodes bound the (unique) cycle in
the dual graph of C. Since 7 has even order at all the other nodes and at
all markings, going along the edges of the cycle one by one, the parity of
the order of 1 at one vertex of the cycle determines that all the others have
the same parity, hence the last condition holds. O

Remark 4.7. — If n has even order at all non-separating nodes, then there
is no rational component R in the central cycle of C' that has a simple polar
node. In that case types (i) and (ii) do not appear in the description of C,
which is exactly the way [12, Lemma 14.1] phrased.

Next, we interpret [12, Lemmas 14.2, 14.3, and 14.4] in terms of Cor-
nalba’s spin structures.

LEMMA 4.8. — Suppose all rational components of (C, n) are of type (i).
Then the limit spin structure on (C,n) has parity

ACm) = _6(Cine,) + (i +1) +1 (mod 2).

ANNALES DE L’INSTITUT FOURIER



PRINCIPAL BOUNDARY OF DIFFERENTIALS 109

Proof. — We first remark that since 7 has even zeros only, ¢} + ¢/ is even
for all ¢, hence using ¢} or ¢/ does not matter for the parity formula.

Next, since only type (i) appears in the description of C, each C; is a
tail of C', which is attached to C' at a separating node, hence the limit
spin structure on C; is generated by one-half of (n¢,) (see (4.1)), and it
contributes ¢(C;, ne,) to the total parity.

The central cycle S of C' is a loop of rational components Ry, ..., Ry in
a cyclic order. At each node ¢; joining R; to R;y1, n has a simple pole on
the two branches of ¢; with opposite residues £r, hence in the limit spin
structure we preserve ¢; and do not insert an exceptional P' component.
Therefore, the limit spin structure restricted to S is a square root L of
wg, where S has arithmetic genus one, and L|r, = Op,. Starting from Ry,
identify the fibers of Og, and Og, at q1, then identify the fibers of Og, and
Or, at go2, so on and so forth. The last identification between the fibers
of Og, and Og, at g has two choices, which makes h°(S,L) = 0 or 1.
Hence the parity of the spin structure on S varies with the gluing choice,
where the gluing choice is actually determined by the configuration data
{c,,c!}. By analyzing the Arf invariant, the parity contribution from S is

1)

> (¢ + 1) + 1, see the proof of [12, Lemma 14.2] for details. O

Now we consider the last alternate conditions in Lemma 4.6.

LEMMA 4.9. — Suppose 1 has even order at all non-separating nodes of
C'. Then the parity of the limit spin structure on (C, 1) is

14
¢(C7 77) = Z ¢(Cza 7701')5
i=1

where the C; are the non-rational components of C'.

Proof. — In this case on each C; the limit spin structure is generated by
one-half of (n¢,), because n¢, has even zeros at the markings and nodes
(see (4.1)). The same analysis also holds for the rational components R;,
hence one-half of (ng,) gives the limit spin structure O(—1) on R; whose
parity is even (equal to zero). Therefore, the total parity is given by the
sum of the parities over all C;. |

LEMMA 4.10. — Suppose n has odd order at every non-separating node
of C. Let N be the total number of nearby flat surfaces under the previous
smoothing procedure. Then exactly N/2 of them have odd spin structure
and N/2 have even spin structure.

Proof. — Let S be the central cycle of C. Then n has odd zeros and
poles at all the nodes of S. Hence in the limit spin structure we do not
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insert an exceptional component at each node of S. Therefore, given the
spin structure on each component of S, we have different gluing choices to
form a global spin structure on C'. When varying the gluing choice over
one node of S while keeping the others, the parity of the resulting spin
structure differs by one, hence the desired claim follows. See also the proof
of [12, Lemma 14.4] for an argument using the Arf invariant. O

Next we consider the principal boundary of type II for hyperelliptic com-
ponents. Below we recap [12, Lemmas 14.5 and 14.6] and provide algebraic
proofs using hyperelliptic admissible covers.

LEMMA 4.11. — Suppose (C,n) is in the principal boundary A(2g—2,C)
for a configuration C of type II. Then (C,n) is in AWP(2g — 2,C) if and
only if it is one of the following types:

(1) C has two components Cy and R meeting at two nodes g1 and ¢a,
(C1,mc,) € HMP(g — 2,9 — 2) with q; and gy as the two zeros, and
R contains the unique marking o.

(2) C has two components C; and E meeting at one node o', where E
is an irreducible one-nodal curve by identifying two points ¢, and g
in R, (C1,nc,) € HWP(2g — 4) with o' as the zero, and E contains
the unique marking o.

(3) C has three components Cy, Cy, and R, where C1 meets R at one
node o', Cy meets R at two nodes q; and ga, (Cy1,n¢,) € H™¥P(2g; —
2) with o’ as the zero, (Ca,nc,) € H™P(g2 — 1,92 — 1) with q; and
q2 as the two zeros, where g1 + go = g — 1, and R contains the
unique marking o.

See Figure 4.4 for the underlying curve C in the three cases above.
a1
Ch

q2
R

Figure 4.4. The underlying curve C from left to right for cases (1), (2)
and (3) in Lemma 4.11.

Proof. — Suppose (C,n) is in APP(2g —2,C). Then it admits a hyper-
elliptic admissible double cover 7. Since C has a unique marking o, it has

ANNALES DE L’INSTITUT FOURIER



PRINCIPAL BOUNDARY OF DIFFERENTIALS 111

only one rational component R, and R has to contain o. The cover 7 re-
stricted to R has two ramification points, one of which is o, and let ¢’ be
the other. Denote by ¢; and g2 the two polar nodes in R that arise in the
description of degeneration types (i), (ii), or (iii). By definition of admis-
sible cover, ¢; and ¢y are hyperelliptic conjugates under w. Moreover, any
tail of C attached to R has to be attached at the ramification point o’.
Based on the above constraints, there are three possibilities for 7 as
follows. First, g1 and ¢o join R to a different component, and there is no
tail attached at o', which gives case (1). On the other hand if there is a
tail attached at o', it gives case (3). Finally one can identify ¢; and ¢o to
form a self node of R, and attach a tail at ¢’ to ensure that the genus
of the total curve is at least two, which gives case (2). By analyzing the
corresponding admissible cover in each case, we see that the newly added
components along with their differentials satisfy the desired claim.
Conversely if (C,n) is one of the three cases, one can easily construct the
corresponding hyperelliptic admissible cover, and we omit the details. [J

LEMMA 4.12. — Suppose (C,n) is in the principal boundary A(g — 1,
g—1,C) for a configuration C of type II. Then (C,n) is in AMP(g—1,9—1,C)
if and only if it is one of the following types:

(1) C has three components C1, Ry, and Ry, where each R; meets C; at
one node, Ry and Ry meet at one node, (Cy,n¢,) € H¥P(g—2,9—2)
with the two zeros at the nodes of C, and each R; contains a
marking o; fori =1,2.

(2) C has four components Cy, Co, Ry, and Ry, where each C; meets
each R; at one node for i,j = 1,2, (C;,nc,) € H™P(g; — 1,9, — 1)
with the two zeros at the nodes of C; and g1 + g2 = g — 1, and each
R; contains a marking o;.

See Figure 4.5 for the underlying curve C' in the two cases above.
q1
Cq

q2
R

Figure 4.5. The underlying curve C' from left to right for cases (1)
and (2) in Lemma 4.12.
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Proof. — The proof is similar to the previous one. Suppose (C,7) is in
AMP(g—1,9—1,C). Then it admits a hyperelliptic admissible double cover
m. Since 1 has two zeros o7 and o3, there are two rational components R
and Ry in C, each containing one zero. Moreover, o1 and o5 are conjugates
under 7, hence the degree of 7 restricted to each R; is one. Consequently
there is no tail attached to R;, for otherwise the attaching point in R;
would be a ramification node of 7w by definition of admissible cover.

Based on the above constraints, there are two possibilities for 7 as follows.
Let p; and ¢; be the two nodes of R;. First, if R; and Ro meet at one node,
say, by identifying p; with ps, then there is another component C; that
joins Ry and Ry at ¢ and g¢a, respectively, which gives case (1). If Ry and
Ry are disjoint, then there must be two components Cy and Cq, where each
C; connects Ry and Ry at p; and ¢;, respectively, which is case (2). Finally
notice that R; and Ry cannot intersect at both nodes, for otherwise there is
no other component, and the genus of C' would be one. Hence the above two
cases are the only possibilities. By analyzing the corresponding admissible
cover in each case, we see that the newly added components along with
their differentials satisfy the desired claim.

Conversely if (C,n) is one of the two cases, one can easily construct the
corresponding hyperelliptic admissible cover, and we omit the details. [J

5. Principal boundary for quadratic differentials

In [20] Masur and Zorich carried out an analogous description for the
principal boundary of moduli spaces of quadratic differentials, which pa-
rameterizes quadratic differentials with a prescribed generic configuration
of short ﬁomologous saddle connections, where “flomologous” is defined by
passing to the canonical double cover (see [20, Definition 1]). The com-
binatorial structure of configurations of ﬁomologous saddle connections is
described in terms of ribbon graphs (see [20, Figure 6]), which can be used
as building blocks to construct a flat surface in the principal boundary.

As the lengths of these ﬁomologous saddle connections approach zero,
we can also describe the principal boundary of limit differentials by using
twisted quadratic differentials (in the sense of twisted k-differentials in [2]
for k = 2). The definition of twisted quadratic differentials is almost the
same as that of twisted abelian differentials, with one exception that the
zero or pole orders on the two branches at every node sum to —4.

Since the idea of describing the principal boundary is similar and only
the combinatorial structure gets more involved, we will explain our method
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by going through a number of examples, in which almost all typical ribbon
graphs appear. Consequently the method can be adapted to any given
configuration without further difficulties.

5.1. Ribbon graphs of configurations

We briefly recall the geometric meaning of the ribbon graphs (see [20,
Section 1] and [15, Section 2]) for more details). A ribbon graph captures
the information of boundary surfaces after removing the ﬁomologous saddle
connections in a given configuration and how these boundary surfaces are
glued to form the original surface. A vertex labeled by o, & or & in the
graph represents a cylinder, a boundary surface of trivial holonomy or a
boundary surface of non-trivial holonomy, respectively. Here whether or
not the holonomy is trivial corresponds to whether or not the quadratic
differential is the square of an abelian differential. An edge joining two
vertices represents a common saddle connection on the boundaries of the
corresponding two surfaces. The boundary of a ribbon graph is decorated
by integers that encode the information of cone angles between consecutive
homologous saddle connections. Each vertex is decorated by a set of integers
(possibly empty) that encodes the type of singularities in the interior of the
corresponding boundary surface. Connected components of the boundary
of a ribbon graph correspond to newborn zeros after gluing the boundary
surfaces together.

5.2. Configurations in genus 2

In [20, Appendix B] Masur and Zorich described explicitly configurations
of ﬁomologous saddle connections for holomorphic quadratic differentials
in genus 2. Below we will describe the corresponding principal boundary
of limit twisted quadratic differentials for the three configurations of the
stratum Q(2,2) (see [20, Figure 22]).

The first ribbon graph on the left of [20, Figure 22] corresponds to a
flat surface on the left of Figure 5.1. If the saddle connection ~ shrinks
to a point, we obtain a flat surface (E,ng) € Q(2, -1, —1) where the two
simple poles are identified as one point. Alternatively, cutting the surface
open along v, we obtain a surface with two boundary components ' and
~". If we expand the neighborhoods of v and " to arbitrarily large, it
gives a meromorphic quadratic differential (R,ng) € Q(2,—3,—3), since
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the flat geometric neighborhood of a triple pole of a quadratic differen-
tial corresponds to a (broken) half-plane. Combining them together, we
conclude that the underlying pointed stable curve C' of the limit differ-
ential consists of £ union R at two nodes, where both £ and R contain
a marked double zero, see the right side of Figure 5.1. Conversely given
such C and = (ng,nr), since n is a twisted quadratic differential and
satisfies the global residue condition in [3], (C,n) can be smoothed into the
Masur—Zorich principal boundary for this configuration.

Figure 5.1. The surface corresponding to the first ribbon graph on the
left of [20, Figure 22] and the underlying curve of its degeneration as
v — 0.

The second ribbon graph on the left of [20, Figure 22| corresponds to a
flat surface on the left of Figure 5.2. When the saddle connections ~y; shrink,
the three cylinders all become arbitrarily long, hence they give rise to three
nodes, each of which is of pole type (—2, —2) in terms of twisted quadratic
differentials (or of pole type (—1,—1) in terms of twisted abelian differen-
tials locally). Moreover, the node go in the middle is separating, because
removing the core curve of the middle cylinder disconnects the surface.
Similarly we see that the other two nodes ¢; and g2 are non-separating.
Therefore, we conclude that the underlying pointed stable curve C of the
limit differential consists of two nodal Riemann spheres Ry and Rs, where
each (R;,m;) € Q(2,—2,—2,—2) has the last two poles identified as ¢; and
Ry, Ry are glued by identifying their first poles as qg, see the right side of
Figure 5.2. In addition, the half-infinite cylinders corresponding to 7; at ¢;
for i = 1,2 have identical widths, both equal to one-half of the width of the
half-infinite cylinders at go. Conversely given such C' and n = (n1,732), the
width condition in this case is precisely the matching residue condition in
the definition of twisted k-differentials in [3], hence (C, 1) can be smoothed
into the Masur—Zorich principal boundary for this configuration.

The last ribbon graph on the left of [20, Figure 22] corresponds to a flat
surface on the left of Figure 5.3. One way to construct this surface is via the
following surgery (suggested to us by the referee). Take a flat torus (E, ng)
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q0
78
S q1 Qg2
Y2 4
Rl RQ
Figure 5.2. The surface corresponding to the second ribbon graph on

the left of [20, Figure 22] and the underlying curve of its degeneration
as v; — 0.

with two vertical slits of the same length. Identify the left edge of the first
slit with the left edge of the second slit in opposite direction, and identify
their right edges in the same way. The two slits correspond to the saddle
connections 71 and 72, and their endpoints give rise to two double zeros. As
~v; — 0, we recover the flat torus F with two ordinary marked points record-
ing the limit position of =;. Alternatively if we expand the neighborhoods
of 41 and =9 to arbitrarily large, it gives a meromorphic quadratic differ-
ential (R,nr) € Q(2,2,—4, —4) where the poles have zero residue and the
configuration around ~; is unchanged. Therefore, the underlying pointed
stable curve C of the limit differential n = (ng,ngr) consists of E union R
at two nodes by pairing the two marked points in E with the two poles
in R, see the right side of Figure 5.3. Conversely given such (C,7), again
by [3] it can be smoothed into the Masur—Zorich principal boundary for
this configuration.

Figure 5.3. The surface corresponding to the last ribbon graph on the
left of [20, Figure 22] and the underlying curve of its degeneration as
Yi — 0.

5.3. A configuration in genus 13

We will convince the reader that our method works equally well in the
case of high genera by considering an example in genus 13 in [20, Figure 7].
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The underlying pointed stable curve C' of the limit differential as v; — 0

consists of seven components Si,...,S5, Ry, Ro meeting as described in
Figure 5.4.
Sy
Ss
S1
S3 Sy
Ry Ry

Figure 5.4. The underlying curve of the degeneration of the surface
corresponding to [20, Figure 7] as v; — 0.

The S; components are non-degenerate and carry holomorphic differen-
tials that were already described in [20, p. 939]. The rational component
Ry contains the marked zero of order 30 and carries a differential 7; €
Q(30,—2,—2,—4,—4,—6,—16). The other rational component Ry contains
the marked zero of order 8 and carries a differential s € Q(8,—2,—2,
—4,—4). As before, the half-infinite cylinders for n; and 7, at the nodes of
their intersection have equal widths. Let us explain how the components
Ri, Ry and their poles appear. The two o vertices in the ribbon graph
correspond to two cylinders. As they tend to arbitrarily long, we obtain
the two nodes with double poles between R; and R,. Removing 4 and
~g simultaneously disconnects the curve, which gives rise to R;. Similarly
removing 5 and 77 disconnects the curve, hence it gives rise to Ry. The
surface S; corresponds to the central @ vertex, whose boundary has two
connected components given by the two connected components of its local
ribbon graph. Going around each connect boundary component takes a to-
tal angle of 27 by the number decorations, hence the expansion of its local
neighborhood to arbitrarily large consists of a pair of (broken) half-planes.
It follows that S; meets Ry at two nodes, both having pole order 4 for the
limit twisted quadratic differential on R;. The intersections of the other S;
with R; can be analyzed in the same way.
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