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Abstract

Using stable log maps, we introduce log twisted differentials extending the notion of
abelian differentials to the Deligne–Mumford boundary of stable curves. The moduli
stack of log twisted differentials provides a compactification of the strata of abelian
differentials. The open strata can have up to three connected components, due to spin
and hyperelliptic structures. We prove that the spin parity can be distinguished on
the boundary of the log compactification. Moreover, combining the techniques of log
geometry and admissible covers, we introduce log twisted hyperelliptic differentials,
and prove that their moduli stack provides a toroidal compactification of the hyperel-
liptic loci in the open strata.
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1 Introduction

Let μ = (m1, . . . , mn) be a partition of 2g − 2. Consider the stratum H(μ) of abelian
differentials with signature μ parameterizing pairs (C, ω), where C is a smooth genus
g curve and ω is an abelian differential on C whose zero type is specified by μ. The
study of H(μ) has broad connections to many fields. For example, an abelian differ-
ential defines a flat structure with conical singularities at its zeros. The behavior of
geodesics under the flat metric is closely related to billiards in polygons, which has
produced abundant results in dynamics and geometry. From the algebraic viewpoint,
an abelian differential is determined, up to scaling, by its underlying canonical divi-
sor. Hence the projections of these strata H(μ) to the moduli space of genus g curves
Mg provide a series of special subvarieties according to properties of canonical divi-
sors. Moreover, there is a GL+(2, R)-action on H(μ) induced by varying polygonal
representations of abelian differentials. The closure of any GL+(2, R)-orbit (under
the analytic topology on H(μ)) is known to be algebraic by the seminal work of
Eskin-Mirzakhani-Mohammadi ([19,20]) and Filip ([23]). We refer to [14,32,36,37]
for surveys on abelian differentials and relevant topics.

Just as many moduli problems, it is natural to pursue a functorial compactification
for the stratum H(μ). Then one can obtain information for the interior of the stratum
by analyzing the boundary of the compactification. This circle of ideas has been shown
to be useful. For instance, dynamical invariants of Teichmüller curves (as dimension-
ally minimal GL+(2, R)-orbit closures) can be computed through their intersections
with divisors of the Deligne–Mumford compactification Mg ([15,16]). With this as a
motivation, in this paper we consider a compactification of H(μ) via log geometry.

1.1 Moduli of log twisted sections

Our construction of the compactification is based on the theory of stable log maps
developed in [1,17,25]. We first treat a more general situation. As a convention, for a
log scheme (resp. stack) ∗ we will often use ∗ to denote the underlying scheme (resp.
stack). Let L be a line bundle of relative degree d over a family of genus g pre-stable
curves π : C → M with n markings σ1, . . . , σn , and μ = (m1, . . . , mn) a partition of
d. For each S → M , consider a family of log curves πS : CS → S over the underlying
curve C S → S obtained by pulling back the family C → M . See Sect. 2.1 for the
definition of log curves. We have a projection of log schemes ψS : L S → CS such
that

(1) The underlying structure L S is the total space of the pull-back of L via C S → C ;
(2) The log structure ML S

on L S is given by the zero section of the line bundle L S

together with the log structure from C , see Sect. 2.2.

A log twisted section with signature μ over the log scheme S is a section η : CS → L S

of the projection ψS with contact orders at the marked points given by μ. Note that the
underlying morphism η is a section of the line bundle L S over C S . Here the contact
order is a generalization of the vanishing order of sections of the line bundle L . It
remembers the vanishing order at the marked points, even when the underlying section
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η vanishes completely along the components of the curve containing the marked points,
see (2.4).

Denote by M†(μ) the moduli stack of log twisted sections with signature μ. Note
that algebraic stacks parameterize objects over usual schemes. In contrast, M†(μ)

parameterizes objects over log schemes. We will show that the stack M†(μ) is an
algebraic stack equipped with a log structure. The key to this result is the minimality

of [1,17,25] which identifies M†(μ) as a stack parameterizing the so called minimal

log twisted sections. These minimal objects equipped with minimal log structures,
are objects over usual schemes. We discuss the minimality of log twisted sections in
Sect. 2.4 and show that

Theorem 1.1 (Theorem 2.4) The stack M†(μ) is an algebraic stack equipped with the
minimal log structure which parameterizes minimal log twisted sections. Furthermore,
the forgetful morphism

M†(μ) → Rπ∗(L)

is representable and finite, where Rπ∗(L) is the total space of the push-forward of L

along π , see Sect. 2.2.

Remark 1.2 For people in the community of Teichmüller dynamics, one may focus
on the special case when L is the relative dualizing line bundle on a family of genus
g curves, μ is a partition of 2g − 2 and η restricted to each fiber is a section of the
dualizing line bundle with zero type given by μ. Then the above result provides a
functorial log geometric compactification for the stratum of abelian differentials of
type μ as a Deligne–Mumford stack. As an application, in the next two subsections
we will see that adding log structures can help distinguish the spin parity and enrich
the hyperelliptic structure in the boundary of the compactification.

For experts in the field who know more about flat surfaces but less about log geom-
etry, roughly speaking, different structures of a log twisted section at a node of a
stable curve (see Sect. 2.2) correspond to different horizontal tangent vectors (called
“prongs” in [9]) at the node as the zero or pole under the induced flat metric, see
Sect. 4.9 for a detailed explanation. From this viewpoint, it is fascinating that the
sophisticated machinery in log geometry can have such a concrete incarnation in flat
geometry. Moreover, the functoriality and universal property of the log compactifi-
cation may shed some light on the analytic approach of compactifying the strata of
abelian differentials (e.g. as in [9]), with common goals towards analyzing the bound-
ary structure, clarifying intersection multiplicities, and transforming calculations of
dynamical quantities (such as volumes and Siegel–Veech constants) into the bigger
framework of Gromov–Witten theory, where log geometry has played a prominent
role. We plan to use the current work as a motivation and treat the above questions in
future work (together with other collaborators).

1.2 Log twisted differentials and their spin parity

Consider the situation when C → M is given by the universal family of genus g,
n-marked stable curves Cg,n → Mg,n with L = ωCg,n/Mg,n

the (relative) dualizing



20 Page 4 of 42 D. Chen, Q. Chen

line bundle. Let μ be a partition of 2g − 2, which equals the degree of ωCg,n/Mg,n
. A

log twisted differential with signature μ is a log twisted section with signature μ with
respect to the dualizing line bundle, see Sect. 3.1. We emphasize that log twisted differ-
ential extends the notion of abelian differential functorially to the Deligne–Mumford
boundary. It naturally associates to each irreducible component of a degenerate curve a
(possibly meromorphic) differential up to a C

∗-scaling controlled by the log structures,
see Sect. 3.2.

Denote by H†(μ) the moduli stack of log twisted differentials with signature μ.
The open stratum H(μ) ⊂ H†(μ) is the locus parameterizing (not identically zero)
abelian differentials over smooth curves. In particular, H(μ) can be identified with
the open locus of H†(μ) with the trivial log structure.

For a partition μ of 2g − 2 with even entries mi = 2ki for all i , the half-canonical
divisor

∑n
i=1 kiσi given by an abelian differential over a smooth curve defines a theta

characteristic, called the spin structure. The parity dim H0(
∑n

i=1 kiσi ) (mod 2) of
the spin structure is a smooth deformation invariant ([7,33]). It follows that the loci of
abelian differentials with odd and even spin structures in the stratum H(μ) are disjoint.
Kontsevich and Zorich ([31]) classified the connected components for all strata H(μ).
It turns out that H(μ) can have up to three connected components, distinguished by
spin and hyperelliptic structures. We next generalize the spin parity to log twisted
differentials and prove the following result.

Theorem 1.3 (Theorem 4.1) Consider the partition μ = (mi )
n
i=1 with each mi even.

Then we have a disjoint union

H†(μ) = H†(μ)+ � H†(μ)−,

where H†(μ)+ (resp. H†(μ)−) is the open and closed substack of H†(μ) parameter-
izing log twisted differentials with even (resp. odd) spin parity.

Remark 1.4 We remark that the moduli space H†(μ) of log twisted differentials maps
onto the Farkas–Pandharipande moduli space of twisted canonical divisors ([22]),
hence it may contain components that are entirely over the Deligne–Mumford bound-
ary. Nevertheless, the spin parity defined above is not only for the main component of
H†(μ), but also for all boundary components that contain non-smoothable log twisted
differentials. Therefore, H†(μ)+ and H†(μ)− are in general reducible, consisting of
other components besides the main (spin) components. In addition, depending on the
spin parity, one of H†(μ)+ and H†(μ)− contains the hyperelliptic component if it
exists.

1.3 The hyperelliptic structure

An abelian differential η over a smooth curve C is called hyperelliptic if C is hyperel-
liptic and ι∗η = −η, where ι is the hyperelliptic involution. As pointed out in Remark
1.4, the moduli space H†(μ) does not separate the closures of the spin and hyperellip-
tic components along the boundary. To distinguish the hyperelliptic structure over the
boundary, we define log twisted hyperelliptic differentials by combining the techniques



Spin and hyperelliptic structures of log twisted differentials Page 5 of 42 20

of log geometry and admissible covers, see Sect. 5.3. Given a partition μ of 2g − 2
compatible with the hyperelliptic involution, the category of log twisted hyperelliptic
differentials form a moduli space Hyp(μ). We prove that

Theorem 1.5 (Theorem 5.1) The moduli space Hyp(μ) is a separated, log smooth
Deligne–Mumford stack equipped with the universal minimal log structure. Further-
more, the forgetful morphism to the Hodge bundle Hyp(μ) → Hg,n is representable
and finite.

Remark 1.6 For the convenience of the construction, in the hyperelliptic case we mark
all the involution fixed points, hence zero contact orders are allowed in the partition
μ, see Sect. 5.6.

Remark 1.7 The compactification Hyp(μ) treats not only the hyperelliptic compo-
nents of H(μ), but also the hyperelliptic loci in H(μ) for any partition μ compatible
with ι. The log smoothness of Hyp(μ) is equivalent to the statement that the boundary
of Hyp(μ) is toroidal. Hence all log twisted hyperelliptic differentials are smooth-
able. In particular, the hyperelliptic component of H(μ) is a dense open substack of
a connected component of Hyp(μ), whose image via Hyp(μ) → Hg,n is precisely
the closure of the hyperelliptic components in Hg,n .

1.4 Related works and comparison

There are several recent attempts to study degeneration of abelian differentials from
the classical viewpoint without using log structures, i.e., compactifying the strata in
the Hodge bundle over Mg,n (resp. in Mg,n) using twisted differentials (resp. twisted
canonical divisors). Gendron ([24]) proved the smoothability of twisted differentials
when they have zero residues at all nodes. The first author ([13]) studied twisted
canonical divisors on curves of pseudo-compact type. Farkas and Pandharipande ([22])
studied systematically the space of twisted canonical divisors and showed that it is
in general reducible, which contains, besides the closure of the stratum, a number
of boundary components that have dimension one less than the dimension of the
stratum. Finally in [8] a crucial global residue condition was found and used to isolate
the closure of the stratum. As mentioned before, the moduli space H†(μ) of log
twisted differentials maps onto the Farkas–Pandharipande space of twisted canonical
divisors, hence it also contains extra boundary components. Nevertheless, there is a
way to implant the global residue condition under the log setting to isolate the main
component, which will be addressed in our future work.

Without log structures, the odd and even spin components can intersect in the
boundary of the aforementioned compactifications. This phenomenon has been already
observed in [13,21,24].

We mention that the log twisted differential considered in this paper is closely
related to the strata compactification studied by Guéré ([26]), whose construction
also relies on the theory of stable log maps, but is motivated from the viewpoint of
Gromov–Witten theory.
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If one replaces the canonical line bundle by its kth power, then it is natural to
consider the strata of k-differentials. Setting L to be the kth power of the relative
canonical line bundle in Theorem 2.4, our result gives also a log compactification
for the strata of k-differentials parameterizing log twisted k-differentials (similarly
see [26]). The space of twisted k-differentials is in general reducible and a modified
global residue condition via canonical k-covers can isolate the main component ([10]).

1.5 Conventions and notations

We use capital letters such as C , S, and M to denote log schemes or log stacks. Their
underlying schemes or stacks are denoted by C , S, and M respectively. Given a log
structure MX over a scheme X , denote by MX := MX/O∗ the characteristic sheaf

of MX . All log structures considered here are fine and saturated. We refer to [2,28]
for the basics of log geometry.

This paper is heavily built on the theory of stable log maps, and we refer to [1,17,25]
for general developments of stable log maps. Throughout this paper, we work over an
algebraically closed field of characteristic zero.

2 Log twisted sections

In this section, we introduce the general set-up of log twisted sections of a given line
bundle, and study their moduli stacks.

2.1 Log curves

First recall the canonical log structure on pre-stable curves ([29,35]). Denote by
Cg,n → Mg,n the universal family of pre-stable curves. Note that the boundary
�M ⊂ Mg,n parameterizing singular underlying curves is a normal crossings divisor
in Mg,n . Thus we denote by Mg,n the log stack, with the underlying structure given
by Mg,n and the log structure MMg,n

given by the divisorial log structure associated
to �M, see [28, (1.5)]

Similarly, we consider the boundary �C ⊂ Cg,n consisting of singular fibers with
n markings. The boundary �C is again a normal crossings divisor in Cg,n . Denote by
Cg,n the log stack with underlying structure Cg,n , and by MCg,n

the log structure of
Cg,n given by the divisorial log structure associated to the boundary �C. Since the
morphism of the pairs

(Cg,n,�C) → (Mg,n,�M)

is toroidal, it induces a morphism of log stacks

Cg,n → Mg,n .
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Now consider a family of genus g, n-marked pre-stable curves C → S. Such a
family is obtained from the following cartesian diagram

C Cg,n

S Mg,n

via a unique morphism S → Mg,n determined by the underlying family C → S.
Pulling back the log structures on Cg,n and Mg,n , we obtain a family of log schemes

C	 → S	.

Such a family C	 → S	 is called the basic log curve associated to the underlying family
C → S. By [29,35], the log structure of the basic log curve is uniquely determined
by the underlying family C → S, up to isomorphism.

Definition 2.1 A genus g, n-marked log curve over a log scheme (or a log stack) S is
a family C → S such that

(1) The underlying family C → S is a family of genus g, n-marked pre-stable curves;
(2) There is a morphism S → S	 with the identity underlying morphism that fits in

a cartesian diagram of log schemes:

C C	

S
h

S	

where C	 → S	 is the basic log curve associated to the underlying family C → S.

We next recall the local description of a log curve over a geometric point. Given a
family of log curves π : C → S with S a geometric point. We denote by σi : S → C

the i th marked point. For ease of notation, we also write σi for its image in C , and
apply the same philosophy to similar notations later on. Note that there are three cases
for points in a marked nodal curve: smooth unmarked points, markings, and nodes.

Smooth unmarked points Let p ∈ C be a smooth unmarked point. Then we have

MC,p = (π∗MS)p.

Marked points For the markings, denote by Mi the divisorial log structure on C

associated to the divisor σi . We thus have the fiber

MC,σi
= (π∗MS ⊕O∗

C
Mi )p.
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In particular, the fiber of the characteristic sheaf at σi is

MC,σi
= π∗MS ⊕ N.

Nodes We recall that MS	 = N
k where k is the number of nodes of C . Indeed, let G

be the dual graph of C , where vertices of G correspond to the irreducible components
of C , edges of G correspond to the nodes, and rays correspond to the markings. The
generators of MS	 can be labeled by the set of edges E(G). For each edge l ∈ E(G),
denote by el ∈ MS	 the corresponding generator. Suppose l represents the node z.
Then we will also set ez = el and use them interchangeably. Let x and y be local
coordinates of the two components meeting at the node z. Then we can lift the two
functions x and y to two sections x† and y† in MC	 étale locally near z. By a careful
choice of the chart β	 : MS	 → MS	 and the coordinates x and y, we have the
following local equation

β	(el) = x† + y† in MC	 . (2.1)

We have the fiber

MC	,l = N
k−1 ⊕ N

2,

where the first summand N
k−1 is generated by {el ′} for edges l ′ 	= l, and the second

summand N
2 is generated by the images of x† and y†.

We denote again by x† and y† the pull-backs of the corresponding local sections
over C . Thus locally near l, we have

h
� ◦ β	(el) = x† + y† in MC ,

where h
�

is the morphism on the level of characteristic sheaves induced by the map h

in Definition 2.1. We have the fiber

MC,l = π∗MS ⊕M
S	

N
2,

where the second summand N
2 is generated by the images of x† and y†. For later use,

we will identify el (or ez) with its image in MS , and call it the smoothing element

associated to the edge l (or the node z).

2.2 Log twisted sections

Here we study log twisted sections using stable log maps developed in ([1,17,25]).
Throughout the rest of this section, we consider the following situation:

(1) π : C → M is a family of genus g, n-marked pre-stable curves over an algebraic
stack M with the n markings {σi }n

i=1;
(2) L is a line bundle of degree d over the family of curves C .
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For any morphism S → M , denote by (L S, C S) the family obtained by pulling back
(L, C).

Consider the stack Rπ∗(L) over M that associates to each morphism S → M the
set of global sections H0(L S). The stack Rπ∗(L) is algebraic with a separated and
representable morphism Rπ∗(L) → M ([12]).

We again write π : C → M for the basic log curve associated to the underlying
family π : C → M with markings {σi }n

i=1. Let ψ : L → C be the projection. Let N ′
L

be the divisorial log structure on the total space of L associated to the zero section of
L , and NL = ψ∗MC the log structure on L . Define

ML := N ′
L ⊕O∗ NL , (2.2)

and denote by L = (L,ML) the log stack. We thus obtain a log smooth morphism

ψ : L → C

whose underlying morphism is given by ψ .
Consider a partition

μ = (m1, . . . , mn)

such that mi ∈ N and
∑n

i=1 mi = d. Here we allow mi = 0. Our motivation is to
compactify the stratum of global sections of L that have a zero of order mi at each σi .
Now we formally define such sections under the log geometric setting.

Definition 2.2 A family of log twisted sections with contact orders μ associated to

the family L → C → M over a log scheme S consists of the following data:

(πS : CS → S, η : CS → L S)

where

(1) πS : CS → S is the family of log curves obtained by pulling back the family
C → M via the map S → M ;

(2) The composition ψ ◦ η is the identity map of the log curve CS . In particular, the
underlying map η is a global section of the line bundle L S over C S ;

(3) The contact order at the i th marking is mi for i = 1, · · · , n (see Definition 2.5
for contact order).

When the underlying section η of η does not vanish along the component contain-
ing the i th marking σi , the contact order mi is precisely the zero order of η at σi . An
advantage of using log structures is that even if η is identically zero along the com-
ponent containing σi , the contact order mi at σi is still well-defined for log twisted
sections. We add contact orders above for completeness of the definition. The detailed
discussion of contact orders will be explained in Sect. 2.3 together with other similar
features of log structures.
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For simplicity, we will use log twisted section without mentioning the line bundle
L and the partition μ when there is no confusion. Sometimes we also refer to η as a
log twisted section if the family of log curves CS → S is clear in the context.

Denote by L ′ = (L,N ′
L) with the divisorial log structure associated to the zero

section of L . Then we have the following observation that every log twisted section
η is automatically a stable log map to L ′. We refer to [17, Definition 3.6.1] for the
definition of stable log maps.

Lemma 2.3 A log twisted section η is equivalent to a stable log map η′ : CS → L ′
S

with the underlying morphism given by a section η ∈ H0(L). We call η′ the stable log
map associated to η.

Proof On the level of log structures, the morphism η� : η∗(N ′
L S

⊕O∗ NL S
) → MC

induces an isomorphism on the component NL S
as it is a section of ψS . Thus, it is

entirely determined by (η′)� = η�|N ′
L S

. The log map η′ is stable as the underlying map

is the section η which has no contracted components. ��

We denote by M†(μ) the category of log twisted sections fibered over the category
of log schemes. The main result of this section is

Theorem 2.4 The fibered category M†(μ) is represented by an algebraic stack with
the minimal log structure. Furthermore, the morphism

M†(μ) → Rπ∗(L)

is representable and finite.

The finiteness of the theorem follows from the same property of stable log maps,
see [17, Theorem 1.2.1]. We will justify the minimal log structure in Sect. 2.4, and the
representability of M†(μ) will follow from Proposition 2.10.

2.3 Local structure of log twisted sections

Let η be a log twisted section over a log curve πS : CS → S. Denote by η′ the stable
log map associated to η. Shrinking S if necessary, there exists a chart

β : MS,s → MS

for some point s ∈ S. For an element e ∈ MS,s , we identify e with its image β(e) for
the above choice of chart.

Consider the case when S is a geometric point. Then the chart β becomes a section
of the natural quotient morphism

MS → MS := MS/O∗
S .

We want to analyze three cases: irreducible components of C , markings, and nodes.
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Irreducible components Let Z be an irreducible component of C . Locally near a
smooth unmarked point z ∈ Z , we have the morphism on the level of log structures

(η′)� : η∗N ′
L S ,z → MC,z := π∗

SMS, δ† �→ eZ + u (2.3)

where δ† is a local generator of N ′
L S ,z near η(z), eZ is the section β(eZ ) ∈ MS by a

slight abuse of notation, and u ∈ OC is an invertible regular function in a neighborhood
of z. Note that if eZ 	= 0 in MS , then the underlying section η vanishes entirely on the

component Z . Hence we call eZ ∈ MS the degeneracy of the irreducible component
Z .

Marked points For a marking z = σi ∈ Z , we have the morphism on the level of log
structures

(η′)� : η∗N ′
L S ,z → MCS ,z := π∗

SMS ⊕O∗ Nσi
, δ† �→ eZ + mi · δ

†
i + u (2.4)

where eZ is the degeneracy of Z defined above, δ
†
i ∈ MCS

is the lifting of the
local defining equation δi of σi , and u ∈ OC is an invertible regular function in a
neighborhood of σi .

It is important to notice that even if eZ 	= 0 and consequently the underlying section
η vanishes on Z , the morphism on the level of log structures remembers the zero orders
at the markings.

Definition 2.5 We call mi in the above the contact order of η at σi .

By [17, Lemma 3.2.4] or [25, Lemma 1.11], the contact order remains constant in a
connected family of stable log maps.

Nodes Let z ∈ C be a node joining two irreducible components Z1 and Z2. Let l be
the edge in the dual graph G of C that corresponds to the node z. As said we will
interchangeably use both l and z for the same object. Let x† and y† be local sections in
MC near z as in (2.1) corresponding to the two components Z1 and Z2 respectively.
Without loss of generality we can assume on the level of log structures

(η′)� : η∗N ′
L S

→ MC,z, δ† �→ eZ1 + cl · x† + u (2.5)

where cl is a non-negative integer, eZ1 = β(eZ1) again by a slight abuse of notation,
and u is some invertible function in a neighborhood of z ∈ Z1. Note that in this
case there is a relation of the degeneracies of Z1 and Z2 on the level of characteristic
monoid:

eZ1 + cl · ez = eZ2 . (2.6)

Let V ⊂ Z2 be a small neighborhood of z. Then on V � z we have

(η′)�(δ†) = eZ2 − cl · y† + v (2.7)

for some invertible function v ∈ OV .
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Definition 2.6 In the above setting, we say that cl (or cz) is the contact order of η at
the node z (or the edge l).

It is useful to notice that when Z1 = Z2, using the relation (2.6), we have cl = 0.
Note that the relation (2.6) implies a partial ordering “≥min” on the set V (G) of

irreducible components, which we call the minimal partial ordering. More precisely,
we write Z1 >min Z2 if cl > 0 and Z1 =min Z2 if cl = 0.

Remark 2.7 The idea is that eZ measures the degeneracy of Z . If cl > 0, then the log
twisted section η degenerates faster along Z2 than Z1, and hence Z2 looks “smaller”
compared to Z1. Similarly for cl = 0, it means η has the same degenerate speed along
Z1 and Z2, hence they have relatively comparable “sizes”.

2.4 Minimality

We discuss the minimality of stable log maps in the situation of log twisted sections.
We refer to [1,17,25] for more general situations. First assume that η is a log twisted
section over a log curve CS → S with S a geometric point, as considered in the
preceding section. Let η′ be the stable log map as in Lemma 2.3.

Denote by G the dual graph of the underlying curve C S . Recall that E(G) is the set
of edges corresponding to nodes of C S and V (G) is the set of vertices corresponding
to irreducible components of C S . We then define the weighted graph G associated to
η, which is formed out of the dual graph G with the following extra data:

(1) The contact order cl for each edge l ∈ E(G);
(2) A partition V (G) = V d(G)�V nd(G) such that ev 	= 0 if and only if v ∈ V d(G),

where ev = eZ is the degeneracy of the irreducible component Z corresponding
to v;

(3) The minimal partial ordering “≥min” on V (G) defined in Sect. 2.3.

In the above, we wrote V (G) instead of V (G) etc for the part of the data from
the underlying dual graph. The decorations “d” and “nd” on the partition of V (G)

indicate whether or not a component Z is degenerate. In other words, it is degenerate if
and only if the degeneracy of η at Z is non-trivial, that is, if and only if the underlying
section η vanishes entirely on Z . For an edge joining two vertices v1 ≥min v2, we call
the corresponding node an incoming node of v2. In other words, the orientation of an
edge is from the bigger vertex to the smaller one.

Consider the free abelian group

〈ev, el〉v∈V (G), l∈E(G)

generated by the degeneracy and smoothing elements, Take the quotient

〈ev, el〉v∈V (G), l∈E(G)/ ∼

where the relation “∼” is given by

(1) (non-degeneracy) ev ∼ 0 if v ∈ V nd(G);



Spin and hyperelliptic structures of log twisted differentials Page 13 of 42 20

(2) (edge relation) if l is an edge joining v1 and v2 with v1 ≥min v2, then

ev1 + cl · el ∼ ev2 . (2.8)

Consider the maximal torsion-free subgroup

G ⊂ 〈ev, el〉v∈V (G), l∈E(G)/ ∼ .

We may also view G as the quotient of
(

〈ev, el〉v∈V (G), l∈E(G)/ ∼
)

by its torsion
subgroup. We introduce the minimal monoid M(G) ⊂ G which is the saturation
submonoid in G generated by the images of ev and el for all v ∈ V (G) and l ∈ E(G).
By [17, Section 3.3], [1, Section 4.1], or [25, Section 1.5], we have

(1) M(G) is a fine, saturated, and sharp monoid;
(2) M(G)gp = G;
(3) there is a canonical morphism

ψ : M(G) → MS . (2.9)

Definition 2.8 The log twisted section η is called minimal if ψ is an isomorphism. A
family of log twisted sections is called minimal if each geometric fiber is minimal.

By [17, Proposition 3.5.2] or [25, Proposition 1.22], minimality forms an open
condition over a family of log twisted sections, hence the above definition of minimality
works well with families. Furthermore, we have the following universal property, see
[17, Proposition 4.1.1] or [25, Lemma 1.23] for a proof.

Proposition 2.9 For any log twisted sections η over a family of log curves CS → S,

there is a minimal family of log twisted sections ηm over a family of log curves CSm →
Sm and a morphism S → Sm whose underlying map is the identity, such that η is

the pull-back of ηm via S → Sm . Moreover, the pair (ηm, S → Sm) is unique up to

isomorphism.

Recall that M† is the category of log twisted sections fibered over the category
of log schemes. Denote by M

†
m the category of minimal log twisted sections fibered

over the category of schemes. As a fibered category, M
†
m carries a universal minimal

log structure M
M

†
m

. Hence we can view the pair (M
†
m,M

M
†
m
) as a category fibered

over log schemes. By the universal property of minimality in Proposition 2.9, the pair
(M

†
m,M

M
†
m
) represents the fibered category M†. Therefore, the representability of

M† is a consequence of the following result.

Proposition 2.10 The fibered category M
†
m is represented by an algebraic stack.

Proof By [5, Lemma C.5], replacing M by a smooth cover, it suffices to consider the
case when C → M is a morphism of schemes, and then L ′ is a log scheme over the
underlying scheme M . By [17, Theorem 1.2.1], the category of minimal stable log
maps to L ′ with genus g, curve class given by the zero section, and contact order μ
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form a log algebraic stack M(L ′) with its minimal log structure. There is a tautological
morphism given by the underlying universal curve

M(L ′) → Mg,n .

Consider the base change

MM = M(L ′) ×Mg,n
M .

It follows that MM is also algebraic. Furthermore, there is an open sub-stack M◦
M ⊂

MM whose underlying morphism is a section of L → C . By Lemma 2.3, we have
M

†
m = M◦

M . This finishes the proof. ��

Combining Propositions 2.9 and 2.10 completes the proof of Theorem 2.4.

3 Log twisted differentials

In this section we specialize the general theory of log twisted sections established in
the preceding section to the case of differentials.

3.1 Log twisted differentials and their moduli

Using the notations in Sect. 2.2, we consider the following situation:

(1) M = Mg,n the stack of stable curves of genus g with n markings;
(2) C = Cg,n the universal curve over M with the projection π : C → M ;
(3) L = ωπ the dualizing line bundle over C associated to the family π .

We thus have the family of log curves π : C → M with the canonical log structure
associated to the underlying family π . Over each fiber of π , the line bundle L is of
degree d = 2g − 2.

Denote by μ = (m1, . . . , mn) a partition of 2g − 2. Recall that we have L =
(L,ML), with ML = N ′

L ⊕O∗ NL and a log smooth morphism

ψ : L → C .

Recall also that we set L ′ = (L,N ′
L).

For any genus g, n-marked stable log curve πS : CS → S, denote by L S the pull-
back of L via the morphism S → M . Now we define log twisted differential as a
special case of log twisted section.

Definition 3.1 A log twisted differential with signature μ over a family of stable log
curves CS → S is a log twisted section η : C → L with contact orders μ as in
Definition 2.2. It is called minimal if it is minimal in the sense of Definition 2.8.

Note that μ already includes the information of genus and number of markings.
Denote by H†(μ) the category of log twisted differentials with siganture μ over the
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category of log schemes. Let H be the Hodge bundle over M in the classical sense.
Theorem 2.4 then specializes as follows.

Corollary 3.2 The category H†(μ) is represented by a separated Deligne–Mumford

stack of finite type with the minimal log structure. Furthermore, the tautological mor-

phism

H†(μ) → H

by removing all log structures is representable and finite.

Proof Since H is a separated Deligne–Mumford stack of finite type, and H†(μ) → H

is finite by Theorem 2.4, H†(μ) is a separated log Deligne–Mumford stack of finite
type. ��

Note that the underlying stack of H†(μ) is the moduli of minimal log twisted
differentials. Let H(μ) ⊂ H†(μ) be the open substack with the trivial log structure.
Then H(μ) is the moduli space of (not identically zero) abelian differentials on smooth
curves whose zero orders are of type μ, i.e., the stratum of abelian differentials with
signature μ. Denote by H(μ) the component of H†(μ) containing H(μ) as an open
dense substack. We call H(μ) the main component of H†(μ).

3.2 Induced differentials on irreducible components

Consider a log twisted differential η over a family of log curves πS : CS → S. We
assume that S is a geometric point. Let G be the weighted graph of η as defined in
Sect. 2.4. Fix a chart β : MS → MS . Then we obtain a composition

M(G) → MS → MS

again denoted by β. For each element e ∈ M(G), we identify e with its image in M

under β.
For a vertex v ∈ V (G), let Z ⊂ CS be the corresponding irreducible component.

We first consider the composition

η′′
Z := (η′)� − ev : NL ′

S
|Z → MC |Z → OZ , (3.1)

where the first arrow is defined by δ �→ (η′)�(δ)−ev with ev = eZ the degeneracy of v

(and Z ). By the descriptions of (2.3), (2.4), (2.5), and (2.7), the above morphism is well-
defined away from the incoming nodes of Z (those joining Z to bigger components
under ≥min), hence it extends to a meromorphic morphism

η
β

Z : OL |Z → OZ

with poles of contact order cz at each incoming node z of Z . Therefore, ηβ

Z corresponds
to a meromorphic differential on Z such that
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(1) η
β

Z has a zero of order mi at each marking σi ∈ Z ;

(2) η
β

Z has a zero of order cz − 1 at a node z ∈ Z if the corresponding edge in G is
oriented from the vertex of Z to another vertex;

(3) η
β

Z has a simple pole at an unoriented node z ∈ Z where cz = 0;

(4) η
β

Z has a pole of order cz + 1 at a node z ∈ Z if the corresponding edge in G is
oriented from another vertex to Z .

Note that the zero or pole orders of the differential η
β

Z at the node z differ from the
contact order cz by one. This is due to the fact that the dualizing line bundle is locally
generated by differentials with simple poles at the nodes.

Definition 3.3 In the above setting, we say that η
β

Z is the meromorphic differential

induced by the chart β, or simply the induced differential if there is no confusion.

Next we study how induced differentials behave with different charts.

Proposition 3.4 Consider two charts βi : MS → MS for i = 1, 2. Let η
βi

Z be the

meromorphic differential induced by βi . Then we have

u · η
β1
Z = η

β2
Z

where u is the non-zero constant satisfying

β1(eZ ) = u + β2(eZ ).

Furthermore, the induced differential η
βi

Z only depends on the lifting β(eZ ) ∈ MS of

eZ ∈ MS .

Proof For the first statement, note that β1 and β2 are both sections of the quotient
MS → MS . Then the difference β1(eZ ) − β2(eZ ) lies in the subgroup O∗

S ⊂ MS ,
because its image in MS is trivial. Now the statement follows from (3.1).

For the second statement, if eZ 	= 0, then it follows from (3.1) and the construction
of η

βi

Z . If eZ = 0, then any lift e ∈ MS of eZ is necessarily a non-zero constant. Note
that if e 	= 1, then there does not exist any chart β with e = β(eZ ). However, one can
still carry out the construction (3.1) in this case and obtain a differential ηe

Z on Z . We
observe that

ηe
Z = e · η|Z .

This finishes the proof. ��
By the above proposition, for any information about η

β

Z that is independent of
scaling, we can drop the subscript β. In particular, we have the following definition.

Definition 3.5 In the above setting, a point z ∈ Z is called a pole (or zero) of ηZ := η|Z ,
if it is a pole (or zero) of η

β

Z for one (hence every) chart β : MS → MS . We denote
by

ordz ηZ = ordz η
β

Z
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the (zero or pole) order of the induced differential η
β

Z at z for some chart β.

By Proposition 3.4, ordz ηZ is independent of the choice of charts. If z is a pole,
then it is an incoming node of Z with pole order cz +1 for the induced differential ηZ .

4 Spin structure

In this section we show that the moduli space of log twisted differentials distinguishes
the spin parity in the boundary.

4.1 Statements and results

Consider the case μ = (mi )
n
i=1 with each mi even. Let η be a non-degenerate differ-

ential with signature μ on a smooth algebraic curve C over a geometric point S. In
this case, the log structure MS is trivial, and η defines the canonical divisor

(η) :=
n

∑

i=1

mi · σi .

Since each mi is even, we define the spin divisor

(
√

η) :=
n

∑

i=1

mi

2
· σi .

We say that η carries an even or odd spin structure if

dim H0(OC (
√

η))

is even or odd respectively. In this section, we will extend the notion of spin parity to
the degenerate case, and show that the even and odd spin structures do not mix up in
the boundary of the log compactification. More precisely, we prove the following.

Theorem 4.1 Consider the partition μ = (mi )
n
i=1 with each mi even. Then we have a

disjoint union

H†(μ) = H†(μ)+ � H†(μ)−,

where H†(μ)+ (resp. H†(μ)−) is the open and closed substack of H†(μ) parameter-
izing log twisted differentials with even (resp. odd) spin parity.

Spin parity for log twisted differentials is defined in Proposition-Definition 4.11. In
general, spin bundles only exist over orbifold covers of the underlying stable curves.
However, we prove that the spin parity does not depend on various choices in the
construction, hence is well-defined for a given log twisted differential. The above
theorem then follows from Proposition 4.16 which states that the spin parity remains
constant on each connected family of log twisted differentials.
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4.2 An easy case of spin parity on the boundary

In this section, we first discuss how to define the spin structure of the boundary objects
under certain simplifications.

Let η be a log twisted differential over a log curve C → S with S a geometric point.
Let μ = (mi )

n
i=1 be the signature of η with each mi even. We make the following two

assumptions on η:

Assumption 4.2 Let G be the graph associated to η. We assume that

(1) For each edge l ∈ E(G), the contact order cl ∈ N is even;
(2) For each vertex v ∈ V (G), the degeneracy ev is divisible by 2, i.e., 1

2 ·ev ∈ M(G).

Note that the log twisted differential η : C → L is determined by η′ : C → L ′

where L ′ = (L,N ′
L) as in Sect. 3.1. Since N ′

L is defined by the zero section of the line
bundle L → C , it is a Deligne-Faltings log structure of rank one, see [28, Complement
1] or [17, Appendix A.2.]. In particular, we have a morphism

θ̄ : N → N
′
L (4.1)

which locally lifts to a chart of N ′
L . Here N is viewed as the constant sheaf on C . We

form the following commutative diagram

η∗(N ′
L)

(η′)�
MC

q

N
θ̄

η∗(N
′
L)

(η̄′)�
MC .

Denote by δ ∈ MC the image of 1 ∈ N via the bottom composition. The assumption
(4.2) implies that δ

2 ∈ MC is a global section as well. Denote by T = q−1( δ
2 ). We

observe that T is an O∗
C -torsor over C . Indeed, let E be the line bundle on C associated

to T . Since L is the dualizing line bundle over C , we have an isomorphism of line
bundles

E⊗2 ∼= L∨.

We thus obtain a spin bundle E∨ over C associated to η.

Definition 4.3 Under Assumption (4.2), we say that η carries an even (resp. odd) spin
structure if dim H0(E∨) is even (resp. odd).

Proposition 4.4 The spin bundle associated to η is the same as the spin bundle asso-

ciated to the corresponding minimal object ηmin .
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Proof Let η′
min : Cmin → L ′ be the corresponding morphism of log schemes of ηmin .

We have the commutative diagram

η∗(N ′
L)

(η′
min)�

MCmin

qmin

MC

q

N
θ̄

η∗(N
′
L)

(η̄′
min)�

MCmin
MC .

Denote by δmin ∈ MCmin
the image of 1 ∈ N of the first two bottom maps. Clearly, the

image of δmin in MC is δ. Denote by Tmin = q−1
min(

δmin

2 ). Then the above commutative
diagram induces an isomorphism of the torsors

Tmin → T .

This proves the statement. ��

In general, if the two assumptions in (4.2) do not hold, extra modifications are
necessary for defining the spin parity. First, we use the orbifold approach of [4] to
allow orbifold structures along the nodes with odd contact orders. The auxilary orbifold
structures guarantee that all contact orders in the orbifold case become even. Then we
will need to apply further base change of the log structure of the base to make sure that
all degeneracies are divisible by 2. Finally, we verify that the spin parity is independent
of various choices in the above modifications.

4.3 Orbifolding along odd contact nodes

Below we introduce the auxiliary orbifold curve. First consider the case of a geometric
fiber. Let η be a minimal log twisted differential over a log curve C → S with S a geo-
metric point. Let G be the weighted graph of η. Consider the canonical isomorphism
of monoids ψ : M(G) → MS as in (2.9). For simplicity, we will identify e ∈ M(G)

with its image ψ(e) ∈ MS when there is no confusion.
We take an orbifold nodal curve C̃ over S as in [6, Definition 4.1.2]1 with the

following properties:

(1) The coarse moduli morphism is tc : C̃ → C ;
(2) The stacky locus of C̃ consists of the nodes whose images in C are nodes with

odd contact orders;
(3) Each stacky node of C̃ is a μ2-gerbe over S, where μ2 is the multiplicative group

of order 2.

Note that the morphism tc : C̃ → C is isomorphic away from the stacky nodes, and
the orbifold curve C̃ is uniquely determined by the underlying curve C (see [3, Section

1 Such C̃ is called a twisted nodal curve in [6]. Here we use “orbifold” to avoid possible confusion, as
“twist” has been already used for log twisted differentials.
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1.2]). Indeed, let z̃ ∈ C̃ be a stacky node with its image z ∈ C . Then étale locally
around z̃, the orbifold curve C̃ is given by the stack quotient

[

(Spec k[x̃, ỹ]/(x̃ · ỹ))/μ2
]

where the group action of μ2 = {1 = ζ 2, ζ } is given by

ζ · (x̃, ỹ) = (ζ · x̃, ζ · ỹ).

Assume that locally near z, the underlying curve C is of the form

Spec k[x, y]/(x · y).

The morphism tc locally near z̃ has the form

t∗c : (x, y) �→ (x̃2, ỹ2). (4.2)

4.4 Canonical log structure on orbifold curves

By [35, Theorem 3.6], there is a canonical log structure on the orbifold curve C̃ → S,
which yields a family of log orbifold curves:

π̃	 : C̃	 → S̃	.

By [35, Corollary 4.7], we have a commutative diagram

C̃	 tc
C	

S̃	 tb
S	.

(4.3)

where the underlying morphism of tb is an isomorphism of the underlying scheme S.
Note that both C and C̃ have the same dual graph G. Let k = |E(G)| be the

total number of edges, k1 be the number of edges with odd contact orders, and k2 the
number of edges with even contact orders, so k = k1 + k2. Next, we will use notations
in Sect. 2.1 for the log curve π	 : C	 → S	. Following [35, Section 4], we give a
description of (4.3) on the level of characteristic sheaves.

The base Over S, we have

M
S̃	 = N

k = N
k1 ⊕ N

k2

with the generators one-to-one corresponding to the edges of G. For each edge l ∈
E(G), denote by ẽl the corresponding generator of M

S̃	 . We call ẽl the smoothing
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parameter of the node corresponding to l. The morphism

t̄
�
b : MS	 → M

S̃	

is defined by el �→ ẽl if l has even contact order, and defined by el �→ 2 · ẽl if l has
odd contact order.

Smooth unmarked points of C̃ At a smooth unmarked point z ∈ C̃ , we have M
C̃	,z

=
M

S̃	 , and the morphism of monoids

t̄�c,z = t̄
�
b : MC	,z = MS	 → M

C̃	,z
= M

S̃	 . (4.4)

Marked points For a marked point σi ∈ C , denote by σ̃i ∈ C̃ the corresponding
marked point. Then we have M

C̃	,σ̃i
= M

S̃	 ⊕ N with the copy of N corresponding

to the divisorial log structure on C̃ given by σ̃i . We then have

t̄�c = t̄
�
b ⊕ idN : MC	,σi

= MS	 ⊕ N → M
C̃	,σ̃i

= M
S̃	 ⊕ N. (4.5)

Nodes Consider a node z ∈ C̃ corresponding to an edge l. Denote by x̃ and ỹ the
local coordinate functions on the two components of C̃ meeting at z. Then we have
the canonical local lifts x̃† and ỹ† in M

C̃	,z
. On the characteristic level, we have

M
C̃	,z

= M
S̃	 ⊕N N

2

with the morphism N → N2 on the right given by 1 �→ x† + y†, and N → M
S̃	 given

by 1 �→ ẽl . Over the node z, consider the morphism of monoids

t̄�c,z : MS	 ⊕N N
2 → M

S̃	 ⊕N N
2.

If the edge l has an even contact order, then we have

t̄�c,z = t̄b ⊕ idN2 (4.6)

which induces an isomorphism on the N
2 summand. If the edge l has an odd contact

order, then we have
t̄�c,z = t̄b ⊕ ν̄2 (4.7)

with the morphism ν̄2 : N
2 → N

2 given by (1, 1) �→ (2, 2). Note that such a morphism
on the level of log structures is compatible with the underlying structure in (4.2).
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4.5 The orbifold lift of�

Consider the following cartesian diagram of fine and saturated log schemes

S̃ S

S̃	 S	.

(4.8)

Lemma 4.5 The underlying morphism of S̃ → S̃	 is finite and surjective. In particular,

S̃ → S is finite and surjective.

Proof Note that the morphism S̃	 → S	 is integral, see [28, Definition (4.3)]. Hence by
[34, Proposition 2.4.2], the fiber product S ×S	 S̃	 in the category of fine log schemes
is non-empty. The statement then follows from [34, Proposition 2.4.5 (2)]. ��

Example 4.6 We given an example of Diagram (4.8) such that S̃ → S̃	 is finite-to-one.
Let S, S̃	, and S	 be the standard log point p† = (Spec C,MS	 = N ⊕ C∗), see
[2, Example 2.11]. Thus they have the same underlying schemes Spec C. We define
MS	 = N⊕C

∗ → MS = N⊕C
∗ via 1⊕z �→ 2⊕z, and S̃	 = N⊕C

∗ → S	 = N⊕C
∗

via 1 ⊕ z �→ 2 ⊕ z for z ∈ C∗. This yields the morphisms S → S	 and S̃	 → S	.
Now consider the fine but non-saturated monoid P = N⊕NN where the two arrows

N → N are both given by 1 �→ 2. Consider the fine but non-saturated log scheme
Z = Spec(P → C[P]) where the notation is as in [2, Example 2.8]. Observe that
the underlying scheme Z consists of two affine lines glued at a node p ∈ Z . By the
discussion in [34, Proposition 2.4.5 (2)], the underlying of S̃ is the preimage of p via
the normalization morphism Zn → Z , hence is the disjoint union of two points.

Since S is a geometric point, the underlying scheme S̃ is possibly a disjoint union
of several copies of S. It is useful to notice that for each component S̃i ⊂ S̃, the
characteristic monoid

M
S̃i

= M
S̃	 ⊕M

S	
MS

in the category of fine and saturated sharp monoids is identical to each other by the
cartesian diagram (4.8). We also observe that

Lemma 4.7 The morphism M
gp

S → M
gp

S̃i
is injective with torsion cokernel.

Now consider the fiber product of log stacks

C̃

π̃

C̃	

π̃	

S̃ S̃	.
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Note that the underlying stack of C̃ is the orbifold curve C̃ described in Sect. 4.3.
Consider the corresponding dualizing line bundles ω

C̃
and ωC over C̃ and C respec-

tively. Let N ′
ω

C̃
and N ′

ωC
be the divisorial log structures on the total spaces of ω

C̃

and ωC associated to the zero sections respectively. Denote by ω′
C̃

= (ω
C̃
,N ′

ω
C̃
) and

ω′
C = (ωC ,N ′

ωC
) the corresponding log schemes.

We also consider Nω
C̃

and NωC
the log structures on ω

C̃
and ωC obtained by pulling

back the log structures of C̃ and C respectively. Denote by L̃ = (ω
C̃
,Nω

C̃
⊕O∗ N ′

ω
C̃
)

and L = (ωC ,NωC
⊕O∗ N ′

ωC
).

Since t∗cωC = ω
C̃

, the morphism

ω′
C̃

→ ω′
C

is strict. Now consider the composition

C̃ −→ C
η′

−→ L ′.

It fits in a commutative diagram of solid arrows

C̃

ξ ′

L̃ ′ L ′

C̃ C .

where the square is cartesian. We thus obtain a morphism

ξ ′ : C̃ → L̃ ′

making the above diagram commutative. Define

ξ : C̃ → L̃

whose underlying structure is the same as that of ξ ′, and on the level of log structures

ξ � := idN
L̃

⊕ (ξ ′)� : (N
L̃

⊕O∗ N ′
L̃
)|

C̃
→ M

C̃
.

Then we have the following commutative diagram with a cartesian square given by
the solid arrows

L̃ L

C̃

ξ

C .

η

(4.9)
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We make the following observation.

Lemma 4.8 The morphism ξ is the pull-back of η, and it makes the diagram (4.9)
commutative.

We call ξ the orbifold lift of η.

4.6 Spin bundles of the orbifold lifts

Note that S̃ is possibly a disjoint union of several log points. We consider a further
base change:

S̃1 → S̃ (4.10)

with the properties that

(1) S̃1 = S, and the underlying morphism of S̃1 → S̃ is an inclusion of point;
(2) Let e′

v be the image of the degeneracy ev of each vertex v ∈ V (G) via the
composition

M(G) → MS → M
S̃

→ M
S̃1

.

Then 1
2 · e′

v ∈ M
S̃1

.

Such a base change exists as charts exist over a geometric point, and a refinement
of the lattice structure will yield (2). Note that the second property is to address
Assumption 4.2 (2) in the general situation.

Same as in (4.1), we have a morphism of sheaves of monoids

θ̄ : N → N
′
L̃

which lifts to a chart étale locally. Here we view N as the global constant sheaf of
monoids with coefficients in N. Consider the following commutative diagram

(N ′
L̃
)|

C̃

(ξ ′)�
M

C̃

q

N
θ̄

(N
′
L̃)|

C̃

(ξ̄ ′)�
M

C̃
.

(4.11)

Consider the element δ̄ = (ξ̄ ′)� ◦ θ̄ (1). We observe the following.

Lemma 4.9 In the above setting, we have 1
2 · δ̄ ∈ M

C̃
.

Proof Note that ξ ′ is the pull-back of η′. By the second property of the base change
(4.10), away from the orbifold nodes, the element 1

2 · δ̄ lies in M
C̃

.
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Now consider an orbifold node z ∈ C̃ corresponding to an edge l ∈ V (G) joining
two vertices v1 and v2 with v1 ≤min v2 and contact order cl . By Lemma 4.8, (4.7),
and (4.9), we have

(ξ̄ ′)�z : N → M
S̃

⊕N N
2, 1 �→ ev1 + 2 · cl · x†,

where ev1 is the image of the degeneracy. Since
ev1
2 ∈ M

C̃
, we have 1

2 · δ̄ ∈ M
C̃

at
the orbifold nodes as well. ��

Consider the inverse image

T = q−1(
1

2
· δ̄) ⊂ M

C̃
. (4.12)

It is an O∗-torsor over C̃ . Denote again by E the line bundle corresponding to T . By
construction, we have

E⊗2 ∼= ω∨
C̃
. (4.13)

We call E∨ the spin bundle over C̃ associated to ξ . The spin parity of ξ is even (resp.
odd) if H0(E∨) is even (resp. odd).

Remark 4.10 The curve C̃ with the spin bundle E∨ is called a twisted 2-spin curve in
[4, Section 1.4].

4.7 Independence of the spin parity

Proposition-Definition 4.11 Notations as in Sect. 4.6, the spin parity of ξ only depends

on the minimal object ηmin associated to η. We thus define the spin parity of η to be

the spin parity of ξ .

The proof of the proposition will occupy this section. For simplicity, we may assume
that η is minimal. We first observe the following.

Lemma 4.12 The spin bundle E∨ is representable.

Proof Consider an orbifold node z ∈ C̃ corresponding to an edge l. The isotropy group
μ2 acts on T faithfully as the contact order cl is odd. ��

The above lemma implies that global sections of E∨ vanish along the orbifold nodes
of C̃ . Denote by ∪ j Z j the union of connected components of C̃ , obtained by taking
partial normalizations along the orbifold nodes.

Now consider two different base changes S̃i → S̃ as in (4.10) for i = 1, 2. Denote
by ξi : C̃i → L̃ i the corresponding orbifold lift of η over S̃i for i = 1, 2. Let Ti be
the torsor associated to ξi as in (4.12). To prove Proposition-Definition 4.11, we next
construct an explicit isomorphism of torsors

T1|Z j
→ T2|Z j

(4.14)
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for each connected components Z j .

Choose a chart ψ : M(G) → MS , and consider the composition ψi :

M(G) → MS → M
S̃i

.

Fix j and a vertex v ∈ V (G) such that the corresponding irreducible component Zv

of C̃ is contained in Z j . Fix a choice of θi,v ∈ M
S̃i

such that

2 · θi,v = ψi (ev)

where ev ∈ M(G) is the degeneracy of v.
Now let G j be a connected subgraph of G corresponding to Z j . For another vertex

v′ ∈ V (G j ) corresponding to an irreducible component Zv′ ⊂ Z j , we choose an
oriented path

�P = (l1, . . . , lk)

in G j joining v and v′. Note that in M(G)gp we have the relation

ev′ = ev +
k

∑

m=1

c′
lm

· elm

where c′
lm

= clm if the orientation of �P is compatible with the orientation of lm ,
and c′

lm
= −clm otherwise. Note that for each edge lm , the contact order c′

lm
is even.

Applying ψ and multiplying both sides by 1
2 in the above equality, we have

1

2
· ψi (ev′) = θi,v +

k
∑

m=1

1

2
· c′

lm
· ψi (elm ) ∈ M

S̃i
.

Set θi,v′ = 1
2 · ψi (ev′). Since the degeneracy ev′ does not depend on the choice of �P ,

the element θi,v′ does not depend on the choice of �P either.

Lemma 4.13 Notations and assumptions as above, for each v′ ∈ G j , the correspon-

dence

θ1,v′ + u �→ θ2,v′ + u (4.15)

over the smooth unmarked locus of Zv′ for u ∈ O∗
Zv

induces an isomorphism of torsors

T1|Zv′ → T2|Zv′ .

Proof Note that over the smooth unmarked locus of Zv′ , the image of θ1,v′ in M
C̃i

is 1
2 · δ̄, see (4.11) for the definition of δ̄. The above isomorphism over the smooth

unmarked locus extends to Zv′ by the local description of the orbifold curves as in
(4.4)–(4.7). ��
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Lemma 4.14 The isomorphisms T1|Zv′ → T2|Zv′ defined in Lemma 4.13 over each

irreducible component can be glued together, and yield an isomorphism (4.14).

Proof It suffices to show that the isomorphisms T1|Zv′ → T2|Zv′ are compatible at the
nodes of Z j . Let l be an edge corresponding to a node z ∈ Z j . We fix the two local
coordinates x and y near the node of the two components Zv1 and Zv2 joining at z

respectively. Assume that v2 ≥min v1 with cl ≥ 0, see Sect. 2.4 for the definition of
≥min. Then by the construction in (4.15), locally near z, we obtain an isomorphism of
the two different torsors induced by

θ1,v1 + 1

2
cl x

† + u �→ θ2,v1 + 1

2
cl x

† + u (4.16)

over Zv1 , and an isomorphism induced by

θ1,v1 + 1

2
clel − 1

2
cl y† + u �→ θ2,v1 + 1

2
clel − 1

2
cl y† + u (4.17)

over Zv2 . Here u is an invertible function around z, and x† and y† are defined as in
(2.1). Finally, the relation (2.1) implies that (4.16) and (4.17) are indeed compatible.
Therefore, we obtain the isomorphism (4.14) as needed. ��

This finishes the proof of Proposition-Definition 4.11.

4.8 Deformation invariance of the spin parity

Next we show that different spin parities do not mix up in a connected family. Recall
that we have a partition μ = (mi )

n
i=1 of 2g − 2 with each mi even.

Lemma 4.15 For each geometric point s ∈ H†(μ), there is a connected étale neigh-

borhood U → H†(μ) of the point s with the universal family η : C → L, and a

surjective morphism of log schemes f : Ũ → U together with a family L̃ → C̃ → Ũ

and a morphism ξ : C̃ → L̃ such that

(1) For each connected component Ũ ′ ⊂ Ũ , s ∈ f (Ũ ′);
(2) The underlying family C̃ → Ũ is a family of orbifold curves whose stacky loci

are given by μ2-gerbes along the nodes of odd contact orders;

(3) The morphism ξ : C̃ → L̃ is the pull-back of η as in (4.9);
(4) At each geometric point of Ũ , the second condition of (4.10) is satisfied.

Proof Let U → H†(μ) be a connected étale neighborhood of s. Denote by C	 → U 	

the canonical log curve associated to the underlying curve C → U . By [35, Theorem
1.9], there is a surjective morphism of connected log stacks Ũ 	 → U 	 together with
a commutative diagram

C̃	 C	

Ũ 	
f1

U 	
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such that C̃	 → Ũ 	 is a family of orbifold curves with its canonical log structure,
whose stacky loci are given by μ2-gerbes along the nodes of odd contact orders.

Consider the cartesian diagram

Ũ2 U

Ũ 	
f1

U 	.

By Lemma 4.5, the morphism Ũ2 → U is finite and surjective. Replace Ũ2 by the
union of its connected components whose images in U contain s. The finiteness implies
that Ũ2 → U is still a surjective morphism.

Further shrinking Ũ2 (hence U as well), we can also assume that a chart of M
Ũ2

exists. We can thus replace Ũ2 by a base change Ũ → Ũ2 whose geometric fiber
satisfies the second condition of (4.10). This finishes the proof. ��
Proposition 4.16 The spin parity remains constant on every connected family of log

twisted differentials.

Proof It suffices to verify the statement for each connected component of H†(μ).
For each geometric point s ∈ H†(μ), take a family L̃ → C̃ → Ũ and a morphism
ξ : C̃ → L̃ as in Lemma 4.15 with a surjective morphism Ũ → U . The spin bundle
E∨ defined by (4.13) induces a family of 2-spin curves over the underlying Ũ . By [27,
Lemma 3.2] and [4, Proposition 4.3.1], the spin parity of the connected family over
Ũ is determined by the spin parity over the fiber of s. By Proposition-Definition 4.11,
the spin parity remains the same in a connected neighborhood of s. ��

4.9 A correspondence to flat geometry

It is known that in the Deligne–Mumford compactification, the closures of odd and
even spin components may intersect ([13,24]). As we have seen that adding a log
structure can distinguish the spin parity on the boundary, it is natural to seek a more
geometric understanding. Consequently it would give a geometric incarnation of our
log structure. One such geometric candidate known to experts is via the residue slit

construction as in [8, Section 5] (see also [11,21]). Below we briefly explain the idea.
For a node q ∈ C that glues two branches q+ ∈ C+ and q− ∈ C−, suppose

the underlying twisted differential η̃ has a zero of order k at q+ and a pole of order
−2−k at q−. Flat geometric neighborhoods of q+ and q− consist of 2k +2 half-disks
and 2k + 2 (broken) half-planes, respectively. If Resq− η̃ = 0, then one can remove
the half-disks and put in the complement (broken) half-disks of the half-planes (after
suitable scaling) such that q can be locally smoothed out. If Resq− η̃ 	= 0, one needs
to modify the neighborhood of q+ to match with the residue, and the global residue
condition in [8] precisely ensures that such modification can be carried out globally.
Note that when we put in the (broken) half-disks by translation, there are k+1 choices,
as there are k + 1 horizontal lines departing from a zero of order k. Different choices
can alter the spin parity after smoothing ([9,21]).
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Fig. 1 Flat geometric
representation of ηX with two
different residue slits
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Fig. 2 Flat geometric representation of ηR

We illustrate the above discussion via the following example. Let C consist of
two components X and R meeting at two nodes p and q, where X is of genus two,
p and q are hyperelliptic conjugate in X , and R ∼= P

1 contains a marked point σ .
Consider the twisted differential η̃ = (ηX , ηR) on C such that (ηX ) = p+ + q+ and
(ηR) = 4σ − 3p− − 3q−. See Figs. 1 and 2 for flat geometric representations of ηX

and ηR , where p− is at the infinity of the upper four half-disks in Fig. 2, q− is at the
infinity of the lower four half-disks, and ±r are the residues of ηR at p and q.

Now we can apply the residue slit construction in two ways to smooth (C, η̃) into
the stratum H(4), see the two dotted broken lines in Fig. 1. Along each broken line,
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we can remove a neighborhood of size r and then perform the local modification at p+

and q+ as described above. Using the Arf invariant (see e.g. [31]), one checks that the
first smoothing gives a flat surface with odd parity, and the second is with even parity.
Moreover, in the latter the hyperelliptic involution is preserved by reflection from the
center of the polygon. This is because in H(4), the even spin component coincides
with the hyperelliptic component. In general for higher genera, taking different residue
slits not only separates the spin parity but also distinguishes the hyperelliptic structure,
by breaking or preserving the hyperelliptic symmetry (see [9] for more details).

Below we describe a heuristic correspondence between the log geometric construc-
tion and the residue slit construction. The pair of differentials (ηX , ηR) can be obtained
from a minimal log twisted differential η over C → S as in Sect. 3.2 after fixing a
chart β : M(G) → MS where G is the weighted graph. We observe that the graph
G consists of two vertices vR and vX corresponding to the two components R and X

respectively, along with two edges lp and lq both oriented from vX to vR with contact
orders cl p = clq = 2. We represent G as follows:

vX

l p

lq

vR .

Following Sect. 2.4, we calculate that M(G) = N. With the fixed chart β : N → MS ,
a similar construction as in [18, Section 3.2] combined with the discussion in [30,
6.3.1(2)] imply that there are precisely two different choices of η. These two different
choices should correspond to the two different slit constructions as above.

Fix a choice of η, and consider two different choices of the charts β1 = β and
β2. By Sect. 3.2, we observe that the two induced differentials η

β1
R = ηR and ηβ2 are

related by ηβ2 = u · ηR , where u ∈ C
∗ satisfies β2(1) = u · β(1). This will result in

a compatible rotation for the residue slit around both p and q in the picture shown in
Fig. 1. Consequently, the spin parity of the nearby smooth differentials will not depend
on the choice of charts.

We emphasize again that however the definition of spin parity for log twisted dif-
ferentials does not require the existence of nearby smoothing.

5 Hyperelliptic structure

In this section, we study log twisted differentials with hyperelliptic involutions.

5.1 Statements and results

Recall that a hyperelliptic differential has the underlying smooth curve being hyper-
elliptic and the differential being anti-invariant under the hyperelliptic involution. In
general the hyperelliptic involution does not lift to an involution of log twisted dif-
ferentials. It is important to notice that even when it lifts, the action on a log twisted
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differential is not preserved under arbitrary base change in the category of log schemes.
This issue can be fixed by combining the techniques of log geometry and admissible
covers, which will lead to a well-defined fiber category of log twisted hyperelliptic
differentials over the category of log schemes, denoted by Hyp(μ) (see Sect. 5.6).
Our goal is to prove the following result.

Theorem 5.1 The fibered category Hyp(μ) is represented by a separated, log smooth
Deligne–Mumford stack with its universal minimal log structure. Furthermore, the
forgetful morphism to the Hodge bundle Hyp(μ) → Hg,n is representable and finite.

This Theorem follows from Propositions 5.12, 5.14, and 5.17.

5.2 Log admissible covers

Here we first recall the notion of log admissible covers as in [30, Section 7.2].

Definition 5.2 A minimal log admissible cover over S is a commutative diagram of
log schemes over S:

Ca Pa

Sa

(5.1)

such that

(1) Pa → Sa is a family of stable rational curves with two disjoint sets of markings

R = {ri }n1
i=1, U = {u j }n2

j=1;

(2) Pa → Sa is a family of genus zero log curves with the canonical log structure
associated to the underlying family Pa → Sa with the set of markings R ∪ U ;

(3) Ca → Sa is a family of log curves with two disjoint sets of markings

R′ = {r ′
i }n1

i=1, U ′ = {u′
j , u′′

j }n2
j=1;

(4) The underlying diagram of (5.1) is a family of hyperelliptic admissible covers
with simple ramification points labeled by the set R;

(5) The morphism Ca → Pa sends r ′
i to ri and sends u′

j , u′′
j to u j for any i, j .

Pull-back of a minimal log admissible cover along a strict morphism is defined as a
cartesian diagram as usual. A diagram as (5.1) is called a log admissible cover over a
log scheme S, if it is the pull-back of a minimal log admissible cover along a morphism
of log schemes S → Sa .

By the above definition, minimal log admissible covers only depend on their under-
lying structures, hence are objects over usual schemes. Denote by A(n1, n2) the log
stack of minimal log admissible covers with its minimal log structure. Then by [30],
the stack A(n1, n2) is a log smooth algebraic stack with the locally free log structure.
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In particular, the underlying stack of A(n1, n2) is smooth. By definition, the log stack
A(n1, n2) represents the category of log admissible covers fibered over the category
of log schemes.

For a log admissible cover C → P over S, the hyperelliptic involution ι : C → C is
an isomorphism of log schemes over S that fits in the following commutative diagram

C
ι

C

PS .

It should be emphasized that ι acts trivially on S. Thus, the hyperelliptic involution is
compatible with arbitrary base changes in the category of log schemes.

Note that for any underlying admissible cover over a geometric point, there is a
unique lift to a minimal log admissible cover, see [30, Remark 6.3.1(2)].

5.3 Log twisted hyperelliptic differentials

Definition 5.3 A log twisted hyperelliptic differential over an arbitrary log scheme S

consists of the following data:

(η, C → PS)

where

(1) C → PS is a family of log admissible covers over S, see Definition 5.2;
(2) η is a log twisted differential on C → S.

They are compatible with the hyperelliptic involution ι such that ι∗η = −η.

Pull-back of a log twisted hyperelliptic differential along a morphism of log schemes
is defined in the usual sense, since the hyperelliptic involution is compatible with
arbitrary base changes in the category of log schemes. Thus, log twisted hyperelliptic
differentials form a category fibered over the category of log schemes.

5.4 Minimality

We next turn to study minimal objects in this fibered category. Consider a log twisted
hyperelliptic differential as in Definition 5.3. We further assume that S is a geometric
point. Let G be the weighted graph associated to η. Then the hyperelliptic involution
ι has a natural action on the underlying graph G. We have the following compatibility
result.

Lemma 5.4 The hyperelliptic involution ι acts on G such that

(1) The partition of vertices V (G) = V d(G) � V nd(G) is stable under ι;
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(2) The set of markings {σi }n
i=1 is stable under ι with the contact orders satisfying

cσi
= cι(σi );

(3) The contact orders of the nodes satisfy cl = cι(l) for any l ∈ E(G).

In particular, the action of ι on G induces an isomorphism of monoids

φι : M(G) → M(G) (5.2)

such that φι(el) = eι(l) and φι(ev) = eι(v) for any l ∈ E(G) and v ∈ V (G).

Proof Since ι∗η = −η by Definition 5.3, we have ι∗η̄� = η̄� on the level of character-
istic monoids. Properties (1)–(3) then follow from the construction in Sect. 2.4. The
isomorphism φι follows from the construction of M(G) in Sect. 2.4 and the universal
property of saturation. ��

We will describe the minimal monoid in two different ways. The first one gives a
description as the quotient of ι-action.

Lemma 5.5 Notations as above, denote by M(G, ι) the coequalizer of the following

diagram in the category of fine, saturated, and sharp monoids:

M(G) ⇒ M(G)

where the top arrow is given by φι and the bottom arrow is given by the identity. Denote

by ψ : M(G) → M(G, ι) the morphism induced by the above coequalizer. Then the

fine, saturated, and sharp monoid M(G, ι) satisfies the following properties:

(1) Both ψ(ev) and ψ(el) in M(G, ι) are non-trivial for any v ∈ V d(G) and any

l ∈ E(G);

(2) ψ(ev) = ψ(eι(v)) and ψ(el) = ψ(eι(l)).

Proof The second property follows from the description of the isomorphism (5.2). For
the first one, consider dually the equalizer of cones

M(G, ι)∨ → M(G)∨ ⇒ M(G)∨.

Since φ∨
ι is an automorphism of the cone M(G)∨, the image of M(G, ι)∨ in M(G)∨

contains a vector in the interior of M(G)∨. This finishes the proof. ��

Lemma 5.6 Notations as above, there is a canonical morphism of monoids

M(G, ι) → MS .

Proof Note that by definition ι acts trivially on MS , hence trivially on MS . The
statement thus follows from Lemma 5.5 and the universal property of coequalizer. ��

Definition 5.7 A log twisted hyperelliptic differential η over a geometric point S is
called minimal if M(G, ι) → MS is an isomorphism. A family of log twisted hyper-
elliptic differentials is called minimal if every geometric fiber is minimal.
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The definition of minimality in the family case will be justified in Proposition 5.10.
We give the second description of M(G, ι) which will be useful in the construction

of the stack Hyp(μ). Consider the partition

E(G) = E(G)ι � Ê(G)

where E(G)ι is the set of edges fixed by ι. Denote by N
gp

the torsion-free part of the
quotient group

M(G)gp/〈el = eι(l) | l ∈ Ê(G)〉.

Denote by N ⊂ N
gp

the saturated submonoid generated by the image of M(G) →
N

gp
.

Lemma 5.8 M(G, ι) = N .

Proof Consider the natural morphism M(G) → N . We check that the images of ev

and eι(v) under the above morphism are identical for any v ∈ V (G). Assume that
v 	= ι(v). Take a vertex v′ invariant under ι. Let l1, . . . , lk be a sequence of edges
joining v with v′. Then ι(l1), . . . , ι(lk) is a sequence of edges joining ι(v) with v′.
By (2.8), the images of ev and eι(v) are identical in N . This induces a morphism
M(G, ι) → N .

On the other hand, the construction of N induces a morphism N → M(G, ι). One
checks that the two morphisms

M(G, ι) → N and N → M(G, ι)

are inverses to each other. This finishes the proof. ��

5.5 Two properties of minimality

Consider a log twisted hyperelliptic differential (η, C → PS) over S. Denote by
Ca → Pa the associated minimal log admissible cover over a log scheme Sa . Denote
by C	 → S	 the canonical log curve associated to the underlying stable curve C → S

with the markings. Let ηm over Cm → Sm be the minimal log twisted differential
associated to η over C → S. We thus have a commutative diagram

S Sa

Sm S	

which induces a canonical morphism of log schemes

S → Sm ×S	 Sa . (5.3)

Note that this morphism needs not to be isomorphic, not even on the underlying level.
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Lemma 5.9 The family (η, C → PS) over S is minimal in the sense of Definition 5.7

if and only if (5.3) is strict.

Proof The statement follows from Lemma 5.8 and the second description of
M(G, ι). ��

Proposition 5.10 Given a family of log twisted hyperelliptic differentials over a log

scheme S, the locus of minimal objects is open in S.

Proof By Lemma 5.9, the locus of minimal objects in S is the locus where the morphism
(5.3) is strict. The statement follows from the fact that being strict is an open condition.

��

Proposition 5.11 Given a family of log twisted hyperelliptic differentials η over a log

scheme S, there is (up to a unique isomorphism) a unique minimal object ηT over a

log scheme T with a morphism S → T such that η is the pull-back of ηT , and the

underlying morphism S → T is the identity.

Proof Note that the log twisted differential η is the pull-back of ηm via

S → Sm ×S	 Sa → Sm .

Denote by T the log scheme with underlying S, and the log structure given by the
pull-back of Sm ×S	 Sa . Then we obtain a log twisted differential ηT over T by pulling
back ηm via T → Sm . We check that ι∗(ηT ) = −ηT as ηT can be further pulled back to
η which is hyperelliptic. By Lemma 5.9, we obtain a minimal log twisted hyperelliptic
differential ηT over T . The uniqueness of ηT follows from the uniqueness of ηm . ��

5.6 Moduli of log twisted hyperelliptic differentials

Recall the setting in Definition 5.2. Denote by

R′ = {r ′
i }n1

i=1

the set of markings fixed by the hyperelliptic involution, and

U ′ = {(u′
j , u′′

j )}n2
j=1

the set of pairs of markings that are interchanged by the hyperelliptic involution.
Denote by

μ1 = (mi )
n1
i=1 ∈ (2 · Z≥0)

n1

where each m j is the contact order at ri , and by

μ′
2 = μ′′

2 = (c j )
n2
j=1 ∈ (Z>0)

n2
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where each c j is the contact order along both u′
j and u′′

j . Note that markings in R can
have zero contact order. For simplicity, we introduce the notation

μ = (μ1, μ
′
2, μ

′′
2).

Denote by Hyp(μ) the category of log twisted hyperelliptic differentials with contact
orders given by μ. This is a category fibered over the category of log schemes. By
Proposition 5.11, it is represented by the category of minimal log twisted hyperelliptic
differentials over the category of schemes with its universal minimal log structure.
Note that

2g − 2 = n1 − 4.

For Hyp(μ) to be non-empty, we require that

n1 − 4 =
n1
∑

i=1

mi + 2 ·
n2
∑

j=1

c j . (5.4)

Now consider the moduli stack of log admissible covers A := A(n1, n2). Denote
by HA the Hodge bundle over A given by the universal curve CA → A.

Proposition 5.12 The fibered category Hyp(μ) is represented by a finite type, sepa-

rated Deligne–Mumford stack with its universal minimal log structure. Furthermore,

the tautological morphism to the Hodge bundle

Hyp(μ) → HA

is representable and quasi-finite.

Proof Let C
	

A
→ A	 be the canonical log curve associated to the underlying universal

curve CA → A. Denote by M the moduli of log twisted differentials over the family
of curves CA → A with contact orders given by μ.

Consider the fiber product of log stacks

M ′ = M ×A	 A.

We notice that the morphism M ′ → M is representable and finite. Consider the locus
M ′′ ⊂ M ′ satisfying condition (3) of Lemma 5.4. Since the contact order at a node
remains constant in a connected family whenever the node persists, the locus M ′′ is
represented by an open substack of M ′. By a similar argument as in Lemma 5.8, for
each geometric point of M ′′, the corresponding graph and the hyperelliptic involution
satisfy conditions (1), (2), and (3) of Lemma 5.4. By Lemma 5.8, the characteristic
monoid MM ′′,s at each geometric point s ∈ M ′′ is isomorphic to M(Gs, ι) where Gs

is the graph of the fiber over s. Moreover, the hyperelliptic involution acts trivially on
M ′′.
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Note that the locus in M ′′ satisfying the condition ι∗η = −η is represented by
a closed substack of M ′′, which we denote by M ′′′. Thus, the family of log twisted
differentials over M ′′′ admits the hyperelliptic involution, and is minimal in the sense
of Definition 5.7. This induces a tautological morphism

M ′′′ → Hyp(μ). (5.5)

On the other hand, the two forgetful morphisms Hyp(μ) → A and Hyp(μ) → M

induce a morphism Hyp(μ) → M ′ which factors through the morphism

Hyp(μ) → M ′′′. (5.6)

We observe that the morphisms (5.5) and (5.6) are inverse to each as morphisms of
fibered categories, hence it proves the representability. The separatedness and bound-
edness follow from Theorem 2.4.

Finally, the above argument shows that the morphism Hyp(μ) → M is rep-
resentable and quasi-finite, so the second claim follows from the finiteness of
Theorem 2.4. ��

We observe that

Corollary 5.13 There is a tautological morphism

Hyp(μ) → H†(μ)

obtained by forgetting the admissible cover structure.

Proof Let (η, C → P) over a log scheme S be a log twisted hyperelliptic differential.
Then forgetting the morphism C → P we obtain immediately the log twisted differ-
ential (η, C). The claim follows by observing that C with the marked points given by
R′ and U ′ is a stable curve. ��

5.7 Relative properness

Proposition 5.14 The forgetful morphism Hyp(μ) → HA is finite.

Proof We use the same notations in the proof of Proposition 5.12. By the previous
proposition, it suffices to show that Hyp(μ) → HA is proper. Since the morphism
M ′ → HA is finite, it remains to show that the morphism Hyp(μ) → M ′ is proper by
the valuative criterion. Namely, we want to show that there is a unique dashed arrow
fitting in the following commutative diagram of solid arrows

Spec K Hyp(μ)

Spec R M ′.
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Denote by S the log scheme with S = Spec R, and the log structure pulled back
from M ′. Let T and t be the generic and closed points of S with the pull-back log
structures respectively. Denote by (η : C → L, C → P) the family over S pulled
back from that over M ′. Here η is the log twisted differential, and C → P is the log
admissible cover.

By the proof of Proposition 5.12, it suffices to show that the closed fiber ηs lies in
the open locus M ′′. Note that contact orders remain unchanged under specialization.
In particular, condition (3) of Lemma 5.4 at the conjugate nodes holds over the closed
fiber. Hence ηs lies in M ′′. This finishes the proof. ��

5.8 Log smoothness of moduli of log twisted hyperelliptic differentials

To prove the log smoothness, we first introduce log twisted quadratic differentials over
rational curves. Consider the two sets of markings

R = {ri }n1
i=1, U = {u j }n2

j=1.

with the two sets of contact orders respectively

μ1 = (mi )
n1
i=1, μ′

2 = (2 · c j )
n2
j=1,

where we require mi ∈ N and c j ∈ N>0. Denote by μ′ = (μ1, μ
′
2) and n = n1 + n2.

Consider the universal family of canonical log curves P := C0,n → M := M0,n

with the line bundle

Q = ω⊗2
P/M

(

n1
∑

i=1

ri

)

.

over the underlying curve P. We are in the situation of Sect. 2.2. Denote by Q the log
stack with the underlying structure Q, where the log structure of Q is obtained similarly
as in (2.2) by combining the log structures from the zero section and from the curve P.
By Theorem 2.4, we thus obtain the moduli space of log twisted quadratic differentials
Q := M†(μ′). Denote by q : PQ → QQ the universal quadratic differential over Q.
For Q to be non-empty, we require that

n1 − 4 =
n1
∑

i=1

mi + 2 ·
n2
∑

j=1

c j ,

which is identical to (5.4).

Proposition 5.15 The forgetful morphism Q → M is log smooth. In particular, the

log stack Q is log smooth.

Proof Note that for a quadratic differential q ∈ Q(S) over a log scheme S, the obstruc-
tion relative to M is given by H1(q∗TLQ/PQ

) where TLQ/PQ
is the log tangent bundle

of LQ → PQ. By a direct degree calculation, we observe that TLQ/PQ
is the trivial
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line bundle. Since PQ is a family of rational curves, we conclude that the obstruction
H1(q∗TLQ/PQ

) = H1(O) = 0 vanishes. This proves the statement. ��

Consider a log twisted hyperelliptic differential (η : C → LC , C → P) over a log
scheme S, where LC is the log scheme over C , with the underlying structure given by
ωC/S , and the log structure NLC

given by the zero section and the log structure pulled
back from C , see (2.2). The family P → S induces a morphism S → M . Denote by
QC and Q P the log schemes over C and P respectively obtained by pulling back Q

via S → M . We then have
Q

C
= ω⊗2

C/S .

The non-linear morphism

ωC/S → ω⊗2
C/S

induces a morphism of log schemes

LC → QC .

Define η⊗2 to be the composition

C → LC → QC .

Lemma 5.16 The morphism η⊗2 is invariant under ι, hence descends to a log twisted

quadratic differential q : P → Q P .

Proof This follows from the property that ι∗η = −η. ��

For convenience, we will denote the induced log twisted quadratic differential q by
η⊗2. Thus Lemma 5.16 yields a morphism of log stacks

Hyp(μ) → Q, η �→ η⊗2. (5.7)

Proposition 5.17 The morphism (5.7) is log étale. In particular, the log stack Hyp(μ)

is log smooth.

Proof We check the log smoothness using the local lifting property [28, (3.3)]. Con-
sider the following commutative diagram of solid arrows

T Hyp A

T ′ Q M

where

(1) A = A(n1, n2) is the moduli of log admissible covers;
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(2) The underlying structure T ′ = Spec k[ε]/(ε2) for an algebraically closed field
k;

(3) T → T ′ is a strict closed immersion with T given by the closed point.

It suffices to show that there is a unique lift T ′ → Hyp making the above diagram
commutative.

Note that A → M is a strict log étale morphism, see [30, Section 7.2]. Thus there
is a unique lift T ′ → A making the above diagram commutative. We now arrive at a
commutative diagram of solid arrows as follows

LT LT ′ QCT ′/T ′

CT

ηT

CT ′

ηT ′

q

T T ′

where ηT is the log twisted hyperelliptic differential given by T → Hyp, CT ′ → T ′

is the hyperelliptic curve given by T ′ → A, and q is the pull-back of the quadratic
differential given by T ′ → Q. It suffices to show that the lift ηT ′ of ηT exists and is
unique.

We next construct such a lift. First observe that the existence and uniqueness of
ηT ′ are obvious over the non-degenerate components of the curve. On the degenerate
locus, the underlying morphism ηT ′ has to be a constantly zero section, hence is also
unique. It remains to consider the part of log structures.

Denote by G the graph associated to ηT . Fixing a chart MT → MT ′ , we may
identify elements of M(G) with their images in MT ′ . Note that T and T ′ have the same
topological space. For any point x ∈ CT , let U be a small connected neighborhood
of x in CT ′ such that either x is a smooth unmarked point of CT ′ and U contains
no special point, or x is the only special point contained in U . By the discussion in
Sect. 2.3, there is a vertex v corresponding to a component containing x such that over
U , the morphism

η
�
T − ev : MLT

|U → MCT
|U , δ �→ η

�
T (δ) − ev

induces a non-degenerate meromorphic section of the underlying bundle of LT . Hence
the morphism

q
�
T − 2 · ev : MQC

T ′ /T ′ |U → MCT
|U , δ �→ q

�
T (δ) − 2 · ev

also induces a non-degenerate meromorphic section of the underlying bundle of
QCT ′/T ′ . Consequently there is a unique square root of the meromorphic section

induced by q
�
T − 2 · ev , which we denote by η

T ′ |U , such that ι∗η
T ′ |U = −η

T ′ |U .

Define η
�

T ′ |U = η
T ′ |U + ev . Since the choice of η

�

T ′ |U exists and is unique locally, it
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can be glued together and form a global morphism η
�

T ′ : MLT
→ MCT

. This defines
the log twisted hyperelliptic differential ηT ′ . The compatibility with ηT follows from
the construction.

Finally, we remark that since the involution ι fixes the base log structure and since
η⊗2

T ′ = q, the outcome ηT ′ is independent of the choice of charts. This finishes the
proof. ��

Acknowledgements The authors thank Dan Abramovich, Matt Bainbridge, Gavril Farkas, Quentin Gen-
dron, Samuel Grushevsky, Jérémy Guéré, Felix Janda, Martin Möller, Rahul Pandharipande, Adrien
Sauvaget and Jonathan Wise for stimulating discussions on related topics. The authors also thank the
referees for a number of helpful comments.

References

1. Abramovich, D., Chen, Q.: Stable logarithmic maps to Deligne–Faltings pairs II. Asian J. Math. 18(3),
465–488 (2014)

2. Abramovich, D., Chen, Q., Gillam, D., Huang, Y., Olsson, M., Satriano, M., Sun, S.: Logarithmic
Geometry and Moduli, Handbook of Moduli. Vol. I, Adv. Lect. Math. (ALM), vol. 24, pp. 1–61.
International Press, Somerville (2013)

3. Abramovich, D., Fantechi, B.: Orbifold techniques in degeneration formulas. Ann. Sc. Norm. Super.
Pisa Cl. Sci. (5) 16(2), 519–579 (2016)

4. Abramovich, D., Jarvis, T.J.: Moduli of twisted spin curves. Proc. Am. Math. Soc. 131(3), 685–699
(2003)

5. Abramovich, D., Olsson, M., Vistoli, A.: Twisted stable maps to tame Artin stacks. J. Algebr. Geom.
20(3), 399–477 (2011)

6. Abramovich, D., Vistoli, A.: Compactifying the space of stable maps. J. Am. Math. Soc. 15(1), 27–75
(2002)

7. Atiyah, M.: Riemann surfaces and spin structures. Ann. Sci. École Norm. Sup. (4) 4, 47–62 (1971)
8. Bainbridge, M., Chen, D., Gendron, Q., Grushevsky, S., Möller, M.: Compactification of strata of

abelian differentials. Duke Math. J. 167(12), 2347–2416 (2018)
9. Bainbridge, M., Chen, D., Gendron, Q., Grushevsky, S., Möller, M.: Smooth compactifications of strata

of abelian differentials (in preparation)
10. Bainbridge, M., Chen, D., Gendron, Q., Grushevsky, S., Möller, M.: Strata of k-differentials, Algebr.

Geom. to appear
11. Boissy, C.: Moduli space of meromorphic differentials with marked horizontal separatrices (2015)

arXiv:1507.00555
12. Chang, H.-L., Li, J.: Gromov–Witten invariants of stable maps with fields. Int. Math. Res. Not. IMRN

18, 4163–4217 (2012)
13. Chen, D.: Degenerations of Abelian differentials. J. Differ. Geom. 107(3), 395–453 (2017)
14. Chen, D.: Teichmüller dynamics in the eyes of an algebraic geometer. Proc. Sympos. Pure Math. 95,

171–197 (2017)
15. Chen, D., Möller, M.: Non-varying sums of lyapunov exponents of abelian differentials in low genus.

Geom. Topol. 16(4), 2427–2479 (2012)
16. Chen, D., Möller, M.: Quadratic differentials in low genus: exceptional and non-varying strata. Ann.

Sci. Éc. Norm. Supér. (4) 47(2), 309–369 (2014)
17. Chen, Q.: Stable logarithmic maps to Deligne–Faltings pairs I. Ann. Math. (2) 180(2), 455–521 (2014)
18. Chen, Q., Zhu, Y.: Very free curves on Fano complete intersections. Algebr. Geom. 1(5), 558–572

(2014)
19. Eskin, A., Mirzakhani, M.: Invariant and stationary measures for the SL(2, R) action on Moduli space.

Publ. Math. Inst. Hautes Études Sci. 127, 95–324 (2018)
20. Eskin, A., Mirzakhani, M., Mohammadi, A.: Isolation, equidistribution, and orbit closures for the

SL(2, R) action on moduli space. Ann. Math. (2) 182(2), 673–721 (2015)

http://arxiv.org/abs/1507.00555


20 Page 42 of 42 D. Chen, Q. Chen

21. Eskin, A., Masur, H., Zorich, A.: Moduli spaces of Abelian differentials: the principal boundary,
counting problems, and the Siegel–Veech constants. Publ. Math. Inst. Hautes Études Sci. 97, 61–179
(2003)

22. Farkas, G., Pandharipande, R.: The moduli space of twisted canonical divisors, with an appendix by
Felix Janda, Rahul Pandharipande, Aaron Pixton, and Dimitri Zvonkine. J. Inst. Math. Jussieu 17(3),
615–672 (2018)

23. Filip, S.: Splitting mixed Hodge structures over affine invariant manifolds. Ann. Math. (2) 183(2),
681–713 (2016)

24. Gendron, Q.: The Deligne-Mumford and the incidence variety compactifications of the strata of �Mg .
Ann. Inst. Fourier (Grenoble) 68(3), 1169–1240 (2018)

25. Gross, M., Siebert, B.: Logarithmic Gromov–Witten invariants. J. Am. Math. Soc. 26(2), 451–510
(2013)

26. Guéré, J.: A generalization of the double ramification cycle via log-geometry (2016), arXiv:1603.09213
27. Jarvis, T.J.: Geometry of the moduli of higher spin curves. Int. J. Math. 11(5), 637–663 (2000)
28. Kato, K.: Logarithmic Structures of Fontaine-Illusie, Algebraic Analysis, Geometry, and Number

Theory, vol. 1989, pp. 191–224. Johns Hopkins University Press, Baltimore (1988)
29. Kato, F.: Log smooth deformation and moduli of log smooth curves. Int. J. Math. 11(2), 215–232

(2000)
30. Kim, B.: Logarithmic Stable Maps, New Developments in Algebraic Geometry, Integrable Systems

and Mirror Symmetry (RIMS, Kyoto, 2008), vol. 59. Mathematical Society of Japan, Tokyo (2010)
31. Kontsevich, M., Zorich, A.: Connected components of the moduli spaces of Abelian differentials with

prescribed singularities. Invent. Math. 153(3), 631–678 (2003)
32. Möller, M.: Teichmüller Curves, Mainly from the Viewpoint of Algebraic Geometry., Moduli spaces

of Riemann surfaces, vol. 20, American Mathematical Society, Providence, pp. 267–318 (2013)
33. Mumford, D.: Theta characteristics of an algebraic curve. Ann. Sci. École Norm. Sup. (4) 4, 181–192

(1971)
34. Ogus, A.: Lectures on logarithmic algebraic geometry, Lecture notes (2006)
35. Olsson, M.V.: (Log) twisted curves. Compos. Math. 143(2), 476–494 (2007)
36. Wright, A.: Translation surfaces and their orbit closures: an introduction for a broad audience. EMS

Surv. Math. Sci. 2(1), 63–108 (2015)
37. Zorich, A.: Flat surfaces., Frontiers in number theory, physics, and geometry I. On random matrices,

zeta functions, and dynamical systems. Papers from the Meeting, Les Houches, France, March 9–21,
2003, Springer, Berlin, 2nd printing ed., pp. 437–583 (2006)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

http://arxiv.org/abs/1603.09213

	Spin and hyperelliptic structures of log twisted differentials
	Abstract
	1 Introduction
	2 Log twisted sections
	3 Log twisted differentials
	4 Spin structure
	5 Hyperelliptic structure
	Acknowledgements
	References


