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Abstract
It is well known that for the discrimination of classical and quantum channels in
the finite, non-asymptotic regime, adaptive strategies can give an advantage over
non-adaptive strategies. However, Hayashi (IEEE Trans Inf Theory 55(8):3807–3820,
2009. arXiv:0804.0686) showed that in the asymptotic regime, the exponential error
rate for the discrimination of classical channels is not improved in the adaptive setting.
We extend this result in several ways. First, we establish the strong Stein’s lemma for
classical–quantum channels by showing that asymptotically the exponential error rate
for classical–quantum channel discrimination is not improved by adaptive strategies.
Second, we recover many other classes of channels for which adaptive strategies do
not lead to an asymptotic advantage. Third, we give various converse bounds on the
power of adaptive protocols for general asymptotic quantum channel discrimination.
Intriguingly, it remains open whether adaptive protocols can improve the exponential
error rate for quantum channel discrimination in the asymmetric Stein setting. Our
proofs are based on the concept of amortized distinguishability of quantum channels,
which we analyse using data-processing inequalities.
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1 Introduction

A fundamental task in quantum statistics is to distinguish between two (or multiple)
non-orthogonal quantum states. After considerable efforts, the resource trade-off is by
now well understood in the information-theoretic limit of asymptotically many copies
and quantified by quantum Stein’s lemma [1,2], the quantum Chernoff bound [3,4],
as well as refinements thereof [5–7].

As a natural extension of quantum state discrimination, we study here the task of
distinguishing between two quantum channels, in the information-theoretic limit of
asymptotically many repetitions. Whereas the mathematical properties of states and
channels are strongly intertwined, channel discrimination is qualitatively different
from state discrimination for a variety of reasons. Most importantly, when distinguish-
ing between two quantumchannels one can employ adaptive protocols thatmake use of
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Fig. 1 A general protocol for channel discrimination when the channelN orM is called three times

a quantum memory [8]. The physical scenario in which such adaptive protocols apply
consists of a discriminator being given “black-box” access to n uses of a channelN or
M, and there is no physical constraint on the kind of operations that he is allowed to
perform. In particular, the discriminator is allowed to prepare a quantum state with a
quantum memory register that is arbitrarily large, perform adaptive quantum channels
with arbitrarily large input and output quantum memories between every call to N
or M, and finally perform an arbitrary quantum measurement on the final state. See
Fig. 1 for a graphical depiction.

For the finite, non-asymptotic regime, such protocols are then also known to give
an advantage over non-adaptive protocols, the latter of which are restricted to picking
a fixed input state and then executing standard state discrimination for the channel out-
puts. For an in-depth discussion of this phenomenon, we refer to the latest works [9,10]
and references therein (also see the recent [11–13]). In fact, the advantage of adaptive
protocols in this regime already manifests itself for the discrimination of classical
channels [10, Section 5]. Somewhat surprisingly, however, Hayashi showed that this
advantage disappears for classical channel discrimination in the information-theoretic
limit of a large number of repetitions [14]. In particular, the optimal exponential error
rate for the discrimination of classical channels in the sense of Stein and Chernoff is
achieved by just picking a large number of copies of the best possible product state
input and then performing state discrimination for the product output states.

In contrast, in the quantum case, asymptotic channel discrimination has been stud-
ied much less systematically than the aforementioned finite, non-asymptotic regime.
Notable exceptions include [15] involving replacer channels and [16,17] about jointly
teleportation-simulable channels. Moreover, references [18,19] feature bounds for
general quantum channels, but the exact quantitative performance of these bounds
remains rather unclear in the asymptotic setting. We would also like to point to the
very related quantum strategies framework of [20–22], as well as the quantum tester
framework of [8,23].

In this paper, we extend some of the seminal classical results [14] to the quantum
setting by providing a framework for deriving upper bounds on the power of adaptive
protocols for asymptotic quantum channel discrimination. In particular, in order to
quantify the largest distinguishability that can be realized between two quantum chan-
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nels, we introduce the concept of amortized channel divergence. This then allows us to
give converse bounds for adaptive channel discrimination protocols in the asymmetric
hypothesis testing setting in the sense of Stein, as well as in the symmetric hypoth-
esis testing setting in the sense of Chernoff. Now, whenever the amortized channel
divergences collapse to the standard channel divergences [24], we immediately get
single-letter converse bounds on the power of adaptive protocols for channel discrimi-
nation. Most importantly, we arrive at the characterization of the strong Stein’s lemma
for classical–quantum channel discrimination. Namely, as a full extension of the cor-
responding classical result [14, Corollary 1], we have that picking many copies of the
best possible product-state input and then applying quantum Stein’s lemma for the
product output states is asymptotically optimal. Other examples with tight character-
izations include unitary and isometric channels [9,25], projective measurements [26],
replacer channels [15], as well as environment-parametrized channels that are envi-
ronment seizable, as given here in Definition 36 (the latter including the channels
considered in [16,17]).

protocols improve the exponential error rate for quantum channel discrimination in
the asymmetric Stein setting. Even though we provide many classes of channels for
which adaptive protocols do not give an advantage in the asymptotic limit, we sus-
pect that in general such a gap exists. We emphasise that this might already occur for
entanglement breaking channels or even quantum-classical channels (measurements).
Moreover, this would also be consistent with the known advantage of adaptive pro-
tocols in the symmetric Chernoff setting [9,10,27]. From a learning perspective and
following Hayashi’s comments for the classical case [14, Section 1], this leaves open
the possibility that quantum memory is asymptotically helpful for designing active
learning protocols for inferring unknown parameters of quantum systems.

Our paper is structured as follows. In Sect. 2, we introduce our notation, and in
Sect. 3, we give the precise information-theoretic settings for asymptotic quantum
channel discrimination. As our main technical tool, we then introduce amortized chan-
nel divergences and analyse their mathematical properties in Sect. 4. Based on this
framework, we proceed to present various converse bounds on the power of adaptive
protocols for quantum channel discrimination in Sect. 5. This is followed by our main
result in Sect. 6, the strong Stein’s lemma for classical–quantum channel discrimina-
tion. Section 7 discusses various other examples for which tight characterizations are
available. We end with Sect. 8, where we conclude and discuss open questions.

2 Notation

Here we introduce our notation and give the relevant definitions needed later.

2.1 Setup

Throughout, quantum systems are denoted by A, B, and C and have finite dimensions
|A|, |B|, and |C |, respectively. Linear operators acting on system A are denoted by
L A ∈ L(A) and positive semi-definite operators by PA ∈ P(A). Quantum states of
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system A are denoted by ρA ∈ S(A) and pure quantum states by ΨA ∈ V(A). A
maximally entangled state ΦRA of Schmidt rank d is given by

ΦRA := 1

d

d∑

i, j=1

|i〉〈 j |R ⊗ |i〉〈 j |A, (1)

where {|i〉R}i and {|i〉A}i are orthonormal bases. Quantum channels are completely
positive and trace-preserving maps from L(A) to L(B) and denoted by NA→B ∈
Q(A → B). The Choi state of a quantum channel NA→B is a standard concept in
quantum information and is defined as NA→B(ΦRA). Classical systems are denoted
by X , Y , and Z and have finite dimensions |X |, |Y |, and |Z |, respectively. For p ≥ 1,
the Schatten norms are defined for LA ∈ L(A) as

‖LA‖p :=
(
Tr
[|L A|p]

)1/p
. (2)

In this work, we also consider superchannels [28], which are linear maps that take
as input a quantum channel and output a quantum channel. Such superchannels have
previously been considered in various contexts in quantum information theory [29–
32]. To define them, let L(A → B) denote the set of all linear maps from L(A) to
L(B). Similarly let L(C → D) denote the set of all linear maps from L(C) to L(D).
Let Θ : L(A → B) → L(C → D) denote a linear supermap, taking L(A → B)

to L(C → D). A quantum channel is a particular kind of linear map, and any linear
supermap Θ that takes as input an arbitrary quantum channel ΨA→B ∈ Q(A → B)

and is required to output a quantum channel ΦC→D ∈ Q(C → D) should preserve
the properties of complete positivity and trace preservation. Any such transformation
that does so is called a superchannel. In [28], it was proven that any superchannel
Θ : L(A → B) → L(C → D) can be physically realized as follows. If

ΦC→D = Θ[ΨA→B] (3)

for an arbitrary input channelΨA→B ∈ Q(A → B) and some output channelΦC→D ∈
Q(C → D), then the physical realization of the superchannel Θ is as follows:

ΦC→D = ΩBE→D ◦ (ΨA→B ⊗ IE ) ◦ ΛC→AE , (4)

where ΛC→AE : L(C) → L(AE) is a pre-processing channel, system E corresponds
to some memory or environment system, and ΩBE→D : L(BE) → L(D) is a post-
processing channel.

2.2 Quantum entropies

The quantum relative entropy for ρ, σ ∈ S(A) is defined as [33]

D(ρ‖σ) :=
{
Tr
[
ρ (log ρ − log σ)

]
supp(ρ) ⊆ supp(σ )

+∞ otherwise,
(5)
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where in the above and throughout the paper we employ the convention that all log-
arithms are evaluated using base two. The Petz–Rényi divergences are defined for
ρ, σ ∈ S(A) and α ∈ (0, 1) ∪ (1,∞) as [34,35]

Dα(ρ‖σ) := 1

α − 1
log Tr

[
ρασ 1−α

]
, (6)

whenever either α ∈ (0, 1) and ρ is not orthogonal to σ in the Hilbert–Schmidt inner
product or α > 1 and supp(ρ) ⊆ supp(σ ). Otherwise, we set Dα(ρ‖σ) := +∞.
In the above and throughout the paper, we employ the convention that inverses are
to be understood as generalized inverses. For α ∈ {0, 1}, we define the Petz–Rényi
divergence in the limit as

D0(ρ‖σ) := lim
α→0

Dα(ρ‖σ) = − log Tr
[

ρσ

]
, (7)

D1(ρ‖σ) := lim
α→1

Dα(ρ‖σ) = D(ρ‖σ), (8)

where 
ρ denotes the projection onto the support of ρ. Another quantity of interest
related to the Petz–Rényi divergences is the Chernoff divergence [3,4,6]

C(ρ‖σ) := − inf
0≤α≤1

log Tr
[
ρασ 1−α

]
(9)

= sup
0≤α≤1

(1 − α)Dα(ρ‖σ). (10)

The sandwiched Rényi divergences are defined for ρ, σ ∈ S(A) and α ∈ (0, 1) ∪
(1,∞) as [36,37]

D̃α(ρ‖σ) := 1

α − 1
log Tr

[(
σ

1−α
2α ρσ

1−α
2α

)α]
(11)

whenever either α ∈ (0, 1) and ρ is not orthogonal to σ in the Hilbert–Schmidt inner
product or α > 1 and supp(ρ) ⊆ supp(σ ). Otherwise we set D̃α(ρ‖σ) := ∞. For
α = 1, we define the sandwiched Rényi relative entropy in the limit as [36,37]

D̃1(ρ‖σ) := lim
α→1

D̃α(ρ‖σ) = D(ρ‖σ). (12)

We have that

D̃1/2(ρ‖σ) = − log F(ρ, σ ), (13)

with Uhlmann’s fidelity defined as F(ρ, σ ) := ‖√ρ
√

σ‖21 [38]. In the limit α → ∞,
the sandwiched Rényi relative entropy converges to the max-relative entropy [39,40]

Dmax(ρ‖σ) := D̃∞(ρ‖σ) := lim
α→∞ D̃α(ρ‖σ) (14)

= log
∥∥∥σ−1/2ρσ−1/2

∥∥∥∞ (15)
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= inf
{
λ : ρ ≤ 2λ · σ

}
, (16)

as shown in [36]. The log-Euclidean Rényi divergence is defined for positive definite
density operators ρ, σ ∈ S(A) as [41] (see also [2,5,42–44])

D�
α(ρ‖σ) := 1

α − 1
log Tr[exp(α ln ρ + (1 − α) ln σ)], (17)

and for general density operators as the following limit: limε→0 D
�
α(ρ + ε I‖σ + ε I ).

An explicit expression for the limiting value above is available in [41, Lemma 3.1].
In the limit α → 1, the log-Euclidean Rényi divergence converges to the quantum
relative entropy [41, Lemma 3.4]:

lim
α→1

D�
α(ρ‖σ) = D(ρ‖σ). (18)

In analogy to the Chernoff divergence representation in (10), we also define the log-
Euclidean Chernoff distance as

C�(ρ‖σ) := sup
0≤α≤1

(1 − α)D�
α(ρ‖σ). (19)

The log-Euclidean Rényi divergence comes up in our work due to the following “diver-
gence sphere optimization,” holding for not too large r > 0 and states ρ and σ [5,
Remark 1]:

inf
τ :D(τ‖σ)≤r

D(τ‖ρ) = sup
α∈(0,1)

{
α − 1

α

[
r − D�

α(ρ‖σ)
]}

. (20)

The following inequalities relate the three aforementioned quantumRényi divergences
evaluated on quantum states ρ and σ [37,41,45]:

αDα(ρ‖σ) ≤ D̃α(ρ‖σ) ≤ Dα(ρ‖σ) ≤ D�
α(ρ‖σ) for α ∈ (0, 1), (21)

D�
α(ρ‖σ) ≤ D̃α(ρ‖σ) ≤ Dα(ρ‖σ) for α ∈ (1,∞). (22)

All of the above quantum Rényi divergences reduce to the corresponding classical
versions by embedding probability distributions into diagonal, commuting quantum
states.

3 Settings for asymptotic channel discrimination

In this section, we describe the information-theoretic settings for asymptotic quantum
channel discrimination that we study. We emphasise that this is in contrast to most of
the previous work that has focused on the finite, non-asymptotic regime.
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3.1 Protocol for quantum channel discrimination

The problem of quantum channel discrimination is made mathematically precise by
the following hypothesis testing problems for quantum channels. Given two quantum
channels NA→B and MA→B acting on an input system A and an output system B, a
general adaptive strategy for discriminating them is as follows.

We allow the preparation of an arbitrary input state ρR1A1 = τR1A1 , where R1 is
an ancillary register. The i th use of a channel accepts the register Ai as input and
produces the register Bi as output. After each invocation of the channel NA→B or
MA→B , an (adaptive) channel A(i)

Ri Bi→Ri+1Ai+1
is applied to the registers Ri and Bi ,

yielding a quantum state ρRi+1Ai+1 or τRi+1Ai+1 in registers Ri+1Ai+1, depending on
whether the channel is equal to NA→B or MA→B . That is,

ρRi+1Ai+1 := A(i)
Ri Bi→Ri+1Ai+1

(ρRi Bi ), ρRi Bi := NAi→Bi (ρRi Ai ), (23)

τRi+1Ai+1 := A(i)
Ri Bi→Ri+1Ai+1

(τRi Bi ), τRi Bi := MAi→Bi (τRi Ai ), (24)

for every 1 ≤ i < n on the left-hand side, and for every 1 ≤ i ≤ n on the right-hand
side. Finally, a quantum measurement {QRnBn , IRn Bn − QRnBn } is performed on the
systems RnBn to decide which channel was applied. The outcome Q corresponds to
a final decision that the channel isN , while the outcome I − Q corresponds to a final
decision that the channel isM. We define the final decision probabilities as

p := Tr
[
QRnBnρRn Bn

]
, (25)

q := Tr
[
QRnBnτRn Bn

]
. (26)

Figure 1 depicts such a general protocol for channel discrimination when the channel
N or M is called three times.

In what follows, we use the simplifying notation {Q,A} to identify a particular
strategy using channels {A(i)

Ri Bi→Ri+1Ai+1
}i and a final measurement {QRnBn , IRn Bn −

QRnBn }. For simplicity, this shorthand also includes the preparation of the initial state
ρR1A1 = τR1A1 , which can be understood as arising from the action of an initial channel
A(0)

R0B0→R1A1
for which the input systems R0 and B0 are trivial. This naturally gives

rise to the two possible error probabilities:

αn({Q,A}) := Tr
[
(IRn Bn − QRnBn )ρRn Bn

]
type I error probability, (27)

βn({Q,A}) := Tr
[
QRnBnτRn Bn

]
type II error probability. (28)

In what follows, we discuss the behaviour of the type I and type II error probabilities
in various asymmetric and symmetric settings.

In the above specification of quantum channel discrimination, the physical setup
corresponding to it is that the discriminator has “black box” access to n uses of the
channel N or M, meaning that the channel is some device in the laboratory of the
discriminator, he has physical access to both the input and output systems of the
channel, and he is allowed to apply arbitrary procedures to distinguish them. As such,
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the above method of discriminating the channels is the most natural and general in this
setting. Other physical constraintsmotivate differentmodels of channel discrimination
protocols, and in fact, there could be a large number of physically plausible channel
discrimination strategies to consider, depending on the physical constraints of the
discriminator(s). For example, if the channels being compared have input and output
systems that are in different physical locations, as would be the case for a long-haul
fiber optic cable, then it might not be feasible to carry out such a general channel
discrimination protocol as described above (two parties in distant laboratories would
be needed), and it would be meaningful to consider a different channel discrimination
protocol. However, the channel discrimination described above is the most general,
and if there is a limitation established for the distinguishability of two channels in this
model, then the same limitation applies to any other channel discrimination model
that could be considered.

Remark 1 Another kind of channel discrimination strategy often considered in the
literature is a parallel discrimination strategy, in which a state γRAn is prepared, either
the tensor-power channel (NA→B)⊗n or (MA→B)⊗n is applied, and then a joint
measurement is performed on the systems RBn . As noted in [8], a parallel channel
discrimination strategy of the channels N and M is a special case of an adaptive
channel discrimination strategy as detailed above. Indeed, the first state ρR1A1 in an
adaptive protocol could be γRAn with the system R1 of ρR1A1 identified with the
systems RA2 · · · An of γRAn , and then the role of the first adaptive channel would
be simply to swap in system A2 of γRAn for the second channel call, the second
adaptive channel would swap in system A3 of γRAn for the third channel call, etc. As
such, parallel channel discrimination is not the most general approach to consider, and
as stated previously, any limitation placed on the distinguishability of the channels
from an adaptive discrimination strategy serves as a limitation when using a parallel
discrimination strategy.

To the best of our knowledge, adaptive quantum channel discrimination protocols
were first studied by Chiribella et al. [8], whereas the particular information-theoretic
quantities that we introduce in the following Sects. 3.2–3.5 go back to Hayashi [14]
for the classical case and to Cooney et al. [15] for the quantum case.

3.2 Asymmetric setting—Stein

For asymmetric hypothesis testing, we minimize the type II error probability, under
the constraint that the type I error probability does not exceed a constant ε ∈ (0, 1).
We are then interested in characterising the non-asymptotic quantity

ζn(ε,N ,M) := sup
{Q,A}

{
−1

n
logβn({Q,A})

∣∣∣∣αn({Q,A}) ≤ ε

}
, (29)

123



M. M. Wilde et al.

as well as the asymptotic quantities

ζ (ε,N ,M) := lim inf
n→∞ ζn(ε,N ,M), ζ (ε,N ,M) := lim sup

n→∞
ζn(ε,N ,M).

(30)

3.3 Strong converse exponent—Han-Kobayashi

The strong converse exponent is a refinement of the asymmetric hypothesis testing
quantity discussed above. For r > 0, we are interested in characterising the non-
asymptotic quantity

Hn(r ,N ,M) := inf
{Q,A}

{
−1

n
log(1 − αn({Q,A}))

∣∣∣∣βn({Q,A}) ≤ 2−rn
}

, (31)

as well as the asymptotic quantities

H(r ,N ,M) := lim inf
n→∞ Hn(r ,N ,M), H(r ,N ,M) := lim sup

n→∞
Hn(r ,N ,M).

(32)
The interpretation is that the type II error probability is constrained to tend to zero
exponentially fast at a rate r > 0, but then if r is too large, the type I error probability
will necessarily tend to one exponentially fast, and we are interested in the exact rate
of exponential convergence. Note that this strong converse exponent is only non-trivial
if r is sufficiently large.

3.4 Error exponent—Hoeffding

The error exponent is another refinement of asymmetric hypothesis testing, in the
sense that the type II error probability is constrained to decrease exponentially with
exponent r > 0.We are then interested in characterising the error exponent of the type I
error probability under this constraint. That is, we are interested in characterising the
non-asymptotic quantity

Bn(r ,N ,M) := sup
{Q,A}

{
−1

n
logαn({Q,A})

∣∣∣∣βn({Q,A}) ≤ 2−rn
}

. (33)

as well as the asymptotic quantities

B(r ,N ,M) := lim inf
n→∞ Bn(r ,N ,M), B(r ,N ,M) := lim sup

n→∞
Bn(r ,N ,M).

(34)
Note that this error exponent is non-trivial only if r is not too large.
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3.5 Symmetric setting—Chernoff

Here we are interested in minimising the total error probability of guessing incor-
rectly, that is, symmetric hypothesis testing, which is sometimes also described as the
Bayesian setting of hypothesis testing. Given an a priori probability p ∈ (0, 1) that the
first channel N is selected, the non-asymptotic symmetric error exponent is defined
as1

ξn(p,N ,M) := sup
{Q,A}

−1

n
log
(
p · αn({Q,A}) + (1 − p)βn({Q,A})

)
. (35)

Given that the expression above involves an optimization over all final measurements
abbreviated by Q, we can employ the well-known result relating optimal error prob-
ability to trace distance [46–48] to conclude that

ξn(p,N ,M) = sup
{A}

−1

n
log

(
1

2

(
1 − ∥∥pρRn Bn − (1 − p)τRn Bn

∥∥
1

))
, (36)

whereρRn Bn and τRn Bn are defined in (23) and (24), respectively.We are then interested
in the asymptotic symmetric error exponent

ξ(N ,M) := lim inf
n→∞ ξn(p,N ,M) = lim inf

n→∞ ξn(1/2,N ,M), (37)

ξ(N ,M) := lim sup
n→∞

ξn(p,N ,M) = lim sup
n→∞

ξn(1/2,N ,M), (38)

with the equalities following, e.g. from [18, Theorem 12]. That is, choosing a priori
probabilities different from 1/2 does not affect the asymptotic symmetric error expo-
nent.We have the following relation between the asymptotic Hoeffding error exponent
and the asymptotic symmetric error exponent:

ξ(N ,M) = sup
{
r
∣∣∣B(r ,N ,M) ≥ r

}
. (39)

3.6 Energy-constrained channel discrimination

The protocols for quantum channel discrimination could be energy constrained aswell.
This is an especially important consideration when discriminating bosonic Gaussian
channels [49], for which the theory could become trivial without such an energy
constraint imposed. For example, if the task is to discriminate two pure-loss bosonic
Gaussian channels of different transmissivities and there is no energy constraint, then
these channels can be perfectly discriminated with a single call: one would send in a
coherent state of arbitrarily large photon number, and then states output from the two
different channels are orthogonal in the limit of infinite photon number (see, e.g. [50,
Section 2]).

1 The quantity underlying the non-asymptotic symmetric error exponent was previously studied in [8,22]
and shown to be related to the norm defined therein (see [20,21,23] for related work).
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To develop the formalism of energy-constrained channel discrimination, let HA be a
Hamiltonian acting on the channel input Hilbert space, and we take HA to be a positive
semi-definite operator throughout for simplicity. Then, for the channel discrimination
protocol described in Sect. 3.1 to be energy constrained, we demand that the average
energy of the reduced states at all of the channel inputs satisfy

1

n

n∑

i=1

Tr[HAρAi ] ≤ E, (40)

where E ∈ [0,∞). It then follows that an unconstrained protocol corresponds to
choosing HA = IA and E = 1, so that the corresponding “energy constraint” in (40)
is automatically satisfied for all quantum states.

The resulting quantities of interest then depend on the Hamiltonian HA and energy
constraint E , andwewrite {Q,A, H , E} to denote the strategy employed.Wewrite the
type I and II error probabilities as αn({Q,A, H , E}) and βn({Q,A, H , E}), respec-
tively. The resulting optimized quantities of interest from the previous sections are
then defined in the same way, but additionally depend on the Hamiltonian HA and
energy constraint E . We denote them by

ζn(ε,N ,M, H , E) (Stein), (41)

Hn(r ,N ,M, H , E) (Han-Kobayashi), (42)

Bn(r ,N ,M, H , E) (Hoeffding), (43)

ξn(p,N ,M, H , E) (Chernoff). (44)

4 Amortized distinguishability of quantum channels

In order to analyse the hypothesis testing problems for quantum channels as discussed
in Sect. 3.1, we now introduce the concept of the amortized distinguishability of
quantum channels. This allows us to reduce questions about the operational problems
of hypothesis testing to mathematical questions about quantum channels, states, and
distinguishability measures of them. In the following, we also detail many properties
of the amortized distinguishability of quantum channels, which are of independent
interest.

4.1 Generalized divergences

We say that a function D : S(A) × S(A) → R ∪ {+∞} is a generalized divergence
[51,52] if for arbitrary Hilbert spacesHA andHB , arbitrary states ρA, σA ∈ S(A) and
an arbitrary channel NA→B ∈ Q(A → B), the following data-processing inequality
holds

D(ρA‖σA) ≥ D(NA→B(ρA)‖NA→B(σA)). (45)
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From this inequality, we find in particular that for all states ρA, σA ∈ S(A), ωR ∈
S(R), the following identity holds [37]

D(ρA ⊗ ωR‖σA ⊗ ωR) = D(ρA‖σA), (46)

and that for an arbitrary isometric channel UA→B ∈ Q(A → B), we have that [37]

D(UA→B(ρA)‖UA→B(σA)) = D(ρA‖σA). (47)

We call a generalized divergence faithful if the inequality D(ρA‖ρA) ≤ 0 holds for
an arbitrary stateρA ∈ S(A), and strongly faithful if for arbitrary statesρA, σA ∈ S(A)

we have D(ρA‖σA) = 0 if and only if ρA = σA. Moreover, a generalized divergence
is sub-additive with respect to tensor-product states if for all ρA, σA ∈ S(A) and all
ωB, τB ∈ S(B) we have

D(ρA ⊗ ωB‖σA ⊗ τB) ≤ D(ρA‖σA) + D(ωB‖τB). (48)

Examples of interest are in particular the quantum relative entropy, the Petz–Rényi
divergences, the sandwiched Rényi divergences, or the Chernoff distance—as defined
in Sect. 2.

As discussed in [24,53], a generalized divergence possesses the direct-sum property
on classical–quantum states if the following equality holds:

D

(
∑

x

pX (x)|x〉〈x |X ⊗ ρx
∥∥∥∥
∑

x

pX (x)|x〉〈x |X ⊗ σ x

)
=
∑

x

pX (x)D(ρx‖σ x ),

(49)
where pX is a probability distribution, {|x〉}x is an orthonormal basis, and {ρx }x
and {σ x }x are sets of states. We note that this property holds for trace distance,
quantum relative entropy and the Petz–Rényi and sandwiched Rényi quasi-entropies

sgn(α−1)Tr
[
ρασ 1−α

]
and sgn(α−1)Tr[(σ 1−α

2α ρσ
1−α
2α )α], respectively. A generalized

divergence is jointly convex if

D

(
∑

x

pX (x)ρx
∥∥∥∥
∑

x

pX (x)σ x

)
≤
∑

x

pX (x)D(ρx‖σ x ). (50)

Any generalized divergence is jointly convex if it satisfies the direct-sum property, a
fact that follows by applying the defining property in (45) and data processing under
partial trace.

Based on generalized divergences, one can define a generalized channel divergence
as a measure for the distinguishability of two quantum channels [24]. The idea behind
the following measure of channel distinguishability is to allow for an arbitrary input
state to be used to distinguish the channels:

Definition 2 (Generalized channel divergence [24]) LetD be a generalized divergence
and NA→B,MA→B ∈ Q(A → B). The generalized channel divergence of NA→B
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and MA→B is defined as

D(N‖M) := sup
ρ∈S(RA)

D(NA→B(ρRA)‖MA→B(ρRA)), (51)

where the supremum is with respect to bipartite states ρRA, as well as the dimension
of the reference system R.

Even though the generalized channel divergence is defined to have an optimization
over all bipartite states with unbounded reference system R, it immediately follows
from the axioms on generalized divergences togetherwith purification and the Schmidt
decomposition that without loss of generality we can restrict the supremum to pure
states ΨRA ∈ S(RA) and choose system R isomorphic to system A. Hence, if the
channel input system is finite-dimensional, then the optimization problem in (51)
becomes bounded. Particular instances of generalized channel divergences include
the diamond norm of the difference of NA→B andMA→B [54], as well as the Rényi
channel divergence from [15].

4.2 Amortized channel divergence

Wenow define the amortized channel divergence as ameasure of the distinguishability
of two quantum channels. The idea behind this measure, in contrast to the general-
ized channel divergence recalled above, is to consider two different states ρRA and
σRA that can be input to the channels NA→B and MA→B , in order to explore the
largest distinguishability that can be realized between the channels. However, from a
resource-theoretic perspective, these initial states themselves could have some distin-
guishability, and so it is sensible to subtract off the initial distinguishability of the states
ρRA andσRA from the final distinguishability of the channel output statesNA→B(ρRA)

and MA→B(σRA). This procedure leads to the amortized channel divergence:

Definition 3 (Amortized channel divergence) Let D be a generalized divergence, and
let NA→B,MA→B ∈ Q(A → B). We define the amortized channel divergence as

DA(N‖M) := sup
ρRA,σRA∈S(RA)

[D(NA→B(ρRA)‖MA→B(σRA)) − D(ρRA‖σRA)] .

(52)

Note that in general the supremumcannot be restricted to pure states only, andmore-
over, there is a priori no dimension bound on the system R. Hence, the optimization
problem in (52) can in general be unbounded.

We note here that the idea behind amortized channel divergence is inspired by
related ideas from entanglement theory, in which one quantifies the entanglement
of a quantum channel by the largest difference in entanglement between the output
and input states of the channel [55–57]. Several properties of a channel’s amortized
entanglement were shown in [57], and in the following sections, we establish several
important properties of the amortized channel divergence, the most notable one being
a data-processing inequality, i.e. that it is monotone under the action of a superchannel.
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Someof these properties are related to those recently considered in [58] for the quantum
relative entropy of channels defined in [15,24]. Moreover, very recently a special case
of the amortized channel divergence was proposed in [59], and we discuss this more
in Remark 22.

4.3 Properties of amortized channel divergence

The generalized channel divergence is never larger than its amortized version:

Proposition 4 (Distinguishability does not decrease under amortization) Let D be a
faithful generalized divergence and NA→B,MA→B ∈ Q(A → B). Then we have
that

DA(N‖M) ≥ D(N‖M) (53)

≥ 0. (54)

The proof is immediate, following because we can choose σRA in the optimization
of DA to be equal to ρRA and then apply the faithfulness assumption. As we will see,
what is fundamental to the problem of channel discrimination is to find instances of
divergences and quantum channels for which we have the opposite inequality holding
also

DA(N‖M)
?≤ D(N‖M). (55)

If this inequality holds, we say that there is an “amortization collapse,” due to the
fact that, when combined with the inequality in (53), we would have the equality
DA(N‖M) = D(N‖M), understood as the amortized channel divergence collapsing
to the generalized channel divergence.

Additionally, amortized channel divergences are faithful whenever the underlying
generalized divergence is faithful, as the following lemma states.

Proposition 5 (Faithfulness) If a generalized divergence is strongly faithful on states,
then its associated amortized channel divergence is strongly faithful for channels,
meaning that DA(N‖M) = 0 if and only if N = M.

Proof Suppose that the channels are identical: NA→B = MA→B . Then we have that

DA(NA→B‖MA→B) = DA(NA→B‖NA→B) = 0. (56)

This follows because

DA(NA→B‖MA→B) = sup
ρ,σ∈S(RA)

[D(NA→B(ρRA)‖MA→B(σRA)) − D(ρRA‖σRA)] (57)

= sup
ρ,σ∈S(RA)

[D(NA→B(ρRA)‖NA→B(σRA)) − D(ρRA‖σRA)] (58)

≤ 0, (59)
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which follows from the data-processing inequality. Equality is achieved by picking
ρRA = σRA and invoking strong faithfulness of the underlying measure. Now suppose
that DA(NA→B‖MA→B) = 0. Then, we have by definition that

sup
ρ,σ∈S(RA)

[D(NA→B(ρRA)‖MA→B(σRA)) − D(ρRA‖σRA)] = 0. (60)

Since we have that

DA(NA→B‖MA→B) ≥ D(NA→B‖MA→B) ≥ 0, (61)

this means that

D(NA→B‖MA→B) = sup
ρ∈S(RA)

D(NA→B(ρRA)‖MA→B(ρRA)) = 0. (62)

We could then pick ρRA equal to the maximally entangled state, and from faithfulness
of the underlying measure, deduce that the Choi states are equal. But if this is the case,
then the channels are equal. ��

The data-processing inequality is the statement that a distinguishability measure
for quantum states should not increase under the action of the same channel on these
states. It is one of the most fundamental principles of information theory, and this
is the reason why the notion of generalized divergence is a useful abstraction. As an
extension of this concept, here we prove a data-processing inequality for the amortized
channel divergence, which establishes that it does not increase under the action of the
same superchannel on the underlying channels. The generalized channel divergence of
[24] satisfies this property (as established in [32]), andwe show here that the amortized
channel divergence satisfies this property as well.

Proposition 6 (Data processing) Let NA→B,MA→B ∈ Q(A → B). Let Θ be a
superchannel as described in (4). Then the following inequality holds

DA(NA→B‖MA→B) ≥ DA(Θ (NA→B) ‖Θ (MA→B)). (63)

Proof Set FC→D := Θ (NA→B) and GC→D := Θ (MA→B) as the respective
channels that are output from the superchannel Θ . Let ρRC and σRC be arbitrary
input states for FC→D and GC→D , respectively. Set ηRAE := ΛC→AE (ρRC ) and
ζRAE := ΛC→AE (σRC ), where ΛC→AE is the pre-processing quantum channel from
(4). Then

D(FC→D(ρRC )‖GC→D(σRC )) − D(ρRC‖σRC )

≤ D(FC→D(ρRC )‖GC→D(σRC )) − D(ΛC→AE (ρRC )‖ΛC→AE (σRC )) (64)

= D((ΩBE→D ◦ NA→B ◦ ΛC→AE )(ρRC )‖(ΩBE→D ◦ MA→B ◦ ΛC→AE )(σRC ))

− D(ηRAE‖ζRAE ) (65)

= D((ΩBE→D ◦ NA→B)(ηRAE )‖(ΩBE→D ◦ MA→B)(ζRAE )) − D(ηRAE‖ζRAE )

(66)
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≤ D(NA→B(ηRAE )‖MA→B(ζRAE )) − D(ηRAE‖ζRAE ) (67)

≤ DA(N‖M). (68)

The first inequality follows from data processing with the pre-processing channel
ΛC→AE . The next two equalities follow fromdefinitions. The second-to-last inequality
follows from data processing with the post-processing channel ΩBE→D . The final
inequality follows because the states ηRAE and ζRAE are particular states, but the
amortized channel divergence involves an optimization over all such input states. Since
the chain of inequalities holds for arbitrary input states ρRC and σRC , we conclude
the inequality in the statement of the proposition by taking a supremum over all such
states. ��

Joint convexity is a natural property that a measure of channel distinguishability
should obey. The statement is that channel distinguishability should not increase under
a mixing of the channels under consideration.

Proposition 7 (Joint convexity) LetN x
A→B,Mx

A→B ∈ Q(A → B) for all x ∈ X , and
let pX (x) be a probability distribution. Then if the underlying generalized divergence
obeys the direct-sum property in (49), the amortized channel divergence is jointly
convex, in the sense that

∑

x

pX (x)DA(N x‖Mx ) ≥ DA(N‖M), (69)

where N :=∑x pX (x)N x and M :=∑x pX (x)Mx .

Proof Let ρRA and σRA be arbitrary states. Then, we have that

D(N A→B(ρRA)‖MA→B(σRA)) − D(ρRA‖σRA) (70)

≤ D

(
∑

x

pX (x)|x〉〈x |X ⊗ N x
A→B(ρRA)

∥∥∥∥
∑

x

pX (x)|x〉〈x |X ⊗ Mx
A→B(σRA)

)

− D(ρRA‖σRA) (71)

=
∑

x

pX (x)D
(N x

A→B(ρRA)‖Mx
A→B(σRA)

)− D(ρRA‖σRA) (72)

=
∑

x

pX (x)
[
D
(N x

A→B(ρRA)‖Mx
A→B(σRA)

)− D(ρRA‖σRA)
]

(73)

≤
∑

x

pX (x)DA(N x‖Mx ). (74)

The first inequality follows from data processing. The first equality follows from the
direct-sum property. The final inequality follows from optimising. Since the inequality
holds for an arbitrary choice of states ρRA and σRA, we conclude the statement of the
proposition. ��
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The following stability property is a direct consequence of the definition of amor-
tized channel divergence.

Proposition 8 (Stability) Let NA→B,MA→B ∈ Q(A → B). Then, we have

DA(IR ⊗ N‖IR ⊗ M) = DA(N‖M), (75)

where IR denotes the identity channel on a quantum system of arbitrary size.

Two channels NA→B and MA→B are jointly covariant with respect to a group G
if for all g ∈ G, there exist unitary channels U g

A and Vg
B such that [17,60]

NA→B ◦ U g
A = Vg

B ◦ NA→B, MA→B ◦ U g
A = Vg

B ◦ MA→B . (76)

For channels that are jointly covariant with respect to a group, we find that it suffices
to optimize over ρRA and σRA whose reduced states on A satisfy the symmetry. As
such, the following lemma represents a counterpart to [24, Proposition II.4], which
established a related statement for the generalized channel divergence.

Lemma 9 (Symmetries) Let NA→B,MA→B ∈ Q(A → B) be jointly covariant with
respect to a group G, as defined above. It then suffices to optimize DA(N‖M) over
states ρRA and σ RA such that

ρA = 1

|G|
∑

g

U g
A(ρA), σ A = 1

|G|
∑

g

U g
A(σ A). (77)

Proof Each step in what follows is a consequence of data processing. Consider that

D(NA→B(ρRA)‖MA→B(σRA)) − D(ρRA‖σRA) ≤ D(NA→B(ρRA)‖MA→B(σRA))

− D

(
1

|G|
∑

g

|g〉〈g|G ⊗ U g
A(ρRA)

∥∥∥∥
1

|G|
∑

g

|g〉〈g|G ⊗ U g
A(σRA)

)
. (78)

Let us focus on the first term:

D(NA→B (ρRA)‖MA→B (σRA))

= D

⎛

⎝ 1

|G|
∑

g
|g〉〈g|G ⊗ NA→B (ρRA)

∥∥∥∥
1

|G|
∑

g
|g〉〈g|G ⊗ MA→B (σRA)

⎞

⎠ (79)

= D

⎛

⎝ 1

|G|
∑

g
|g〉〈g|G ⊗ (Vg

B ◦ NA→B )(ρRA)

∥∥∥∥
1

|G|
∑

g
|g〉〈g|G ⊗ (Vg

B ◦ NA→B )(σRA)

⎞

⎠ (80)

= D

⎛

⎝ 1

|G|
∑

g
|g〉〈g|G ⊗ NA→B (Ug

A(ρRA))

∥∥∥∥
1

|G|
∑

g
|g〉〈g|G ⊗ NA→B (Ug

A(σRA))

⎞

⎠ . (81)
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Then, we find that

D(NA→B(ρRA)‖MA→B(σRA)) − D(ρRA‖σRA)

≤ D(NA→B(ρRA)‖MA→B(σ RA)) − D(ρRA‖σ RA), (82)

where ρRA and σ RA are states such that

ρA = 1

|G|
∑

g

U g
A(ρA), σ A = 1

|G|
∑

g

U g
A(σ A). (83)

This concludes the proof. ��

4.4 Amortization collapse for max-relative entropy

One instance of a generalized divergence for which the inequality in (55) holds for
any two quantum channels is the max-channel divergence, defined from the max-
relative entropy. That is, Proposition 10 states that the max-channel divergence does
not increase under amortization. This result thus complements some developments
in the theory of quantum communication, in which related amortization collapses
occurred for the max-relative entropy [61,62].

Proposition 10 Let NA→B,MA→B ∈ Q(A → B). Then, for α ≥ 1 we have that

D̃A
α (N‖M) ≤ Dmax(N‖M), (84)

and this implies in particular that

DA
max(N‖M) = Dmax(N‖M). (85)

Fundamental to the proof of the amortization collapse in Proposition 10 is the
following lemma.

Lemma 11 (Data-processed triangle inequality [61]) Let NA→B ∈ Q(A → B),
ρA, σA ∈ S(A), and ωB ∈ S(B). Then, for α ≥ 1 we have that

D̃α(NA→B(ρA)‖ωB) ≤ D̃α(ρA‖σA) + Dmax(NA→B(σA)‖ωB). (86)

Proof of Proposition 10 To see the inequality, simply note that

D̃α(N (ρRA)‖M(σRA)) − D̃α(ρRA‖σRA)

≤ D̃α(ρRA‖σRA) + Dmax(N (σRA)‖M(σRA)) − D̃α(ρRA‖σRA) (87)

= Dmax(N (σRA)‖M(σRA)) (88)

≤ Dmax(N‖M), (89)
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where the first inequality follows from Lemma 11 and the second by taking the opti-
mization over states. The equality in (85) then simply follows from

DA
max(N‖M) ≥ Dmax(N‖M), (90)

which in turn follows from Proposition 4. ��
The max-relative entropy could, due to the supremum over input states, potentially

be hard to compute in general. In the following lemma, we show that the given quantity
can always be expressed in a simple form, as themax-relative entropy of theChoi states
of the channels, which is also a semi-definite program (SDP) and therefore efficiently
computable.

Lemma 12 Let NA→B,MA→B ∈ Q(A → B). Then, we have that

Dmax(N‖M) = Dmax(NA→B(ΦRA)‖MA→B(ΦRA)), (91)

which is an SDP.

Proof Recall that the max-channel divergence is given by

sup
ψRA

Dmax(NA→B(ψRA)‖MA→B(ψRA))

= sup
ψRA

inf
{
λ : NA→B(ψRA) ≤ 2λ · MA→B(ψRA)

}
. (92)

Consider that

Dmax(N‖M) ≥ Dmax(NA→B(ΦRA)‖MA→B(ΦRA)), (93)

by definition, given that the left-hand side involves an optimization, but the right-hand
side does not. Next, let λ be such that

NA→B(ΦRA) ≤ 2λMA→B(ΦRA), (94)

where ΦRA denotes a maximally entangled state. By scaling by a dimension factor,
the above is equivalent to

NA→B(ΓRA) ≤ 2λMA→B(ΓRA), (95)

where ΓRA := |A|ΦRA denotes the version of the maximally entangled state ΦRA

that is not normalized. Then, due to the fact that any pure state ψRA = XRΓRAX
†
R

for some operator XR such that Tr[X†
R XR] = 1, we then conclude that the following

operator inequality is satisfied
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XRNA→B(ΓRA)X†
R ≤ 2λXRMA→B(ΓRA)X†

R (96)

⇔ NA→B(XRΓRAX
†
R) ≤ 2λMA→B(XRΓRAX

†
R) (97)

⇔ NA→B(ψRA) ≤ 2λMA→B(ψRA). (98)

Thus, we could potentially find a smaller value of λ for which NA→B(ψRA) ≤
2λMA→B(ψRA) is satisfied, implying that

inf
{
μ : NA→B(ψRA) ≤ 2μMA→B(ψRA)

}
≤ λ. (99)

But since the argument holds for all choices of λ satisfying (95), we conclude that

inf
{
μ : NA→B(ψRA) ≤ 2μMA→B(ψRA)

}

≤ inf
{
λ : NA→B(ΦRA) ≤ 2λMA→B(ΦRA)

}
, (100)

which is equivalent to

Dmax(NA→B(ψRA)‖MA→B(ψRA)) ≤ Dmax(NA→B(ΦRA)‖MA→B(ΦRA)).

(101)
Now, we have proven that the inequality above holds for an arbitrary choice of the
state ψRA, and so we conclude that

Dmax(NA→B(ΦRA)‖MA→B(ΦRA))

≥ sup
ψ

Dmax(NA→B(ψRA)‖MA→B(ψRA)) = Dmax(N‖M). (102)

Combining (93) and (102) gives the statement of the lemma. To see that this is an SDP,
we write

Dmax(N‖M) = log inf{λ : NA→B(ΓRA) ≤ λ · MA→B(ΓRA)}. (103)

This concludes the proof. ��
Remark 13 Note that the max-channel divergence is a special case of the sandwiched
Rényi channel divergences proposed in [15], as well as the generalized channel diver-
gences from [24]. Recently, the following channel divergence was proposed in the
context of the resource theory of coherence [63, Definition 19]:

D′
max(N‖M) := inf

{
λ : 2λM − N is CP

}
. (104)

Since it suffices to check whether a map is CP by evaluating it on the maxi-
mally entangled state, we find, as a consequence of (103) and Lemma 12, that
D′
max(N‖M) = Dmax(N‖M).
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As a consequence of Proposition 10 and Lemma 12, we find that

DA
max(N‖M) = Dmax(NA→B(ΦRA)‖MA→B(ΦRA)), (105)

and in Sect. 5, we discuss how this directly translates into strong converse bounds for
quantum channel discrimination. Analogous to the above amortization collapse for
max-relative entropy, we prove in Appendix A that an amortization collapse occurs
for an amortized channel divergence based on the Hilbert α-divergence from [64].
Since the trace distance is a special case of a Hilbert α-divergence, as shown in [64,
Theorem 1], it follows that the diamond norm of the difference of two quantum chan-
nels does not increase under amortization.We also discuss how certain channelmetrics
based on quantum fidelity do not increase under amortization. For other divergences
including the quantum relative entropy, the Petz–Rényi divergences, the sandwiched
divergences or the Chernoff distance, we are in general not able to prove that there is a
collapse of the corresponding amortized channel divergence. However, when we eval-
uate these amortized divergences for various special channels, we are able to prove
that an amortization collapse occurs. We discuss this in Sects. 6–7, along with the
direct implications for the operational settings of quantum channel discrimination.

4.5 Meta-converse for quantum channel discrimination via amortized channel
divergence

The following Lemma 14 functions as a meta-converse for quantum channel discrim-
ination (similarly to [65]). By this, we mean that we can recover particular converse
statements for quantum channel discrimination by plugging in different choices of
a generalized divergence into Lemma 14. Consider a general channel discrimination
protocol as introduced in Sect. 3.1, with final decision probabilities p and q, as given
in (25) and (26), respectively. Conceptually, the statement of the lemma is that the
distinguishability of the final decision probabilities p and q at the end of a channel
discrimination protocol, in which the channels are called n times, is limited by n times
the amortized channel divergence of the two channels.

Lemma 14 (Meta-converse) Let NA→B,MA→B ∈ Q(A → B). Then, we have for
any protocol for quantum channel discrimination as introduced in Sect. 3.1 and any
faithful generalized divergence that

D(p‖q) ≤ n · DA(N‖M), (106)

where

D(p‖q) := D(ζ(p)‖ζ(q)) with ζ(p) := p|0〉〈0| + (1 − p)|1〉〈1|. (107)

Proof Let {Q,A} denote an arbitrary protocol for discrimination of the channels N
andM, as discussed in Sect. 3.1, and let p and q denote the final decision probabilities.
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Consider that

D(p‖q) ≤ D(ρRn Bn‖τRn Bn ) (108)

≤ D(ρRn Bn‖τRn Bn ) − D(ρR1A1‖τR1A1) (109)

= D(ρRn Bn‖τRn Bn ) − D(ρR1A1‖τR1A1) +
n∑

i=2

(
D(ρRi Ai ‖τRi Ai )

− D(ρRi Ai ‖τRi Ai )
)

(110)

= D(ρRn Bn‖τRn Bn ) − D(ρR1A1‖τR1A1)

+
n∑

i=2

(
D
(
A(i−1)

Ri−1Bi−1→Ri Ai
(ρRi−1Bi−1)‖A(i−1)

Ri−1Bi−1→Ri Ai
(τRi−1Bi−1)

)

−D(ρRi Ai ‖τRi Ai )
)
. (111)

The first inequality follows from data processing under the final measurement
{QRnBn , IRn Bn − QRnBn }. The second inequality follows from the assumption of
faithfulness and the fact that the initial states are equal: ρR1A1 = τR1A1 . The next
two equalities are straightforward. Continuing, we have that

Eq. (111) ≤ D(ρRn Bn‖τRn Bn ) − D(ρR1A1‖τR1A1)

+
n−1∑

i=1

D(ρRi Bi ‖τRi Bi ) −
n∑

i=2

D(ρRi Ai ‖τRi Ai ) (112)

=
n∑

i=1

(
D(ρRi Bi ‖τRi Bi ) − D(ρRi Ai ‖τRi Ai )

)
(113)

=
n∑

i=1

(
D(NA→B(ρRi Ai )‖MA→B(τRi Ai )) − D(ρRi Ai ‖τRi Ai )

)
(114)

≤ n · sup
ρ,σ∈S(RA)

[D(NA→B(ρRA)‖MA→B(σRA)) − D(ρRA‖σRA)] (115)

= n · DA(N‖M). (116)

The first inequality follows from data processing with respect to the channel
A(i−1)

Ri−1Bi−1→Ri Ai
. The next two equalities are rewritings. The final inequality follows

by optimization and the last by definition. ��

4.6 Energy-constrained channel divergences andmeta-converse for
energy-constrained channel discrimination

Given that we consider energy-constrained protocols for channel discrimination as
described in Sect. 3.6, it is natural to consider energy-constrained channel divergences.
This was done in [53] for the generalized channel divergence, where an energy-
constrained generalized channel divergence was defined for energy E ∈ [0,∞) and a
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Hamiltonian HA as follows:

DH ,E (N‖M) = sup
ψRA:Tr{HAψA}≤E

D(NA→B(ψRA)‖MA→B(ψRA)). (117)

Note again that it suffices to optimize over pure states with system R isomorphic to
system A. Special cases of the energy-constrained generalized channel divergence
from [53] include the energy-constrained diamond norm of the difference of two
channels [50,66], as well as the energy-constrained Bures distance [67].

Here, we define the amortized, energy-constrained channel divergence as

DA
H ,E (N ‖M) = sup

ρRA,σRA∈S(RA),
Tr{HAρA},Tr{HAσA}≤E

[D(NA→B (ρRA)‖MA→B (σRA)) − D(ρRA‖σRA)] . (118)

These quantities possess many of the properties of the unconstrained divergences, as
detailed in the previous sections, but we do not list them here for the sake of brevity.
We close this section by providing a generalization of the meta-converse in Lemma 14
to the case of energy-constrained channel discrimination protocols.

Lemma 15 With the same notation as in Lemma 14, if the channel discrimination
protocol has an average energy constraint as in (40), with Hamiltonian H and energy
E ∈ [0,∞), and the faithful generalized divergence obeys the direct-sum property in
(49), then the following bound holds:

D(p‖q) ≤ n · DA
H ,E (N‖M). (119)

Proof The analysis proceeds in the same way as in the proof of Lemma 14, but at
(114), we can exploit the assumed direct-sum property of the generalized divergence
and find that

n∑

i=1

(
D(NA→B(ρRi Ai )‖MA→B(τRi Ai )) − D(ρRi Ai ‖τRi Ai )

)

= n ·
(
D(NA→B(ρURA)‖MA→B(τURA)) − D(ρURA‖τURA)

)
(120)

≤ n · DA
H ,E (N‖M), (121)

where the states ρURA and τURA are defined as

ρURA := 1

n

n∑

i=1

|i〉〈i |U ⊗ ρRi Ai , τURA := 1

n

n∑

i=1

|i〉〈i |U ⊗ τRi Ai , (122)

with the R system as large as it needs to be to accommodate the largest of the Ri

systems. The last inequality follows because the reduced states TrUR[ρURA] and
TrUR[τURA] each satisfy the average energy constraint in (40) by assumption, and
then we can optimize over all such states. ��
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5 Converse bounds for quantum channel discrimination

The amortization results cannowbe translated into general bounds onquantumchannel
discrimination.We start here by reviewing thework [9], which discusses conditions for
when n copies of two channels become perfectly distinguishable. Interestingly, these
conditions are single-letter and efficiently checkable. They can be stated in terms of
Kraus decompositions {Ni }i and {Mj } j of N and M, respectively. (Note that the
criterion is independent of the Kraus decompositions chosen.) Namely, n copies of
NA→B and MA→B are perfectly distinguishable for some finite n if and only if

• ∃ ψRA ∈ V(RA) with |R| = |A| such that supp(NA→B(ψRA)) ∩
supp(MA→B(ψRA)) = ∅

• I /∈ span{N †
i M j }.

We note that, under these conditions, all the asymptotic quantities introduced in
Sect. 3.1 become trivial. Hence, it remains to find bounds on quantum channel dis-
crimination for the case when at least one of the above conditions does not hold. In
the remainder of this section, we give general bounds and postpone specific classes of
channels for which we get tight single-letter characterizations to Sects. 6–7.

5.1 Stein bound

For non-adaptive protocols, when we restrict the input states to be product states—but
still allow for a quantum memory system R—it directly follows from Stein’s lemma
for quantum state discrimination [1,2] that the optimal asymptotic error exponent for
ε ∈ (0, 1) is given by the quantum relative entropy divergence D(N‖M), as observed
in [15]. This obviously also gives an achievability bound for the adaptive setting. In
the following, we are interested in converse bounds for the adaptive setting, and in
later sections, we discuss when our general converse bounds match the achievability
result. It turns out that the amortized quantum relative entropy divergence DA(N‖M)

provides such a converse bound.

Proposition 16 Let NA→B,MA→B ∈ Q(A → B). Then, we have for n ∈ N and
ε ∈ [0, 1) that

ζn(ε,N ,M) ≤ 1

1 − ε

(
DA(N‖M) + h2(ε)

n

)
, (123)

where h2(ε) := −ε log(ε) − (1 − ε) log(1 − ε) denotes the binary entropy. If the
channel discrimination protocol is energy constrained, as discussed in Sect. 3.6, with
Hamiltonian HA and energy constraint E ∈ [0,∞), then the following bound holds:

ζn(ε,N ,M, H , E) ≤ 1

1 − ε

(
DA

H ,E (N‖M) + h2(ε)

n

)
. (124)

Proof Let {Q,A} denote an arbitrary protocol for discrimination of the channels N
andM, as discussed in Sect. 3.1, and let p and q denote the final decision probabilities.
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As observed previously (e.g. in [68]), if the constraint αn({Q,A}) ≤ ε is not satisfied
with equality, then one can modify the measurement operator as Q → λQ for some
λ ∈ (0, 1) such that αn({λQ,A}) = ε, whereas the type II error probability only
decreases under this modification. Since we are interested in the optimized quantity
ζn(ε,N ,M), we always perform this modification to any channel discrimination
protocol if necessary. Now following the original proof of Stein’s lemma for quantum
states [1], we find that

D(p‖q) = (1 − p) log
1 − p

1 − q
+ p log(p/q) (125)

= αn({Q,A}) log αn({Q,A})
1 − βn({Q,A}) + (1 − αn({Q,A})) log 1 − αn({Q,A})

βn({Q,A})
(126)

= ε log
ε

1 − βn({Q,A}) + (1 − ε) log
1 − ε

βn({Q,A}) (127)

= −h2(ε) − ε log(1 − βn({Q,A})) − (1 − ε) logβn({Q,A}) (128)

≥ −h2(ε) − (1 − ε) logβn({Q,A}). (129)

By rearranging the above equation, it follows that

− logβn({Q,A}) ≤ 1

1 − ε

(
D(p‖q) + h2(ε)

)
. (130)

Now we can apply Lemma 14, choosing the generalized channel divergence to be the
quantum relative entropy. We then find that

− logβn({Q,A}) ≤ 1

1 − ε

(
n · DA(N‖M)) + h2(ε)

)
. (131)

This is a universal upper bound, holding for an arbitrary channel discrimination proto-
col, and so now dividing by n and taking the supremum over {Q,A} on the left-hand
side, we conclude the inequality in (123).

For the energy-constrained case, the proof goes in the same way, but we apply
(119), choosing again the generalized divergence to be the quantum relative entropy
and noting that it obeys the direct-sum property in (49). Hence, (124) follows. ��

We next obtain a strong converse bound in terms of the max-channel divergence.

Proposition 17 Let NA→B,MA→B ∈ Q(A → B). For ε ∈ [0, 1), the following
bound holds

ζn(ε,N ,M) ≤ Dmax(N‖M) + 1

n
log

(
1

1 − ε

)
. (132)

Proof Let {Q,A} denote an arbitrary protocol for discrimination of the channels N
andM, as discussed in Sect. 3.1, and let p and q denote the final decision probabilities.
As discussed in the previous proof, we can take αn({Q,A}) = ε, leading to
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Dmax(p‖q) = logmax{(1 − ε)/q, ε/(1 − q)} ≥ log(1 − ε) − log q. (133)

By applying the meta-converse in Lemma 14, as well as the amortization collapse for
max-relative entropy from Proposition 10, we conclude that

− 1

n
log q ≤ Dmax(N‖M) + 1

n
log

1

1 − ε
. (134)

Since the bound is a uniform bound applying to any channel discrimination protocol,
we conclude the statement of the proposition. ��

Combining the bounds in Propositions 10 and 16, we arrive at the following asymp-
totic statements for the Stein setting.

Corollary 18 Let NA→B,MA→B ∈ Q(A → B) and ε ∈ (0, 1). Then, we have that

D(N‖M) ≤ ζ (ε,N ,M) ≤ ζ (ε,N ,M) ≤ Dmax(N‖M). (135)

Note that the DA(N‖M) bound from Proposition 16 is a priori an unbounded
optimization problem. However, as stated in Lemma 12, the Dmax(N‖M) bound in
Corollary 18 can be written as a semi-definite program and is thus efficiently com-
putable. Note also that it is in general unclear if the amortized quantity DA(N‖M)

can be achieved by an adaptive protocol. However, in Sects. 6–7 we present vari-
ous examples for which we find that DA(N‖M) = D(N‖M). This will then also
allow us to discuss refinements in terms of the error exponent and the strong converse
exponent.

Remark 19 The result stated in Corollary 18 allows us to conclude a “faithfulness”
statement for the Stein setting, similar to that made in [18] for the Chernoff setting.
Namely, the asymptotic Type II error exponent ζ (ε,N ,M) is finite if and only if the
support condition

supp(NA→B(ΦRA)) ⊆ supp(MA→B(ΦRA)) (136)

holds. To see this, suppose that the support condition in (136) holds. Then
Dmax(N‖M) is finite and so is ζ (ε,N ,M), by the upper bound in (135). Now
suppose that the support condition in (136) does not hold. Then D(N‖M) is infinite
and so is ζ (ε,N ,M), by the lower bound in (135).

Example In general, the upper bound in (135) in terms of Dmax(N‖M) can be rather
different from the lower bound. In the following, we study this difference between the
bounds for a physically interesting class of channels.

The generalized amplitude damping channel with parameters (η, p) is a qubit chan-
nel,modelling dissipation to the environment at a finite temperature [69].A set ofKraus
operators for it is as follows:

A1 = √
p

[
1 0
0

√
η

]
, A2 = √

p

[
0

√
1 − η

0 0

]
, (137)
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A3 = √1 − p

[√
η 0
0 1

]
, A4 = √1 − p

[
0 0√
1 − η 0

]
, (138)

where p ∈ [0, 1] represents the dissipation to the environment and η ∈ [0, 1] is
related to how much the input qubit mixes with the environment qubit. This channel
can intuitively be understood as the “qubit version” of the bosonic thermal channel
[49]. Indeed, the generalized amplitude damping channel arises by preparing an envi-
ronment qubit in the state p|0〉〈0|+ (1− p)|1〉〈1|, interacting it with the qubit channel
input via a beamsplitter of transmissivity η, and tracing over the environment qubit.

LetN denote a generalized amplitude damping channel with parameters (η1, p1),
and letM denote a generalized amplitude damping channel with parameters (η2, p2).
In (135), observe that the Stein quantity is bounded from below by D (N‖M) and
from above by Dmax(N‖M) .

To evaluate D (N‖M), observe that the generalized amplitude damping channel
is covariant with respect to I and Z . We can therefore apply [24, Proposition II.4],
which states that it suffices to restrict the optimization to input states ψRA such that
their reduced state is of the form ρA = z|0〉〈0| + (1 − z)|1〉〈1|, where z ∈ [0, 1]. Let
us choose a purification of ρA as |ψ(z)〉RA = √

z|00〉RA + √
1 − z|11〉RA. Since all

purifications of a state are related by a unitary acting on the purifying system, we can
invoke the unitary invariance of the relative entropy to find that

D (N‖M) = max
ψRA

D (NA→B(ψRA)‖MA→B(ψRA)) (139)

= max
z∈[0,1] D (NA→B(ψ(z)RA)‖MA→B(ψ(z)RA)) . (140)

The latter quantity is straightforward to calculate numerically.
We also know from Lemma 12 that

Dmax(N‖M) = Dmax(NA→B(ΦRA)‖MA→B(ΦRA)),

the latter of which we said previously could be calculated via an SDP.
If η1 = η2, the generalized amplitude channels are environment-parametrized

channels as defined in (239)–(240), with θNE = p1|0〉〈0| + (1 − p1)|1〉〈1| and
θME = p2|0〉〈0| + (1 − p2)|1〉〈1|. Therefore, by Proposition 34, D(θNE ‖θME ) gives
an upper bound in the Stein setting, in addition to the bound given by Dmax(N‖M).
We plot the difference of these bounds for particular generalized amplitude damping
channels in Figs. 2 and 3.

5.2 Strong converse exponent

Aboundon the achievability part of the strong converse exponent can, as before, simply
be given by considering a product-state channel discrimination strategy. Following the
result from the state discrimination setting [7], the achievable rate is given by a quantity
involving the sandwiched Rényi divergence. It is not clear whether such a strategy is
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Fig. 2 This figure displays the difference between the upper and lower bounds in the Stein setting for the
generalized amplitude damping channels with parameters (η1, p1) and (η2, p2). We vary the parameters
p1 and p2 and fix the parameters η1 = 0.2 and η2 = 0.3

Fig. 3 This figure displays the difference between the upper and lower bounds in the Stein setting for the
generalized amplitude damping channels with parameters (η1, p1) and (η2, p2). We vary the parameters
p1 and p2 and fix the parameters η1 = 0.5 and η2 = 0.5

optimal, and so we also consider the optimality part. In the following theorem, we give
a lower bound on the strong converse exponent involving the amortized sandwiched
Rényi channel divergence. As discussed in later sections, for some channels it can be
shown that the amortized sandwiched Rényi channel divergence collapses, such that
the lower and upper bounds match.

Proposition 20 Let NA→B,MA→B ∈ Q(A → B). Then, for r > 0 we have that

Hn(r ,N ,M) ≥ sup
α>1

α − 1

α

(
r − D̃A

α (N‖M)
)

≥ r − Dmax(N‖M). (141)
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Proof We follow the proof strategy from [7, Lemma 4.7], combined with involving
the amortized sandwiched Rényi divergence. Let {Q,A} denote an arbitrary protocol
for discrimination of the channels N and M, as discussed in Sect. 3.1, and let p
and q denote the final decision probabilities. By evaluating the sandwiched Rényi
divergence, we have for α > 1 that

D̃α(p‖q) = 1

α − 1
log
(
pαq1−α + (1 − p)α(1 − q)1−α

)
(142)

≥ 1

α − 1
log
(
pαq1−α

)
(143)

= α

α − 1
log
(
1 − αn({Q,A})

)
− logβn({Q,A}) (144)

≥ α

α − 1
log
(
1 − αn({Q,A})

)
+ nr , (145)

where the last inequality follows from the constraint βn({Q,A}) ≤ 2−nr , the latter
of which is taken as an assumption in this setting, as discussed in Sect. 3.3. We then
have that

−1

n
log
(
1 − αn({Q,A})

)
≥ α − 1

α

(
r − 1

n
D̃α(p‖q)

)
(146)

≥ α − 1

α

(
r − D̃A

α (N‖M)
)

. (147)

The first inequality is a rewriting of (142)–(145), and the second follows from the
meta-converse from Lemma 14, with the divergence chosen to be the sandwiched
Rényi divergence. Since the above holds for all α > 1, we obtain the desired result by
taking the supremum over all such α.

The statement for the max-relative entropy follows because

Dmax(p‖q) ≥ log(p/q) (148)

= log(1 − αn({Q,A})) − log(βn({Q,A})) (149)

≥ log(1 − αn({Q,A})) + nr , (150)

and then applying themeta-converse in Lemma 14, aswell as the amortization collapse
for max-relative entropy from Proposition 10. This gives

−1

n
log(1 − αn({Q,A})) ≥ r − 1

n
Dmax(p‖q) (151)

≥ r − Dmax(N‖M), (152)

concluding the proof. ��
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5.3 Chernoff bound

For non-adaptive protocols, when we restrict the input states to be product states—but
still allow for a quantum memory reference system R—it directly follows from the
Chernoff bound for quantum state discrimination [3,4,6] that the symmetric error expo-
nent is given by the Chernoff channel divergence C(N‖M). This obviously already
gives an achievability bound for the adaptive setting as well. However, note that the
results from [9,10,18] establish that the Chernoff channel divergence C(N‖M) does
not generally quantify the symmetric error exponent for quantum channel discrimina-
tion.

In what follows, we are interested in converse bounds for the general adaptive
setting. We begin by establishing a bound on the non-asymptotic symmetric error
exponent ξn(N ,M, p). Aspects of the proof approach are related to that from [18,
Theorem 9] and [59, Proposition 1].

Proposition 21 Given quantum channels NA→B and MA→B and p ∈ (0, 1), the
following bound holds for all n ∈ N:

ξn(N ,M, p) ≤ min
{
D̃A
1/2(N ‖M), Dmax(N ‖M), Dmax(M‖N )

}
− 1

n
log [p (1 − p)] . (153)

Proof InvokingLemma46 from“AppendixB” (see also [70, SupplementaryLemma3]),
the following inequality holds for positive semi-definite A and B:

‖A − B‖21 + 4
∥∥∥
√
A
√
B
∥∥∥
2

1
≤ (Tr{A + B})2 . (154)

For p ∈ (0, 1), and ρ and σ density operators, we then find that

‖pρ − (1 − p) σ‖21 + 4p (1 − p) F(ρ, σ ) ≤ 1, (155)

where F(ρ, σ ) := ‖√ρ
√

σ‖21 is the quantum fidelity. Note that 4p (1 − p) ∈ [0, 1]
for p ∈ [0, 1]. Rewriting the above expression, we find that

‖pρ − (1 − p) σ‖1 ≤ √1 − 4p (1 − p) F(ρ, σ ), (156)

which is equivalent to

1

2

(
1 − ‖pρ − (1 − p) σ‖1

) ≥ 1

2

(
1 −√1 − 4p (1 − p) F(ρ, σ )

)
(157)

≥ p (1 − p) F(ρ, σ ), (158)

where we have employed the inequality 1
2

(
1 − √

1 − x
) ≥ x

4 , which holds for x ∈
[0, 1]. Taking a negative logarithm, this can be rewritten as

− log

(
1

2

(
1 − ‖pρ − (1 − p) σ‖1

)) ≤ − log (p (1 − p)) + D̃1/2(ρ‖σ). (159)
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Picking ρ and σ to be the final states in an adaptive protocol for distinguishing n uses
of the channelsN andM, and applying the meta-converse in Lemma 14, we then find
that

ξn(N ,M, p) ≤ −1

n
log (p (1 − p)) + D̃A

1/2(N‖M). (160)

To establish the bound in terms of max-channel divergence, we start from (159) and
employ the inequality D̃1/2(ρ‖σ) ≤ Dmax(ρ‖σ) [36], alongwith themeta-converse in
Lemma 14 and the amortization collapse formax-relative entropy fromProposition 10,
giving that

ξn(N ,M, p) ≤ −1

n
log (p (1 − p)) + Dmax(N‖M). (161)

Due to the symmetry F(ρ, σ ) = F(σ, ρ), the same bound with the quantum channels
N and M interchanged holds as well. ��
Remark 22 Recently and in independent work, the following case of Proposition 21
is established in [59, Proposition 1]:

ξn(N ,M, 1/2) ≤ 2

n
+ D̃A

1/2(N‖M). (162)

The authors of [59] also defined the concept of fidelity divergence of quantumchannels,
which is equal to D̃A

1/2(N‖M) after taking a negative logarithm. They remark that it

is sufficient to restrict the optimization over states in D̃A
1/2(N‖M) to pure states, but

unfortunately this restriction does not imply a limit on the states’ dimension.

Proposition 21 implies the following bounds on the asymptotic symmetric error
exponent.

Corollary 23 Let NA→B,MA→B ∈ Q(A → B). Then, we have that

ξ(N ,M) ≤ min
{
D̃A
1/2(N‖M), Dmax(N‖M), Dmax(M‖N )

}
. (163)

Note that [18, Lemma 10] gave a non-explicit upper bound on D̃A
1/2(N‖M), that

is provably finite in the case that the channels are not perfectly distinguishable by an
adaptive channel discrimination protocol. This upper bound establishes that it indeed
makes sense to define the symmetric error exponent for general quantum channel dis-
crimination (even though it is not generally given by the Chernoff channel divergence).

6 Classical–quantum channel discrimination

In this section, we extend results from the classical setting [14] to classical–quantum
channel discrimination. We consider classical–quantum channels that act as

123



Amortized channel divergence for asymptotic quantum…

NX→B(·) =
∑

x

〈x | · |x〉νxB , (164)

MX→B(·) =
∑

x

〈x | · |x〉μx
B , (165)

where {|x〉}x is an orthonormal basis and {νxB}x and {μx
B}x are sets of states.

We find in several cases that the optimal classical–quantum channel discrimination
protocol is to pick the best possible input and then to apply a tensor-power strategy. This
result implies that adaptive strategies, quantum memories and entangled inputs are of
no use in some of the asymptotic settings. Note that this slightly extends the classical
setting as well, in the sense that it was previously unclear if quantum memories could
be of any help.

6.1 Stein bound

We start with the Stein’s lemma for classical–quantum channels.

Theorem 24 Let NX→B,MX→B ∈ Q(X → B) be classical–quantum channels, as
defined in Eqs. (164) and (165). Then, we have that

ζ(N ,M) := lim
ε→0

lim
n→∞ ζn(ε,N ,M) = max

x
D(νxB‖μx

B). (166)

Proof The achievability part follows directly by employing a product-state discrimi-
nation strategy. Therefore, it remains to show the converse direction.We know that the
amortized quantum relative entropy divergence DA(N‖M) provides a weak converse
rate (Proposition 16). The missing step is to evaluate that quantity, which is done in
the following Lemma 25. ��
Lemma 25 Let NX→B,MX→B ∈ Q(X → B) be classical–quantum channels, as
defined in Eqs. (164) and (165). Then the following amortization collapse occurs for
the quantum relative entropy:

DA(N‖M) = max
x

D(νxB‖μx
B). (167)

Proof We show this as follows. The following inequality is a trivial consequence of
picking ρRA = σRA = |x〉〈x |R ⊗ |x〉〈x |A:

DA(N‖M) ≥ D
(
νxB‖μx

B

)
. (168)

Since it holds for all x , we conclude that

DA(N‖M) ≥ max
x

D
(
νxB‖τ x

B

)
. (169)

To see the other inequality, consider for any states ρRA and σRA that

NA→B(ρRA) =
∑

x

p(x)ρx
R ⊗ νxB, (170)
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MA→B(σRA) =
∑

x

q(x)σ x
R ⊗ μx

B, (171)

where p(x)ρx
R := 〈x |AρRA|x〉A and q(x)σ x

R := 〈x |AσRA|x〉A, with p(x) and q(x)
probability distributions and {ρx

R}x and {σ x
R}x sets of states. Now recall the following

property of quantum relative entropy from [71, Exercise 11.8.8]:

D

(
∑

x

p(x)|x〉〈x | ⊗ ρx
R

∥∥∥∥
∑

x

q(x)|x〉〈x | ⊗ σ x
R

)
= D(p‖q)+

∑

x

p(x)D
(
ρx
R‖σ x

R

)
.

(172)
Then, we have that

D(NA→B(ρRA)‖MA→B(σRA)) − D(ρRA‖σRA)

= D

(
∑

x

p(x)ρx
R ⊗ νxB

∥∥∥∥
∑

x

q(x)σ x
R ⊗ μx

B

)
− D(ρRA‖σRA) (173)

≤ D

(
∑

x

p(x)ρx
R ⊗ νxB

∥∥∥∥
∑

x

q(x)σ x
R ⊗ μx

B

)

− D

(
∑

x

p(x)ρx
R ⊗ |x〉〈x |X ⊗ νxB

∥∥∥∥
∑

x

q(x)σ x
R ⊗ |x〉〈x |X ⊗ νxB

)
(174)

≤ D

(
∑

x

p(x)ρx
R ⊗ |x〉〈x |X ⊗ νxB

∥∥∥∥
∑

x

q(x)σ x
R ⊗ |x〉〈x |X ⊗ μx

B

)

− D

(
∑

x

p(x)ρx
R ⊗ |x〉〈x |X ⊗ νxB

∥∥∥∥
∑

x

q(x)σ x
R ⊗ |x〉〈x |X ⊗ νxB

)
(175)

= D(p‖q) +
∑

x

p(x)D
(
ρx
R ⊗ νxB‖σ x

R ⊗ μx
B

)

−
(
D(p‖q) +

∑

x

p(x)D
(
ρx
R ⊗ νxB‖σ x

R ⊗ νxB
)
)

(176)

=
∑

x

p(x)
[
D
(
ρx
R‖σ x

R

)+ D
(
νxB‖μx

B

)]−
∑

x

p(x)
[
D
(
ρx
R‖σ x

R

)+ D
(
νxB‖νxB

)]

(177)

=
∑

x

p(x)D
(
νxB‖μx

B

)
(178)

≤ max
x

D
(
νxB‖μx

B

)
. (179)

The first two inequalities follow from data processing: the first from D(ρRA‖σRA) ≥
D(NA→B(ρRA)‖NA→B(σRA)) and the second from partial trace. The second equality
follows from the identity in (172). Since the above development holds for arbitrary
states ρRA and σRA, we find that
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DA(N‖M) ≤ max
x

D
(
νxB‖μx

B

)
, (180)

concluding the proof. ��

6.2 Strong converse exponent

In this section, we prove that for classical–quantum channels the strong converse
exponent from the general case in Proposition 20 matches the exponent achievable
with product states. Similar to the proof in the previous section, the collapse of the
amortized quantity plays an important role in this proof.

Lemma 26 Let NX→B,MX→B ∈ Q(X → B) be classical–quantum channels, as
defined in Eqs. (164) and (165). Then, we have that

DA
α (N‖M) = max

x
Dα

(
νxB‖μx

B

)
for α ∈ [0, 2], as well as, (181)

D̃A
α (N‖M) = max

x
D̃α

(
νxB‖μx

B

)
for α ≥ 1

2
. (182)

Proof We detail the proof for the Petz–Rényi divergences, and note that the proof for
the sandwiched Rényi divergences is essentially the same. In fact, the key ideas are
similar to those used in the proof of Lemma 25. The following inequality is a trivial
consequence of picking ρRA = σRA = |x〉〈x |R ⊗ |x〉〈x |A:

DA
α (N‖M) ≥ Dα

(
νxB‖μx

B

)
. (183)

Since it holds for all x , we conclude that

DA
α (N‖M) ≥ max

x
Dα

(
νxB‖μx

B

)
. (184)

To see the other inequality, consider for any states ρRA and σRA that

NA→B(ρRA) =
∑

x

p(x)ρx
R ⊗ νxB (185)

MA→B(σRA) =
∑

x

q(x)σ x
R ⊗ μx

B . (186)

where p(x)ρx
R := 〈x |AρRA|x〉A and q(x)σ x

R := 〈x |AσRA|x〉A. Then, we have that

Dα(NA→B (ρRA)‖MA→B (σRA)) − Dα(ρRA‖σRA)

= Dα

(
∑

x
p(x)ρx

R ⊗ νxB

∥∥∥∥
∑

x
q(x)σ x

R ⊗ μx
B

)
− Dα(ρRA‖σRA) (187)
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≤ Dα

(
∑

x
p(x)ρx

R ⊗ νxB

∥∥∥∥
∑

x
q(x)σ x

R ⊗ μx
B

)

− Dα

(
∑

x
p(x)ρx

R ⊗ |x〉〈x |X ⊗ νxB

∥∥∥∥
∑

x
q(x)σ x

R ⊗ |x〉〈x |X ⊗ νxB

)
(188)

≤ Dα

(
∑

x
p(x)ρx

R ⊗ |x〉〈x |X ⊗ νxB

∥∥∥∥
∑

x
q(x)σ x

R ⊗ |x〉〈x |X ⊗ μx
B

)

− Dα

(
∑

x
p(x)ρx

R ⊗ |x〉〈x |X ⊗ νxB

∥∥∥∥
∑

x
q(x)σ x

R ⊗ |x〉〈x |X ⊗ νxB

)
(189)

= 1

α − 1
log Tr

⎡

⎣
(
∑

x
p(x)ρx

R ⊗ |x〉〈x |X ⊗ νxB

)α (∑

x
q(x)σ x

R ⊗ |x〉〈x |X ⊗ μx
B

)1−α
⎤

⎦

− 1

α − 1
log Tr

⎡

⎣
(
∑

x
p(x)ρx

R ⊗ |x〉〈x |X ⊗ νxB

)α (∑

x
q(x)σ x

R ⊗ |x〉〈x |X ⊗ νxB

)1−α
⎤

⎦ (190)

= 1

α − 1
log

∑
x p(x)αq(x)1−αTr

[ (
ρx
R

)α (
σ x
R

)1−α
]
Tr
[ (

νxB

)α (
μx
B

)1−α
]

∑
x p(x)αq(x)1−αTr

[ (
ρx
R

)α (
σ x
R

)1−α
]
Tr
[ (

νxB

)α (
νxB

)1−α
] (191)

= 1

α − 1
log

∑
x p(x)αq(x)1−αTr

[ (
ρx
R

)α (
σ x
R

)1−α
]
Tr
[ (

νxB

)α (
μx
B

)1−α
]

∑
x p(x)αq(x)1−αTr

[ (
ρx
R

)α (
σ x
R

)1−α
] . (192)

Defining the probability distribution

r(x) =
p(x)αq(x)1−αTr

[ (
ρx
R

)α (
σ x
R

)1−α
]

∑
x p(x)αq(x)1−αTr

[ (
ρx
R

)α (
σ x
R

)1−α
] , (193)

we see that the above is equal to

1

α − 1
log
∑

x

r(x)Tr
[ (

νxB
)α (

μx
B

)1−α
]

≤ max
x

1

α − 1
log Tr

[ (
νxB
)α (

μx
B

)1−α
]

(194)

= max
x

Dα

(
νxB‖μx

B

)
. (195)

Since the above development holds for arbitrary states ρRA and σRA, we find that

DA
α (N‖M) ≤ max

x
Dα

(
νxB‖μx

B

)
, (196)

concluding the proof. ��

We are now ready to state the strong converse exponent for the discrimination of
classical–quantum channels.
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Theorem 27 Let NX→B,MX→B ∈ Q(X → B) be classical–quantum channels, as
defined in (164) and (165). Then, for r > 0 we have that

H(r ,N ,M) := lim
n→∞ Hn(r ,N ,M) = sup

α>1

α − 1

α

(
r − max

x
D̃α

(
νxB‖μx

B

))
.

(197)

Proof For the optimality part, i.e.

H(r ,N ,M) ≥ sup
α>1

α − 1

α

(
r − max

x
D̃α

(
νxB‖μx

B

))
, (198)

we combine Proposition 20 with Lemma 26, and the result follows immediately. It is
helpful to rewrite this lower bound by allowing for an optimization over probability
distributions on the input letters x . With this in mind, consider that

max
x

D̃α

(
νxB‖μx

B

) = max
pX

D̃α(νXB‖μXB), (199)

where the second maximum is with respect to a probability distribution pX and

νXB :=
∑

x

pX (x)|x〉〈x |X ⊗ νxB, μXB :=
∑

x

pX (x)|x〉〈x |X ⊗ μx
B . (200)

To see the equality in (199), let x∗ be the optimal choice for maxx D̃α(νxB‖μx
B). Then

the distribution pX (x) = δx∗,x is a particular choice for the optimization on the right,
so that

max
x

D̃α

(
νxB‖μx

B

) ≤ max
pX

D̃α(νXB‖μXB). (201)

For the other direction, consider that the sandwiched Rényi relative entropy is
quasi-jointly-concave [36,37], so that the following inequality holds for an arbitrary
probability distribution pX :

D̃α

(
νXB‖μXB) ≤ max

x
D̃α(|x〉〈x |X ⊗ νxB‖|x〉〈x |X ⊗ μx

B

)
= max

x
D̃α

(
νxB‖μx

B

)
.

(202)
So this means that we can rewrite the lower bound in (198) as

H(r ,N ,M) ≥ sup
α>1

min
pX

α − 1

α

(
r − D̃α(νXB‖μXB)

)
. (203)

The following upper bound on the strong converse exponent is a consequence of
implementing a product-state strategy, using the state discrimination result from [7,
Lemma 4.17], i.e. inputting one share of the classical state

∑
x pX (x)|x〉〈x | ⊗ |x〉〈x |

for every channel use:
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H(r ,N ,M) ≤ min
pX

sup
α>1

α − 1

α

(
r − D̃α(νXB‖μXB)

)
. (204)

Thus, in light of the inequalities in (203) and (204), now our aim is to close off the
proof by establishing the following equality, which is equivalent to establishing that a
minimax exchange is possible:

sup
α>1

min
pX

α − 1

α

(
r − D̃α(νXB‖μXB)

) = min
pX

sup
α>1

α − 1

α

(
r − D̃α(νXB‖μXB)

)
.

(205)
Strategies for establishing such an equality were given in [14,15]. Here, we follow the
proof of [15, Theorem 2]. Let us define the function

F(α, pX ) := (α − 1) D̃α(νXB‖μXB). (206)

Introducing the new variable u := (α − 1) /α, so that u ∈ (0, 1) for α > 1, the
minimax statement in (205) is equivalent to the following one:

sup
u∈(0,1)

min
pX

f (u, pX ) = min
pX

sup
u∈(0,1)

f (u, pX ), (207)

where

f (u, pX ) := ur − F̃(u, pX ), F̃(u, pX ) := (1 − u)F

(
1

1 − u
, pX

)
. (208)

By the fact that

F(α, pX ) = log Q̃α(νXB‖μXB) = log

(
∑

x

pX (x)Q̃α(νxB‖μx
B)

)
, (209)

with Q̃α(ρ‖σ) = Tr[(σ (1−α)/2αρσ (1−α)/2α)α] the sandwiched Rényi relative quasi-
entropy, it follows from concavity of the logarithm that the function pX �→ F(α, pX )

is concave, and so then pX �→ f (u, pX ) is convex. On the other hand, the function
u �→ F(u, pX ) is convex by [7, Corollary 3.1], and by [15, Lemma 13], it follows
that the function u �→ F̃(u, pX ) is also convex. This then means that the function
u �→ f (u, pX ) is concave. From the assumption that the support condition supp(νxB) ⊆
supp(μx

B) holds for all x , it is clear that the function pX �→ f (u, pX ) is continuous
for all u ∈ (0, 1). Since the space of probability distributions pX is compact, the
Kneser-Fan minimax theorem [72,73] implies (207). ��

Theorem 27 in fact implies the following strong variant of the Stein’s lemma for
classical–quantum channels.
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Corollary 28 Let NX→B,MX→B ∈ Q(X → B) be classical–quantum channels, as
defined in (164) and (165). Then, for all ε ∈ (0, 1), we have

ζ(ε,N ,M) := lim
n→∞ ζn(ε,N ,M) = max

x
D
(
νxB‖μx

B

)
. (210)

Proof In Theorem 27, if r > maxx D(νxB‖μx
B), then by the fact that maxx D̃α(νxB‖μx

B)

is monotone increasing with α and the continuity

lim
α→1

max
x

D̃α

(
νxB‖μx

B

) = max
x

D
(
νxB‖μx

B

)
, (211)

there exists α > 1 such that r > maxx D̃α(νxB‖μx
B), and so H(r ,N ,M) > 0,

implying that the Type I error probability tends to one exponentially fast. ��
Remark 29 In contrast to the weak and strong Stein’s lemma (Theorem 24 and Corol-
lary 28), we cannot conclude that the strong converse exponent in Theorem 27 is
achieved by picking the best possible input element x , but we instead have to consider
distributions over the input alphabet. This is similar to the classical case, and Hayashi
in fact gives an explicit example where considering only one input element x is not
sufficient [14, Section IV]. He then shows that, in the classical case, it suffices to
optimize with respect to probability distributions that are strictly positive on just two
elements [14, Theorem 3].

6.3 Error exponent

In this section, we give bounds on the Hoeffding error exponent for channel discrim-
ination of classical–quantum channels. First, we provide an upper bound in terms of
the log-Euclidean Rényi divergence, by using a technique related to that used to estab-
lish [14, Equation (16)]. Note that, contrary to the classical case, this development
does not generally lead to a tight characterization. We suspect that this gap can be
closed with an improved proof strategy—which would also have to be novel for the
classical case however. Second, we employ the fact that classical–quantum channels
are environment-parametrized [17], as elaborated upon in Sect. 7.2.

Proposition 30 Let NX→B,MX→B ∈ Q(X → B) be classical–quantum channels,
as defined in (164) and (165). Then, for r > 0 we have

sup
α∈(0,1)

α − 1

α

(
r − max

x
Dα

(
νxB‖μx

B

)) ≤ B(r ,N ,M) (212)

≤ B(r ,N ,M) (213)

≤ sup
α∈(0,1)

α − 1

α

(
r − max

x
D�

α

(
νxB‖μx

B

))
.

(214)
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Proof The lower bound follows from employing a non-adaptive strategy, in which the
letter x optimising the expression on the left-hand side is sent in to every channel use
and then the Hoeffding bound for state discrimination [74] is invoked.

The upper bound follows from reasoning similar to that given for the loose upper
bound on the Hoeffding exponent for the case of quantum states [75, Exercise 3.15],
as well as the proof of the Hoeffding bound in [14, Eq. (16)]. Fix δ > 0. Let TX→B

be a classical–quantum channel

TX→B(·) =
∑

x

〈x | · |x〉τ x
B, (215)

such that for all x
τ x
B := argmin

τB :D(τB‖μx
B )≤r−δ

D
(
τB‖νxB

)
. (216)

By construction, it follows that r > maxx D(τ x
B‖μx

B). Let {Q(n),A(n)} denote a
sequence of channel discrimination strategies for the classical–quantum channels
TX→B and MX→B , and let us denote the associated Type I and II error probabili-
ties by

αT ‖M
n

({
Q(n),A(n)

})
, βT ‖M

n

({
Q(n),A(n)

})
. (217)

By Corollary 28, the strong converse of Stein’s lemma for the classical–quantum
channels TX→B andMX→B , if

{
Q(n),A(n)

}
is a sequence of channel discrimination

strategies for these channels such that

lim sup
n→∞

−1

n
logβT ‖M

n

({
Q(n),A(n)

})
= r , (218)

then necessarily, we have that

lim sup
n→∞

αT ‖M
n

({
Q(n),A(n)

})
= 1. (219)

However, this implies that {I − Q(n),A(n)} can be used as a channel discrimination
strategy for the channels TX→B and NX→B , and let us denote the associated Type I
and II error probabilities by

αT ‖N
n

({
I − Q(n),A(n)

})
, βT ‖N

n

({
I − Q(n),A(n)

})
. (220)

By applying (219), we conclude that

lim sup
n→∞

αT ‖N
n

({
I − Q(n),A(n)

})
= 0, (221)
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and by again invoking Corollary 28, the strong converse for Stein’s lemma for
classical–quantum channels, it is necessary that

lim sup
n→∞

−1

n
logβT ‖N

n

({
I − Q(n),A(n)

})
≤ max

x
D
(
τ x
B‖νxB

)
(222)

= max
x

min
τB :D(τB‖μx

B)≤r−δ
D
(
τB‖νxB

)
.

(223)

By this line of reasoning, i.e. chaining together the asymptotic limitations coming from
Stein’s lemma for classical–quantum channels, we conclude that for any sequence
of channel discrimination strategies {Q(n),A(n)} for the classical–quantum channels
NX→B and MX→B such that

lim sup
n→∞

−1

n
logβN ‖M

n

({
Q(n),A(n)

})
= r , (224)

it is necessary that

lim sup
n→∞

−1

n
logαN ‖M

n

({
Q(n),A(n)

})
≤ max

x
min

τB :D(τB‖νxB)≤r−δ
D
(
τB‖μx

B

)
.

(225)
Thus, we find the following bound holding for an arbitrary classical–quantum channel
TX→B for which r > maxx D(τ x

B‖νxB):

B(r ,N ,M) ≤ max
x

min
τB :D(τB‖νxB)≤r−δ

D
(
τB‖μx

B

)
. (226)

Since δ > 0 is arbitrary, we can employ the facts that the quantum relative entropy
is continuous in its first argument and the finiteness of the alphabet for the classical–
quantum channels to arrive at the following bound:

B(r ,N ,M) ≤ max
x

min
τB :D(τB‖μx

B)≤r
D
(
τB‖νxB

)
. (227)

By applying the divergence-sphere optimization from (20), we arrive at the bound in
the statement of the proposition. ��

Any two classical–quantum channelsNX→B andMX→B , as defined in (164) and
(165), can be understood as being environment-parametrized (see Sect. 7.2), in the
following sense:

NX→B(ρ) = P
(
ρ ⊗ νallB1···B|X |

)
, (228)

MX→B(ρ) = P
(
ρ ⊗ μall

B1···B|X |

)
, (229)

νallB1···B|X | :=
⊗

x

νxBx
, (230)
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μall
B1···B|X | :=

⊗

x

μx
B, (231)

where P is a common interaction channel that measures the state ρ in the basis
{|x〉〈x |}x , and if the outcome x is obtained, it outputs either the state νxB or μx

B by
tracing out all systems except for the x th one containing this state. The key observa-
tion here is that the channel P acts in the same way for bothNX→B andMX→B , and
the only way in which these channels differ is that the environment states νallB1···B|X |
and μall

B1···B|X | are potentially different. As such, and as discussed further in Sect. 7.2,
any adaptive channel discrimination protocol for distinguishing n uses of the channel
NX→B from the channelMX→B can be understood as a parallel state discrimination
protocol acting on either

the state
(
νallB1···B|X |

)⊗n
or the state

(
μall
B1···B|X |

)⊗n
. (232)

Then any converse bound for state discrimination applies, including that for the
Hoeffding bound, leading us to the following from a direct application of the
converse Hoeffding bound for states and the identity Dα(νallB1···B|X |‖μall

B1···B|X |) =∑
x∈X Dα(νxB‖μx

B). Applying Proposition 35, we find the following.

Proposition 31 Let NX→B,MX→B ∈ Q(X → B) be classical–quantum channels,
as defined in (164) and (165). Then, for r > 0 we have that

B(r ,N ,M) ≤ sup
α∈(0,1)

α − 1

α

(
r −

∑

x∈X
Dα

(
νxB‖μx

B

)
)

. (233)

The above bound can be close to the lower bound in terms of maxx Dα(νxB‖μx
B)

in the case that there are states νxB and μx
B (corresponding to the same letter x) that

are highly distinguishable, but all of the other pairs νx
′

B and μx ′
B for x ′ �= x are not so

distinguishable.

6.4 Chernoff bound

In this section, we investigate the Chernoff bound for classical–quantum channels.
In contrast to the corresponding classical results [14], we see below that our upper
bound does not match the product-state lower bound, but the difference turns out to
be less than a factor of two. We suspect that this gap can be closed with an improved
proof strategy. We can also apply the observation from the previous section to arrive
at another upper bound that is tighter in some cases.

Proposition 32 Let NA→B,MX→B ∈ Q(A → B) be classical–quantum channels,
as defined in Eqs. (164) and (165). Then, we have
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max
x

C
(
νxB‖μx

B
) ≤ ξ(N ,M) (234)

≤ ξ(N ,M) (235)

≤ min
{
max
x

D̃1/2
(
νxB‖μx

B
)
, C

(
νallB1···B|X | ‖μ

all
B1···B|X |

)
, max

x
C�

α

(
νxB‖μx

B
)}

,

(236)

where the states νallB1···B|X | and μall
B1···B|X | are defined in (230)–(231) and C

� is defined
in (19).

Proof The lower bound follows from sending in the letter x that maximizes
maxx C(νxB‖μx

B) to every channel use and applying the Chernoff bound for quantum
state discrimination [3,4]. The upper bound of maxx D̃1/2(ν

x
B‖μx

B) follows directly
from Corollary 23 and the collapse of the amortized sandwiched Rényi divergence in
Lemma 26. The second upper bound follows from the discussion surrounding (230)–
(231) and Proposition 35. The third upper bound follows from the Hoeffding exponent
from the previous section, the equality in (39), and the same analysis as in the proof
of [14, Corollary 2]. ��

Together with the lower bound achieved by employing a tensor-power input, non-
adaptive discrimination strategy, this limits the Chernoff bound for discrimination of
classical–quantum channels to

C(N‖M) ≤ ξ(N ,M) ≤ ξ(N ,M) ≤ D̃1/2(N‖M). (237)

Note that the upper bound is within a factor of two of the lower bound, due to the
following inequalities:

D̃1/2(N‖M) ≤ D1/2(N‖M) ≤ 2 · C(N‖M). (238)

This establishes that perfect distinguishability is possible for classical–quantum chan-
nels if and only if there is at least one letter x such that the channel outputs νxB and μx

B
can be made orthogonal in the Hilbert–Schmidt inner product. Notice that already for
entanglement-breaking channels, this is not the case [10].

7 Other single-letter examples

In Sect. 6, we generalized some of the classical results from [14] to the classical–
quantum case, and we might hope that the same also works in the fully quantum case.
One might even conjecture that the various channel divergences without amortization
characterize the asymptotic error exponents of interest (as it happens classically).
This is known not to hold for the Chernoff setting [9,10], but interestingly for the
Stein setting, there are no counterexamples to this conjecture of which we are aware.
In the following, we collect some more examples with single-letter characterizations.
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7.1 Zero-error examples

For testing between two isometries and unitaries, it is known that there exists some
finite n for which they can be perfectly distinguished.Moreover, it turns out that in this
case the reference system R can be chosen trivial, and entangled input states are not
needed [9,25,76]. For testing between two projective measurements, the exact same
conclusions can be drawn [26]. Hence, for those settings, all the asymptotic quantities
introduced in Sect. 3.1 become trivial.

7.2 Environment-parametrized channels

In this section, we consider environment-parametrized channels acting as follows [17]:

NA→B(ρA) = PAE→B

(
ρA ⊗ θNE

)
, (239)

MA→B(ρA) = PAE→B

(
ρA ⊗ θME

)
, (240)

where PAE→B is a fixed channel and θNE and θME are environment states. This notion
is related to the notion of programmable channels as considered in quantum computa-
tion [77,78] and to the notion of jointly teleportation-simulable channels as considered
in channel discrimination [16]. The next two propositions are related to the develop-
ments in [17], indicating that the distinguishability of these channels is limited by the
distinguishability of the underlying environment states.

Proposition 33 Let NA→B,MA→B ∈ Q(A → B) be environment-parametrized
channels, as defined in (239)–(240). Then for any generalized divergence satisfying
sub-additivity, the following bound holds

DA(N‖M) ≤ D
(
θNE ‖θME

)
. (241)

Proof Consider fixed states ρRA and σRA. We then have that

D(NA→B(ρRA)‖MA→B(σRA)) − D(ρRA‖σRA)

= D
(
PAE→B

(
ρRA ⊗ θNE

)
‖PAE→B

(
σRA ⊗ θME

))
− D(ρRA‖σRA) (242)

≤ D
(
ρRA ⊗ θNE ‖σRA ⊗ θME

)
− D(ρRA‖σRA) (243)

≤ D(ρRA‖σRA) + D
(
θNE ‖θME

)
− D(ρRA‖σRA) (244)

= D
(
θNE ‖θME

)
. (245)

Since the bound holds for all states ρRA and σRA, this concludes the proof. ��
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Fig. 4 The figure depicts how a general protocol for channel discrimination of two environment-
parametrized channels N and M can be understood as a quantum state discrimination protocol for the
environment states θ0 ≡ θNE and θ1 ≡ θME , respectively. That is, the operations depicted in the dotted
box form a measurement on the state (θ x )⊗n for n = 3. We emphasise the similarity of this figure with
[79, Figure 2]

Proposition 34 Let NA→B,MA→B ∈ Q(A → B) be environment-parametrized
channels, as defined in (239)–(240). Then the following bounds hold for all ε ∈ (0, 1)
and α > 1:

ζn(ε,N ,M) ≤ 1

1 − ε

(
D
(
θNE ‖θME

)
+ h2(ε)

n

)
, (246)

ζn(ε,N ,M) ≤ D̃α

(
θNE ‖θME

)
+ α

n(α − 1)
log

(
1

1 − ε

)
. (247)

As a consequence, the following asymptotic bound holds for all ε ∈ (0, 1)

ζ n(ε,N ,M) ≤ D
(
θNE ‖θME

)
. (248)

Proof This follows from the meta-converse in Lemma 14 together with the general
bounds in Proposition 16 and [15, Lemma 5], as well as the amortization collapse
from Proposition 33. ��

We have taken the perspective that the converse in the above proposition arises
from the bound on amortized channel divergence in Proposition 33. However, there is
a more fundamental reason why the bounds in Proposition 34 hold [79].

Due to the structure of environment-parametrized channels N and M, any n-
round, adaptive channel discrimination protocol for them, as depicted in Fig. 1, can be
understood as a particular kind of state discrimination protocol for the states (θNE )⊗n

and (θME )⊗n . Figure 4 provides a visual aid to understand this observation. As such,
in this case, the type I and II error probabilities, the fundamental quantities involved
in the analysis of hypothesis testing of channels, can be rewritten as follows for any
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channel discrimination strategy {Q,A}:

αn({Q,A}) = Tr

[
(I − ΛEn )

(
θNE
)⊗n
]

, βn({Q,A}) = Tr

[
ΛEn

(
θME
)⊗n
]

,

(249)
where {ΛEn , IEn − ΛEn } is a quantum measurement that depends on the channel dis-
crimination strategy {Q,A}, aswell as the interaction channelPAE→B in the definition
in (239)–(240). Now, since the various channel discrimination exponents of interest
from Sect. 3.1 involve an optimization over all channel discrimination strategies, if
we allow for a further optimization over the interaction channel PAE→B , then the
bounds loosen, but we can use them to characterize the various exponents of interest
by applying known results from the asymptotic theory of quantum state discrimination
[1–5,7,74]. We summarize this observation as the following proposition.

Proposition 35 Let NA→B,MA→B ∈ Q(A → B) be environment-parametrized
channels, as defined in (239)–(240). Fix ε ∈ (0, 1), r > 0, and p ∈ (0, 1). Then the
following bounds hold for all n ≥ 1:

ζn(ε,N ,M) ≤ ζn

(
ε, θNE , θME

)
, (250)

Hn(r ,N ,M) ≥ Hn

(
r , θNE , θME

)
, (251)

Bn(r ,N ,M) ≤ Bn

(
r , θNE , θME

)
, (252)

ξn(p,N ,M) ≤ ξn

(
p, θNE , θME

)
. (253)

Now, let us consider an interesting case in which all of the above upper bounds are
achieved.

Definition 36 (Environment-seizable channels) Environment-parametrized channels
N andM are environment-seizable if there exists a common input state ρRA and post-
processing channel DRB→E that can be applied to both environment-parametrized
channels N and M, which allows for seizing the state of the environment at the
output of the channel:

DRB→E (NA→B(ρRA)) = θNE , (254)

DRB→E (MA→B(ρRA)) = θME . (255)

As non-trivial examples of environment-seizable channels, let us consider a pair of
erasure channels and a pair of dephasing channels. An important objective from an
experimental point of view is to devise the simplest possible method for seizing the
underlying environment state θNE or θME in the case that the channels are seizable. A
quantum erasure channel is defined as [80]

E p(ρ) := (1 − p)ρ + p|e〉〈e|, (256)
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where ρ is a d-dimensional input state, p ∈ [0, 1] is the erasure probability, and |e〉〈e|
is a pure erasure state orthogonal to any input state, so that the output state has d + 1
dimensions. To see that any two erasure channels are environment-parametrized, set
the initial environment state to be

θ
p
E := (1 − p)|0〉〈0|E + p|1〉〈1|E . (257)

Then the common interaction P consists of adjoining the erasure symbol |e〉〈e|E ′ ,
applying a controlled-SWAP to the channel input and the register E ′, controlled on the
register E , andfinally discarding the registers E and E ′. The simplestwayof seizing the
environment state θ

p
E is to input the state |0〉〈0|, leading to (1− p)|0〉〈0|E + p|e〉〈e|E ,

and then to perform the classical transformation |0〉〈0| → |0〉〈0| and |e〉〈e| → |1〉〈1|.
A d-dimensional dephasing channel has the following action:

Dp(ρ) =
d−1∑

i=0

pi Z
iρZi†, (258)

where p is a vector containing the probabilities pi and Z has the following action on
the computational basis Z |x〉 = e2π i x/d |x〉. To see that any two dephasing channels
as above are environment-parametrized, set the initial environment state to be θ

p
E :=∑d−1

i=0 pi |i〉〈i |E . Then the common interaction consists of applying the controlled
unitary

∑d−1
i=0 Zi

A ⊗|i〉〈i |E to the channel input system A and the environment E , and
then tracing out E . The simplest way of seizing the environment state is to input the
state |φ〉A of maximal coherence, where

|φ〉A := 1√
d

d−1∑

i=0

|i〉A. (259)

After doing so, the channel output is
∑d

i=1 pi Z
i |φ〉〈φ|AZi†. Applying a Fourier trans-

form to this state gives the underlying environment state θ
p
E .

In the case that two environment-parametrized channelsN andM are environment-
seizable, the most sensible strategy for channel discrimination is to first apply the
environment seizing procedure highlighted in Definition 36, in order to seize the
environment states θNE or θME , and then follow with the best state discrimination
protocol for θNE or θME . As a result of this observation, we conclude the following
theorem.

Theorem 37 Let NA→B,MA→B ∈ Q(A → B) be environment-parametrized chan-
nels that are also environment seizable. Fix ε ∈ (0, 1), r > 0, and p ∈ (0, 1). Then,
for all n ≥ 1, we have that

ζn(ε,N ,M) = ζn

(
ε, θNE , θME

)
, (260)

Hn(r ,N ,M) = Hn

(
r , θNE , θME

)
, (261)
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Bn(r ,N ,M) = Bn

(
r , θNE , θME

)
, (262)

ξn(p,N ,M) = ξn

(
p, θNE , θME

)
. (263)

so that

ζ(ε,N ,M) = D
(
θNE ‖θME

)
, (264)

H(r ,N ,M) = sup
α>1

α − 1

α

(
r − D̃α

(
θNE ‖θME

))
, (265)

B(r ,N ,M) = sup
s∈(0,1)

α − 1

α

(
r − Dα

(
θNE ‖θME

))
, (266)

ξ(N ,M) = C

(
θNE

∥∥∥∥θ
M
E

)
. (267)

Another case of environment-parametrized channels that are also environment seiz-
able are those that are jointly covariant or jointly teleportation-simulable with the Choi
state as the associated resource state. Theorem 37 then recovers the previous results
about adaptive quantum channel discrimination from [16,17]. Recall that two chan-
nels are jointly teleportation-simulable with associated resource states ωN

RB′ and ωM
RB′

[17,81] if there exists an LOCC channel LARB′→B such that for all input states ρA

NA→B(ρA) = LARB′→B

(
ρA ⊗ ωN

RB′
)

, (268)

MA→B(ρA) = LARB′→B

(
ρA ⊗ ωM

RB′
)

. (269)

Jointly teleportation-simulable channels are then a special case of environment-
parametrized channels. If the resource statesωN

RB′ andωM
RB′ are equal to the respective

Choi states of the channels, then these channels are also environment-seizable: One
would just input the maximally entangled state and then recover the Choi state of the
channel. Two channels are jointly covariant if they are jointly covariant with respect to
a group {Ug

A}g that forms a one-design: 1
|G|
∑

g∈G Ug
A(X)Ug†

A = Tr[X ]I/ |A|. Follow-
ing the methods from [82, Section 7], any jointly covariant channels are then jointly
teleportation-simulable with Choi states as the associated resource states.

Going further, we can extend the definitions above for environment-parametrized
and environment-seizable channels to the case of multiple channels, as was done
for environment-parametrized channels in [60]. In the case of multiple environment-
seizable channels, generalising the above, channel discrimination problems reduce to
state discrimination problems. As such, the recent result from the multiple Chernoff
bound [83] immediately applies to this setting (but we refrain from stating any details
here).
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7.3 Replacer channels and quantum illumination

Another interesting scenario for channel discrimination occurs when the null hypoth-
esis is an arbitrary channel N and the alternative hypothesis is a replacer channel
R, defined as R(X) = Tr[X ]τ for some state τ . In [15], the Stein’s lemma and
strong converse exponent for this setting were identified as follows for ε ∈ (0, 1) and
r > D(N‖R), respectively:

ζ(ε,N ,R) = D(N‖R), (270)

H(r ,N ,R) = sup
α>1

α − 1

α

(
r − D̃α(N‖R)

)
. (271)

In this section, we prove that the energy-constrained quantum relative entropy of
an arbitrary channel and a replacer channel does not increase under amortization.
After that, we revisit the setting of [15] and establish the weak Stein’s lemma for
energy-constrained channel discrimination in this setting, demonstrating that adaptive
strategies do not help. We note that this result solves an open question stated at the
end of [84], having to do with the theory of quantum illumination [85]. After that,
we recast one of the results of [15] in terms of amortized channel divergence: that is,
we prove that the sandwiched Rényi channel divergence of an arbitrary channel and a
replacer channel does not increase under amortization.

Lemma 38 Let NA→B ∈ Q(A → B) and let RA→B ∈ Q(A → B) be a replacer
channelR(·) = Tr(·) τB where τB ∈ S(B). Let HA be a Hamiltonian and E ∈ [0,∞)

an energy constraint. Then an amortization collapse occurs for the energy-constrained
quantum relative entropy of the channels N and R:

DA
H ,E (N‖R) = DH ,E (N‖R) := sup

ψRA:Tr[HAψA]≤E
D(NA→B(ψRA)‖RA→B(ψRA)).

(272)

Proof We first show the ≤ direction. Let ρRA and σRA be arbitrary states satisfying
the energy constraints Tr[HAρA],Tr[HAσA] ≤ E . We find that

D(NA→B(ρRA)‖σR ⊗ τB) − D(ρRA‖σRA)

≤ D(NA→B(ρRA)‖σR ⊗ τB) − D(ρR‖σR) (273)

= −S(NA→B(ρRA)) − Tr[NA→B(ρRA) log σR ⊗ τB] − D(ρR‖σR) (274)

= −S(NA→B(ρRA)) − Tr[NA→B(ρA) log τB] − Tr[ρR log σR] − D(ρR‖σR)

(275)

= −S(NA→B(ρRA)) − Tr[NA→B(ρA) log τB] − Tr[ρR log ρR] (276)

= −S(NA→B(ρRA)) − Tr[NA→B(ρRA) log ρR ⊗ τB] (277)

= D(NA→B(ρRA)‖ρR ⊗ τB) (278)

≤ DH ,E (N‖M), (279)
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where the first inequality follows from the data-processing inequality and the second
because the state ρRA is a particular state satisfying the energy constraint. Since the
inequality holds for all states ρRA and σRA satisfying the energy constraints, we
conclude that

DA
H ,E (N‖M) ≤ DH ,E (N‖M). (280)

Combining with the fact that DA
H ,E (N‖M) ≥ DH ,E (N‖M) for any two channels,

which follows from Proposition 4 and the fact that the quantum relative entropy is
faithful, we conclude the statement of the lemma. ��

As a direct consequence of (124) in Proposition 16 and Lemma 38, we conclude
the following theorem.

Theorem 39 Let NA→B ∈ Q(A → B) and let RA→B ∈ Q(A → B) be a replacer
channelR(·) = Tr(·) τB where τB ∈ S(B). Let HA be a Hamiltonian and E ∈ [0,∞)

an energy constraint. Then for n ∈ N and ε ∈ (0, 1], the following bound holds

ζn(ε,N ,R, H , E) ≤ 1

1 − ε

(
DH ,E (N‖R) + h2(ε)

n

)
, (281)

implying that

ζ(N ,R, H , E) := lim
ε→0

lim
n→∞ ζn(ε,N ,R, H , E) = DH ,E (N‖R). (282)

Remark 40 In a setting related to quantum illumination [85], one considers the null
hypothesis to be that the channel N is a thermal bosonic channel and the other is
a replacer channel R that replaces with a thermal state (see the discussion in [15,
Section 2.3]). Recently, it was shown in [84] that when the Hamiltonian is the photon
number operator, the input that optimizes the energy-constrained, quantum relative
entropy channel divergence DH ,E (N‖R) is the two-mode squeezed vacuum state
saturating the energy constraint. Combining this result with Theorem 39, we then
have a complete characterization of the Stein exponent in this setting. For further
developments along these lines, i.e. second-order characterizations of these exponents,
see [86].

Finally, we recast one of the main results of [15] as a statement about the amortized
sandwiched Rényi divergence of an arbitrary channel and a replacer channel.

Proposition 41 Given an arbitrary channelN and a replacer channelR, the following
amortization collapse holds for α > 1:

D̃A
α (N‖R) = D̃α(N‖R). (283)

Proof Wealways have that D̃A
α (N‖R) ≥ D̃α(N‖R), due to Proposition 4 and the fact

that the sandwiched Rényi relative entropy is faithful. So we now prove the opposite
inequality. Let ρRA and σRA be arbitrary states. Consider that
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D̃α(NA→B (ρRA)‖σR ⊗ τB ) − D̃α(ρRA‖σRA)

≤ D̃α(NA→B (ρRA)‖σR ⊗ τB ) − D̃α(ρR‖σR) (284)

= 1

α − 1
log Tr

[((
σ

(1−α)/2α
R ⊗ τ

(1−α)/2α
B

)
NA→B (ρRA)

(
σ

(1−α)/2α
R ⊗ τ

(1−α)/2α
B

))α]

− 1

α − 1
log Tr

[(
σ

(1−α)/2α
R ρRσ

(1−α)/2α
R

)α]
(285)

= 1

α − 1
log

Tr
[(

τ
(1−α)/2α
B NA→B

(
σ

(1−α)/2α
R ρRAσ

(1−α)/2α
R

)
τ
(1−α)/2α
B

)α]

Tr
[(

σ
(1−α)/2α
R ρRσ

(1−α)/2α
R

)α] . (286)

Now defining

XRA := σ
(1−α)/2α
R ρRAσ

(1−α)/2α
R∥∥∥σ (1−α)/2α

R ρRσ
(1−α)/2α
R

∥∥∥
α

, Θω(·) := ω1/2(·)ω1/2, (287)

we see from above that

D̃α(NA→B(ρRA)‖σR ⊗ τB) − D̃α(ρR‖σR)

= 1

α − 1
log Tr

[(
τ

(1−α)/2α
B NA→B (XRA) τ

(1−α)/2α
B

)α]
(288)

= α

α − 1
log Tr

∥∥∥(Θ
τ

(1−α)/α
B

◦ NA→B) (XRA)

∥∥∥
α

(289)

≤ sup
XRA≥0,‖XR‖α≤1

α

α − 1
log Tr

∥∥∥(Θ
τ

(1−α)/α
B

◦ NA→B) (XRA)

∥∥∥
α

(290)

= D̃α(N‖R), (291)

with the last (non-trivial) step following from [87], which in turn built upon [88,
Theorem 10] and [89, Section 3] (see also [15, Appendix A] in this context). ��

Clearly, we can use the amortization collapse above and Proposition 20 to conclude
the ≥ inequality in (271).

8 Conclusion and outlook

In order to derive upper bounds on the power of adaptive quantum channel discrim-
ination protocols, we introduced a framework based on the concept of amortized
channel divergence. This led to various converse bounds for general quantum channel
discrimination, and as our main result, we established the strong Stein’s lemma for
classical–quantum channels by showing that asymptotically the exponential error rate
for classical–quantum channel discrimination is not improved by adaptive strategies.

We regard our work as an initial step towards a plethora of open questions surround-
ing quantum channel discrimination. For example, with regard to classical–quantum
channels, we are still missing tight characterizations in the Chernoff and Hoeffding
settings—which hold in the classical case [14]. The same questions also remain open
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for the setting involving replacer channels, which is strongly connected to similar
open questions about quantum-feedback-assisted communication [15]. Even more
fundamentally, we left open the question of whether adaptive protocols improve the
exponential error rate for quantum channel discrimination in the asymmetric Stein set-
ting (as they do in the symmetric Chernoff setting). We suspect that this is the case. A
first step in this direction would be to look at the intermediate (parallel) setting as dis-
cussed in Remark 1, in which a state γRAn is prepared, either the tensor-power channel
(NA→B)⊗n or (MA→B)⊗n is applied, and then a joint measurement is performed on
the systems RBn . We emphasise that it is not even known whether this setting offers
an asymptotic advantage compared to a tensor-power strategy with input γ ⊗n

RA . The
question might be thought of as determining if the following limit holds

1

n
D
(N⊗n‖M⊗n) ?→ D (N‖M) . (292)

Now, note that ifwe restrict the quantummemory system R to beone-dimensional (triv-
ial), then the Hastings counterexamples to the minimal output entropy conjecture [90],
applied to the setting involving a replacer channel, immediately give a separation to the
tensor-product strategy. This suggests that for a non-trivial quantum memory R, there
are some deep entropic additivity questions that remain to be explored. Finally, quan-
tum channel discrimination is strongly connected to many other fundamental tasks in
quantum information theory, and we expect plentiful applications of our framework
to be found.
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Appendix A: Amortization does not increase the Hilbert ˛-channel
divergences

In this appendix, we prove that the Hilbert α-divergence from [64, Section III] obeys
a data-processed triangle inequality, and as a consequence, channel divergences based
on it do not increase under amortization. We also remark how other metrics based on
quantum fidelity obey a data-processed triangle inequality, and so their corresponding
channel divergences do not increase under amortization.
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The Hilbert α-divergence of states ρ and σ is defined for α ≥ 1 as [64, Section
III]

Hα(ρ‖σ) := α

α − 1
log sup α(ρ/σ) (A1)

sup α(ρ/σ) := sup
α−1 I≤Λ≤I

Tr[Λρ]
Tr[Λσ ] . (A2)

It is known that [64, Theorem 1]

lim
α→1

Hα(ρ‖σ) = 1

2 ln 2
‖ρ − σ‖1 , (A3)

lim
α→∞ Hα(ρ‖σ) = Dmax(ρ‖σ). (A4)

Here we prove that this quantity obeys a data-processed triangle inequality for all
α ≥ 1.

Lemma 42 (Data-processed triangle inequality) Let PA→B be a positive trace-
preserving map, and let ρA, σA ∈ S(A) andωB ∈ S(B). Then the following inequality
holds for all α ≥ 1:

Hα(PA→B(ρA)‖ωB) ≤ Hα(ρA‖σA) + Hα(PA→B(σA)‖ωB). (A5)

Proof For α = 1, we have that limα→1 Hα(ρ‖σ) = 1
2 ln 2 ‖ρ − σ‖1, as recalled above.

The statement then follows from the usual triangle inequality:

‖PA→B(ρA) − ωB‖1 ≤ ‖PA→B(ρA) − PA→B(σA)‖1 + ‖PA→B(σA) − ωB‖1
(A6)

≤ ‖ρA − σA‖1 + ‖PA→B(σA) − ωB‖1 , (A7)

and the fact that trace distance is monotone with respect to positive, trace-preserving
maps.

To prove the inequality forα > 1, letΛB be an arbitrary operator such thatα−1 IB ≤
ΛB ≤ IB . The map P†

A→B is positive and unital because PA→B is positive and trace

preserving by assumption. Then α−1 IA ≤ P†
A→B(ΛB) ≤ IA and

Tr[ΛBPA→B(ρA)]
Tr[ΛBωB] =

Tr
[
P†

A→B(ΛB)(ρA)
]

Tr[ΛBωB] (A8)

=
Tr
[
P†

A→B(ΛB)(ρA)
]

Tr
[
P†

A→B(ΛB)(σA)
]
Tr
[
P†

A→B(ΛB)(σA)
]

Tr[ΛBωB] (A9)

=
Tr
[
P†

A→B(ΛB)(ρA)
]

Tr
[
P†

A→B(ΛB)(σA)
] Tr[ΛBPA→B(σA)]

Tr[ΛBωB] (A10)
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≤
(

sup
α−1 IA≤ΓA≤IA

Tr[ΓA(ρA)]
Tr[ΓA(σA)]

)

·
(

sup
α−1 IB≤ΛB≤IB

Tr[ΛBPA→B(σA)]
Tr[ΛBωB]

)
(A11)

= sup α(ρA/σA) · sup α(PA→B(σA)/ωB). (A12)

Since the inequality holds for all ΛB such that α−1 IB ≤ ΛB ≤ IB , we conclude that

sup α(PA→B(ρA)/ωB) ≤ sup α(ρA/σA) · sup α(PA→B(σA)/ωB). (A13)

Finally, we take a logarithm and multiply by α/ (α − 1) to conclude the statement of
the lemma. ��

By the same proof that we gave for the max-relative entropy in Proposition 10 and
using the fact that the Hilbert α-divergence is strongly faithful [64, Theorem 1(i)], we
conclude that there is an amortization collapse for theHilbertα-divergence of quantum
channels. As special case, we conclude that the diamond norm of the difference of
two channels does not increase under amortization.

Proposition 43 Let NA→B,MA→B ∈ Q(A → B). Then for all α ≥ 1, we have the
following amortization collapse:

HA
α (N‖M) = Hα(N‖M). (A14)

We can establish related results for the c-distance and theBures distance of quantum
states, both of which are based on the quantum fidelity. For states ρ and σ , the c-
distance [91–94] and Bures distance [95] are, respectively, defined as

c(ρ, σ ) := √1 − F(ρ, σ ), B(ρ‖σ) :=
√
2
(
1 −√F(ρ, σ )

)
. (A15)

(In the above and what follows, we use the notation c(ρ, σ ) for c-distance in order to
differentiate this quantity from the Chernoff divergence C(ρ‖σ).) The same proof as
in (A6)–(A7), along with the fact that the quantum fidelity is monotone with respect
to positive, trace-preserving maps [7, Corollary A.5], implies that the following data-
processed triangle inequalities hold:

Lemma 44 (Data-processed triangle inequalities) Let PA→B be a positive trace-
preserving map, and let ρA, σA ∈ S(A) and ωB ∈ S(B). Then the following
inequalities hold:

c(PA→B(ρA), ωB) ≤ c(ρA, σA) + c(PA→B(σA), ωB), (A16)

B(PA→B(ρA)‖ωB) ≤ B(ρA‖σA) + B(PA→B(σA)‖ωB). (A17)

By the same reasoning as above, we then conclude that the induced channel diver-
gences do not increase under amortization:
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Proposition 45 Let NA→B,MA→B ∈ Q(A → B). Then we have the following
amortization collapses:

cA(N ,M) = c(N ,M), BA(N‖M) = B(N‖M). (A18)

Appendix B: Generalized Fuchs–van-de-Graaf inequality

A well-known inequality in quantum information theory is the following Fuchs-van-
de-Graaf inequality [96]:

1

2
‖ρ − σ‖1 ≤ √1 − F(ρ, σ ), (B1)

which holds for density operators ρ and σ , and F(ρ, σ ) := ‖√ρ
√

σ‖21. The following
lemma, proved in [70, Supplementary Lemma 3], generalizes this relation to the case
of positive semi-definite operators A and B, and it also represents a tighter bound
than that given in [6, Theorem 7]. (Note that [6, Theorem 7] generalizes one of the
inequalities in [97, Equation (1)] to positive semi-definite operators.) The proof of
Lemma 46 that we give below is very similar to the proof of Theorem 7 of [6], but it
features a minor change in the reasoning. The proof is also different from that given
in [70, Supplementary Lemma 3].

Lemma 46 ([70]) For positive semi-definite, trace class operators A and B acting on
a separable Hilbert space, we have that

‖A − B‖21 + 4
∥∥∥A1/2B1/2

∥∥∥
2

1
≤ (Tr[A + B])2. (B2)

Proof For convenience, we give a complete proof and follow the proof of Theorem
7 of [6] quite closely. Consider two general operators P and Q, and define their
sum and difference as S = P + Q and D = P − Q. Then P = (S + D) /2 and
Q = (S − D) /2. Consider that

PP† − QQ† = 1

4

(
(S + D) (S + D)† − (S − D) (S − D)†

)
(B3)

= 1

2

(
SD† + DS†

)
. (B4)

Then, we have

∥∥∥PP† − QQ†
∥∥∥
1

= 1

2

∥∥∥SD† + DS†
∥∥∥
1

(B5)

≤ 1

2

(∥∥∥SD†
∥∥∥
1
+
∥∥∥DS†

∥∥∥
1

)
(B6)

=
∥∥∥SD†

∥∥∥
1

(B7)
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≤ ‖S‖2 ‖D‖2 . (B8)

Now pick P = A1/2U and Q = B1/2, where U is an arbitrary unitary. Then S, D =
A1/2U ± B1/2, and we find that

‖A − B‖1 ≤
∥∥∥A1/2U + B1/2

∥∥∥
2

∥∥∥A1/2U − B1/2
∥∥∥
2
. (B9)

Squaring this gives

‖A − B‖21
≤
∥∥∥A1/2U + B1/2

∥∥∥
2

2

∥∥∥A1/2U − B1/2
∥∥∥
2

2
(B10)

= Tr
[ (

A1/2U + B1/2
)† (

A1/2U + B1/2
) ]

· Tr
[ (

A1/2U − B1/2
)† (

A1/2U − B1/2
) ]

(B11)

= Tr
[
A + B + B1/2A1/2U +U†A1/2B1/2

]
· Tr
[
A + B − B1/2A1/2U −U†A1/2B1/2

]
(B12)

=
(
Tr[A + B] + 2Re

{
Tr
[
B1/2A1/2

]}) (
Tr[A + B] − 2Re

{
Tr
[
B1/2A1/2U

]})
(B13)

= (Tr[A + B])2 − 4
(
Re
{
Tr
[
B1/2A1/2U

]})2
. (B14)

Note that the unitary U in the above is arbitrary. So we can finally pick the unitary U
to be the operator from the polar decomposition of B1/2A1/2 as

B1/2A1/2U =
√
B1/2AB1/2. (B15)

Then, we get

‖A − B‖21 ≤ (Tr[A + B])2 − 4
(
Re
{
Tr
[√

B1/2AB1/2
]})2

(B16)

= (Tr[A + B])2 − 4
∥∥∥A1/2B1/2

∥∥∥
2

1
(B17)

and the proof is concluded. ��
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