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Abstract

We study noncollapsed Gromov-Hausdorff limits of Kähler manifolds with Ricci
curvature bounded below. Our main result is that each tangent cone is homeo-
morphic to a normal affine variety. This extends a result of Donaldson-Sun, who
considered noncollapsed limits of polarized Kähler manifolds with two-sided
Ricci curvature bounds. © 2019 Wiley Periodicals, Inc.

1 Introduction

Consider a sequence .Mi ; !i ; pi / of pointed complete Kähler manifolds of di-
mension n, with Ric.!i / > �!i and Vol.B.pi ; 1// > � > 0. Suppose that the
sequence converges to a metric space .Z; d; p/ in the pointed Gromov-Hausdorff
sense. By the work of Cheeger-Colding [3], and more recently Cheeger-Jiang-
Naber [6] and others, we have a detailed understanding of the structure of Z, even
if the Mi are merely Riemannian. A starting point for this structure theory is
Cheeger-Colding’s result [2] that the limit space Z admits tangent cones at each
point that are metric cones. In this paper we are interested in studying the addi-
tional structure of the tangent cones of Z in the Kähler case.

There are few general results that exploit the Kähler condition: by Cheeger-
Colding-Tian [5], the tangent cones are of the form C.Y / � Ck , where C.Y / does
not split off a factor of R, while the first author [17] showed that each tangent
cone admits a one-parameter group of isometries. Under two-sided Ricci curva-
ture bounds it follows from Anderson [1] that the regular set in Z is a Kähler
manifold. In our previous work [18] we showed that under Ricci lower bounds,
for sufficiently small � > 0, the �-regular set R� � Z has the structure of a
complex manifold, although the metric may not be smooth. Here x 2 R� if
V2n � limr!0 r

�2n vol.B.x; r// < �, where V2n is the volume of the Euclidean
unit ball. An important problem is whether the complex structure can be extended
across the singular set of Z to give it the structure of an analytic space. When
the .Mi ; !i / are polarized, i.e., the !i are curvature forms of line bundles, then
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Donaldson-Sun [11] (under two-sided Ricci bounds) and the authors [18] (under
just lower Ricci bounds) showed that this is the case. Without polarizations the
question is still open; however, we have the following;

THEOREM 1.1. Every tangent cone ofZ is homeomorphic to a normal affine alge-

braic variety such that under a suitable embedding into CN , the homothetic action

on the tangent cone extends to a linear torus action.

Theorem 1.1 was shown previously by Donaldson-Sun [12] under the assump-
tions that the !i are curvature forms of line bundles Li ! Mi , and jRic.!i /j < 1.
An important application of their result is that in their setting the holomorphic spec-
trum of the tangent cones is rigid, which in turn they used to show the uniqueness
of tangent cones. While we are not able to show uniqueness, our result does imply
the rigidity of the holomorphic spectrum under two-sided Ricci curvature bounds,
even when the .Mi ; !i / are not polarized.

More precisely, recall that for a Kähler cone C.Y /, possibly with singularities,
the holomorphic spectrum is defined by

S D fdeg.f / W f is homogeneous and holomorphic on C.Y /g � R:

We then have:

COROLLARY 1.2. Suppose that we have two-sided bounds jRic.!i /j < 1 along

the sequence above. Then for any q 2 Z the holomorphic spectrum of every

tangent cone at q is the same. In addition, the volume ratio V �1
2n Vol.B.o; 1// is an

algebraic number for every tangent cone .Zq; o/.

As in [12], the rigidity of the holomorphic spectrum follows from the fact that
the space of tangent cones at each point is connected, and the holomorphic spec-
trum consists of algebraic numbers. Note that these results hold in particular for
tangent cones at infinity of Calabi-Yau manifolds with Euclidean volume growth.

The method of proof follows the overall strategy of Donaldson-Sun [11, 12] for
constructing holomorphic functions on limit spaces. A crucial difference is that in
our case the holomorphic functions on a tangent coneZq are not obtained as limits
of holomorphic functions on smooth manifolds. Instead we prove a version of
Hörmander’s L2-estimate on the tangent cone; see Proposition 3.1. In the setting
of two-sided Ricci curvature bounds there are substantial simplifications using that
the singular set has codimension 4, and the L2-estimate can be proven directly on
the tangent cone. We give this argument separately in Section 2, since it may be
of independent interest. The case of lower Ricci bounds is treated in Section 3 by
proving approximate versions of the basic estimate on smooth spaces converging
to the tangent cone. Using this, in Section 4 we follow the strategy of Donaldson-
Sun [11, 12] to prove Theorem 1.1.
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2 Two-Sided Ricci Bounds

In this section, we show that when our sequence .Mi ; !i / has two-sided Ricci
curvature bounds jRic.!i /j < 1, then we can directly prove the Hörmander L2 es-
timate on the tangent cone. While the result is subsumed by the more general
setting treated in Section 3, the proof may be of independent interest.

Let X be a tangent cone of the noncollapsed Gromov-Hausdorff limit of a
sequence of complete Kähler manifolds with two-sided Ricci curvature bounds.
Let S � X denote the singular set (see Cheeger-Colding [3] for details on the
structure of X ). The regular set R D X n S admits a Ricci flat Kähler metric
! D 1

2

p
�1@x@r2, where r is the distance from the vertex of the cone X . Suppose

that we have a function ' on R satisfying c! �
p

�1@x@' � C! on R for a
nonnegative function c and constant C > 0. More generally, C could be a locally
bounded function. For instance, we could use ' D r2 or ' D log.1C r2/.

PROPOSITION 2.1. Suppose that ˛ is a smooth .0; 1/-form compactly supported

in R such that x@˛ D 0. Then there exists a function f on R satisfying x@f D ˛,

and

Z

R

jf j2e�' !n �
Z

R

c�1j˛j2e�' !n:

PROOF. We follow the argument from Demailly [9, theorem 5.1] to prove Hör-
mander’s L2-estimate [14], the difference being that in our case we do not know
that R admits a complete Kähler metric, and so we need a more careful argument
for approximating L2 forms with smooth forms of compact support.

As in Demailly’s proof, our goal is to prove the inequality

(2.1)
ˇ

ˇ

ˇ

ˇ

Z

R

h˛; vie�' !n
ˇ

ˇ

ˇ

ˇ

2

�
�Z

R

c�1j˛j2e�' !n
�

kx@�
'vk2

for all smooth .0; 1/-forms v with compact support in R. To define x@�
'v we are

viewing v as a .0; 1/-form valued in the trivial bundle with metric e�' . The exis-
tence of the required function f then follows from the Riesz representation theo-
rem.

Given such a smooth .0; 1/-form v compactly supported away from S , we can
decompose v D v1 C v2 under the L2-orthogonal decomposition

L2 D ker x@˚ .ker x@/?:

Note that x@�
'v2 D 0, and also x@�

'v D 0 near S , and therefore x@�
'v1 D 0 near S .

Since also by definition x@v1 D 0, it follows that v1 is a harmonic .0; 1/-form near

S . If u is any harmonic .0; 1/-form valued in a line bundle L with curvature F
j xk ,
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in an orthonormal frame we have

0 D �x@u D .x@�x@C x@x@�/u

D
X

j

�rjrxjuxk C rjrxkuxj � rxkrjuxj

D
X

j

�rjrxjuxk C
X

j;p

R
xp
xjj xku xp C

X

j

F
j xkuxj ;

and so
X

j

rjrxjuxk D
X

j;p

R
xp
xjj xku xp C

X

j

F
j xkuxj :

We also have
X

j

rxjrjuxk D
X

j

rjrxjuxk �
X

j;p

R
xp
xkj xju xp �

X

j

Fj xjuxk

D
X

j

F
j xkuxj � Fj xjuxk :

It follows that

(2.2)

�juj2 D
X

j

rjrxj juj2

D
X

j;k

.rjrxjuxk/uxk C jr1;0uj2 C jr0;1uj2 C
X

j;k

uxkrxjrjuxk

D jruj2 C
X

k;p

R
pxku xpuxk C

X

j;k

F
j xkuxjuxk C

X

j;k

F
j xkuxkuxj

�
X

j;k

Fj xjuxkuxk

D jruj2 C
X

p;k

R
pxku xpuxk C

X

j;k

2F
j xkuxjuxk �

X

j

Fj xj juj2:

In our setting the Ricci curvature vanishes, and F
j xk D @j @xk'. In particular, in a

neighborhood of S we have

�jv1j2 � jrv1j2 � Cnjv1j2:

It follows that �jv1j � �C jv1j near S for a locally bounded function C . Since
jv1j 2 L2.R/, we can apply Lemma 2.2 below to obtain that jv1j 2 L1

loc on a
neighborhood of S inX (i.e., jv1j cannot blow up as we approach the singular set).

Let us now define cutoff functions �R and �� as follows. The function �R equals
1 inBR.0/, vanishes outside ofBRC1.0/, and satisfies jr�Rj < 2. The function ��
equals 1 outside of the 2�-neighborhood of S and vanishes in the �-neighborhood
of S . In addition, since S has codimension 4 (see [5]), we can arrange that on
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compact sets K we have kr��kL2.K/ ! 0 as � ! 0. Since ���Rv1 has compact
support in R, by the Bochner-Kodaira inequality,

Z

R

cj���Rv1j2e�' !n � kx@.���Rv1/k2 C kx@�
'.���Rv1/k2;

and it follows using the Cauchy-Schwarz inequality that
ˇ

ˇ

ˇ

ˇ

Z

R

h˛; ���Rv1ie�' !n
ˇ

ˇ

ˇ

ˇ

2

�
Z

R

c�1j˛j2e�' !n
Z

R

cj���Rv1j2e�' !n

�
�Z

R

c�1j˛j2e�' !n
�

.kx@.���Rv1/k2 C kx@�
'.���Rv1/k2/:

(2.3)

Now recall that v1 is locally bounded near S , and kr��kL2 can be made arbitrarily
small. It follows that for fixed R if we let � ! 0, we have ���Rv1 ! �Rv1,
x@.���Rv1/ ! x@.�Rv1/, and x@�

'.���Rv1/ ! x@�
'.�Rv1/ in L2. In addition, using

that jr�Rj < 2 and that the supports of �R exhaust R as R ! 1, we have that
�Rv1 ! v1, x@.�Rv1/ ! x@v1, and x@�.�Rv1/ ! x@�v1 in L2 as R ! 1. It follows
from (2.3) that

ˇ

ˇ

ˇ

ˇ

Z

R

h˛; v1ie�' !n
ˇ

ˇ

ˇ

ˇ

2

�
�Z

R

c�1j˛j2e�' !n
�

.kx@v1k2 C kx@�
'v1k2/:

The required inequality (2.1) now follows since the assumption x@˛ D 0 implies
that ˛ is orthogonal to v2, and at the same time x@v1 D 0 and x@�

'v1 D x@�
'v. �

We used the following lemma in the proof above. Note that this estimate fails
when the singular set has codimension 2.

LEMMA 2.2. Let B be a unit ball in X , and suppose that u 2 L2.B/ is such that

on B n S the function u is smooth, nonnegative, and �u � �Au for a constant

A > 0. Then we have

sup
1
2
BnS

u � CkukL2.B/

for a constant C depending on A, the dimension, and asymptotic volume ratio

of X .

PROOF. The function zu.s; x/ D e
p
Asu.x/ on the product R � B satisfies

�R�X zu D Ae
p
Asu C e

p
As�Xu � 0, and the L2-norm of zu on Œ�1; 1� � B

can be bounded in terms of the L2-norm of u on B and the constant A. Using this
we can reduce to the case A D 0.

Given y 2 1
2
B n S , let Ht .x; y/ be the heat kernel on X satisfying @tHt D

�xHt (see Ding [10] for details on the heat kernel on tangent cones). In addition,
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let � be a cutoff function such that � D 1 on 2
3
B and � D 0 outside of 3

4
B . We

have

(2.4)

@t

Z

B

u.x/�.x/Ht .x; y/dx

D
Z

B

u��Ht

D
Z

B

u�.�Ht / �
Z

B

ŒuHt��C 2ur� � rHt �

�
Z

B

u�.�Ht / � CkukL2 :

Here we used that�� 2 L2, and rHt is bounded independently of t on the support
of r�.

We claim that the first term is nonnegative for any t > 0. For this let �� be
cutoff functions such that 1 � �� is supported in the �-neighborhood of S , and in
addition r��; ��� 2 L2. Such a choice is possible because of remark 1.15 on
page 6 of [15]. For a fixed t > 0 let us write  D �Ht . Then

Z

B

��u� D
Z

B

u�.�� / �
Z

B

Œu ��� C 2ur � r���:

Since now �� � 0 is compactly supported in B nS , the first term is nonnegative,
while at the same time the last two terms tend to 0 as � ! 0. It follows that

Z

B

u�.�Ht / � 0;

and so (2.4) implies
Z

B

u�H1 � lim
t!0

Z

B

u�Ht � CkukL2 D u.y/ � CkukL2 :

Since H1 is bounded above, we obtain the required estimate for u.y/. �

3 The L
2 Estimate on Tangent Cones

Suppose now that .X; o/ is a tangent cone at a point of a noncollapsed limit
space of n-dimensional Kähler manifolds with lower bounds on the Ricci curva-
ture. In particular, for all R > 0, the ball B.o;R/ � X is the Gromov-Hausdorff
limit of a sequence of balls B.pi ; R/ in Kähler manifolds with Ric > �i�1, and
vol.B.pi ; R// > �R2n for the noncollapsing constant � > 0, with pi ! o. For
sufficiently small � we know from [18] that the �-regular set R� is a complex man-
ifold, and from Cheeger-Jiang-Naber [6] that X n R� is .2n � 2/-rectifiable with
locally finite .2n � 2/-dimensional Minkowski content. From now on we choose
an � D �.n/ sufficiently small, but fixed.

For t � 0, let w.t/ satisfy

(3.1) w0 > 0; w00 � 0; and w0 C tw00 > 0:
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For instance, we can take w.t/ D C log.t C 1/ for any constant C > 0. In the
L2-estimate we will use a weight function of the form ' D w.r2/, where r is
the distance function from the vertex of the cone X . We denote by � the natural
measure on X . It will also be useful to denote by �0 a smooth volume measure on
R� with respect to the holomorphic charts (up to bounded factors). It follows that
on compact sets we have a lower bound d� > C�1d�0.

PROPOSITION 3.1. Suppose that ˛ D x@h, where h is a smooth function compactly

supported in R�. Then there exists a function f on R� satisfying x@f D ˛, and

Z

R�

jf j2e�' d� �
Z

R�

j˛j2
w0.r2/C r2w00.r2/

e�' d�:

Remark 3.2. It will be clear from the proof that we can add weight functions with
logarithmic poles on R�. This will be useful to separate tangents in Proposition 4.1.

Remark 3.3. We must restrict ourselves to exact forms ˛ for technical reasons, but
this will not matter in our application. We will define the norm j˛j precisely below
by taking a limit of the corresponding norms on smooth spaces.

As in the proof of Proposition 2.1, we follow the approach in Demailly [9] to
Hörmander’s L2-estimate, but we need to take care with working on the space R�

since the metric we are using is not smooth. We construct f satisfying the equation
x@f D ˛ in a weak sense, i.e., satisfying

(3.2)

Z

R�

f x@� D
Z

R�

h x@�

for all smooth .n; n � 1/-forms � with compact support in R�. In order to con-
struct f as an element of L2.e�' d�/, we need to define the function �x@� 2
L2.e�' d�/. For this, as well as for the definition of the norm j˛j, we observe that

in any holomorphic chart on R� we have a well-defined tensor gj
xk with bounded

measurable components, corresponding to the inverse of the metric. More pre-
cisely, we have the following:

LEMMA 3.4. Suppose that qi 2 B.pi ; R/ satisfy qi ! q 2 R�, and ´ij are

holomorphic charts on small balls B.qi ; �/ converging to a holomorphic chart j́

on B.q; �/. We use the charts to identify functions on B.qi ; �/ with functions

on B.q; �/. Then the inverses g
j xk
i of the metric tensors on B.qi ; �/ converge in

Lp.d�/ for all p to a tensor gj
xk on B.q; �/ with bounded components.

PROOF. We show that we have
Z

B.q;�/

ˇ

ˇgj
xk

a � gj xk
b

ˇ

ˇd� ! 0;
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as a; b ! 1. Note first that we have a uniform upper bound jgj xk
a j < C . Using

that the regular points in R� have full measure, together with a covering argument,
it is enough to show that for all regular x 2 B.q; �/ we have

(3.3) lim
�!0

lim
a;b!1

−

B.x;�/

ˇ

ˇgj
xk

a � gj xk
b

ˇ

ˇd� D 0:

Consider a ball B.x; �/ and xi 2 B.pi ; R/ such that xi ! x. We can find holo-
morphic coordinates wip on B.xi ; �/ converging to wp on B.x; �/, which give
Gromov-Hausdorff approximations to the corresponding Euclidean balls. Let us
rescale distances by ��1. The Cheeger-Colding estimate [3] shows that the corre-
sponding metric components gpxq

i satisfy

(3.4)

−

��1B.xi ;�/

ˇ

ˇg
pxq
i � ıpxqˇ

ˇd�i < ‰.�; i
�1jx/:

Here, and below, ‰.ı1; : : : ; ıkja1; : : : ; al/ denotes a function converging to 0 as
ıi ! 0 while the aj are fixed.

In addition, we have gi;pxq > .1 � ‰.�; i�1jx//ıpxq . It follows from this and
Colding’s volume convergence [8] that in (3.4) we can replace the measure d�i
with d�. The gradient estimate for the coordinates j́ implies that the Jacobian
matrix d j́ =dwp is uniformly bounded. It follows that

−

��1B.xi ;�/

ˇ

ˇg
j xk
i � .d j́ =dwp/.d´k=dwq/ı

pxqˇ

ˇd� < ‰.�; i�1jx/;

which implies (3.3). The sequence gj
xk

a therefore converges to a limit gj
xk in

L1.d�/, and since these components are uniformly bounded, the convergence is in
Lp for all p as well.

If we have another set of charts ´0
ij converging to ´0

j , then the corresponding

components g0j xk are related to gj
xk in the usual way. This follows from the fact

that the transition functions ´ij ı ´0�1
ij converge to j́ ı ´0�1

j as i ! 1. �

In terms of the metric components gj
xk we can now define j˛j2 D gj

xk˛xk˛xj
in the usual way. Note that if we have local coordinates ´ij converging to j́ on
B.q; �/ as above such that 'i ; �i converge uniformly to '; r2, then we have

lim
i!1

Z

B.qi ;�/

j˛j2gi
e�'i

w0.�i /C �iw00.�i /
d�i D

Z

B.q;�/

j˛j2e�'

w0.r2/C r2w00.r2/
d�:

This follows from the convergence of the metric components gj
xk

i to gj
xk , together

with the convergence [8] of the measures �i to �.
Similarly, we can define �x@� in local coordinates by letting

�x@� D e'.x@�/1x1���nxn det.gj
xk/:
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In terms of coordinates ´ij converging to j́ as above, we then have that �'i
x@�

converges in Lp to �x@�, and in addition we have
Z

R�

f �x@�e�' d� D
Z

R�

f x@�

for any f 2 L2.e�'d�/. Note that such an f is also locally in L2 with respect to
d�0 since ' is locally bounded, and so the right hand side is well defined.

PROOF OF PROPOSITION 3.1. Given a smooth .n; n� 1/-form � with compact
support in R�, our goal is to prove the inequality

(3.5)

�Z

R�

h�x@�e�' d�
�2

D
�Z

R�

h x@�
�2

�
Z

R�

j˛j2e�'

w0.r2/C r2w00.r2/
d�

Z

R�

j�x@�j2e�' d�:

The existence of the required function f then follows in the standard way using

the Hahn-Banach and Riesz representation theorems. Indeed, if we denote by E �
L2.e�'d�/ the closure of the subspace of functions of the form �x@� with compact

support, then (3.5) implies that h defines a linear functional � W E ! C with norm

k�k �
�Z

R�

j˛j2e�'

w0.r2/C r2w00.r2/
d�

�1=2

:

We then deduce the existence of f 2 E � L2.e�'d�/ with the same bound on its
norm such that (3.2) holds for all smooth � with compact support. It then follows
that x@f D x@h.

We prove the inequality (3.5) using approximations by smooth spaces. Let U �
R� be an open relatively compact subset containing the closure of the support of
�. Let us fix a large radius R > 0 such that U � B.o;R=2/. Recall that B.o;R/ is
a noncollapsed Gromov-Hausdorff limit of a sequence of balls B.pi ; R/ in Kähler
manifolds with Ric > �i�1. For every q 2 B.o;R/ \ U , by definition we have a
radius ı such that B.q; ı/ is ‰.�/-Gromov-Hausdorff close to the Euclidean ball.

Suppose that qi 2 B.pi ; R/ are such that qi ! q. By theorem 2.1 in [18], we
have ı0 such that on each B.qi ; ı0/ there is a holomorphic chart giving a Gromov-
Hausdorff approximation to the Euclidean ball, and a Kähler potential close to
1
2
d.qi ; �/2. These holomorphic charts converge, as i ! 1, to a holomorphic chart

on B.q; ı0/ defining the holomorphic structure on U .
We first construct suitable weight functions 'i on B.pi ; R/. Since B.pi ; R/ !

B.o;R/ in the Gromov-Hausdorff sense, by Cheeger-Colding [3] we have func-
tions bi on B.pi ; R/ such that �b2i =2 D n, jrbi j < 1C‰.i�1/ on B.pi ; R� 1/,

(3.6)

Z

B.pi ;R/

j
p

�1@x@b2i =2 � gi j2 C
ˇ

ˇjrbi j � 1
ˇ

ˇ

2
< ‰.1=i/;
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and jbi � ri j < ‰.1=i/, in terms of the distance ri from pi . In other words,
b2i =2 is plurisubharmonic in an L2 sense, but this is not good enough to get an
inequality of the form (3.5). We will therefore modify b2i =2 on the set U to make
it plurisubharmonic in a pointwise sense there.

Let us cover U � B.o;R=2/ using charts Uj such that the smaller charts 1
10
Uj

still cover. Under the Gromov-Hausdorff convergence these define charts Uij cen-
tered at points qij 2 B.pi ; R/. On each Uij there is a Kähler potential  ij , close
to the function 1

2
d.qij ; �/2, the closeness determined by how close to the Euclidean

ball our chart is in the Gromov-Hausdorff sense (this is controlled by our choice of
�.n/ above).

At the same time, on each Uij we also have Kähler potentials 'ij , which are
close to 1

2
r2i (where ri is the distance from pi in the ball B.pi ; R/) in the sense

that
ˇ

ˇ'ij � r2i =2
ˇ

ˇ < ‰.1=i/;

where ri D d.pi ; �/ as above. This is because if we let  1j be the limit of the
potentials  ij as i ! 1 along a subsequence, then @x@. 1j � r2=2/ D 0 on Uj
(see [18, claim 3.1] for a similar result). We can then define 'ij D  ij C .r2=2 �
 1j / using the local coordinates to identify Uij with Uj .

It is clear that on the overlap Uij \ Uik , j'ij � 'ikj < ‰.1=i/. We can ensure
that on a smaller compact set of the intersection, jr.'ij � 'ik/j is small. Using
a partition of unity on

S

j
1
2
Uij , we can glue the 'ij to obtain a function z�i that

satisfies

(3.7)

ˇ

ˇ

ˇ

ˇ

z�i �
r2i
2

ˇ

ˇ

ˇ

ˇ

C j@@ z�i � gi j < ‰.1=i/;

jr z�i j � ri C‰.1=i/; jr.z�i � b2i =2/j < ‰.1=i/;

on
S

j
1
3
Uij . Note that since the partition of unity is defined using the charts, the

functions giving the partition of unity have uniformly bounded derivatives.
Similarly, we can define a cutoff function �i , supported on

S

j
1
3
Uij , so that

�i D 1 on
S

j
1
6
Uij . Furthermore,

(3.8) jr�i j C j@@�i j � C;

where C is independent of i . Now we define

(3.9) �i D �i z�i C .1 � �i /bi C �i ;

where �i is a positive sequence converging to 0 so that �i � 0. Set

(3.10) 'i D w.�i /:

From (3.7), (3.8), (3.9), (3.10), and standard computation, we find that on
S

j
1
6
Uij

(3.11)
p

�1@x@'i � .w0.�i /C �iw
00.�i / �‰.1=i//gi ;
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and we also have

(3.12)
Z

B.pi ;R�1/
j
p

�1@x@'i � .w0.�i /gi C
p

�1w00.�i /@�i ^@�i /j2 � ‰.1=i/:

Let us consider now the .n; n � 1/-form �. Let j be a partition of unity sub-
ordinate to the cover Uj of U . We can view each j� as an .n; n � 1/ form on
Uij � B.pi ; R/, and define the form �i as their sum. Define vi D �'i

�i , where
we are viewing �i as an .n; n � 1/-form with values in the trivial bundle L� with
metric e'i (i.e., the dual of the trivial bundleLwith metric e�'i ), and vi as a .0; 1/-
form with values in L. On B.pi ; R/, under the L2-product with weight e�'i we
decompose vi D v

.1/
i C v

.2/
i , where x@v.1/i D 0, and v.2/i ? ker x@. It follows that

x@�
'i
v
.2/
i D 0, and so also x@�

'i
v
.1/
i D 0 outside of the support of vi . By Lemma 3.5

below we have that

(3.13) jv.1/i j2e�'i < Ckvik2L2.e�'i /

on the set B.pi ; R � 1/ n
S 1

6
Uij , for a constant C independent of i .

Let �R be a cutoff function, supported in B.pi ; R � 1/, and equal to 1 on
B.pi ; R=2/ such that jr�Rj < C 0=R for a constant C 0 independent of R. We
can regard the .0; 1/-form �Rv

.1/
i as an .n; 1/-form-valued in the anticanonical

line bundle. From the Bochner-Kodaira formula (see .4:7/ of [9]), we have
Z

B.pi ;R/

�
p

�1@j @xk'i C Ricgi

jk

��

�Rv
.1/
i

�

xj
�

�Rv
.1/
i

�

xke
�'i

�


x@
�

�Rv
.1/
i

�



2

L2.e�'i /
C



x@�
'i

�

�Rv
.1/
i

�



2

L2.e�'i /
:

(3.14)

To estimate the left-hand side, note that writing Vi D
S 1

6
Uij , (3.11) implies that

we have
Z

Vi

�
p

�1@j @xk'i C Ricgi

jk

��

�Rv
.1/
i

�

xj
�

�Rv
.1/
i

�

xke
�'i

�
Z

Vi

.w0.�i /C �iw
00.�i / �‰.1=i//

ˇ

ˇ�Rv
.1/
i

ˇ

ˇ

2
e�'i ;

while also using (3.1), (3.6), (3.12), and (3.13) we have
Z

B.pi ;R/nVi

�
p

�1@j @xk'i C Ricgi

jk

��

�Rv
.1/
i

�

xj
�

�Rv
.1/
i

�

xke
�'i

� �‰.1=i/
Z

B.pi ;R/nVi

j�Rv.1/i j2e�'i

C
Z

B.pi ;R/nVi

.w0.�i /C �iw
00.�i //j�Rv.1/i j2e�'i �
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�
Z

B.pi ;R/nVi

j
p

�1@x@'i � .w0.�i /gi C
p

�1w00.�i /@�i ^ @�i /j

�
ˇ

ˇ�Rv
.1/
i

ˇ

ˇ

2
e�'i

�
Z

B.pi ;R/nVi

w00.�i /.�i .gi /jk �
p

�1@j�i ^ @
k
�i /

�
�

�Rv
.1/
i

�

xj
�

�Rv
.1/
i

�

xke
�'i

�
Z

B.pi ;R/nVi

.w0.�i /C �iw
00.�i //

ˇ

ˇ�Rv
.1/
i

ˇ

ˇ

2
e�'i �‰.i�1jR/:

Notice that we used the assumption w00 � 0 above. As for the right-hand side of
(3.14), we use that x@v.1/i D 0 and x@�

'i
v
.1/
i D x@�

'i
vi , as well as the bound jr�Rj <

C 0=R, to get


x@
�

�Rv
.1/
i

�



2

L2.e�'i /
C



x@�
'i

�

�Rv
.1/
i

�



2

L2.e�'i /

�


x@�
'i
vi





2

L2.e�'i /
CC

0

R
kvik2L2.e�'i /

:

Note that by construction the vi are bounded independently of i , and so their L2-
norms are uniformly bounded. It follows that for sufficiently large i we have

Z

B.pi ;R/

.w0.�i /C �iw
00.�i //

ˇ

ˇ�Rv
.1/
i

ˇ

ˇ

2
e�'i �



x@�
'i
vi





2

L2.e�'i /
C C 0

R
:

We now use the assumption that ˛ D x@h is exact. Using the cutoff functions j
from before, we define smooth functions hi on B.pi ; R/ analogously to the way
we defined �i . We then let ˛i D x@hi . By taking R large, we can assume that the
supports of hi ; ˛i are in B.pi ; R=2/.

Since x@�
'i
v
.2/
i D 0, we have

(3.15)

�Z

B.pi ;R/

hix@�
'i
vie

�'i

�2

D
�Z

B.pi ;R=2/

hx@hi ; �Rv.1/i ie�'i

�2

�
Z

B.pi ;R=2/

j˛i j2e�'i

w0.�i /C �iw00.�i /

�
Z

B.piR=2/

.w0.�i /C �iw
00.�i //j�Rv.1/i j2e�'i

�
Z

B.pi ;R=2/

j˛i j2e�'i

w0.�i /C �iw00.�i /

�

kx@�
'i
vik2L2.e�'i /

C C 0

R

�

;
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for i large enough. Note that in the first equality we used that the support of hi is
contained in B.pi ; R2 / where �R D 1.

Next we want to take the limit as i ! 1. For this note first that

Z

B.pi ;R/

hix@�
'i
vie

�'i D
Z

B.pi ;R/

hi �'i
x@�ie�'i d�i :

Let us consider one of our charts Uj , with coordinates ´ik on Uij converging to
´k on Uj . Note that in terms of these coordinates �i is not identified exactly with
� because of the way we defined �i in terms of the cutoff functions j . However,
if U 0

j is another chart, with corresponding coordinates ´0
ik

converging to ´0
k

, then

the transition functions ´0
ik

ı ´�1
ik

converge smoothly to ´0
k

ı ´�1
k

. It follows that
if we use our coordinates to identify Uij with Uj , then �i converges smoothly to �
as i ! 1. Similarly hi converges smoothly to h and in addition 'i converges
uniformly to '. It then follows from Lemma 3.4 that

lim
i!1

Z

B.pi ;R/

hi �'i
x@�ie�'i d�i D

Z

B.p;R/

h�x@�e�' d�:

Similarly we can take the limit as i ! 1 of the right-hand side of (3.15), noting
that x@�

'i
vi D �'i

x@�i and using Lemma 3.4. We therefore have

�Z

B.p;R/

h�x@�e�' d�
�2

�
Z

B.p;R=2/

j˛j2e�'

w0.r2/C r2w00.r2/
d�

�

k � x@�k2
L2.e�'/

C C 0

R

�

;

Finally, we obtain the required inequality (3.5) by letting R ! 1. �

We used the following estimate in the proof above.

LEMMA 3.5. Let B.p; 2/ be a relatively compact ball in a Kähler manifold with

Ric > �1 and vol.B.p; 2// > � > 0. Let us denote by L the trivial bundle with

metric e� , and suppose that jr j is bounded. Suppose that u is a harmonic

.0; 1/-form valued in L. Then

sup
B.p;1/

juj � C

�Z

B.p;2/

juj2
�1=2

;

where C depends on �, the dimension, and supB.p;2/ jr j.
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PROOF. The proof is by Moser iteration. Note first that by (2.2) the norm of u
satisfies the differential inequality

(3.16)

�juj2 D jruj2 CRj
xkuxkuxj C 2gj

xkgpxq.rjrxq'/uxku xp

� gj xkgpxq.rjrxk'/uxqu xp

� jruj2 � juj2 C 2gj
xkgpxq.rjrxq'/uxku xp

� gj xkgpxq.rjrxk'/uxqu xp:

Let us write Br D B.p; r/ for any r � 2. Let � be a cutoff function supported in
B2, with � D 1 on B3=2 and jr�j C j��j < C . Then we have (each integral being
on B2)

(3.17)

Z

��2�juj2

� �
Z

�2jruj2 C
Z

�2juj2 � 2
Z

�2gj
xkgpxq.rjrxq'/uxku xp

C
Z

�2gj
xkgpxq.rjrxk'/uxqu xp

D �
Z

�2jruj2 C
Z

�2juj2 C 2

Z

2�gj
xkgpxqrj�rxq' uxku xp

C 2

Z

�2gj
xkgpxqrxq'

�

u xprjuxk C uxkrxju xp
�

�
Z

2�gj
xkgpxqrj�rxk' uxqu xp

�
Z

�2gj
xkgpxqrxk'

�

u xprjuxq C uxqrxju xp
�

� �1
2

Z

�2jruj2 C C

Z

juj2;

for a constant C depending on the dimension, �, and supB.p;2/ jr'j. At the same
time

Z

�2�juj2 D
Z

�.�2/juj2 � C

Z

juj2;

and combining this with our previous inequality, we get

(3.18)
Z

�2jruj2 < C
Z

juj2:
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Under our assumptions we have a bound for the Sobolev constant, and so

�Z

j�jujj 2n
n�2

�
n�2

n

�
Z

jr.�juj/j2

D
Z

jr�j2juj2 C
Z

�2
ˇ

ˇrjuj
ˇ

ˇ

2 C 2�jujr�:rjuj

� C

Z

juj2;

using the Cauchy-Schwarz inequality and also (3.18). It follows that

(3.19) kuk
L

2n
n�2 .B3=2/

� CkukL2.B2/
:

To estimate higher Lp norms, let p � 2n
n�2 , and let � be a smooth function

compactly supported in B2. We can compute, using the Sobolev inequality,

�Z

ˇ

ˇ

ˇ
�juj

p
2

ˇ

ˇ

ˇ

2n
n�2

�

n�2
n

� C

Z

ˇ

ˇr.�juj
p
2 /

ˇ

ˇ

2

D C

Z

jr�j2jujp C �2
ˇ

ˇrjuj
p
2

ˇ

ˇ

2 C 2�juj
p
2 r�:rjuj

p
2 :

(3.20)

We have
Z

�2
ˇ

ˇ

ˇ
rjuj

p
2

ˇ

ˇ

ˇ

2

D
Z

p2

8.p � 2/�
2rjujp�2:rjuj2

D �
Z

p2

4.p � 2/�jujp�2r�:rjuj2 �
Z

p2

8.p � 2/�
2jujp�2�juj2;

and
Z

2�juj
p
2 r�:rjuj

p
2

D
Z

p

4
jujp�2r�2:rjuj2

D �
Z

p.p � 2/
8

�2jujp�4rjuj2:rjuj2 �
Z

p

4
�2jujp�2�juj2

� �
Z

p

4
�2jujp�2�juj2:
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Combining these with (3.20) we get

(3.21)

�Z

ˇ

ˇ

ˇ
�juj

p
2

ˇ

ˇ

ˇ

2n
n�2

�

n�2
n

� C

Z

jr�j2jujp � p2

2.p � 2/�jujp�1r�:rjuj

�
�

p2

8.p � 2/ C p

4

�

�2jujp�2�juj2:

Using (3.16) we have, similarly to (3.17),

(3.22)
�

Z

�2jujp�2�juj2

� �1
2

Z

�2jujp�2jruj2 C Cp2
Z

.�2 C jr�j2/jujp;

where C depends on supjr'j. Since p � 2n
n�2 , we have some constant cn > 0

such that

cnp <
p2

2.p � 2/ < c
�1
n p; cnp <

�

p2

8.p � 2/ C p

4

�

< c�1
n p:

It then follows, combining (3.21) and (3.22), and using the Cauchy-Schwarz in-
equality, that

(3.23)
�Z

ˇ

ˇ�juj
p
2

ˇ

ˇ

2n
n�2

�
n�2

n

� Cp3
Z

.�2 C jr�j2/jujp:

We now choose a sequence of cutoff functions �i such that �i is supported in
B1C2�i , and �i D 1 on B1C2�i�1 . We can arrange that jr�i j < C2i . We also
define  D n

n�2 . Equation (3.23), setting � D �i and p D 2 i , implies that

�Z

�
2
i juj2 iC1

�
1

2iC1

� .8C3i22i /
1

2i

�Z

B
1C2�i

juj2 i

�
1

2i

:

From this we have

kuk
L2iC1

.B
1C2�i�1 /

� C
3i

i kuk
L2i

.B
1C2�i /

:

Iterating this, we find that

sup
B1

juj � CkukL2 .B3=2/
� C 0kukL2.B1/

;

using (3.19). �

We will use Proposition 3.1 to construct holomorphic functions on the tangent
cone X . We will need the following result, which implies that the functions that
we construct are actually harmonic across the singular set, and in particular satisfy
local L1 and Lipschitz estimates. Note that in the setting of Section 2 with two-
sided Ricci bounds, this step is much more straightforward since the singular set
has codimension 4.
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PROPOSITION 3.6. Let f W X ! C be a function such that x@f D 0 on R�, and f

has polynomial growth in the sense that for some k;D > 0 we have

(3.24)

Z

B.o;R/

jf j2 < DRk

for all R > 0. Then f is harmonic on X . In particular, we have local estimates

sup
y2B.x;1=2/

jf .y/j C sup
y;´2B.x;1=2/

jf .y/ � f .´/j
d.y; ´/

� C

�Z

B.x;1/

jf j2
�1=2

for a constant C depending only on the dimension and the noncollapsing con-

stant �. In addition, f has polynomial growth in the pointwise sense that jf .x/j �
C.1C d.o; x//d for some C; d > 0 depending on k;D.

Remark 3.7. In the statement we require the global growth condition (3.24) since
we use the heat flow to smooth out f . The argument could be localized by working
with Green’s functions on balls instead, but we will not need this.

PROOF. Let H.x; y; t/ be the heat kernel on X . We let ft be the evolution of
f under the heat flow:

ft .x/ D
Z

f .y/H.x; y; t/d�.y/:

Note that the polynomial growth assumption on f together with the exponential
decay of H.x; y; t/ ensures that this is well-defined. Our goal is to show that
ft D f for all t > 0, which implies that f is harmonic. We will use results
about the convergence of heat kernels under Gromov-Hausdorff convergence due
to Ding [10], and argue by approximating ft with corresponding flows on smooth
spaces.

We fix T 2 .0; 1/ and q 2 R�\B.o; 1/. We will show that fT .q/ D f1.q/. Let
R > 0 be large, and set ı D e�R. The balls B.pi ; R/ converge to B.o;R/ � X in
the Gromov-Hausdorff sense. By the results of Ding, the heat kernels Hi .x; y; t/
on B.pi ; R/ (with Dirichlet boundary conditions) satisfy

jHi .x; y; t/ �H.x; y; t/j < ‰.i�1; R�1/

for t D T; 1 and x; y 2 B.o;R/, where we use Gromov-Hausdorff approximations
to identify points in B.pi ; R/ and B.o;R/.

Using that X n R� has locally finite codimension 2 Minkowski measure, we
can find a cutoff function � with compact support in R� such that �.q/ D 1 and
R

B.o;R/ jr�j2 < ı. In addition, we can ensure that
R

B.o;R/.1 � �/2 < ı. We have
corresponding cutoff functions �i on B.pi ; R/ converging to � and satisfying the
same estimates.

Using the local holomorphic charts, we can find functions fi on B.pi ; R/, con-
verging uniformly to f on the support of �, such that jx@fi j < ‰.i�1/ on supp.�i /.
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In particular, this implies that
Z

B.pi ;R/

jx@.�ifi /j < ‰.i�1; R�1/:

Let �i denote cutoff functions supported inB.pi ; R/ and equal to 1 onB.pi ; R�1/
such that jr�i j < C for a uniform constant C . Consider the heat flow for the
functions �i�ifi . We let

fi;R;t .q/ D
Z

B.pi ;R/

�i .y/�i .y/fi .y/Hi .q; y; t/d�i .y/:

We have
d

dt
fi;R;t .q/ D

Z

B.pi ;R/

�i�ifig
axb
i

x@b@aHi .q; y; t/d�i .y/

D �
Z

B.pi ;R/

.x@b�i /�ifiga
xb
i @aHi .q; y; t/d�i .y/

�
Z

B.pi ;R/

�ix@b.�ifi /ga
xb
i @aHi .q; y; t/d�i .y/:

On the support of r�i we have the estimate jryHi .q; y; t/j < CT e
�cR2

for t 2
ŒT; 1� for some c > 0 and CT > 0 depending on T , while on B.pi ; R/ we have
jryH.q; y; t/j < CT for t 2 ŒT; 1�. It follows that

ˇ

ˇ

ˇ

ˇ

d

dt
fi;R;t .q/

ˇ

ˇ

ˇ

ˇ

< CT‰.i
�1R�1/;

for t 2 ŒT; 1� and so

(3.25) jfi;R;1.q/ � fi;R;T .q/j < CT‰.i�1; R�1/:

The convergence of �ifi to �f , the convergence of the heat kernels as i ! 1, and
their exponential decay imply that

(3.26) jfi;R;t .q/ � ft .q/j < ‰.i�1jR/
for t D T; 1. Choosing R sufficiently large (depending on T ) and i large (de-
pending on T;R), from (3.25) and (3.26) we see that jf1.q/� fT .q/j can be made
arbitrarily small, and therefore f1.q/ D fT .q/. �

4 Tangent Cones Are Affine Varieties

As before, we suppose that X is a tangent cone at a point of a noncollapsed
limit of Kähler manifolds with Ricci curvature bounded below. Our main goal in
this section is to prove that X is homeomorphic to an affine variety. Given the L2-
existence result Proposition 3.1 or Proposition 2.1 when we have two-sided Ricci
bounds, we can more or less follow the argument in Donaldson-Sun [11, 12] with
suitable modifications as in our previous work [18], where only a lower bound for
the Ricci curvature is assumed.
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Recall that we have a subset R� � X which has the structure of a complex man-
ifold, and whose complement has locally finite codimension-2Minkowski content.
Our first goal is to show that X is locally homeomorphic to a complex variety
by constructing holomorphic functions that embed a neighborhood of the vertex
o 2 X into CN . The basic ingredient for this is the following.

PROPOSITION 4.1. We can use holomorphic functions of polynomial growth on X

to separate points and also to separate tangents at points in R�. More precisely:

(1) Let x1; x2 2 X . There exists a holomorphic function f of polynomial

growth on X such that f .x1/ ¤ f .x2/.

(2) Let x 2 R�. There are holomorphic functions f1; : : : ; fn of polynomial

growth on X that define an embedding of a neighborhood of x into Cn.

PROOF. The proof of this closely follows arguments in Donaldson-Sun [11]
as well as the authors’ work [18], given the L2-existence result Proposition 3.1
together with Proposition 3.6. We can construct holomorphic functions of polyno-
mial growth by using a logarithmic weight C log.1C r2/; however, in this case the
curvature of the metric e�' is not proportional to the metric on the cone. We can,
however, use a slightly different weight function ' D w.r2/, where w.t/ D t C 1

for t close to 0, and w.t/ D C log.1C t / for t large, still satisfying the inequalities
(3.1). Then in a neighborhood of the vertex the curvature of e�' will be the metric
on X . Then we can proceed as in [11] or [18] to finish the proof of .1/ at least
for x1; x2 close to the vertex. By scaling this can be extended to all of X . Part
.2/ can be proven in a standard way using weight functions with logarithmic poles
(see Remark 3.2). �

As in Chen-Donaldson-Sun [7, sec. 2.5] or [18, prop. 3.2], we can show that if
at a point x 2 X there is a tangent cone that splits off R2n�2, then polynomial
growth holomorphic functions can be used to embed a neighborhood of x into Cn.

LEMMA 4.2. A small neighborhood of o 2 X is homeomorphic to a normal ana-

lytic space.

PROOF. The argument is very similar to [12]. By using the separation of points,
we can find N polynomial growth holomorphic functions f1; : : : ; fN which all
vanish at o so that

N
X

jD1
jfj j2 � c > 0 on @B.o; 1/:

One can verify, by using cutoff functions along the singular set, that the image
of .f1; : : : ; fN / near the origin of C

N defines a d -closed positive locally recti-
fiable current of type .N � n;N � n/. According to the main theorem in [16]
(or equivalently, theorem 1:3.a0/ of [13]), the image of .f1; : : : ; fN / defines a
complex analytic variety of dimension n near the origin in C

N . By adding more
holomorphic functions, we can ensure as in [12, props. 2.3, 2.4] that this map is a
homeomorphism locally, and the image is a normal variety. �
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Remark 4.3. Note that unlike in [11, 12] or [18], the holomorphic functions that
we construct on X do not necessarily arise as limits of sequences of holomorphic
functions on the approximating manifolds.

In order to show that X is homeomorphic to a normal affine variety, we can
use the method in Donaldson-Sun [12], which in turn is based on an idea of Van
Coevering [20] in the setting of Kähler cones with smooth links. The main point
is to decompose polynomial growth holomorphic functions into sums of homoge-
neous holomorphic functions under the homothetic vector field r@r . Recall that
by [17, theorem 2] there is a one parameter group �t of isometries acting on the
tangent cone X , preserving the distance function from the vertex o 2 X . Note that
since it acts by isometries, the action of �t preserves R�. We need the following.

PROPOSITION 4.4. The group �t acts by biholomorphisms on R�. In addition, the

vector field v on R� generating this action satisfies v D Jr@r .

PROOF. Let us briefly recall the construction of the isometric action from [17].
We consider the geodesic annuli Ai D B.pi ; 10/ n B.pi ; 1=3/. From Cheeger-
Colding [3] there are smooth functions �i on Ai such that

(4.1)

Z

Ai

jr2�i � gi j2 C jr�i � rr2i =2j2 < ‰.i�1/;
ˇ

ˇ�i � r2i =2
ˇ

ˇ < ‰.i�1/; jr�i j � C;

where ri is the distance function from pi . Define vector fields vi D Jr�i , and let
�i;t be the diffeomorphisms generated by vi . It is shown in [17] that for small t
we can extract a limit �t as i ! 1, which gives rise to a one-parameter group of
isometries on B.o; 6/ n B.o; 5/ in X . Since the action commutes with the homo-
thetic transformations of X , it can be extended to all of X .

We will show that for small t the limit �t is a biholomorphism. Let q 2 R� such
that q 2 B.o; 6/ n B.o; 5/. Let qi 2 B.pi ; 10/ such that qi ! q. We have a small
ı > 0 and holomorphic coordinates ´ij on B.qi ; ı/ converging to holomorphic
coordinates j́ on B.q; ı/.

Abusing notation, we will also denote by vi the .1; 0/-part of the real vector
field defined above. The estimate (4.1) implies that

(4.2)

Z

Ai

jx@vi j2 < ‰.i�1/:

Let us write vi D v
p
i @´ip

on B.qi ; ı/ in terms of the holomorphic coordinates.
Since in these coordinates we have a lower bound g

i;axb > C
�1ı

axb , it follows from

(4.2) that the components vpi satisfy
Z

B.qi ;ı/

ˇ

ˇx@vpi
ˇ

ˇ

2
< ‰.i�1/:
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On the ball B.qi ; ı/ we can apply the L2-estimate to obtain holomorphic functions
zvpi with

(4.3)

Z

B.qi ;ı=2/

ˇ

ˇv
p
i � zvpi

ˇ

ˇ

2
< ‰.i�1/:

At the same time, using (4.1), we have uniform bounds jvpi j; jzvpi j < C . Let us
denote by z�i;t the flow of (the real part of) zvi D zvpi @´ip

. As long as t < T for
sufficiently small T > 0, this is well-defined on B.qi ; ı=3/, say. Up to choosing
a subsequence we can assume that the zvi converge to a holomorphic vector field zv
on B.q; ı=3/, generating a one-parameter group of biholomorphisms z�t .

We claim that the diffeomorphisms �i;t are approximated by z�i;t for t < T ,
and therefore the limiting flow �t coincides with the flow z�t by biholomorphisms.
More precisely, define the function

u.x; t/ D j�i;t .x/ � z�i;t .x/j2

for x 2 B.qi ; ı=3/ and t < T . We will show that we have u.x; t/ < ‰.i�1/ for x
outside of a set of measure at most‰.i�1/. Note that here we are viewing B.qi ; ı/
as a subset of Cn using our coordinates. Define

F.t/ D
Z

B.q;ı=3/

u.x; t/:

Note that
d

dt
u.x; t/ D 2

�

�i;t .x/ � z�i;t .x/
�

�
�

vi .�i;t .x// � zvi .z�i;t .x//
�

D 2
�

�i;t .x/ � z�i;t .x/
�

�
�

vi .�i;t .x// � zvi .�i;t .x//C zvi .�i;t .x// � zvi .z�i;t .x//
�

:

Using that we have a gradient bound for the holomorphic vector field zvi , this im-
plies

d

dt
u.x; t/ � 2

p

u.x; t/jvi � zvi j.�i;t .x//C Cu.x; t/

� Cu.x; t/C jvi � zvi j2Euc.�i;t .x//;

where we emphasize that the difference jvi � zvi j is measured using the Euclidean
metric given by our coordinates. We can now use the fact that �i;t distorts volumes
by at most ‰.i�1/ (see the proof of theorem 2 in [17]), together with the estimate
(4.3) and the uniform bounds for vpi ; zv

p
i to see that

d

dt
F.t/ � CF.t/C‰.i�1/:

Since F.0/ D 0, we get F.t/ < ‰.i�1/ for t < T , and from this it follows in turn
that u.x; t/ < ‰.i�1/ outside of a set of measure at most ‰.i�1/, as required.

Note that if in terms of the notation above we let wi D r�i , and we let 'i;t
denote the one-parameter group of diffeomorphisms generated by wi , then 'i;t
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converges to the homothetic expansion map on X , generated by r@r on R�. Since
Jwi D vi , it is not hard to see that in the limit we have Jr@r D v. �

The action of �t defines a subgroup isomorphic to R in the isometry group of
X preserving the vertex o. The latter group is a Lie group by [4]. Taking the clo-
sure of this R-subgroup defines a torus T acting isometrically on X , which also
acts by biholomorphisms on R�. Fixing d > 0, let Hd denote the vector space
of polynomial growth holomorphic functions f on X of degree at most d , i.e.,
satisfying jf .x/j < C.1 C d.o; x//d for a constant C > 0. Since such f are
harmonic, Hd is finite dimensional, and decomposes into weight spaces under the
T -action. It follows that any f 2 Hd can be decomposed into a sum of eigenfunc-
tions f D f˛1

C� � �Cf˛m
for ˛k 2 Lie.T /�, where e

p
�1t �f˛k

D e
p

�1h˛k ;tif˛k

for t 2 Lie.T /. The one-parameter group of isometries �t is generated by a vector
� 2 Lie.T /. The relation v D Jr@r then implies that r@rf˛k

D h�; ˛kif˛k
, i.e.,

each f˛k
is homogeneous. We can therefore embed a neighborhood of o 2 X

into CN using homogeneous holomorphic functions, and this embedding naturally
extends to an embedding of all of X . As in [12, lemma 2.19] it follows that the
image of X is an affine variety and by construction the torus T acts linearly. This
completes the proof of Theorem 1.1.

The proof of Corollary 1.2 follows exactly as proposition 2.21 and lemma 4.2
of Donaldson-Sun [12], based on the work of Martelli-Sparks-Yau [19].
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