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a b s t r a c t

Suppose that one particular block in a stochastic block model is of interest, but block
labels are only observed for a few of the vertices in the network. Utilizing a graph
realized from the model and the observed block labels, the vertex nomination task
is to order the vertices with unobserved block labels into a ranked nomination list
with the goal of having an abundance of interesting vertices near the top of the list.
There are vertex nomination schemes in the literature, including the optimally precise
canonical nomination scheme LC and the consistent spectral partitioning nomination
scheme LP . While the canonical nomination scheme LC is provably optimally precise, it
is computationally intractable, being impractical to implement even on modestly sized
graphs.

With this in mind, an approximation of the canonical scheme – denoted the canonical
sampling nomination scheme LCS – is introduced; LCS relies on a scalable, Markov
chain Monte Carlo-based approximation of LC , and converges to LC as the amount of
sampling goes to infinity. The spectral partitioning nomination scheme is also extended
to the extended spectral partitioning nomination scheme, LEP , which introduces a novel
semisupervised clustering framework to improve upon the precision of LP . Real-data
and simulation experiments are employed to illustrate the precision of these vertex
nomination schemes, as well as their empirical computational complexity.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Network data often exhibits underlying community structure, and there is a vast literature devoted to uncovering
communities in complex networks; see, for example, Newman (2006), Von Luxburg (2007), Rohe et al. (2011) and Sussman
et al. (2014). In many applications, one community in the network is of particular interest to the researcher. For example,
in neuroscience connectomics, researchers might want to identify the region of the brain responsible for a particular
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neurological function; in a social network, a marketing company might want to find a group of users with similar interests;
in an internet hyperlink network, a journalist might want to find blogs with a certain political leaning or subject matter.
If we are given a few vertices known to be from the community of interest, and perhaps a few vertices known to not be
from the community of interest, the task of vertex nomination is to order the remaining vertices in the network into a
nomination list, with the aim of having a concentration of vertices from the community of interest at the top of the list;
for alternate formulations of the vertex nomination problem, see Patsolic et al. (2017) and Lyzinski et al. (2019).

In Fishkind et al. (2015), three novel vertex nomination schemes were introduced: the canonical vertex nomination
scheme LC , the likelihood maximization vertex nomination scheme LML, and the spectral partitioning vertex nomination
scheme LP . Under mild model assumptions, the canonical vertex nomination scheme LC – which is the vertex nomination
analogue of the Bayes’ classifier – was proven to be the optimal vertex nomination scheme according to a mean average
precision metric (see Definition 3). Unfortunately, LC is not practical to implement on graphs with more than a few tens
of vertices. The likelihood maximization vertex nomination scheme LML utilizes novel graph matching machinery, and is
shown to be highly effective on both simulated and real data sets. However, LML is not practical to implement on graphs
with more than a few thousand vertices. The spectral partitioning vertex nomination scheme LP is less effective than
the canonical and the likelihood maximization vertex nomination schemes on the small and moderately sized networks
where the canonical and the likelihood maximization vertex nomination schemes can respectively be implemented in
practice. Nonetheless, the spectral partitioning vertex nomination scheme has the significant advantage of being practical
to implement on graphs with up to tens of millions of vertices.

1.1. Extending LC and LP

In this paper we present extensions of the LC and LP vertex nomination schemes. Our extension of the canonical
vertex nomination scheme LC , which we shall call the canonical sampling vertex nomination scheme and denote it as LCS ,
is an approximation of LC that can be practically computed for graphs with hundreds of thousands of vertices, and our
extension of the spectral partitioning vertex nomination scheme LP , which we shall call the extended spectral partitioning
vertex nomination scheme and denote it as LEP , can be practically computed for graphs with close to one hundred thousand
vertices, with significantly increased effectiveness (i.e. precision) over that of LP when used on moderately sized networks.

While both LCS and LEP are practical to implement on very large graphs, the former has the important theoretical ad-
vantage of directly approximating the provably optimally precise vertex nomination scheme LC , with this approximation
getting better and better when more and more sampling is used (and converging to LC in this limit). However, as with LC ,
the canonical sampling scheme can be held back by the need to know/estimate the parameters of the underlying graph
model before implementation. While this may be impractical in settings where these estimates are infeasible, LCS allows
us to approximately compute optimal precision in a larger array of synthetic models, thereby allowing us to better assess
the performance of other, more feasibly implemented, procedures. Indeed, given unlimited computational resources (for
sampling purposes), when the model parameters are known a priori or estimated to a suitable precision, LCS would be
more effective than every vertex nomination scheme other than LC .

In contrast, LEP is implemented without needing to estimate the underlying graph model parameters; indeed, including
known parameter estimates into the LEP framework is nontrivial. This can lead to superior performance of LEP versus
LCS , especially in the setting where parameter estimates are necessarily highly variable. Additionally, given equal
computational resources (i.e., when limiting the sampling allowed in LCS), LEP is often more effective than LCS , even
when the model parameters are well estimated.

See Fig. 1 for an informal visual representation that succinctly compares the various vertex nomination schemes on the
basis of effectiveness (i.e. precision) and also computational practicality, as the scale of the number of vertices changes. The
colors red, blue, green, purple, and orange correspond respectively to the canonical LC , canonical sampling LCS , likelihood
maximization LML, extended spectral partitioning LEP , and spectral partitioning LP vertex nomination schemes. The lines
dim to reflect increased computational burden. The red line on top represents the canonical vertex nomination scheme
LC ; it quickly dims out at a few tens of vertices, since at this point LC is no longer practical to compute. Otherwise, the red
line would have extended in a straight line across the figure, above all of the other lines, since it is the optimal nomination
scheme (in the sense of precision), and is thus the benchmark for comparison of all of the other nomination schemes. Next,
the dark/light/lighter blue regions correspond to the canonical sampling vertex nomination scheme LCS ; it is not a single
line, but rather layers of lines for the different amounts of sampling that could be performed. As the number of vertices
grows, LCS requires more sampling – i.e. computational burden – to be more effective, hence the blue color lightens
upwards in the figure, as it approaches the red line—or where the red line would have extended to. For graphs with few
vertices, the dark blue line is just below the red line; indeed, the canonical sampling scheme is just as effective as the
canonical scheme, and without much computational burden. Even with more vertices, with enough sampling we would
have LCS approaching LC , but with an ever increasing computational burden, hence the dimming of the blue towards the
top of the figure. Next, the green line corresponds to the likelihood maximization vertex nomination scheme LML; the
green color dims out at a few thousand vertices, since at this point it is no longer practical to compute. Finally, the purple
and orange lines, respectively, correspond to the extended spectral partitioning LEP , and spectral partitioning LP vertex
nomination schemes, the former being uniformly more effective then the latter. When there are only a few vertices the
spectral methods are essentially useless, and these methods only become effective when there are a moderate number of
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Fig. 1. A visual representation to summarize and compare the effectiveness (i.e. precision) and computational practicality of the vertex nomination
schemes. This manuscript introduces the canonical sampling vertex nomination scheme LCS (blue) as an extension of the canonical vertex nomination
scheme LC (red), and introduces the extended spectral partitioning vertex nomination scheme LEP (purple) as a refinement of the spectral partitioning
vertex nomination scheme LP (orange).

vertices. The extended spectral partitioning scheme is practical to compute until there are close to a hundred thousand
vertices, while the spectral partitioning scheme is practical to compute even for many millions of vertices.

The paper is laid out as follows. In Section 3.1, we describe the canonical vertex nomination scheme, and prove its
theoretical optimality in a slightly different model setting than considered in Fishkind et al. (2015). In Section 3.2, we
use Markov chain Monte Carlo methods to extend the canonical vertex nomination scheme LC to the canonical sampling
vertex nomination scheme LCS . In Section 3.3, we describe the spectral partitioning nomination scheme. In Section 3.4, we
extend the spectral partitioning vertex nomination scheme LP to the extended spectral partitioning vertex nomination
scheme LEP , utilizing a more sophisticated clustering methodology than in LP , without an inordinately large sacrifice in
scalability. In Section 4, we demonstrate and compare the performance of LEP and LCS on both simulated and real data
sets.

2. Setting

We develop our vertex nomination schemes in the setting of the stochastic block model, a random graph model
extensively used to model networks with underlying community structure. See, for example, Holland et al. (1983), Wang
and Wong (1987) and Airoldi et al. (2008). The stochastic block model is a very simple random graph model that provides
a principled approximation for more complicated network data (see, for example, Olhede and Wolfe, 2014; Wolfe and
Olhede, 2013; Karrer and Newman, 2011), with the advantage that the theory associated with the stochastic block model
is quite tractable.

The stochastic block model random graph is defined as follows; let K be a fixed positive integer.

Definition 1. A random graph G is an SBM(K , n⃗, b,Λ) graph if

i. The vertex set V is the disjoint union of K sets V = V1 ⊔ V2 ⊔ · · · ⊔ VK such that, for each i = 1, 2, . . . , K , it holds
that |Vi| = ni. (For each i, Vi is called the ith block.)

ii. The block membership function b : V → {1, 2, . . . , K } is such that, for all v ∈ V and all i = 1, 2, . . . , K , it holds
that b(v) = i if and only if v ∈ Vi.

iii. The Bernoulli matrix Λ ∈ (0, 1)K×K is such that, for each pair of vertices {u, v} ∈
(V
2

)
, there is an edge between u

and v (denoted u ∼G v) with probability Λb(u),b(v), and the collection of indicator random variables {1u∼Gv}{u,v}∈(V2)
is independent.

In the setting of vertex nomination, we assume that b is only partially observed. Specifically, V is partitioned into two
disjoint sets, S (the set of seeds) and A (the set of ambiguous vertices), and we assume that the values of b are known only
on S. We denote the restriction of b to S as b↾S : S → {1, 2, . . . , K }. For each i = 1, 2, . . . , K , we denote Ai := Vi ∩ A,
Si := Vi ∩ S, mi = |Si|, then we define m :=

∑K
i=1 mi, and n :=

∑K
i=1 ni. Of course, |S| = m and |A| = n−m.

Given an SBM(K , n⃗, b,Λ) model where the parameters are unknown, these parameters can be approximated in all
of the usual ways utilizing a graph G realized from G ∼SBM(K , n⃗, b,Λ). First, K can be consistently estimated by
spectral methods (such as in Fishkind et al., 2013; Wang and Bickel, 2017). Alternatively, since b↾S is observed, we would
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be observing K if we knew that b↾S was a surjective function. Given K , and assuming that the vertex memberships
were realized via a multinomial distribution, then ni can be estimated by mi

m n, for each i = 1, 2, . . . , K . Then, for any
i, j ∈ {1, 2, . . . , K } such that i ̸= j, we can estimate Λi,j by the number of edges in the bipartite subgraph induced by Si, Sj,
divided by mimj; i.e.,

Λ̂i,j =
|{{u, v} ∈ E s.t. u ∈ Si, v ∈ Sj}|

mimj
. (1)

For i = j, we can estimate Λi,i by the number of edges in the subgraph induced by Si, divided by
(mi
2

)
; i.e.,

Λ̂i,i =
|{{u, v} ∈ E s.t. u, v ∈ Si}|(mi

2

) . (2)

In simulations, when it is useful or simplifying to do so, we assume that the model parameters K , n⃗, Λ are known.
Else, they are estimated as above.

Next, the most general inference task here would be, given observed G from G ∼SBM(K , n⃗, b,Λ) and a partially
observed block membership function b↾S , to estimate the parameter b; that is, to estimate the remaining unobserved block
memberships. Indeed, there are a host of graph clustering algorithms that could be used for this purpose; see, for example,
(Rohe et al., 2011; Qin and Rohe, 2013; Sussman et al., 2012; Bickel et al., 2013; Newman, 2006; Von Luxburg, 2007)
among others. However, in the vertex nomination (Marchette et al., 2011; Coppersmith and Priebe, 2012; Sun et al., 2012;
Coppersmith, 2014; Fishkind et al., 2015) setting of this manuscript, the task of interest is much more specialized. We
assume that there is only one block ‘‘of interest’’—without loss of generality it is V1—and we want to prioritize ambiguous
vertices per the possibility of being from V1. Specifically, our task is, given an observed G and a partially observed block
membership function b↾S , to order the ambiguous vertices A into a list such that there would be an abundance of vertices
from V1 that appear as near to the top of the list as can be achieved. More formally:

Definition 2. Given S, A, and b↾S , a vertex nomination scheme L is a function L : G ↦→ A! where G is the set of all graphs
on vertex set V = S ⊔ A, and A! is the set of all orderings of the set A. For any given G ∈ G, denote the ordering L(G) of A
as (LG,1,LG,2, . . .LG,n−m); this ordering is also called the nomination list associated with L and G.

As in Fishkind et al. (2015), it is helpful for analysis to assume that for all graphs with symmetry (i.e., when a graph has
a nontrivial automorphism group), that all vertex nomination schemes L assign such graphs to an empty nomination list.
There is not much loss of generality in this, since the number of graphs with symmetry is very quickly negligible as the
number of vertices increases (Erdos and Renyi, 1963; Polya, 1937). We also require that all vertex nomination schemes L
have the following property: For any asymmetric G,H ∈ G such that G is isomorphic to H via isomorphism γ such that
γ is the identity function on S, we require that γ (LG,i) = LH,i for all i. In words, L should order the ambiguous vertices
as if they are unlabeled.

The effectiveness of a vertex nomination scheme L is quantified in the following manner. Given a realization G of
G ∼SBM(K , n⃗, b,Λ) and the partially observed block membership function b, and for any integer j = 1, 2, . . . , n − m,
define the precision at depth j of the list L(G) to be

|{i such that 1 ≤ i ≤ j, b(LG,i) = 1}|
j

;

that is, the fraction of the first j vertices on the nomination list that are in the block of interest, V1. The average precision
of the list L(G) is defined to be the average of the precisions at depths j = 1, 2, . . . , n1 −m1; that is, it is equal to

1
n1 −m1

n1−m1∑
j=1

|{i such that 1 ≤ i ≤ j, b(LG,i) = 1}|
j

. (3)

Of course, average precision is defined for a particular instantiation of G, and hence does not capture the behavior of
L as G varies in the SBM model. To account for this, we define the mean average precision, the metric by which we will
evaluate our vertex nomination schemes:

Definition 3. Let G ∼SBM(K , n⃗, b,Λ). The mean average precision of a vertex nomination scheme L is defined to be

MAP(L) = E

⎛⎝ 1
n1 −m1

n1−m1∑
j=1

|{i such that 1 ≤ i ≤ j, b(LG,i) = 1}|
j

⎞⎠ ,
where the expectation is taken over the underlying probability space, the sample space being G.

It is immediate that, for any given vertex nomination scheme L, the mean average precision satisfies MAP(L) ∈ [0, 1],
with values closer to 1 indicating a more successful nomination scheme; i.e., a higher concentration of vertices from V1
near the top of the nomination list.
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In the literature, mean average precision is often defined as the integral of the precision over recall. Herein, we focus
on the definition of mean average precision provided in Definition 3 because, in the vertex nomination setting, recall is
not as important as precision; the goal is explicitly to have an abundance of vertices of interest at the top of the list, and
less explicitly about wanting all the vertices of interest to be high in the list.

3. Extending the vertex nomination schemes

In this section, we extend the canonical vertex nomination scheme LC (described in Section 3.1) to a ‘‘sampling’’
version LCS (defined in Section 3.2), and we extend the spectral partitioning vertex nomination scheme LP (described
in Section 3.3) to LEP (defined in Section 3.4).

3.1. The canonical vertex nomination scheme LC

The canonical vertex nomination scheme LC , introduced in the paper Fishkind et al. (2015), is defined to be the vertex
nomination scheme which orders the ambiguous vertices of A according to the order of their conditional probability –
conditioned on G – of being members of the block of interest V1. Indeed, it is intuitively clear why this would be an
excellent (in fact, optimal) nomination scheme. However, since b is a parameter, this conditional probability is not yet
meaningfully defined. We therefore expand the probability space of the SBM model given in Section 2, and construct
a probability measure Q for which the canonical vertex nomination scheme LC can be meaningfully defined, with its
requisite conditional probabilities. The probability measure Q is constructed as follows:

Define Φ to be the collection of functions ϕ : V → {1, 2, . . . , K } such that ϕ(v) = b(v) for all v ∈ S, and such that⏐⏐⏐{v ∈ V : ϕ(v) = i}
⏐⏐⏐ = ni for all i = 1, 2, . . . , K . Also, recall that G is the set of all graphs on V . The probability measure Q

has sample space G×Φ , and it is sampled from by first choosing ϕ ∈ Φ discrete-uniform randomly and then, conditioned
on ϕ, G is chosen from the distribution SBM(K , n⃗, ϕ,Λ). So, for all G ∈ G, ϕ ∈ Φ ,

Q(G, ϕ) =
1( n−m

n1−m1,n2−m2,...,nK−mK

) K∏
i=1

K∏
j=i

(
Λi,j

)eG,ϕi,j
(
1−Λi,j

)cG,ϕi,j , (4)

where eG,ϕi,j is defined as the number of edges in G such that ϕ of one endpoint is i and ϕ of the other endpoint is j, and
we define cG,ϕi,j := ninj − eG,ϕi,j if i ̸= j, and cG,ϕi,i :=

(ni
2

)
− eG,ϕi,i . This probability measure, with uniform marginal distribution

on Φ , reflects our situation where we have no prior knowledge of specific block membership for the ambiguous vertices
(beyond block sizes). Note that Q is an intermediate measure used to show that LC is optimal as stated in Theorem 4.

The first step in the canonical nomination scheme is to update this uniform distribution on Φ to reflect what is learned
from the realization of the graph. Indeed, conditioning on any G ∈ G, the conditional sample space ofQ collapses to become
Φ and, for any ϕ ∈ Φ , we have by Bayes Rule that

Q(ϕ|G) =
Q(G, ϕ)∑
ψ∈Φ Q(G, ψ)

=

∏K
i=1
∏K

j=i

(
Λi,j

)eG,ϕi,j
(
1−Λi,j

)cG,ϕi,j∑
ψ∈Φ

∏K
i=1
∏K

j=i

(
Λi,j

)eG,ψi,j
(
1−Λi,j

)cG,ψi,j

. (5)

In all that follows in this subsection, let G, φ respectively denote the random graph and the random function, together
distributed as Q; in particular, the random G is G-valued, and the random φ is Φ-valued. For each v ∈ A, the event
φ(v) = 1 is the event {ϕ ∈ Φ : ϕ(v) = 1} and, by Bayes’ Rule,

Q( φ(v) = 1
⏐⏐ G ) =

∑
ϕ∈Φ:ϕ(v)=1

∏K
i=1
∏K

j=i

(
Λi,j

)eG,ϕi,j
(
1−Λi,j

)cG,ϕi,j∑
ϕ∈Φ

∏K
i=1
∏K

j=i

(
Λi,j

)eG,ϕi,j
(
1−Λi,j

)cG,ϕi,j

. (6)

The canonical vertex nomination scheme LC is then defined as ordering the vertices in A by decreasing value of
Q(φ(v) = 1|G) (with ties broken arbitrarily);

LC
G,1 ∈ argmaxv∈AQ(φ(v) = 1|G);

LC
G,2 ∈ argmaxv∈A\LC

G,1
Q(φ(v) = 1|G);

...

LC
G,n−m ∈ argmax

v∈A\
(
∪
n−m−1
j=1 LC

G,j

)Q(φ(v) = 1|G). (7)

In Fishkind et al. (2015) it is proved that the canonical vertex nomination scheme is an optimal vertex nomination
scheme, in the sense of Theorem 4. We include the proof of Theorem 4 to reflect changes in our setting from the setting
in Fishkind et al. (2015). Recall from the paragraph after Definition 2 that we assume that all vertex nomination schemes
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assign graphs with symmetry to an empty nomination list. There is not much impact in this, since the number of graphs
with symmetry is quickly negligible as the number of vertices increases (Erdos and Renyi, 1963; Polya, 1937). Then, for
any asymmetric G,H ∈ G such that G is isomorphic to H via isomorphism γ such that γ is the identity function on S,
we also required that γ (LG,i) = LH,i for all i; in words, L should order the ambiguous vertices as if they are unlabeled.
Clearly LC satisfies this.

Theorem 4. For any stochastic block model SBM(K , n⃗, b,Λ) and vertex nomination scheme L, it holds that MAP(LC ) ≥
MAP(L).

Proof of Theorem 4. For each i = 1, 2, . . . , n1 − m1, define αi :=
1

n1−m1

∑n1−m1
j=i

1
j and then, for each of i =

n1 − m1 + 1, n1 − m1 + 2, . . . , n − m, define αi := 0. Note that the sequence of αi’s is nonnegative and nonincreasing.
Thus, for any other nonnegative and nonincreasing sequence of real numbers a1, a2, . . . , an−m and any rearrangement
a′1, a

′

2, . . . , a
′
n−m of the sequence a1, a2, . . . , an−m, we have by the Rearrangement Inequality (Hardy et al., 1952) that

n−m∑
i=1

αia′i ≤
n−m∑
i=1

αiai. (8)

Next, consider any ϕ, ϕ′ ∈ Φ , and suppose that a function γ : V → V is bijective, that γ is the identity function on
S, and that γ satisfies ∀v ∈ A, ϕ(v) = ϕ′(γ (v)). For any G ∈ G, let γ (G) denote the graph in G isomorphic to G via the
isomorphism γ ; it is clear that (under our assumptions, in particular suppose G is asymmetric) γ (LC

G,i) = LC
γ (G),i for all

i, since the canonical vertex nomination scheme orders the vertices as if they are unlabeled. Thus, since γ : G → G is
clearly bijective, we have for all i that

Q
(
φ(LC

G,i) = 1
⏐⏐⏐ φ = ϕ ) = ∑

v∈A : ϕ(v)=1

Q
(
v = LC

G,i

⏐⏐⏐ φ = ϕ )
=

1( n−m
n1−m1,n2−m2,...,nK−mK

) ∑
v∈A : ϕ(v)=1

∑
G∈G : v=LC

G,i

Q(G, ϕ)

=
1( n−m

n1−m1,n2−m2,...,nK−mK

) ∑
v∈A : ϕ′(v)=1

∑
G∈G : v=LC

γ (G),i

Q(γ (G), ϕ′)

=

∑
v∈A : ϕ′(v)=1

Q
(
v = LC

G,i

⏐⏐⏐ φ = ϕ′ ) = Q
(
φ(LC

G,i) = 1
⏐⏐⏐ φ = ϕ′ ) ;

since ϕ and ϕ′ were arbitrary, the preceding is thus equal to (unconditioned) Q
(
φ(LC

G,i) = 1
)
. Hence, for all i, we have

that

Q
(
b(LC

G,i) = 1
⏐⏐⏐ φ = b

)
= Q

(
φ(LC

G,i) = 1
)
. (9)

By the same reasoning, the vertex nomination scheme L also satisfies Eq. (9).
Now, to the main line of reasoning in the proof:

MAP(LC ) = E

⎛⎝ 1
n1 −m1

n1−m1∑
j=1

|{i such that 1 ≤ i ≤ j, b(LC
G,i) = 1}|

j

⏐⏐⏐ φ = b

⎞⎠
= E

(
n−m∑
i=1

αi · 1
[
b(LC

G,i) = 1
] ⏐⏐⏐ φ = b

)

=

n−m∑
i=1

αi · Q
(
b(LC

G,i) = 1
⏐⏐⏐ φ = b

)
=

n−m∑
i=1

αi · Q
(
φ(LC

G,i) = 1
)

by Eq. (9)

=

n−m∑
i=1

αi

(∑
G∈G

Q(G) · Q
(
φ(LC

G,i) = 1
⏐⏐⏐ G )) .
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From this, we have

MAP(LC ) =
∑
G∈G

Q(G)
n−m∑
i=1

αi · Q
(
φ(LC

G,i) = 1
⏐⏐ G )

≥

∑
G∈G

Q(G)
n−m∑
i=1

αi · Q
(
φ(LG,i) = 1

⏐⏐ G ) by definition of LC , Eq. (8)

=

n−m∑
i=1

αi · Q
(
φ(LG,i) = 1

)
=

n−m∑
i=1

αi · Q
(
b(LG,i) = 1

⏐⏐⏐ φ = b
)

= E

⎛⎝ 1
n1 −m1

n1−m1∑
j=1

|{i such that 1 ≤ i ≤ j, b(LG,i) = 1}|
j

⏐⏐⏐ φ = b

⎞⎠
= MAP(L),

which completes the proof of Theorem 4. □

3.2. The canonical sampling vertex nomination scheme LCS

The formula in Eq. (6) can be directly used to compute Q(φ(v) = 1|G) for all v ∈ A, to obtain the ordering that defines
the canonical vertex nomination scheme LC , but due to the burgeoning number of summands in the numerator and in the
denominator of Eq. (6), this direct approach is computationally intractable, feasible only when the number of vertices is
on the order of a few tens. We next introduce an extension of the canonical vertex nomination scheme called the canonical
sampling vertex nomination scheme LCS . The purpose of the canonical sampling vertex nomination scheme is to provide a
computationally tractable estimate Q̂(φ(v) = 1|G) of Q(φ(v) = 1|G), for all v ∈ A. The nomination list for LCS consists of
the vertices v ∈ A ordered by nonincreasing values of Q̂(φ(v) = 1|G), exactly as the nomination list for LC consists of the
vertices v ∈ A ordered by nonincreasing values of Q(φ(v) = 1|G).

Given the realized graph instance G ∈ G of the random graph G, we obtain the approximation Q̂(φ(v) = 1|G) of
Q(φ(v) = 1|G) for all v ∈ A by sampling from the conditioned-on-G probability space Q(·|G) on Φ , then, for each v ∈ A,
Q̂(φ(v) = 1|G) is defined as the fraction of the sampled functions (Φ is a set of functions) that map v to the integer 1.
The formula for the conditional probability distribution Q(·|G) is given in Eq. (5); unfortunately, straightforward sampling
from this distribution is hampered by the intractability of directly computing the denominator of Eq. (5). Fortunately,
sampling in this setting can be achieved via Metropolis–Hastings Markov chain Monte Carlo. For relevant background on
Markov chain Monte Carlo, see, for example, Gelman et al. (2014, Chapter 11) or Aldous and Fill (2002, Chapter 11).

The base chain that we employ in our Markov chain Monte Carlo approach is the well-studied Bernoulli–Laplace
diffusion model (Feller, 2008). The state space for the Markov chain is the set Φ , and the one-step transition probabilities,
denoted P(·, ·), for this chain are defined, for all ϕ, ϕ′ ∈ Φ , as

P(ϕ, ϕ′) =
1{d(ϕ, ϕ′) = 2}(n−m
2

)
−
∑K

i=1

(ni−mi
2

) ,
where d(ϕ, ϕ′) := |{v such that ϕ(v) ̸= ϕ′(v)}|. In other words, if at state ϕ, a move transpires as follows. A pair of vertices
{u, v} ∈

(A
2

)
is chosen discrete-uniformly at random, conditional on the fact that ϕ(u) ̸= ϕ(v), and then the move is to state

ϕ′, which is defined as agreeing with ϕ, except that ϕ′(u) and ϕ′(v) are defined respectively as ϕ(v) and ϕ(u). We will see
shortly that the simplicity of this base chain greatly simplifies the computations needed to employ Metropolis–Hastings
with target distribution Q(·|G).

The Metropolis–Hastings chain has state space Φ , and one-step transition probabilities, P̂(·, ·) defined for all ϕ, ϕ′ ∈ Φ
as

P̂(ϕ, ϕ′) =
1{d(ϕ, ϕ′) = 2}(n−m
2

)
−
∑K

i=1

(ni−mi
2

) min

⎧⎪⎨⎪⎩ 1,

∏K
i=1
∏K

j=i

(
Λi,j

)eG,ϕ′i,j
(
1−Λi,j

)cG,ϕ′i,j∏K
i=1
∏K

j=i

(
Λi,j

)eG,ϕi,j
(
1−Λi,j

)cG,ϕi,j

⎫⎪⎬⎪⎭ if ϕ ̸= ϕ′;

P̂(ϕ, ϕ) = 1−
∑

ϕ′′∈Φ:ϕ′′ ̸=ϕ

P̂(ϕ, ϕ′′).

In other words, if at state ϕ, a candidate state ϕ′ is proposed according to P(ϕ, ·) and is independently accepted as the next
state of the Markov chain with probability min

{
1, Q(ϕ′|G)

Q(ϕ|G)

}
. It is immediate that the stationary distribution for P̂ is Q(·|G)

and that the chain is reversible with respect to Q(·|G); that is, for any ϕ, ϕ′ ∈ Φ , Q(ϕ|G) · P̂(ϕ, ϕ′) = Q(ϕ′|G) · P̂(ϕ′, ϕ).
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Note that the simplicity of the underlying base chain greatly aids in the speedy computation of Q(ϕ′|G)
Q(ϕ|G) during the

computation of transition probabilities P̂. Indeed, since ϕ and ϕ′ for which we might want to compute P̂(ϕ, ϕ′) are such
that d(ϕ, ϕ′) = 2, we would have that ϕ and ϕ′ differ only on two vertices, call them u, v, and say that i and j are such
that ϕ(u) = i and ϕ(v) = j. Then

Q(ϕ′|G)
Q(ϕ|G)

=

∏
w∈V :w ̸=u,w ̸=v

(
Λϕ(w),j(1−Λϕ(w),i)
Λϕ(w),i(1−Λϕ(w),j)

){ 1 if w ∼G u, w ̸∼G v
−1 if w ̸∼G u, w ∼G v
0 else

}
. (10)

This reduces the number of operations to compute Q(ϕ′|G)
Q(ϕ|G) from O(n2) down to O(n). As an implementation note, in practice

we would utilize a logarithm to convert Eq. (10) from a multiplicative expression into an additive expression, which will
greatly reduce round off error that can arise when working with numbers that are orders of magnitude different from
each other.

Now, the canonical sampling vertex nomination scheme LCS is defined in the exact same manner as LC , except that,
for all v ∈ A, the value Q̂(φ(v) = 1|G) is approximated as follows. Denoting the Metropolis–Hastings Markov chain by
(Xt )∞t=0, we set X0 ∼Uniform(Φ). After evolving the chain past a ‘‘burn-in’’ period, T , we approximate Q(φ(v) = 1|G) via

Q̂(φ(v) = 1|G) =
|{s such that T < s ≤ T + t, and Xs(v) = 1}|

t
,

for a predetermined number of Metropolis–Hastings steps t . For fixed T , we then have as an immediate consequence of
the Ergodic Theorem (see, for example, Aldous and Fill, 2002, Chp. 2, Thm. 1) that limt→∞ Q̂(φ(v) = 1|G) = Q(φ(v) = 1|G)
for each v ∈ A (indeed, our Metropolis–Hastings chain is aperiodic, recurrent and finite state).

In this paper, we do not address how to choose a suitable burn-in T for a given implementation of LCS , instead focusing
on a feasible burn-in given limited computational resources. Practically, there are a bevy of methods for approximating T ,
see for example those in Gelman et al. (2014) and Gilks et al. (1995). Regarding mixing time, there is an unfortunate dearth
of rigorous mixing time computations for general, non-unimodal Metropolis–Hastings algorithms (see the discussion
in Diaconis and Saloff-Coste, 1998; Johndrow and Smith, 2018), and such analysis is beyond the scope of this paper.
Our choice of the Bernoulli–Laplace base chain is for its fast and efficient implementation of the sampling procedure,
although we have no guarantee or expectation of optimal mixing time.

3.3. The spectral partitioning vertex nomination scheme

We now review the spectral partitioning vertex nomination scheme LP from Fishkind et al. (2015); afterwards, in
Section 3.4, LP will be extended to the vertex nomination scheme LEP .

As in Section 2, we assume here that the graph G is realized from an SBM(K , n⃗, b,Λ) distribution, where K is known.
Furthermore, we assume that the values of the block membership function b are known only on the set of seeds S, and
are not known on the set of ambiguous vertices A = V\S. In contrast to Section 3.1, here we do not need to assume that n⃗
and Λ are explicitly known or estimated, except that d := rank Λ is known, or an upper bound for d is known. As before,
say that V1 is the ‘‘block of interest’’.

The spectral partitioning vertex nomination scheme LP is computed in three stages; first is the adjacency spectral
embedding of G, then clustering of the embedded points, and then ranking the ambiguous vertices into the nomination
list. (The first two of these stages are collectively called adjacency spectral clustering; for a good reference, see Von Luxburg,
2007.) We begin by describing the first stage, adjacency spectral embedding:

Definition 5. Let graph G have adjacency matrix A, and suppose (A⊤A)1/2 has eigendecompostion

(A⊤A)1/2 =
[
U |Ũ

][
D⊕ D̃

][
U |Ũ

]⊤
;

i.e., U ∈ Rn×d,
[
U |Ũ

]
∈ Rn×n is orthogonal,

[
D⊕ D̃

]
∈ Rn×n is diagonal, and the diagonal of D ∈ Rd×d is composed of the

d greatest eigenvalues of (A⊤A)1/2 in nonincreasing order. The d-dimensional adjacency spectral embedding of G is then
given by X̂ = UD1/2. In particular, for each v ∈ V , the row of X̂ corresponding to v, denoted X̂v , is the embedding of v
into Rd.

After the adjacency spectral embedding, the second stage is to cluster the embedded vertices – i.e. the associated
points in Rd – using the k-means clustering algorithm (MacQueen, 1967). The clusters so obtained are estimates of the
different blocks, and the cluster containing the most vertices from S1 := S ∩ V1 is an estimate of the block of interest V1;
let c denote the centroid of this cluster. (Note that this clustering step, as described here for LP , is fully unsupervised,
not taking advantage of the observed memberships of the vertices in S. In Section 3.4, incorporating these labels into a
semi-supervised clustering step is a natural way to extend LP and improve performance.)
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The third stage is ranking the ambiguous vertices into the nomination list; the vertices are nominated based on their
Euclidean distance from c , the centroid of the cluster which is the estimate for the block of interest. Specifically, define:

LP
G,1 ∈ arginv∈A∥v − c∥2;

LP
G,2 ∈ argminv∈A\LP

G,1
∥v − c∥2;

...

LP
G,n−m ∈ argmin

v∈A\
(
∪
n−m−1
j=1 LP

G,j

)∥v − c∥2. (11)

For definiteness, any ties in the above procedure should be broken by choosing uniform-randomly from the choices.
This concludes the definition of the spectral partitioning vertex nomination scheme LP .

Under mild assumptions, it is proven in Lyzinski et al. (2014) that, in the limit, adjacency spectral partitioning almost
surely perfectly clusters the vertices of G into the true blocks. This fact was leveraged in Fishkind et al. (2015) to prove
that if m1 > 0 and there exists a γ > 0 such that for all i = 1, 2, . . . , K , ni ≥ γ · n3/4+γ , then limn→∞MAP(LP ) = 1.

If d is unknown, singular value thresholding (Chatterjee, 2014) can be used to estimate d from a partial SCREE plot (Zhu
and Ghodsi, 2006). We note that the results of Fishkind et al. (2013) suggest that there will be little performance lost if d
is moderately overestimated. Additionally, if K is unknown then it can be estimated by optimizing the silhouette width
of the resulting clustering (Kaufman and Rousseeuw, 2009). A key advantage of the spectral nomination scheme is that,
unlike LC , Λ and n⃗ need not be estimated before applying the scheme.

3.4. The extended spectral partitioning vertex nomination scheme

In this section, we extend the spectral partitioning vertex nomination scheme LP (described in the previous section)
to the extended spectral partitioning vertex nomination scheme LEP . Just like in computing LP , computing the extended
spectral partitioning vertex nomination scheme LEP starts with adjacency spectral embedding. Whereas the next stage of
LP is unsupervised clustering using the k-means algorithm, LEP will instead utilize a semi-supervised clustering procedure
which we describe below.

There are numerous ways to incorporate the known block memberships for S into the clustering step of adjacency
spectral clustering (see, for example, Wagstaff et al., 2001; Yoder and Priebe, 2014). The results of Athreya et al. (2015)
suggest that, for each vertex v of G, the distribution of v’s embedding X̂v ∈ Rd is approximately normal, with parameters
that depend only on which block v is a member of, and this normal approximation gets closer to exact as n grows. We thus
model G’s embedded vertices as independent draws from a K -component Gaussian mixture model (except for vertices of
S, where the Gaussian component is specified); i.e., there exists a fixed nonnegative vector π := (π1, π2, . . . , πK ) ∈ RK

satisfying
∑K

k=1 πk = 1, and for each k = 1, 2, . . . , K , there exists µ(k)
∈ Rd and Σ (k)

∈ Rd×d such that, independently
for each vertex v ∈ A, the block of v is 1, 2, . . . , K with respective probabilities π1, π2, . . . , πK , and then, conditioning
on model block membership – say the block of v is k – the distribution of X̂v is Normal(µ(k),Σ (k)). If µ denotes the
sequence of mean vectors (µ(1), µ(2), . . . , µ(K )), σ denotes the sequence of covariance matrices (Σ (1),Σ (2), . . . ,Σ (K )), and
(random) ϕ : V → {1, 2, . . . , K } denotes the Gaussian mixture model block membership function – i.e., for each v ∈ V
and k ∈ {1, 2, . . . , K }, it holds that ϕ(v) = k precisely when the Gaussian mixture model places v in block k – then the
complete data log-likelihood function can be written as

ℓ(π,µ, σ)X̂,ϕ =
K∑

k=1

∑
v∈Sk

log
(
fµ(k),Σ (k) (̂Xv)

)
+

K∑
k=1

∑
v∈A

1ϕ(v)=k log
(
πkfµ(k),Σ (k) (̂Xv)

)
, (12)

which meaningfully incorporates the seeding information contained in S.
If n⃗ is known (indeed, it was assumed to be known in the formulation of LC , but was not assumed to be known in the

formulation of LP ) then, for each k = 1, 2, . . . , K , we would substitute nk
n in place of πk.

With this model is place, it is natural to cluster the rows of X̂ using a (semi-supervised) Gaussian mixture model
(GMM) clustering algorithm rather than (unsupervised) k-means employed by LP . We now return to the description of
the extended spectral partitioning vertex nomination scheme LEP after the first stage – adjacency spectral embedding
– has been performed. The next stage – clustering – can be cast as the problem of uncovering the latent 1ϕ(v)=k’s as
are present in the log-likelihood in Eq. (12). We employ a semi-supervised modification of the model-based Mclust
Gaussian mixture model methodology of Fraley and Raftery (2002, 2006); we call this modification ssMclust; note that
ssMclust first appeared in Yoder and Priebe (2014), and we include a brief outline of its implementation below for the
sake of completeness.

As in Fraley and Raftery (2002), ssMclust uses the expectation–maximization (EM) algorithm to approximately find
the maximum likelihood estimates of Eq. (12), denote them by π̂ , µ̂, σ̂. For each v ∈ A, the cluster of X̂v—which is an
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Table 1
List of the ssMclust covariance parameterizations we consider. In the above, I is the identity matrix; D’s are diagonal matrices; and U ’s represent
matrices of orthonormal eigenvectors. If ‘‘k’’ is a subscript on any symbol then that parameter is allowed to vary across clusters and, if not, then
the parameter must remain fixed across clusters. This table is expanded from Table 1 in Fraley and Raftery (2006).
Name Applicable to Σ (k) Volume Shape Orientation

E R λ Equal NA NA
V R λk Varying NA NA
X R, K = 1 λ NA NA NA
EII Rd λI Equal Equal, spherical Coordinate axes
VII Rd λkI Varying Equal, spherical Coordinate axes
EEI Rd λD Equal Equal, ellipsoidal Coordinate axes
VEI Rd λkD Varying Equal, ellipsoidal Coordinate axes
EVI Rd λDk Equal Varying, ellipsoidal Coordinate axes
VVI Rd λkDk Varying Varying, ellipsoidal Coordinate axes
EEE Rd λUDUT Equal Equal, ellipsoidal Equal
EVE Rd λUDkUT Equal Varying, ellipsoidal Equal
VEE Rd λkUDUT Varying Equal, ellipsoidal Equal
VVE Rd λkUDkUT Varying Varying, ellipsoidal Equal
EEV Rd λUkDUT

k Equal Equal, ellipsoidal Varying
VEV Rd λkUkDUT

k Varying Equal, ellipsoidal Varying
EVV Rd λUkDkUT

k Equal Varying, ellipsoidal Varying
VVV Rd λkUkDkUT

k Varying Varying, ellipsoidal Varying
XII Rd, K = 1 λI NA Spherical Coordinate Axes
XXI Rd, K = 1 λD NA Ellipsoidal Coordinate Axes
XXX Rd, K = 1 λUDUT NA Ellipsoidal NA

estimate for the block of v—is then set to be

ϕ̂(v) := argmaxk∈{1,2,...,K }π̂kfµ̂(k),Σ̂ (k) (̂Xv).

Details of the implementation of the semi-supervised EM algorithm can be found in McLachlan and Peel (2004), Yoder
(2016) and Yoder and Priebe (2014), and are omitted here for brevity. We note here that we initialize the class assignments
in the EM algorithm by first running the semi-supervised k-means++ algorithm of Yoder and Priebe (2017) on X̂ . This
initialization, in practice, has the effect of greatly reducing the running time of the EM step in ssMclust; see Yoder
(2016).

Like in Mclust, the ssMclust framework balances model fit versus model parsimony. Like in Mclust, we use the
Bayesian Information Criterion (BIC) to assess the quality of the clustering given by the Gaussian Mixture Models with
density structure f̂Xv =

∑K
k=1 πkfµ(k),Σ (k) over a range of K and various Gaussian parameterizations. The geometry of the

kth cluster is determined by the structure of Σk; see Table 1 for a comprehensive list of the covariance structures we
consider in ssMclust. While the more complicated geometric structure allows for a better fit of the data, this comes at
the price of model complexity; i.e., more parameters to estimate.

The BIC penalty employed in Mclust and ssMclust rewards model fit, and it penalizes model complexity. Given
model M , the BIC is usually defined as

BIC(M) = 2 max
(π,µ,σ)∈M

ℓ(π,µ, σ)X̂,ϕ − τM log n,

where max(π,µ,σ)∈M ℓ(π,µ, σ)X̂,ϕ is the maximized log-likelihood in Eq. (12), τM is the number of parameters estimated
in model M (i.e., the number of parameters in (π,µ, σ) that need to be estimated), and n the number of observed data
points. In the present semi-supervised setting, we propose an adjusted BIC that only penalizes the model complexity of
the unsupervised data points, namely

BIC′(M) = 2 max
(π,µ,σ)∈M

ℓ(π,µ, σ)X̂,ϕ − τM log(n−m). (13)

If limn→∞m/n = 0, then |BIC(M)− BIC′(M)| = o(1), but even in this setting, empirical evidence suggests the less
parsimonious models allowed by BIC′(M) provide a better model fit than the more parsimonious BIC(M). Intuitively,
the complexity introduced by the largely constrained supervised datum should be lower than that of the unconstrained
unsupervised datum, which is reflected in the modified BIC′(M); see Yoder (2016).

The ssMclust algorithm proceeds by maximizing the log-likelihood via the EM algorithm over a range of models
M ∈M, and then uses the BIC penalty (13) to select the best fitting model, defined via

M̂ = argmaxM∈MBIC′(M).
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Algorithm 1: Extended Spectral Partitioning Vertex Nomination Scheme
Input: Graph G on vertices S ∪ A (seeds, ambiguous); n := |S ∪ A|, m := |S|

b ↾S (block assignments of seeds)
d (embedding dimension)
K (maximum number of clusters to consider)
M (set of models to consider)

Output: LEP (nomination scheme)
1 X̂ ← adjacency spectral embedding of G into Rd;
2 foreach M ∈M do
3 Initialize the class labels using the semi-supervised KM −means++ algorithm;
4 ℓM ← max of complete log-likelihood under model M computed via the EM algorithm;
5 BIC′(M)← 2ℓM − τM log(n−m), where τM is the number of parameters estimated in M;

6 M̂ ← argmaxM∈MBIC′(M).
7 LEP

← nomination of the vertices of A according to Eq. (14) under model M̂
8 return LEP

Slightly abusing notation, let (π̂ , µ̂, σ̂) := (π̂M̂ , µ̂M̂ , σ̂M̂ ) be maximum likelihood estimates of (π,µ, σ) in model M̂ . The
LEP scheme then nominates the vertices in A via

LEP
G,1 ∈ argmaxv∈Aπ̂1fµ̂(1),Σ̂ (1) (̂Xv);

LEP
G,2 ∈ argmaxv∈A\LEP

G,1
π̂1fµ̂(1),Σ̂ (1) (̂Xv);

...

LEP
G,n−m ∈ argmax

v∈A\
(
∪
n−m−1
j=1 LEP

G,j

)π̂1fµ̂(1),Σ̂ (1) (̂Xv). (14)

Details of the LEP scheme are summarized in Algorithm 1.
In the case of a quasi-seeding – where b is observed for vertices in S1 but for vertices in S \ S1 it is only observed that

the vertices are not in V1 – the complete data log-likelihood becomes

ℓ(π,µ, σ)X̂,ϕ =
∑
v∈S1

log
(
fµ(1),Σ (1) (̂Xv)

)
+

K∑
k=2

∑
v∈S\S1

1ϕ(v)=k log
(

πk

1− π1
fµ(k),Σ (k) (̂Xv)

)

+

K∑
k=1

∑
v∈A

1ϕ(v)=k log
(
πkfµ(k),Σ (k) (̂Xv)

)
,

and Algorithm 1 can be applied with this log-likelihood in place of Eq. (12). The ability of the ssMclust algorithm
to seamlessly handle this scenario is a major advantage over other semi-supervised clustering techniques (e.g., logistic
regression, random forest, etc.).

4. Experimental results

In this section, we demonstrate the effectiveness (in the sense of precision) and scalability of our vertex nomination
schemes, the canonical sampling vertex nomination scheme LCS and the extended spectral partitioning vertex nomination
scheme LEP , on both real and synthetic data. As mentioned in Section 1, the canonical vertex nomination scheme LC is
optimally effective (in the sense of precision) but does not scale, and the spectral partitioning vertex nomination scheme
LP scales well but is not nearly as effective as LC on small to medium scale networks. (Indeed, LP obtains nearly chance
performance on small graphs). We illustrate in this section that LCS and LEP both scale and are very effective at multiple
scales, markedly improving over their forerunners.

Each example in this section consists of nMC Monte Carlo replicates, for some preselected positive integer nMC; that
is, we obtain nMC realizations of the underlying experiment, thus obtaining nMC nomination lists—for each of the vertex
nomination schemes that are compared. For each vertex nomination scheme, the mean (average) of the nMC average
precisions obtained will be referred to as the empirical mean average precision under the vertex nomination scheme. For
each vertex nomination scheme and each nomination list position i, the fraction of the nMC nomination lists in which
the ith list-position (vertex) was truly in V1 is the empirical probability that nomination list position i is in V1 under the
vertex nomination scheme. All of the figures in this section consist of plotting the empirical probabilities of nomination
lists’ position being in V1 (on the y-axis) against the respective position in the nomination list (on the x-axis).
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Table 2
Experimental parameters for the stochastic block model simulations.
Scale of experiment m⃗ n⃗− m⃗ |A| α

Small scale
small–small-scale [4, 0, 0] [4, 3, 3] 10 1
medium–small-scale [4, 0, 0] [7, 4, 4] 15 1
large–small-scale [4, 0, 0] [8, 5, 4] 17 1

Medium scale [20, 0, 0] [200, 150, 150] 500 0.3
Large scale [40, 0, 0] [4000, 3000, 3000] 10000 0.13

Table 3
Small scale experiment. Comparing LC and LCS by average runtime, empirical MAP.
Scale of experiment |A| Avg. running time (in s) MAP

LC LCS LC LCS

small–small-scale 10 1.12 .0335 .6934 .6901
medium–small-scale 15 128 .0453 .7632 .7530
large–small-scale 17 871 .0489 .8182 .8086

Note that we distinguish nMC , defined above, from nMCMC , which will denote the number of Markov chain Monte
Carlo steps used in computing LCS ; unless otherwise specified, we use nMCMC/2 steps for burn-in, and the other nMCMC/2
steps for actual sampling.

4.1. Simulation experiments

In this subsection, Section 4.1, we perform simulation experiments for a stochastic block model at three scales: the
underlying model used here is G ∼ SBM

(
3, n⃗, b,Λα

)
where

Λα := α

[0.5 0.3 0.4
0.3 0.8 0.6
0.4 0.6 0.3

]
+ (1− α)

[0.5 0.5 0.5
0.5 0.5 0.5
0.5 0.5 0.5

]
,

for α ∈ [0, 1]. We consider three experimental scales, summarized below in Table 2.
The parameter α allows us to control how stochastically differentiated the blocks are from one another; indeed, as α

decreases the blocks become more stochastically homogeneous and, when α = 0, there is effectively only one block (the
graph is Erdős–Rényi). Note that the block of interest, V1, is of intermediate density; less densely intraconnected than
V2 and more than V3. The true model parameters—K , n⃗,Λ—are used when implementing LC , LCS , (as well as LML—the
likelihood maximization vertex nomination scheme introduced in Fishkind et al., 2015, when relevant), the true model
parameter K = 3 is used when implementing LP (i.e. 3-means clustering is applied), and K = 4 is used in Algorithm 1
when implementing LEP .

We first compare the effectiveness and runtime of LC and LCS in the small scale regime, which is the only scale on
which LC can be feasibly implemented. In implementing LCS we used nMCMC = 10000, with nMCMC/2 = 5000 of these
steps discarded as a burn-in. Results from the nMC = 10000 experiment realizations are summarized in Table 3 and
Fig. 2.

Observe that LCS obtains the optimal effectiveness of LC while running orders of magnitude faster than LC ; note that
the running time of LCS is relatively constant at each of the three small scale experiments while, empirically, the running
of time LC scales at rate about 2.6|A|; see Table 3. Indeed, LCS can be efficiently implemented on graphs with hundreds of
thousands of vertices while LC cannot be practically implemented on graphs with more than a few tens of vertices. At this
small scale, we did not include the spectral-based vertex nomination schemes LEP and LP , because they are essentially
ineffective at this small scale, since the eigenvectors contain almost no signal, as noted in Fishkind et al. (2015).

Next we move to the medium scale and large scale experiments, with stochastic block model parameters as given
in Table 2. We did nMC = 100 experiment replicates for each of the vertex nomination schemes; LCS , LEP , LP , and we
also included the likelihood maximization vertex nomination scheme LML introduced in Fishkind et al. (2015), since it
was demonstrated in Fishkind et al. (2015) and Lyzinski et al. (2016) that LML obtains state-of-the-art effectiveness when
implementable (i.e., for graphs of order at most a few thousand vertices). The canonical sampling vertex nomination
scheme LCS was performed in two ways; once with nMCMC = 100000, and once with nMCMC chosen to be such that
the runtime of LCS is equal to the runtime of LEP . The canonical vertex nomination scheme LC was not performed in the
medium scale and large scale, nor the likelihood maximization vertex nomination scheme LML at the large scale, because
they are not practical to compute at these scales. The results of these simulations are summarized in Table 4 and in Fig. 3.

First, observe that in both the medium and the large scale LEP was more effective than LP , significantly so in the
medium scale regime, with a twofold runtime increase being the cost for this increase in effectiveness. In the adjacency
spectral embedding of a stochastic block model, the within-class variance is, with high probability, of the order log n

√
n ;

see Lyzinski et al. (2014). Thus, as there are more vertices, the true clusters become more easily delineated, and the
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Fig. 2. Small scale simulations. Empirical probability of being in V1 (y-axis) plotted against the respective position in the nomination list (x-axis)
for LC (red) and LCS (blue). Here nMC = 10000, and for LCS we use nMCMC = 10000; with nMCMC/2 = 5000 steps used for burn-in. (Note that
some red asterisks in these figures are partially or nearly completely obscured by blue asterisks on top of them.).

Table 4
Medium and large scale experiments. Comparing LP , LEP , LCS and LML by average runtime and empirical MAP.

LP LEP LCS ; nMCMC set to LCS ; nMCMC LML

match runtime of LEP set to 100000

Scale Running time (in s)

Medium 0.24 0.44 ←− same 2.06 216.45
Large 19.42 19.57 ←− same 112.51 *

Scale MAP±2 s.e.

Medium .74± .02 .89± .02 .80± .01 .93± .00 .95± .00
Large .99± .02 .99± .02 .66± .00 .95± .00 *

adjacency spectral clustering step of LEP and of LP is dominated in running time by the embedding step, which is the
same for LEP and LP . However, in the medium scale regime, where the true clusters are less easily recovered in the
embedding, the more sophisticated clustering procedure utilized in LEP is significantly more effective than the k-means
clustering used in LP—at the expense of an increase in runtime.

In the medium scale regime, while we see that LML is the most effective of the vertex nomination schemes that we
compare, note that the runtime of LML was orders of magnitude greater then the other vertex nomination schemes. In
fact, LML is not practical to implemented on graphs with more than a few thousand vertices (such as our large scale
experiment), unlike LCS and LEP . In both the medium and large scale examples, we see that LEP is significantly more
effective than LCS when LCS is restricted to have the same running time as LEP . However, LCS will eventually be more
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Fig. 3. Empirical probability of being in V1 (y-axis) plotted against the respective position in the nomination list (x-axis) for the medium scale (left
panels) and large scale (right panels) stochastic block model experiments.

effective than LEP (and all other vertex nomination schemes other than LC ) given enough Markov chain Monte Carlo
steps.

Indeed, to illustrate the effects of increasing the amount of sampling on LCS , we repeated the experiment in both the
medium and large scales for LCS with values nMCMC = 103, 104, 105, and 106. The results of nMC = 1000 realizations are
shown in Fig. 4. In the medium scale, from nMCMC = 104 and up, the increased sampling still improved the effectiveness
but seemed to stabilize towards a limit. In the large scale, continued steady improvement in effectiveness was seen for
the increases in nMCMC , until nMCMC = 106 allowed for the near perfect success in the nomination task.

4.2. More simulation experiments

In this subsection, Section 4.2, we perform more simulation experiments to explore the tradeoff, for LCS and LEP ,
between computational burden and effectiveness (i.e. precision). We also consider the effect of embedding dimension on
the performance of LEP since, in practice, the correct value of d = rankΛmay not be known for use in the implementation
of LEP .

In particular, in this subsection, the embedding dimensionwill refer to a positive integer ð that will replace d everywhere
in the adjacency spectral embedding step of Section 3.3 (thus the vertices are embedded into Rð instead of Rd)—and ð
will also replace d onward in the definition of LEP as given in Section 3.4. The results in Fishkind et al. (2013) imply that
the effectiveness of LEP should not degrade too much if ð > d, but Fishkind et al. (2013) include an example (beginning
of Section 8, see Fig. 1) where ð < d leads to a complete breakdown in spectral partitioning, with performance almost
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Fig. 4. The effect on LCS of increasing the value of nMCMC; plots are shown for nMCMC = 103 (red), nMCMC = 104 (green), nMCMC = 105 (blue),
nMCMC = 106 (cyan).

Table 5
Trade-off of computational burden vs. precision between LEP and LCS , and also comparison across different embedding dimensions. All times in this
table are the average number of seconds, and all values of MAP are +/−.01. The runtimes in the bottom row—LCS equiprecise time—have standard
error ranging from .13 to .48, most are approximately .24. The runtimes in the second row—LEP time—have standard error ranging from .01 to .09,
most are approximately .04.
Embedding dimension ð 2 3 4 5 8 9 10 11 12 15 20

LEP MAP .41 .53 .53 .51 .49 .50 .49 .49 .49 .48 .47
LEP time .50 .60 .84 1.01 1.71 2.02 2.37 2.72 3.09 4.39 6.31
LCS equitime MAP .13 .16 .25 .28 .33 .36 .39 .41 .44 .49 .56
LCS equiprecise time 3.01 5.74 5.69 5.30 5.01 5.01 4.99 4.52 5.08 4.74 4.05

as bad as chance. In the setting we experiment with here, the effectiveness of LEP will be seen as relatively robust to
overestimation as well as underestimation of d.

Here we will use the following parameters: K = 10;

Λ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.30 .27 .24 .21 .21 .21 .21 .21 .21 .21

.27 .30 .27 .24 .21 .21 .21 .21 .21 .21

.24 .27 .30 .27 .24 .21 .21 .21 .21 .21

.21 .24 .27 .30 .27 .24 .21 .21 .21 .21

.21 .21 .24 .27 .30 .27 .24 .21 .21 .21

.21 .21 .21 .24 .27 .30 .27 .24 .21 .21

.21 .21 .21 .21 .24 .27 .30 .27 .24 .21

.21 .21 .21 .21 .21 .24 .27 .30 .27 .24

.21 .21 .21 .21 .21 .21 .24 .27 .30 .27

.21 .21 .21 .21 .21 .21 .21 .24 .27 .30

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, n⃗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

100
100
100
100
100
100
100
100
100
100

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, m⃗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

20
20
20
20
20
20
20
20
20
20

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

These parameters were chosen so that the blocks are stochastically similar to each other, there are many blocks, and
the differences between the probabilities in Λ are mild relative to the number of vertices involved; all of these factors
make the vertex nomination task quite challenging, since there is a limited amount of signal present.

For each value of embedding dimension ð = 2, 3, 4, 5, 8, 9, 10, 11, 12, 15, 20 we obtained nMC = 200 independent
realizations of the random graph with the above parameters, and we nominated for the block of interest V1 using
the extended spectral partitioning vertex nomination scheme LEP , and we recorded the mean runtime and the also
the empirical mean average precision. We also used the canonical sampling vertex nomination scheme LCS on these
realizations, but chose the number of Markov chain Monte Carlo steps nMCMC so that the runtime was the same
(‘‘equitimed’’) as the mean LEP runtime; we recorded the empirical mean average precision from this ‘‘equitimed’’ LCS .
We also used the canonical sampling vertex nomination scheme LCS again on these realizations, but now we allowed the
number of Markov Chain Monte Carlo steps nMCMC to be exactly as large as needed to achieve equal empirical mean
average precision as was achieved by LEP ; we recorded the mean runtime of this ‘‘equiprecise’’ LCS . (Because the value
of nMCMC was not known a priori, we fixed the burn-in for LCS in this subsection at T = 5000.) The results of these
experiments are displayed in Table 5.

Note that when devoting the same computational resources to LCS and LEP , we saw that here, for smaller values of ð,
LEP achieved higher mean average precision than did LCS and, for larger values of ð, LCS achieved higher mean average
precision than did LEP . This is because LEP took longer and longer to run in more dimensions, and the increased sampling
time allowed LCS to pull ahead in precision. Indeed, the mean average precision of LEP is terminal, in contrast to LCS , for
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Table 6
Comparison of MAP and runtimes for vertex nomination schemes on the
connectome.
Nomination scheme MAP Avg. running time

LCS ‘‘longer’’ .86 93.02 s
LEP .81 3.10 s
LP .74 3.70 s
LCS ‘‘shorter’’ .60 2.81 s

which longer and longer sampling times will increase its mean average precision as long as patience allows—and, in the
limit, to the highest attainable mean average precision.

Also note that the performance of LEP here was relatively robust for incorrect embedding dimension (ð being greater
or lesser then d). Although Fishkind et al. (2013) highlights by example the dangers of underestimating d, this example
illustrates that such underestimation can be benign. In particular, ð = 3, 4 led to somewhat better performance than the
correct value ð = d = 10. This can be explained by the decay in the eigenvalues of Λ; here the eigenvalues of Λ are
2.3465, 0.2197, 0.1745, 0.1112, 0.0648, 0.0300, 0.0235, 0.0178, 0.0064, 0.0056. After the first four greatest eigenvalues,
the rest are small enough to cause Λ to produce behavior similar to that which a lower rank matrix would produce.
Rigorous analysis of the optimal embedding dimension is beyond the scope of this present paper; see Yang et al. (2019)
for principled methodology.

4.3. Real data example: A human connectome

In this subsection, Section 4.3, we consider a real-data example; a human connectome. This is a graph with vertices
corresponding to locations in a human brain and edges which reflect functional adjacency. The block structure that we
consider is not ostensibly reflective of an actual stochastic block model. Indeed, the vagarities of such real data gives us no
reason to expect that there is precisely an underlying probabilistic block uniformity. Nonetheless, employing a stochastic
block model as an approximation seems to be a plausibly useful approach. In fact, we will see that all of the important
operational observations of this article do indeed occur here. Specifically, on this large graph, where LML and LC schemes
are not practical to implement, we will see that the nomination schemes introduced in this article scale very well, and
we will see here that the extended spectral partitioning vertex nomination scheme is significantly more effective than
the (original) spectral partitioning vertex nomination scheme, and the canonical sampling vertex nomination scheme is
more effective than both—when enough computation is performed.

The human connectome (brain graph) that we use here comes from the very recent paper Kiar et al. (2017); the
particular connectome that we employ is actually one level of a multiscale hierarchy provided there, and this hierarchy
is sure to be a rich object of study in future work. Our graph was obtained as follows. Two diffusion MRI (dMRI) and
two structural MRI (sMRI) scans were done on an individual, collected over two sessions (Zuo et al., 2014). Graphs were
estimated using the NDMG (Zuo et al., 2014) pipeline. The dMRI scans were pre-processed for eddy currents using FSL’s
eddy-correct (Andersson et al., 2003). FSL’s ‘‘standard’’ linear registration pipeline was used to register the sMRI and
dMRI images to the MNI152 atlas (Smith et al., 2004; Woolrich et al., 2009; Jenkinson et al., 2012; Mazziotta et al., 2001).
A tensor model was fit using DiPy (Garyfallidis et al., 2014) to obtain an estimated tensor at each voxel. A deterministic
tractography algorithm was applied using DiPy’s EuDX (Garyfallidis et al., 2014, 2012) to obtain a fiber streamline from
each voxel. Graphs were formed by contracting fiber streamlines into sub-regions depending on spatial (Mhembere et al.,
2013) proximity or neuro-anatomical (Tzourio-Mazoyer et al., 2002; Desikan et al., 2006; Makris et al., 2006; Lancaster,
1997; Oishi et al., 2010; Glasser et al., 2016; Wang et al., 2014; Sripada et al., 2014; Kessler et al., 2014) similarity.

We consider a three block SBM model for this data; V1 are the regions corresponding to the right hemisphere, V2 are
the regions corresponding to the left hemisphere, and V3 are regions that are not characterized. In particular, n1 = 2807,
n2 = 2780, and n3 = 271. The number of seeds we considered were m1 = 500, m2 = 500, m3 = 50, respectively;
in each of nMC = 500 experiment replicates, we independently discrete-uniformly selected the seeds from the blocks,
and constructed a nomination list for the remaining 4808 ambiguous vertices using each of vertex nomination schemes
LP , LEP , ‘‘shorter’’ LCS , and ‘‘longer’’ LCS . ‘‘Longer’’ LCS used nMCMC = 100000 and ‘‘shorter’’ LCS used nMCMC = 3000,
the latter value chosen so that LCS runtime was approximately the same as the runtime of LEP . Both LP and LEP used
embedding dimension d = 6 (since this was the first elbow in the scree plot as determined through the algorithm of Zhu
and Ghodsi, 2006); LP used 1000 k-means restarts, and LEP considered the ‘EEV’, ‘EEE’, and ‘EII’ covariance structures in
Table 1, and K = 3 number of clusters. For each of ‘‘shorter’’ LCS and ‘‘longer’’ LCS , the value of Λ was estimated from
population densities, and half of nMCMC steps were burn-in.

The results of these experiments are summarized in Table 6 and Fig. 5. In particular, note that LEP was substantially
more effective than LP , although their runtimes were about the same. Also note that when LCS was limited in runtime
to the order of runtime for LEP , it was not competitive in terms of effectiveness but, with increased runtime, LCS did
eventually overtake all of the other vertex nomination schemes in terms of effectiveness. On a graph of this order, having
approximately 5000 ambiguous vertices, the likelihood maximization vertex nomination scheme LML and the canonical
vertex nomination scheme LC were not tractable. Indeed, these experiments highlight the scalability and effectiveness of
the vertex nomination schemes LCS and LEP introduced in this paper.
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Fig. 5. For the connectome real-data experiments, comparing the effectiveness of LP (gray), LEP (red), ‘‘shorter’’ LCS (blue), and ‘‘longer’’ LCS (cyan).

5. Summary and future directions

In summary, for a vertex nomination instance, the optimally precise vertex nomination scheme – the canonical
nomination scheme LC – is only practical for the smallest, toy problems. For larger instances, the likelihood maximization
nomination scheme LML should be used, until the size of the problem is too big for this to be practical, which may be
on the order of a thousand or so vertices. For larger instances, the extended spectral partitioning LEP and the canonical
sampling LCS vertex nomination schemes (introduced in this paper) should be used; the former can be the better choice
when computational resources are more limited and less is known about the model parameters, and the latter can be the
better choice when there is more knowledge of the model parameters and there are greater computational resources.

Concurrent work in vertex nomination has tackled the nomination problem in a slightly modified setting, considering
a pair of networks and using vertices of interest in one network to nominate potential vertices of interest in the second
network (Patsolic et al., 2017; Lyzinski et al., 2019). In this paired graph setting, the concept of nomination consistency
is established for general network models (and for a general notion of ‘‘vertices of interest’’) in Lyzinski et al. (2019)
and Agterberg et al. (2019), and the surprising fact that universally consistent vertex nomination schemes do not exist is
established in Lyzinski et al. (2019). In the present, single network setting, this points to a direction for future research:
Generalizing the concept of vertices of interest beyond community membership, and establishing the statistical framework
for vertex nomination consistency in the setting where more general vertex covariates delineate ‘‘interesting’’ versus
‘‘non-interesting’’ vertices.
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