A Gentle Introduction to Heterogeneous Computing for CS1 Students

Apan Qasem
Texas State University
San Marcos, TX
email: apan@txstate.edu

Abstract—Heterogeneous architectures have emerged as a dom-
inant platform, not only in high-performance computing but
also in mobile processing, cloud computing and the Internet
of Things (IoTs). Because the undergraduate computer science
curriculum is over-crowded in its current state, it is difficult to
include a new course as a required part of the curriculum with-
out increasing the number of hours to graduation. Integration
of heterogeneous computing content requires a module-based
approach, such as those undertaken for introducing parallel
and distributed computing.

In this paper, we present a teaching module that introduces
CS1 students to some of the fundamental concepts in hetero-
geneous computing. The goal of this module is not to teach
students how to program heterogeneous systems but rather
expose them to this emerging trend and prepare them for
material they are expected to see in future classes. Although
concepts are covered at a high-level, the module emphasizes
active learning and includes a lab assignment that provides stu-
dents with hands-on experience with respect to task mapping
and performance evaluation of a heterogeneous system. The
module was implemented at our home institution in Fall 2018.
Initial evaluation results are quite encouraging both in terms
of learning outcomes and student engagement and interest.

1. Introduction

The need for increased performance per watt coupled
with the demands of processing diverse workloads has trig-
gered a major industry shift towards heterogeneous com-
puting systems. Integration of high-performance CPUs with
energy-efficient GPUs is now common in all classes of HPC
systems. Architectural heterogeneity has also permeated
other computing domains such as mobile processing, cloud
computing and the Internet of Things (IoTs). Given this pro-
liferation of heterogeneous architectures, it is imperative that
computer science graduates are equipped with the requisite
skills to program these complex systems of the future.

Current undergraduate computer science (CS) curricula
is yet to catch up with this emerging phenomenon and
lacks sufficient coverage of heterogeneous computing (HC)
concepts. Heterogeneity is covered only as an upper-level
elective and that too primarily at R1 institutions. Needless
to say, including HC as a required part of the curriculum
can be challenging. Because the CS/CE curriculum is over-

crowded in its current state, adding a new required course
is generally not feasible without increasing the time to
graduation. Furthermore, HC spans different areas such as
programming, algorithms and architecture and as such they
are better covered in multiple courses rather than a single
course.

In this paper, we present a teaching module that intro-
duces CS1 students to fundamental concepts in heteroge-
neous computing. The goal of this module is not to teach
students how to program heterogeneous systems but rather
expose them to this emerging trend and prepare them for
material they are expected to see in future classes. Con-
sidering the introductory nature of the course, topics are
covered primarily at the Bloom’s Knowledge Level. At the
same time, the module emphasizes hands-on training and
active learning, with appropriate supporting tools, such that
the learning outcomes do not become merely an exercise
in memorizing HC terminology. The module can be imple-
mented as standalone or as part of a broader plan of integrat-
ing HC topics into the curriculum such as those undertaken
previously for parallel and distributed computing [?], [?].
All supporting material for the module including lecture
slides, handouts, software and tools for the lab assignment,
and pedagogical notes are made available on a public git
repository associated with the TOUCH project [?].

2. Design Principles

The design of the module conforms to the three core
principles advocated in the early-and-often approach of cur-
ricular integration.

(1) [Abstraction] Modules should introduce concepts at
the appropriate level of abstraction: Prior research
has shown that it is critically important to expose
students to CS principles at the right level of abstrac-
tion. Introducing a concept at an inappropriate level
or exposing students to multiple levels at once can
hinder the students’ understanding of the concepts and
reduce their ability to solve problems using the taught
principles [?], [?]. The module described in this paper,
covers HC topics that can be introduced at a high
level of abstraction without revealing the complexities
of the underlying hardware. For example, Amdahl’s
Law and its implications on parallel performance is
discussed in this module. The notion of scalability and

the significance of Amdahl’s Law can be taught without
having the students learn how to code heterogeneous
systems (or parallel systems for that matter).

(i1) [Context] Modules should provide “heterogeneous
context” to key topics in existing curriculum: Many
theories and concepts covered throughout the CS cur-
riculum can enhance a student’s comprehension of HC
principles. When context is exploited, a module does
not need to introduce completely new ideas but rather
build on topics already being covered in the course.
For instance, when covering process scheduling in an
Operating Systems course, the notion of a processor
can be replaced by a heterogeneous processing element.
In this module, we introduce heterogeneous program
execution when explaining the Von Neumann model, a
topic commonly covered in most CS1 courses.

(iii) [Adoption] Modules should be self-contained for easy
adoption: The module is designed to be short (1-1.5
lecture hours) and self-contained. Instructor resources
include lecture notes (including in-class demos and
activities), a lab assignment, sample exam questions
and solutions, and pedagogical notes. The module is
language agnostic and although it provides a textbook
treatment of some material, it is not tied to any specific
textbook. A collection of reference material is included
for instructors unfamiliar with topics covered in this
module. The lab assignment is designed to provide
students with first-hand experience in investigating per-
formance issues in heterogeneous systems. To ensure
that CS1 students are able to tackle this assignment,
the authors developed mapper, a command-line tool
for the Linux environment, which provides a simple
interface to assign tasks to processing cores. mapper is
packaged along with the rest of the instructor resources
of this module. The module also includes a tutorial for
instructors for simulating a heterogeneous platform on
conventional multicore hardware.

3. Related Work

A survey of undergraduate CS curricula at institutions
of varied orientation (e.g., R1, masters, liberal arts) shows
a distinct lack of coverage of heterogeneous computing
concepts. The lack of coverage is more pronounced in stan-
dalone computer science programs than combined computer
science and engineering programs. Many computer engi-
neering programs include an upper-level elective in which
part of the course relates to heterogeneous architectures and
related concepts. For example, the Introduction to Biophys-
ical Systems, an upper-level elective in the ECE program at
University of Texas at Austin has a section dedicated to SoC
design [?]. The graduate program in Computer Science and
Engineering at Washington University in St. Louis includes
a course (CSE566S [?]) in which architecturally diverse
systems are covered.

Such courses are rare in computer science departments.
Surveys of undergraduate computer science programs at

Washington University in St Louis [?], Brown Univer-
sity [?], Rice University [?] Concordia University Texas [?],
and Concordia University Wisconsin [?], for example, show
no dedicated courses in HC. While Brown has extensive
coverage of parallel computing at the undergraduate level,
Washington University offers only one optional course at
the sophomore level, and Rice University has one required
junior level class. The aforementioned Concordias have no
dedicated courses in parallel computing.

Coverage of HC is typically limited to an advanced
course in parallel programming. One or two weeks in
such a course will be devoted to GPU computing (e.g.
CS4380 at Texas State [?]). Given the time constraints,
these segments of the course serve more as a tutorial for
CUDA programming and do not have the opportunity to
investigate the nuances of task-offloading and load balancing
in a more general CPU-GPU heterogeneous environment.
Heterogeneity of processing cores within a single CPU and
its exploitation via dynamic voltage and frequency scaling
(DVFS) is covered, in a few instances, as part of advanced
computer architecture and compiler courses (e.g. [?]).

The CSinParallel collection includes several modules
that do touch on HC topics [?]. These modules are primarily
designed to teach students CUDA programming and does
not emphasize or expose students to the underlying HC
concepts. The Center for Parallel and Distributed Comput-
ing Curriculum Development and Educational Resources
(CDER) boasts a large collection of teaching material for
PDC [?]. Nonetheless, only two entries in the database touch
on the concepts of heterogeneity. One presents a computer
organization course that integrates GPU CUDA program-
ming for advanced CS students [?]. In the other, Gopalkrish-
nan [?] proposes that heterogeneous programming models
should be included in advanced parallel computing courses.

4. Organization and Content

This module introduces fundamental concepts in het-
erogeneous computing. Notions of concurrency, parallelism,
and energy efficiency are discussed to explain the moti-
vation behind the move towards heterogeneous processing.
Different forms of heterogeneity are introduced including
soft heterogeneity (i.e., difference in core compute capabil-
ities within a multicore system), CPU-GPU heterogeneous
execution and System-on-Chip (SoC) design. The module
also covers heterogeneity in workload and data with ex-
amples from cloud computing and mobile applications. The
module concludes with a discussion of programmability and
performance challenges.

4.1. Context

This module is primarily intended for CS1/CS2 students.
Although the module covers parallel computing concepts
before moving on to processor heterogeneity, it is ideally
suited for a course with some coverage of parallel computing
material. For example, a CS1 course that incorporates a
PDC module from [?], [?], or [?]. In the absence of

PDC coverage, the length of this module may need to be
increased.

4.2. Topics

The HC topics covered in this module are listed below.
Bloom’s classification is shown in brackets: K = Knowledge
and C = Comprehension.

Concurrency and Parallelism [K]

Multicore Processors [K]

GPGPU [K]

System-on-Chip (e.g., mobile processors) [K]
Energy Efficiency [K]

Tasks and Workloads [K]

Task Mapping and Scheduling [K]

Amdahl’s Law [C]

4.3. Learning Outcomes

Having completed this module, students should be able
to

1) describe the differences between a homogeneous and
heterogeneous computing system

2) describe and distinguish between different forms of
heterogeneity

3) understand the motivation behind the design of hetero-
geneous computing systems

4) recognize the importance of energy efficiency on cur-
rent computing systems

5) understand that tasks in a workload have different
demands for compute and memory resources

6) understand the notion of task mapping as performed by
an operating system

7) analyze the performance and energy effects of task
mapping on a heterogeneous system

4.4. Lecture

The module is designed to cover the concepts in 1 to 1.5
lecture hours. In this section, we describe the progression
of the lecture with notes on pedagogy.

4.4.1. Review of von Neumann Architecture. The lecture
begins with a review of the basic von Neumann architecture.
The main components of a von Neumann model and their
role in computing are illustrated with an example of a
desktop PC. Although perhaps not acquainted with the term
itself, a typical CS1 student will be familiar with the funda-
mental organization of a computing system. A motherboard
with a processor and memory module installed is passed
around in the class to supplement this discussion. We then
introduce students to different classes of computing devices
such as mobile processors and IoT devices. The following
two points are emphasized
1) We need different types of computers to perform dif-
ferent tasks.
2) Although there are many different types of computing
devices in use today, the fundamental organization of
these devices remains the same.

4.4.2. Parallel computing and its importance today. A set
of lectures slides defines parallel computing and discusses
its importance in today’s world. A high-level definition of
a parallel computer is presented. The discussion of the
definition of a parallel computer is followed by some his-
tory of parallel computing. The point is made that parallel
computing has been around for a long time, ever since
the beginning of computing. Notwithstanding, it has only
become mainstream in the last decade. Brief descriptions
of mainframe, vector computers and clusters are presented.
This is followed by a discussion of multicore computers
of today. The importance of energy efficiency and the role
it has played in the evolution of computer chips and rise
of multicore processors is discussed. The lecture slides
emphasize the need for achieving higher performance at
lower power consumption or at specified power budgets. The
ubiquity of parallel computers is also discussed. Students
are asked to guess/comment on the number of processing
cores on their smartphones and tablets. Their guesses are
then validated against actual numbers. A discussion follows
on the need for more parallel processing cores.

4.4.3. Heterogeneous System Design. The need for het-
erogeneous processors is then motivated using the mobile
phone as a running example. Students are polled on the
typical usage of their phones and tablets. This discussion
is used to introduce the notion of a workload and how
different programs within a workload may have different
characteristics and different demands for resources. A block
diagram of a mobile processor is presented to illustrate how
the demands of a diverse workload is handled on such a
system with the deployment of a collection of heterogeneous
processors. High-performance CPUs, low-power CPUs and
GPUs are illustrated on the block diagram and contrasted
with the block diagram of a homogeneous desktop computer.

This example serves as a lead-in to the discussion of
different forms of heterogeneity present in today’s comput-
ing systems. GPUs and their role in processing graphics
and general-purpose workloads is discussed, followed by a
description of the CPU-GPU heterogeneous compute node.
The notion of soft heterogeneity, processing cores of varying
operational frequency, is then introduced.

4.4.4. Sequential, parallel and heterogeneous program
execution. A major portion of the module is spent in-
troducing the student to the fundamental difference in se-
quential, parallel and heterogeneous program execution. A
walk-through example is used for this purpose. Fig. ??
shows a subset of the slides that are used to explain this
topic. The slides are accompanied by a set of examples
written in SimPar [?]. Two such examples are shown in
Figs. 22-22. SimPar is a simple macro language that uses an
intuitive pragma based syntax. Since students are generally
not expected to be familiar with any parallel programming
language in CS1, SimPar is an effective tool to discuss
parallelism with real examples without getting bogged down
in syntax minutiae. Supplementary materials for this chapter
includes a SimPar parser that can be used to create other

Program Execution

11001010100 | || x = 17;]

11001110101 ||| y = 137]

00001010100 | |[result = x + y; |

«—— time

10101010100 || return result; |

Instruction execution follows
program order

Processor executes one (intel

instruction at a time* CORE i7
inside

(a) Sequential program execution

\)‘3
o .
Oga\?’rogram Execution

time

y = sart(z)

compile return result;

| m%
“Big” processor is twice as fast — i I
=) inte
COREW CORE'i7
= inside’
e

(c) Heterogeneous program execution

¥ 0\\6\ .
Q0 Program Execution

compile

«————— time

h
i
'

The two assignment statements
x=17; and y = 13; will execute in parallel

(b) Parallel program execution

return result;

}

Vo
oge(‘efgrogram Execution
e‘?’(
A g
e
2 5 eDs
result = x + y;

v ‘w

; \
! [cesult = x v 7 |
: .
: .
j :

o]
]

Assign heavier computation to
the “bigger” processor

inefficient
mapping

inside

(d) Heterogenous program execution

Figure 1. Excerpts from lecture slides illustrating the differences in serial, parallel and heterogeneous program execution. Animation is used for the different

blocks in the slideshow

simple examples. The instructor should be aware that Sim-
Par is not a realistic parallel language and is very limited
in ability. Thus it should not be used for creating extended
examples beyond CS1.

During the walk-through of the example, students are
asked to list the order in which the statements will execute
on the processor. A parallel directive is then inserted for the
two assignment statements and the meaning is explained
to the students. The program is then extended to include
array assignments instead of just simple assignments. This
program is compiled and executed and the result examined
in class. Students are then asked to comment on what other
statements could be parallelized. The instructor leads them
to an example where the result statement is put in the
PARALLEL block along with the two assignment state-
ments. This program is run, potentially several times, and
the error demonstrated to the students. The students are then
asked to describe the problem in the code. This is followed
by a discussion of data dependence and the challenges with
parallel programming.

The code example is then extended to illustrate execution
of a parallel program on a hypothetical heterogeneous sys-
tem with a big-Little configuration. The simple assignment
statement is replaced with a more computation heavy state-
ment (e.g., sqrt ()). The parallel execution of the program

int add() {
int x, y, result;
#PARALLEL {
x = 17;
y = 13;
}
result = x + y;
return result;

Figure 2. A simple parallel code written in SimPar

on the big-Little system is simulated with the computation-
heavy statement mapped to the small core. Students are
then asked about the performance implications of such a
mapping. The instructor then leads them to the correct
mapping in the ensuing in-class discussion.

4.4.5. Programming tools. Students are told that SimPar
is not a real language. The syntax for real languages are
more complex and so are the programming models. Some
of the currently available parallel languages and APIs, in-
cluding OpenMP, Pthreads and MPI are presented. CUDA
and OpenCL are singled out as languages/APIs that support

int add() {
int x, y, result;
#PARALLEL {

x = 17;
y = 13;
result = x + y;

}

return result;

Figure 3. Incorrectly parallelized code

programming in heterogeneous systems.

4.5. Performance challenges

Time permitting, this module can include a section on
the performance challenges in parallel and heterogeneous
systems. In particular, the notion of sequential and parallel
speedup and efficiency can be introduced via examples. This
can be followed by a discussion on Amdahl’s Law and its
performance implications on parallel computing systems.
Note, in the author’s opinion, Amdahl’s Law as it pertains
to heterogeneous processors, although important is too ad-
vanced a topic and is not recommended for inclusion when
using this module for CS1 students.

4.6. Lab

To reinforce student understanding of the concepts cov-
ered in the module, we designed a lab assignment that
provides students with hands-on experience on a real hetero-
geneous system. In this lab, students conduct experiments
with different classes of workloads on a heterogeneous
multicore machine and investigate the power and energy
implications of task mapping on such systems. The mul-
ticore system is configured such that each core operates at
a different clock frequency (i.e., soft heterogeneity). The
configuration is done using commonly available Linux tools,
cpufrequtils and cpupower. Detailed instructions for
the configuration is made available as part of the instruc-
tor resources that accompany this module. The required
hardware must be available at the instructor’s institution.
However, all that is needed is a Linux-based, ssh-enabled
multicore server with at least 4 cores. The pre-programmed
workloads are also distributed as part of the instructor
resources. The source code is written in C/C++ and can
be built in a Linux environment with gcc 5.4.0 or above.
The lab requires the students to have some basic familiarity
with a Linux environment. Below we provide a description
of the lab handout distributed to the students.

Objective. In this assignment, you will investigate perfor-
mance (and energy) issues of a heterogeneous computing
system. You will be given a set of four programs with
different characteristics. Your goal is to determine the best
mapping of these programs to the different processing cores
via experimentation and analysis.

Environment. You will be running experiments on
megatron, a heterogeneous multicore system. megatron
has four processing cores and each core has been configured
to do a specific type of job. Although each core can do any
type of computation it will perform certain tasks really well.

Tools. Familiarize yourself with the following tools. They
are all installed in standard locations on megatron

e mapper : task mapping

e perf : performance evaluation via HW counters

e likwid : energy and power estimation

Instructions.
(1) Log in to megatron

megatron is a server behind the firewall. From within
the school network, you can ssh into megat ron as follows

ssh netid@megatron.cs.school.edu

From an off-campus network, you will first need to ssh
into a gateway server (e.g., gateway.cs.school.edu)
and then log in to megatron.

(2) Download code samples
Once you have logged into megatron, clone the fol-
lowing git repository into your home directory

git clone https: //git.school.edu

Create a directory for the codes to reside and unzip the
codes into that directory. You should see four executables
and a README. The four executables are designed to
perform the following tasks

e pO0: numeric computation (e.g., excel)

e pl: graphics (e.g., game)

e p2: play music (e.g, music app)

e p3: communicate with the internet (e.g., web browser)

The README has more information about each
application and their characteristics.

(3) Conduct Performance Experiments

Launch the four programs, at the same time, with
different thread mapping configurations. You can do
this in one step using the mapper tool (installed in
/usr/local/bin/mapper). For example,

mapper pO pl p2p3 3102

The above command will launch the four programs at
the same time and map pO, pl, p2, p3 to processing cores
3, 1, 0 and 2 respectively. The program arguments must be
the fully qualified name of the executable and the processor
arguments must be in the range 0-3. Type the following to
see more options

/usr/local/bin/mapper — help

For each configuration, record the performance of each
individual core and the overall workload. You can use the
perf tool for this purpose.

perf stat mapper pO pl p2p3 3102

perf will report a bunch of performance metrics. The
ones that you want to pay particular attention to are CPUs
Utilized and instructions per cycle. Instructions per cycle
(IPC) is a throughput metric that normalizes performance
across different workloads.

Repeat the experiments and measure the energy con-
sumption. You can use /usr/local/bin/likwid to do
this

likwid —-c 0-3 —g ENERGY mapper <args>

(4) Analyze the data
Create charts showing performance (as measured using

the metrics described above), power and energy for different
configurations. Analyze the data and create a report answer-
ing the following questions

e Which processor is good at numeric computation?

e Which processor is good at graphics?

e Which processor is good at playing music?

e Which processor is good when there is a need to
communicate over the network?
Do the answers hold for power as well?
e What is the configuration that provides the best perfor-

mance?
e What is the configuration that consumes least power?
e What is the configurations that is most energy efficient?

5. Evaluation

This module was implemented in a CS1 course at Texas
State University in Fall 2018. The CS1 course at Texas
State introduces programming using C++ and provides some
coverage of computer science breadth topics. The particular
section of CS1 in which the module was taught was desig-
nated as an Honors section. The enrollment in the Honors
section is selective. The class is capped at 20 and only
students with a strong academic background are allowed
to enroll. The class comprises of both majors and non-
majors. In Fall 2018, half of the enrolled students were
declared CS majors. Enrollment in the non-Honors sections
of CS1 at Texas State can reach up to 350 and are co-taught
by multiple faculty members. For this reason, we deemed
the Honors section of CS1 to be a good venue for a pilot
implementation.

We designed a set of exam questions to assess student
learning outcomes 1-5 (§ ??). One of these questions was
selected for the final exam in Fall 2018 to assess student
comprehension of the covered material. Fig. ?? shows stu-
dent grade distribution on this question. 90% of the students
received a passing grade with almost half of them receiving
full credit. One student received a failing grade. This student
did not show up the day the module was introduced and
opted to not answer the question in the final. As noted
before, the students in the Honors section in general are high
achievers. Thus, the outcome results should be taken into
context. The class grade distribution is shown in Fig. ??. As

100%

80% [assessment
@ Osemester
S 60%
E
%
5 40% +
X

20% 1 I I

0% - I:I | .
A B (o D F

Figure 4. Semester grades and assessment question grade distribution

Class Activities 3.95
Support for
Learning

Learning
Experiences

Confidence and
Interest Gains

0.0 1.0 20 3.0 4.0

scale mean

Figure 5. Student learning experience, confidence and interest gains

we can see, the distribution does not follow the normal curve
and is skewed to the left. However, the cumulative grades
closely match the grades on the module exam question.
This indicates that the students did not find it significantly
more difficult to understand the material associated with the
module, as compared to the regular material covered in the
class.

Learning outcomes 6 and 7 were evaluated based on
student performance on the lab assignment. Students worked
in pairs on this lab (as they do for several other programming
projects in the class). All submissions received at least a B
which is typical of lab assignments in that class.

We conducted an end-of-the semester survey to gauge
student interest in the topic and assess student perception of
the learning experience. Questions were selected from the
Student Assessment of Learning Gains (SALG) survey [?].
Students were asked to rate the module in the following
categories (note the verbiage is a little different from the
actual survey administered)

(1) Class activities: Were the class activities (i.e., lecture,
in-class activity, live-demo) associated with the module
helpful and engaging?

(2) Learning support: Did the instructor provide enough
support (e.g., further reading, tutoring) outside the
classroom for learning the material taught in this mod-
ule?

(3) Learning experience: Overall, how would you rate your
learning experience in this module compared to the rest
of the course; how would you rate it compared to other
courses?

(4) Confidence and interest gains: Has this module in-
creased your interest in pursuing a CS degree or taking
more CS courses?

Students answered each question on a scale of 0-4
(e.g., strongly disagree, disagree, neutral, agree and strongly
agree). The results of the survey are shown in Fig. ??. Over-
all, the students rated the learning experience and instruc-
tional environment very positively. All but one respondent,
rated the class activities as “very helpful” and “very engag-
ing”. In the comments section of the survey, several students
singled-out the in-class demo as being particularly helpful.
All students said that there was sufficient help outside the
classroom. This is a reflection of the (i) quality of help
provided by the TA (a graduate student working in the area
of HC) and (ii) helpfulness of Linux tools developed to allow
students to complete the lab assignment. Overall, all but one
student rated their learning experience in the module as very
positive. In terms of interest gains in CS, most students
(12 out of 19) had a positive impression. However, these
responses are not as overwhelmingly positive as the other
categories. This is not unexpected. The data for incoming
freshman at Texas State suggests that most of them choose
CS as a major because they want to pursue a career as
a programmer or coder. Since the HC material is a little
removed from programming, the material failed to create as
strong an impression to these budding computer scientists.

6. Conclusions and Future Work

This paper presented a teaching module for exposing
CS1 students to heterogeneous computing. The module cov-
ers fundamental HC topics at a high level of abstraction
but this coverage is complemented with a hands-on assign-
ment that allows students to reinforce their understanding
by conducting experiments on real hardware. Preliminary
evaluation is promising both in terms of student learning
outcome and engagement. Notwithstanding, the module has
only been implemented in an Honors section of CS1 which
generally boasts students with high aptitude. In future, we
plan to calibrate the content such that it can be used in a
regular section of CS1. We also plan to implement other HC
modules focusing on algorithms and architectures that can
be integrated into lower-division courses.

Acknowledgments

This work was supported by the National Science Foun-
dation through awards CNS-1253292 and OAC-1829644.
The author would like to thank David Bunde and Phil
Schielke for reading an early draft and providing valuable
feedback. The author also thanks the anonymous reviewers
for their comments which helped improved the final version
of the paper.

