Journal of Physics: Conference Series

PAPER » OPEN ACCESS

Automatic code parallelization for data-intensive computing in multicore
systems

To cite this article: Ranjini Subramanian and Hui Zhang 2019 J. Phys.: Conf. Ser. 1411 012014

View the article online for updates and enhancements.

This content was downloaded from IP address 216.249.138.45 on 04/07/2020 at 14:10

https://doi.org/10.1088/1742-6596/1411/1/012014
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsuD3R5zzFpuqAafkHWqGk6Jh1Ho5dox4X_Stp-hYV5Fh8Hic7_yTZZh0s8ybyD-rP6-cuKZ1pSYh8mCZC1wvsRbJNslAWlus1Xk_3lmd8U92_9qKKWFOZSreBCJJRW1iMk_ncQqyBa_SANlQQZHgR2fQmP1Ti9yM8xGLRr8ElhQFFYW2DHXOex8KVgnXLp4KEPg5qLC-ujX9zVoNSusmsUO0gJJ9DwHdibSWLHcQNiLE_eMka7d&sig=Cg0ArKJSzA-xH9HKLaJ0&adurl=http://iopscience.org/books

2019 the 8th International Conference on Engineering Mathematics and Physics IOP Publishing
Journal of Physics: Conference Series 1411 (2019) 012014 doi:10.1088/1742-6596/1411/1/012014

Automatic code parallelization for data-intensive computing
in multicore systems

Ranjini Subramanian and Hui Zhang"

University of Louisville, Computer Science Department, Louisville, Kentucky, USA

" Corresponding author: h0zhan22@louisville.edu

Abstract. A major driving force behind the increasing popularity of data science is the
increasing need for data-driven analytics fuelled by massive amounts of complex data.
Increasingly, parallel processing has become a cost-effective method for computationally large
and data-intensive problems. Many existing applications are sequential in nature and if such
applications are ported to multi-processor systems for execution, they would make use of only
one core and the optimal usage of all cores is not guaranteed. Knowledge of parallel
programming is necessary to ensure the use of processing power offered by multi-processor
systems in order to achieve better performance. However, many users do not possess the skills
and knowledge required to convert existing sequential code to parallel code to achieve
speedups and scalability. In this paper, we introduce a framework that automatically transforms
existing sequential code to parallel code while ensuring functional correctness using divide-
and-conquer paradigm, so that the benefits offered by multi-core systems can be maximized.
The paper will outline the implementation of the framework and demonstrate its usage with
practical use cases.

1. Introduction

Data analytics is a branch of science which involves applying algorithmic process to analyse datasets
in order to extract useful information from it. It is widely used in healthcare, scientific applications,
gaming etc. Data and computing power have grown rapidly in the last few decades, but the former has
risen at a much higher pace than the latter making the use of high-performance computing (HPC)
resources necessary to meet the computing resource requirements. Exponential growth in data has led
to a two major challenges [1]:

o Managing and processing large volumes of complex data

o Reducing data analysis time to enable researchers to make timely decisions

The challenges have led to the emergence of data-intensive computing which is crucial in analysing
massive datasets quickly in a highly scalable environment. Data-intensive computing uses data
parallelism to process large volumes of data. This is can only achieved by using multi-core systems
that are best suited for parallel processing and offer huge computing power.

We have used the divide-and-conquer (DC) paradigm to enable parallel processing. DC methodology
works by recursively breaking down a problem into similar subproblems that can then be processed in
parallel. The solutions to the subproblems are then aggregated to obtain solution to the original
problem [2]. This methodology can be easily adapted to multicore systems. However, exploiting
parallelism offered by DC methodology requires certain expertise in parallel programming and

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
BY of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1

2019 the 8th International Conference on Engineering Mathematics and Physics IOP Publishing
Journal of Physics: Conference Series 1411 (2019) 012014 doi:10.1088/1742-6596/1411/1/012014

knowledge of underlying HPCs. There exist access barriers in bringing these resources to a broad
range of users. Users who are new to large-scale computing are not yet trained to take advantage of the
tools offered by HPCs. In addition to that, most legacy applications are inherently sequential and do
not make use of parallel programming.

Sequential implementation of programs works as a single unit of code, processing the dataset one at a
time. Parallelizing a sequential program demands time and resources since it involves understanding
the domain, data and control dependencies, underlying computing cluster architecture and rewriting
the code that synchronizes various sections and executes in parallel.

We propose breaking down the sequential code into two individual programs — divide and conquer,
each processing the dataset sequentially. This code conversion can be easily achieved by novice users
since it does not require the knowledge of parallel programming tools and methodologies.

In this paper, we propose a framework that generates code automatically to enable parallel
implementation of DC methodology using high performance computing cluster. The framework takes
divide and conquer user scripts along with input data and enables parallelization of data processing
without user intervention. Some of the key design goals are reusability, scalability and reproducibility.
The framework is designed to support both R and Python programming languages which are two of
the most widely used languages in data science.

The paper is organized as follows — section 2 addresses background, section 3 details the
implementation of the framework, and section 4 demonstrates the usefulness of this framework by
analysing its performance.

2. Background

Processing data-intensive computing tasks requires significant processing power offered only by HPCs.
They use multicore, multithreaded processors as computing resources. Though HPCs offer great
scalability and computing power, porting the existing sequential code to exploit the features of HPC is
not straightforward. In this section, we explore the serial and parallel modes of implementation.

2.1. Data processing in serial mode
In the serial mode, programs are written in iterative style. The algorithm for serial mode is as
illustrated in figure 1:

Algorithm: Serial Mode

Input:

D: Input data
ds:dataset
D:= Ids

Steps:
FOR each ds in D DO

Read ds

Perform User-defined computation on ds

Write IntermediateResult to IntermediateFolder
END FOR

FOR each IntermediateResult in IntermediateFolder DO
Result <- Aggregate

END FOR

Write Result to OutputFolder

Figure 1. Data Processing in Serial Mode.
In this mode, the for-loop loops through each dataset, reads it, performs user-defined computation and
then writes the intermediate results to an intermediate folder. The intermediate results are then
processed one at a time and the aggregated results are written to the output folder.
For-loops are slow in execution and leads to substantial overhead for large data sets. This style of
implementation cannot be executed in parallel without significant code changes which requires

2019 the 8th International Conference on Engineering Mathematics and Physics IOP Publishing
Journal of Physics: Conference Series 1411 (2019) 012014 doi:10.1088/1742-6596/1411/1/012014

advanced programming skills. This disadvantage has motivated us to adopt DC paradigm which is
naturally suited for parallel processing.

2.2. Data processing using DC paradigm

DC paradigm is extensively used in data-intensive computing due to its performance gains and
versatility. It has been used to solve many data-intensive problems like matrix eigenvalue problem [3],
simulating quantum mechanical systems on quantum computers using Hamiltonian structure [4]. This
methodology can be easily adapted in multi-processor, shared-memory systems like HPCs because the
subproblems can be solved independently on different processors and the communication needed
between processors is minimal. DC methodology works in two phases:

o Divide phase — In this phase, the input dataset is broken down into chunks and processed
simultaneously independent of each other. This constitutes the bulk of the processing in a data-
intensive problem. The result of parallel processing is stored in an intermediate folder.

o Congquer phase — This step involves aggregating the intermediate results of the previous step to
produce the final output which is the original solution to the problem.

In [5], performance of different types of DC implementations [6] are outlined. The study was aimed at
evaluating scalability and performance of serial and parallel implementations of DC methodology for
large-scale simulations. The variables used for the study were batch size (B), number of intermediate
files (I) and the dimension of the files (D). The number of processors used for each execution is set to
1 for serial implementation and B for parallel implementation. To evaluate performance, B was varied
from 100 to 2000, I was set to 10, D was set to 100x100 and a 45 second wait time was added to
mimic application-specific tasks. It was found that parallel mode reduced the execution by over 98%
compared to serial implementation. The time increased linearly with data size. In addition to that,
execution failed due to memory issues for increasing data sizes in serial implementation.

Algorithm: DC Paradigm — Divide

Input:

ds:dataset

f: filename of ds

i: Intermediate folder path

Divide (f,1)
Read £
Perform User-defined computation on f
Write IntermediateResult to i

Algorithm: DC Paradigm - Conquer

Input:
i: Intermediate folder path
o: Output folder path

Conquer (i,o)

FOR each IntermediateResult in i DO
Result <- Aggregate

END FOR

Write Result to o

Figure 2. Data Processing using DC paradigm.

2019 the 8th International Conference on Engineering Mathematics and Physics IOP Publishing

Journal of Physics: Conference Series 1411 (2019) 012014 doi:10.1088/1742-6596/1411/1/012014
Automatic code User Int diate Fold Automatic code User
generation & Job Code ntermeciate rolder generation & Code
Scheduling Job Scheduling

B3
Divide Task ¢ J Result File
N P B oiise
1 | Result File
- (\ Tntermediate
— }——- . Conquer Output
Input Data Divide Task é | | 4a — p

—_ Task — \— Folder

Files Node 2 N PR - S
= —| Node 1 Result Fil
e Result File
R Coviee = (R
- -y J Result File
Divide Task
Node N » |) Intermediate
=& J Result File
=1 J Result File

Figure 3. Process Flow.
Both phases can be implemented as functions in a single program or can be implemented as two
separate programs. Implementing them as separate programs allows for script level parallelism. It
doesn’t require fixed computation steps as is needed in MapReduce model [7,8] which uses function-
level parallelism. Separate implementations also allow for either both phases to be parallelized or just
a single phase to be parallelized depending on application-specific requirements. We have chosen to
parallelize only the divide phase because it involves the bulk of the processing and the conquer phase
is not as data intensive. Also, parallelization of divide phase is straightforward whereas parallelizing
conquer phase would require significant programming effort from the user. The proposed algorithm
for divide and conquer phases is as shown in the Figure 2. User is responsible for both the programs
and they are implemented for sequential execution.
The divide script takes two input parameters, filename of the dataset and intermediate folder path. It
processes the dataset by performing user-specified business logic and stores the result in an
intermediate folder. The conquer phase takes two input parameters, path to intermediate folder and
path to output folder. It loops through all intermediate results, aggregates them and write the result to
the output folder.
The design consideration to implement divide and conquer phases as individual scripts was done for
the following reasons:
o It offered greater flexibility to implement user-defined business logic. The user could also tailor
the intermediate and output result format to suit their individual needs
. File level processing reduces the communication between processors thereby reducing
synchronization issues and overhead
o Users can easily debug their sequential code implementation locally and leave the
parallelization details and scalability to the proposed framework.

3. Our framework

The proposed framework is aimed at providing the users with little to no knowledge of parallel
computing, a way to focus on sequential implementation and leave the parallelization details to the
framework [9]. The framework hides the parallel computing details and automatically generates code
to process data in parallel using batch processing jobs. The process flow is depicted in Figure 3.

The divide task splits the input data among the compute nodes which in turn processes each file using
the user-defined divide script. The results of this task are written to the intermediate folder. The
conquer task passes each file from the intermediate folder to user-defined conquer script which
aggregates the intermediate results and writes the final output to the output folder.

2019 the 8th International Conference on Engineering Mathematics and Physics IOP Publishing
Journal of Physics: Conference Series 1411 (2019) 012014 doi:10.1088/1742-6596/1411/1/012014

The framework is implemented using R programming language. It consists of three layers:

o User Interface

. Parallel Scripts Generator (PSG)

o Underlying compute cluster

We will demonstrate the functionality of the framework using wordcount program as an example. This
program is written using R programming language.

3.1. User interface
Users can access the framework using a command line interface. It takes the following input
parameters from the user:

. Application name
o User script names
o Number of cores required for parallelization

Application name is used as a default name for input, intermediate and output folders. In addition to

the parameters, users are required to upload the scrips and input data when necessary to a predefined
folder.

Figure 4. Input parameters for wordcount program.
In order to execute the wordcount program, we have used the following parameters are shown in
Figure 4.

o Application name — wordcount

o Number of cores for parallelization — 3

. User program for divide task — Divide.R

o User program for conquer task — Conquer.R

3.2. Parallel Scripts Generator (PSG)
PSG has a predefined folder structure as depicted in Figure 5.

v PSG

Input
Interface
Intermediate

Results

User_Scripts

Figure 5. PSG folder structure.
The folder Interface contains the implementation of PSG. Users must upload the input data to Input
folder and user-defined scripts to User Scripts folder. The results of the divide task are stored in the

2019 the 8th International Conference on Engineering Mathematics and Physics IOP Publishing
Journal of Physics: Conference Series 1411 (2019) 012014 doi:10.1088/1742-6596/1411/1/012014

Intermediate folder and the results of the conquer task are stored in Results folder both of which are
automatically created using the application name specified by the user.

PSG is responsible for hiding parallel computing details and automatic code generation. It performs
three important tasks — Split data, Divide task and Conquer task.

3.2.1. Split data. This task is responsible for splitting the input files equally among the different nodes
for parallel processing. In our case, the flies are split into 3 set. Each set of file paths are written to a
file with the notation files-x.txt where x is 1,2, or 3. One file is created for each node. This task is only
performed where the application requires input data.

1.#User specified dataset — path to input files

2.input <- "home/PSG/Input/wordcount"

3.#User specified # of cores required for parallelization

4 .numCores <- 3

5.#List of full paths to all input files

6.pathlist <- dir(input,".*",recursive=TRUE, full.names=TRUE)

7.numfiles <- 1: length(pathlist)

8.#5plit the paths into 3 chunks

9.chunk <- split(numfiles,sort (numfiles%%numCores))

10.#Each chunk is written to a file - In this case 3 files.
files-1.txt, files-2.txt, files-3.txt

1l.for (x in 1l:numCores)

12.{

13. for (c in 1:length(chunk[[x]]))

14. {

15. index <- chunk[[x]]I[c]

16. write.table(pathlist[index] ,paste0("files-" x,".txt"),
row.names = FALSE, col.names = FALSE,append =TRUE)

17. '}

18.1}

Figure 6. Code generated by Split Data task. Code fragments in red are user specified parameters.
Figure 6 illustrates the code automatically generated by this task. In line 1, input points to the data
location containing the input dataset from user. In line 4, numCores variable holds the number of cores
specified by the user for parallelization. Lines 6-8, reads the number of files in the input folder, obtains
the full path for each file by recursively loping through all the subfolders and splits them into several
chunks which is equal to numCores. In lines 11-18, each chunk is then written to a file. In our example,
the path to input files are split into 3 chunks and written to files, files-1.txt, files-2.txt and files-3.txt.
The wordcount application contains 10 input files. Figure 7 illustrates the files split into chunks to be
processed by individual cores.

Input Data Files
authoritxt, sample.txt, desc.txt, detail.txt,
queen.txt, sky.txt, woman .txt,
dust.txt, girl.txt, waitertxt, colortxt

Files-1.txt Files-2.txt Files-3.txt
authorixt desc.txt woman.txt
sample.txt detail txt dust.txt
color.txt queen.txt girl.ixt
sky.txt Waiter.txt

Figure 7. File chunks generated by split data task.

3.2.2. Divide task. The user-defined divide script is designed to process input files sequentially. This
task is responsible for iterating through files-x.txt created in the previous step and passing the file
paths to Divide.R script one at a time until all files are processed. Core 1 iterates through files-1.txt,
core 2 iterates through files-2.txt and so on. The results of each execution of Divide.R are written to an
intermediate folder.

The code autogenerated by this task is depicted in figure 8.

2019 the 8th International Conference on Engineering Mathematics and Physics IOP Publishing

Journal of Physics: Conference Series 1411 (2019) 012014 doi:10.1088/1742-6596/1411/1/012014
1.#Environment variable used to obtain the core #. The cores
are numbered from 0 to (numCores-1)

2.core <- as.integer (Sys.getenv() ["PMI_RANK"]) + 1
3.args <- commandArgs(trailingOnly = TRUE)
4. #User defined script name for divide task
5.divide_script <- " home/PSG,’User_Scripts/wordccunt/nivide,R"
6.#Path to intermediate cutput folder
7.IntermediateFolder <- "home/PSG/Intermediate/wordcount"
8. #Name of auto-genegrated file from task 1
9.filename <- pasteO("files-", core,".txt")
10.filepaths <- scan(filename,what="")
1l.for (fp in filepaths)
12.4
system(paste ("Rscript ",divide script,fp,
IntermediateFolder))

13.}

Figure 8. Code generated by Divide task. Code fragments in red are user specified parameters.

In line 2, core variable stores the core# which is obtained from the environment variable. This variable
is used to determine the files-x.txt file for this core. Lines 5-7 reads the user specified parameters. The
intermediate folder is automatically created using the application name specified by the user. In line 9,
depending on the core#, filename variable stores the name of the file autogenerated in task 1. filename
contains list of file paths to be processed by the core. For each file path, Divide.R is executed once.
This process is continued until all the files have been processed. All the nodes processes files
simultaneously.

3.2.3. Conquer task. The conquer task is responsible for passing the intermediate folder path and the
output folder path to Conquer.R. This task is executed sequentially and thus requires only one core.
The conquer task begins execution only upon successful completion of divide task thus saving time
and compute resources in case of failure. The code autogenerated by this task is depicted in Figure 9.

Rscript "home/PSG/User_Scripts/wordcount/Conquer.R"
"home /PSG/Intermediate/wordcount " "home/PSG/Results/wordcount"”

Figure 9. Code generated by Conquer task. Code fragments in red are user specified parameters.

3.3. Underlying compute cluster

All backend computations are performed using batch processing model in a research computing
cluster. The jobs are submitted to Linux cluster job scheduler SLURM. SLURM is the most popular
scheduler and it is responsible for resource management, job lifecycle management, job scheduling
and execution. Jobs are submitted to SLURM using a job script. A job script is an executable file
which contains a list of directives that tells the scheduler what to do. Similar jobs can be submitted
using a single script and they are designed to run independently on different cores [10].

4. Results and performance analysis

Wordcount is the problem of counting the number of occurrences of each word in a collection of
documents. Wordcount is a popular problem that has been widely used to demonstrate the advantage
of parallel computing. We have used Wordcount problem to demonstrate how our framework handles
problems that require input data or are data-intensive.

For this study, we have varied the number of input files from 10 to 200 in increments of 10. Each file
is approximately 6Kb in size. The number of nodes used for parallel processing is set to 10, which
means that 10 files will be processed simultaneously until all the files have been processed. In the
absence of the framework, this program would be execution in serial. The goal of this study is to
analyze the performance gain using serial execution and parallel execution facilitated by the
framework. For serial execution analysis, the number of nodes is set to 1. For both the parallel and the
serial programming models, we have recorded the time it took to complete both divide and conquer

2019 the 8th International Conference on Engineering Mathematics and Physics IOP Publishing
Journal of Physics: Conference Series 1411 (2019) 012014 doi:10.1088/1742-6596/1411/1/012014

tasks. As seen in Figure 10, the framework offers significant improvement in execution time by
parallelizing the data processing tasks.

= Parallel Execution Serial Execution
80

g

% 60

o 40

d

v

Z 20

- —’_'_/”_'

= 0

= 0 50 100 150 200 250

NUMBER OF FILES

Figure 10. Execution time for wordcount program.
The execution time increases significantly as the number of files increases. Using the framework
proves to be beneficial in data-intensive tasks since the load is divided among several nodes and
processed in parallel.

5. Conclusion

In this paper, we have proposed a framework which automatically parallelizes data processing jobs
using DC paradigm. A key motivation for this framework is to enable parallelization of data-intensive
computing tasks without user intervention. It is aimed at users from various domains who do not
necessarily have the skill to parallelize their code and at legacy applications that are inherently
sequential in nature and could benefit from parallel processing. Our ongoing work focusses on
extending the usability of the framework by providing a better user interface aimed at users who are
from non-computation background.

6. References

[1] I. Gorton, P. Greenfield, A. Szalay and R. Williams, Data-Intensive Computing in the 21st
Century, in Computer, vol 41, no. 4, pp. 30-32.doi :10.1109/MC.2008.122 (2008)

[2] Horowitz and Zorat, Divide-and-Conquer for Parallel Processing, in IEEE Transactions on
Computers, vol. C-32, no. 6, pp. 582-585, doi: 10.1109/TC.1983.1676280 (1983)

[3] Y. Cui, J. Qu, W. Chen and A. Yang, Divide and conquer algorithm for computer simulation
and application in the matrix eigenvalue problem, International Conference on Test and
Measurement, Hong Kong, 2009, pp. 319-322.doi :10.1109/ICTM.2009.5412930 (2009)

[4] S. Hadfield and A. Papageorgiou, Divide and conquer approach to quantum Hamiltonian
simulation, New Journal of Physics (2018)

[5] R. Subramanian and H. Zhang. Performance Analysis of Divide-and-Conquer strategies for
Large scale Simulations in R. 4261-4267. 0.1109/BigData.2018.8622068 (2018)

[6] H. Zhang, Y. Zhong, J. Lin, Divide-and-Conquer Strategies for Large-scale Simulations in R”,
IEEE International Conference on Big Data (BIGDATA) (2017)

[7] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large Clusters.

Communications of the ACM. 51. 137-150. 10.1145/1327452.1327492 (2004)

[8] V. Kalavri and V. Vlassov, MapReduce : Limitations, Optimizations and Open Issues, 12th
IEEE International Conference on Trust, Security and Privacy in Computing and
Communications, Melbourne, VIC, 2013, pp. 1031-1038. doi: 10.1109/TrustCom.2013.126
(2013)

[9] G. Ruan, H. Zhang, E. Wernert and B. Plale. TextRWeb : Large-Scale Text Analytics with R
on the Web. ACM International Conference Proceeding Series. 10.1145/2616498.2616557
(2014)

2019 the 8th International Conference on Engineering Mathematics and Physics IOP Publishing
Journal of Physics: Conference Series 1411 (2019) 012014 doi:10.1088/1742-6596/1411/1/012014

[10] Yoo, M. Jette, and M. Grondona, Slurm: Simple Linux Utility for Resource Management, Job
Scheduling Strategies for Parallel Processing, Lecture Notes in Computer Science, vol.
2862, pp. 44-60 (2003)

Acknowledgements
This work was supported in part by NSF DUE award #1726532.

