
Parallel R Computing on the Web

Ranjini Subramanian
University of Louisville

Louisville, KY, USA

r0subr05@louisville.edu

Hui Zhang
University of Louisville

Louisville, KY, USA

h0zhan22@louisville.edu

Abstract—R is the preferred language for Data analytics due to
its open source development and high extensibility. Exponential
growth in data has caused longer processing times leading to
the rise in parallel computing technologies for analysis. Using R
together with high performance computing resources is a cum-
bersome task. This paper proposes a framework that provides
users with access to high-performance computing resources and
simplifies the configuration, programming, uploading data and
job scheduling through a web user interface. In addition to
that, it provides two modes of parallelization of data-intensive
computing tasks, catering to a wide range of users. The case
studies emphasize the utility and efficiency of the framework.
The framework provides better performance, ease of use and
high scalability.

Index Terms—Parallel computing, Divide-and-conquer
methodologies, Framework, R, Web UI

I. INTRODUCTION

R is an open-source programming language used mainly for

statistical analysis and widely used in data science due to its

ideal platform to conduct data analysis. R provides several

features that are common in other programming languages

such as loops, branching, conditional logic etc. R is easy to

learn, open source language and can be run across a variety

of operating systems. It is a ”high productivity” language

but it lacks the structures and control to support efficient

code for large-scale computation. Rapid growth in data and

methodological advances such as the use of simulation and

re-sampling methods for analysis have led to challenges in

processing times. It is a known fact that execution time can

be prohibitively long as the size of data and computational

complexity increases [20].

R framework is designed to use single thread execution

mode. It is not designed to take advantage of modern in-

frastructure which includes computing clusters and parallel

processors. In order to scale up computational capability,

it is essential to utilize parallelism and high-performance

computing resources.

A. Parallelism using R

In many areas of research, data is growing much faster than

performance increases in hardware. To harness the full benefit

offered by computing platforms, we must develop software

with computing capabilities [1]. Although R is highly extensi-

ble through the use of packages, providing parallel packages

or software for HPC was not a primary goal [2]. The sheer

978-1-7281-0858-2/19/$31.00 © 2019 IEEE.

volume of data poses a challenge in terms of methodologies

needed to reduce processing times. Some popular methods

employed in statistical analysis ae bootstrapping, Monte Carlo

simulation, Gibbs sampling etc. Rapid growth in data and the

demand for simulation methods have been approached with the

use of parallel computing. In the last decade more and more

research has been focused on developing parallel packages for

R in compute clusters, grid computing and multi-core systems.

Popular parallel R packages include snow [14], multicore [15],

parallel [16], R+Haddop [17], Rmpi [18], foreach [19] etc.

The paper [2] reviews the various parallel packages comparing

them on their usability, performance and parallel technology

used. Usage of parallel packages requires extensive knowledge

of parallelism offered by these packages.

B. Enabling parallelism using HPC

Propelled by the ever-increasing computation demand, sig-

nificant efforts have been made in developing parallel com-

puting technologies. The drivers for focus on HPC have

been larger datasets and the computation power required

for sophisticated methodologies. Parallel computation can be

performed using multiple cores within a single node or by

using multiple nodes. Although using a single node is less

expensive and easier, it may not be sufficient as the number of

parallel processes required for analysis increases. This leads

to the utilization of multiple nodes for effective processing.

Many libraries exist to enable easier access to parallel com-

puting technologies to support data processing problems that

can be regarded as Single Program Multiple Data (SPMD)

model [5]. The commonly used libraries include MPI [3] and

OpenMP [4]. They use programming methods to manipulate

massive resources. A new programming paradigm, developed

by Google, called MapReduce has become a standard for

big data processing. It enables automatic parallelization and

distribution thereby providing a powerful interface for large-

scale computations. This model uses function-level implemen-

tation which requires advanced programming skills and good

understanding of the underlying system architecture. It also

requires fixed computational steps. It works by splitting the

data and processing it in parallel while hiding the details of

load balancing, synchronization and fault tolerance. It takes

a set if input key/value pairs and produces a set of output

key/value pairs. It comprises of two functions - map and

reduce. Both functions are written by the user. The map

function takes input key/value pairs and produces a set of

2019 IEEE International Conference on Big Data (Big Data)

978-1-7281-0858-2/19/$31.00 ©2019 IEEE 3416

Authorized licensed use limited to: University of Louisville. Downloaded on July 04,2020 at 13:28:29 UTC from IEEE Xplore. Restrictions apply.

intermediate key/value pairs that are then fed to the reducer

function. The reducer function accepts the key along with a

list of values for each key. It then merges the values and

produces output key/value pairs. Each input file contains a

set of records and each record is treated as a key/value

pair [21]. The input data is then partitioned and processed

by the map function. MapReduce model is used for a wide

range of applications including machine learning problems,

graph computations, clustering problems etc. HPCs are used

to empower R languages due to the following reasons:

• To address the computational complexity of big data

processing

• To overcome the design shortcomings of R

• To utilize modern computing infrastructure

• To reduce processing time and improve efficient utiliza-

tion of resources

C. Challenges

Despite the availability of parallel programming support

in R for state-of-the-art HPC, there exists access barriers in

bringing these resources to a wide range of users. Two major

challenges are:

• Accessibility to HPC - State-of-the-art high-performance

computing resources are often expensive and learning

how to effectively use the tools provided by HPC takes

a significant amount of time and training.

• Knowledge required to exploit parallelism - Although

R provides a number of packages to enable parallel

programming, it poses a significant challenge in terms of

its usability. Often domain users lack the training needed

to choose the most suitable package. This is important

towards performance gain, suitability towards specific

datasets and computing resource requirements.

A common usage of parallel packages is to rewrite se-

quential function implementation with its corresponding

parallel version. This requires extensive knowledge in

both existing R code as well as parallel R programming.

Users who are new to R programming are able to perform

sequential code implementation and are not yet to be

trained to take advantage of parallel packages.

D. Goals

To address the aforementioned issues, we propose a frame-

work with the following goals:

• Web UI to access HPC, upload data, execute scripts and

download results

• Parallel job array mode to enable automatic paralleliza-

tion of sequential code implementation

• Explicit parallel R mode to execute parallel code imple-

mentation

The framework provides the users the advantages of simplicity,

customization and scalability.

II. PROPOSED FRAMEWORK

The framework is implemented using R programming lan-

guage. The overall architecture of the framework is as depicted

in Fig. 1. The framework consists of three loosely-coupled

layers - web UI, parallel scripts generator (PSG) and the

underlying high-performance computing resources. The PSG

layer is responsible for implementing both modes of paral-

lelization. Depending on the input from the user via the UI,

the appropriate mode is chosen for execution. Once the mode

is invoked, PSG automatically creates batch jobs to execute

user scripts on users’ input data. All jobs are executed on the

underlying HPC using SLURM resource manager.

Fig. 1: Overall Architecture.

A. Divide-and-Conquer (DC) paradigm

DC paradigm is a popular approach in parallel computing

owing to its versatility and computational benefits. It works

by recursively breaking down a problem into subproblems of

similar type and solving them in parallel. The results of the

subproblems are then combined to produce the solution to the

original problem. The independent nature of the subproblems

make them best suited for parallel processing. DC paradigm

is used to solve vast set of problems like matrix eigen value

problem [22], simulating quantum mechanical systems on

quantum computers using Hamiltonian structure [23], sorting

and matrix multiplication [24].

DC paradigm works in two steps - Divide and Conquer.

It can be implemented using sequential as well as parallel

approach. In [25], [26], the different DC implementation

strategies are presented, and their performance is analyzed.

The study found that using the parallel mode reduced the

execution time by over 98% compared to the serial mode.

The processing time decreased further in parallel mode with

the increase in the size of the dataset whereas in the serial

mode, the execution failed due to insufficient system memory.

We explore two types of DC implementation in our frame-

work for each of the modes. One, uses script-level parallelism

using file-based processing and the other uses function-level

parallelism using in-memory processing.

B. Web User Interface

Many models exist in the market that enable access to

computing resources. Some of them include secure shell con-

nection to submit batch processing jobs [11], remote session

[12], web portal [13] etc. All these require the users to have

compute resource allocation. In order to support intuitive

3417

Authorized licensed use limited to: University of Louisville. Downloaded on July 04,2020 at 13:28:29 UTC from IEEE Xplore. Restrictions apply.

access and interactive analysis, we offer a web UI to enable

easy access to the computing resources. We have developed

a web user interface in collaboration with Weija Xu et al. at

Texas Advance Computing Center, The University of Texas

[10]. The web UI is designed to use a set of predefined tasks

which is specified using a configuration file (workflow). The

workflow is reproducible and reusable. Users can use the UI to

upload data and user scripts, execute the scripts on the compute

cluster and download results. Users require TACC account to

login to the website in order to use the HPC and framework

via a workflow.

The workflow for web UI is a JSON file. It contains a set

of predefined tasks - File upload (Fig. 2), Execute script (Fig.

3,4) and View results (Fig. 5). We use a different workflow for

each mode. The workflow differs only for the ’Execute script’

task. Each of these tasks is described in detail below:

• File upload - This task allows the users to upload their

scripts and input data as zip files. The framework then

unzips the files and writes them to the appropriate folder.

Fig. 2: File Upload.

• Execute script - This task involves executing the user

scripts on the input data to produce results. It takes a

number of parameters from the user. The parameters for

’parallel job array’ mode are:

– Application name

– Divide script name

– Conquer script name

– No. of cores for parallelization

The input parameters for ’explicit parallel R’ mode are:

– Application name

– Parallel script name

– No. of cores for parallelization

Fig. 3: Execute Script - Parallel Job Array Mode.

Fig. 4: Execute Script - Explicit Parallel R Mode.

• View Results - This task allows the users to view/down-

load the result. At this time, the users can only view the

first 10 lines of the results if it is a text file. All other

formats can only be downloaded.

Fig. 5: View Results.

C. Modes of Parallelization

The framework offers two modes of parallelization to cater

to the experience level of the user.

3418

Authorized licensed use limited to: University of Louisville. Downloaded on July 04,2020 at 13:28:29 UTC from IEEE Xplore. Restrictions apply.

(a) Parallel Job Array Mode (b) Explicit Parallel R Mode

Fig. 6: Modes of Operation. The framework has two modes - parallel job array mode and explicit parallel R mode. Parallel job

array mode uses file-based divide-and-conquer paradigm for processing. Explicit parallel R mode uses in-memory processing

via master-slave architecture.

1) Parallel Job Array Mode: The goal of this mode is to

have a reusable framework for executing sequential algorithms

in a parallel environment while hiding the parallelization

details from the end user. One approach to parallel processing

is to divide the data into chunks and process each chunk in

parallel by executing the serial code on each of them. This as-

sumes that each data chunk does not depend on other chunks.

This is also the case for simulation runs that are independent

of other simulations and can therefore be executed in parallel.

This mode uses three-step file-based processing as depicted

in Fig. 6a. The proposed algorithm for divide and conquer is

as shown in Algorithm. 1 and Algorithm. 2. This mode uses

script-level parallelism thereby providing a wider scope for

input and output formats. The granularity is at the file-level and

this reduces communication and synchronization overhead and

enables processing heterogeneous data. It also allows the user

to test and debug the sequential code implementation locally

before executing it on computing cluster.

The Divide step entails the bulk of the processing defined

by user-defined business logic. The result of this step is

stored in an intermediate folder which is then used as input

for the Conquer step. The conquer step entails light weight

processing. It involves aggregating the intermediate results

of the divide step and producing the final output. We have

parallelized only the divide step because the sequential code

can be used without any modification and synchronization

issues. Also, the conquer step is not as data intensive. The

conquer step will start upon the successful completion of

divide step thereby saving precious resources at the time of

failure.

The framework follows a predefined folder structure. The

user scripts are uploaded to User Scripts/App name folder.

The input data is stored in Input/App name folder. The in-

termediate results from batch processing mode is written to

Intermediate/App name folder and the final results for both

modes are written to Results/App name folder.

Algorithm 1: Parallel Job Array Mode - Divide

1 Divide (f, i);
Input:

ds: Dataset

f: Filename of ds

i: Intermediate folder path

2 Read f
3 Perform User-defined computation on f
4 Write IntermediateResult to i

Algorithm 2: Parallel Job Array Mode - Conquer

1 Conquer (i, o);
Input:

i: Intermediate folder path

o: Output folder path

2 for each IntermediateResult in i do
3 Result ← Aggregate

4 end
5 Write Result to o

This mode consists of three tasks:

• Split data task - The split data task is responsible for

splitting the input files equally among N nodes to process

them in parallel. This is done by getting the list of all file

paths F and writing F/N file paths to each file. The files

are then passed to individual nodes to obtain the file paths

for processing. Fig. 7 illustrates the code automatically

generated by this task. In line 1, input points to the

3419

Authorized licensed use limited to: University of Louisville. Downloaded on July 04,2020 at 13:28:29 UTC from IEEE Xplore. Restrictions apply.

data location containing the input dataset from user. In

line 4, numNodes variable holds the number of nodes

specified by the user. Lines 6-8, read the number of files

in the input folder, obtains the full path for each file

by recursively looping through all the sub folders and

splits them into a number of chunks which is equal to

numNodes. In lines 11-18, each chunk is then written to

a file. In our example, the path to input files are split into

3 chunks and written to files, files-1.txt, files-2.txt and

files-3.txt.

1 #User specified dataset - path to input
files

2 input <- "home/PSG/Input/App_Name"
3 #User specified # of nodes for

parallelization
4 numNodes <- 3
5 #List of full paths to all input files
6 pathlist <- dir(input, ".*",

recursive=TRUE,full.names=TRUE)
7 numfiles <- 1: length(pathlist)
8 #Split the paths into 3 chunks
9 chunk <-

split(numfiles,sort(numfiles%%numNodes))
10 #Each chunk is written to a file - In this

case 3 files. files-1.txt,
files-2.txt, files-3.txt

11 for (x in 1:numNodes)
12 {
13 for (c in 1:length(chunk[[x]]))
14 {
15 index <- chunk[[x]][c]
16 write.table(pathlist[index],

paste0("files-",x,".txt"),
row.names = FALSE, col.names =
FALSE,append =TRUE)

17 }
18 }

Fig. 7: Code generated by Split Data task. Code fragments in

red are user specified parameters.

• Divide task - The user-defined divide script is designed

to process one file at a time. The file path is obtained

from the file from the previous task. The framework

automatically generates batch job to execute the divide

task in all the nodes. It loops over all the file paths

listed in the file for that node and process them one

at a time using the user-defined divide script. Node 1

reads files-1.txt, node 2 reads files-2.txt and so on. This

is performed simultaneously in all the nodes until all the

files are processed. The results of this task are written to

an intermediate folder. The code generated by this task

is depicted in Fig. 8. In line 2, node variable stores the

node#. Since there are 3 nodes as specified in the previous

step, the nodes will be numbered from 0 to 2. Lines 3-

7 takes input parameters for user-defined divide script

name and intermediate folder path to store the output of

this step. In line 9, depending on the node#, filename

variable stores the name of the file auto-generated in the

split data task.

1 #Environment variable used to obtain the
node #. The nodes are numbered from 0
to (numNodes-1)

2 node <-
as.integer(Sys.getenv()["PMI_RANK"]) +
1

3 args <- commandArgs(trailingOnly = TRUE)
4 #User defined script name for divide task
5 divide_script <-

"home/PSG/User_Scripts/App_Name/Divide.R"
6 #Path to intermediate output folder
7 IntermediateFolder <-

"home/PSG/Intermediate/App_Name"
8 #Name of auto-genegrated file from task 1
9 filename <- paste0("files-",node,".txt")

10 filepaths <- scan(filename,what="")
11 for (fp in filepaths)
12 {
13 system(paste("Rscript ", divide_script,fp,

IntermediateFolder))
14 }

Fig. 8: Code generated by Divide task. Code fragments in red

are user specified parameters.

• Conquer task - The framework then automatically gen-

erates batch job to execute conquer task. The conquer

task executes the user-defined conquer script on the

intermediate results from the divide task. The conquer

script loops over all the files and aggregates them to

produce the final output. This task is performed in serial

fashion in one node. The code generated by this task is

depicted in Fig. 9.

1 Rscript
"home/PSG/User_Scripts/App_Name/Conquer.R"
"home/PSG/Intermediate/App_Name"
"home/PSG/Results/App_Name"

Fig. 9: Code generated by Conquer task. Code fragments in

red are user specified parameters.

2) Explicit Parallel R Mode: In many domains, there are

numerous opportunities for discovering new things due to the

availability of high volumes of complex data. However, the

sheer volume of data poses a challenge in terms of method-

ologies needed to reduce processing times. The drivers for

focus on HPC have been larger datasets and the computation

power required for sophisticated methodologies. Some popular

methods employed in statistical analysis are bootstrapping,

Monte Carlo simulation, Gibbs sampling etc. Rapid growth

in data and the demand for simulation methods have been

approached with the use of parallel computing.

The goal of this mode is to provide a platform to execute

parallel code implementation using multiple cores. This mode

does not require the user to follow predefined algorithm

3420

Authorized licensed use limited to: University of Louisville. Downloaded on July 04,2020 at 13:28:29 UTC from IEEE Xplore. Restrictions apply.

thereby reducing programming cost. The user has full control

over the number of steps and the input and output format.

The framework provides a convenient way to specify the

configuration and job scheduling.

This mode employs in-memory processing model as de-

picted in Fig. 6b. The model works as follows:

(a) N ’worker’ processes are initiated. N is the number of

cores specified by the user.

(b) Any data required for each task is sent to the workers.

(c) The task is split into N roughly equally sized chunks, and

the chunks (including the R code needed) are sent to the

workers.

(d) Wait for all the workers to complete their tasks and obtain

their results.

(e) Steps (b-d) are repeated for any further tasks.

(f) Worker processes are shut down.

Although many studies have shown the advantage of using

parallel R code over sequential R code, adapting the code

for parallel computing, requires skills and extra effort on

the part of the researcher. It is up to the user to efficiently

use the cores assigned to obtain the desired performance.

Parallel code implementations incur computational overhead.

Allocating higher number of cores for smaller datasets will

result in less or no work for some cores thereby lowering

performance and wasting compute resources. Using lower

number of cores may not improve performance significantly

compared to their sequential counterparts. The users must

allocate optimal number of cores for best performance. Users

can increase the number of cores for each run to compare

performance and analyze the gain per core added. This will

help them predict the number of cores needs as the size of the

dataset increases.

D. Compute Cluster

We used the XSEDE resource Wrangler [8] at The Univer-

sity of Texas at Austin’s Texas Advanced Computing Center

(TACC) as the backend to perform computing tasks. Wrangler

is the most powerful data analysis system available in XSEDE.

The system is designed for large-scale analytics, data transfer

and provides support for a wide range of workflows. It is

highly scalable for growth in the number of users and data

applications. It has more than 3000 embedded processors for

data analysis.

E. Resource Manager

Resource management tool can alleviate the challenges

that arise with the deployment of parallel computing appli-

cations. These include number of jobs, compute cores etc.

Resource managers help users submit, control and monitor

jobs. SLURM is a highly scalable resource manager. We have

used SLURM to execute all computing jobs using the batch

processing model. The framework can be put into practice

in any computing center where SLURM scheduler has been

deployed. SLURM has been deployed at various national and

international computing centers, and by approximately 60% of

the TOP 500 supercomputers in the world [9].

III. PERFORMANCE EVALUATION

We demonstrate the usability of the framework using two

popular use cases - wordcount and Pi estimation using Monte

Carlo simulation. We chose these two examples to cover text

analysis and simulation, both of which are widely used in

analytics. We used XSEDE resource wrangler to evaluate the

performance of the framework. Each compute node on wran-

gler has 48 cores. We have analyzed the performance on three

settings - serial setting using for-loops, auto-parallelization

using parallel job array mode and explicit parallel R mode

using mclapply with multiple cores.

A. Wordcount

Wordcount is the problem of counting the number of

occurrences of each word in a collection of documents. For

performance evaluation, we have used 6 Kb files and varied

the number of files from 10 to 200. For parallel job array

mode, we have set the number of cores to 10, which means

that 10 files will be processed simultaneously. The divide and

conquer tasks are executed as two jobs requiring a different

set of compute resources for each task. We compare this to

sequential code implementation using for-loop by setting the

number of cores to 1. For explicit parallel R mode, we have

tested mclapply with cores=10 and cores=48. In this mode, the

code is implemented in one script thereby requiring only one

batch job.

Table. I shows performance comparison between the two

modes. We can observe that auto-parallelization reduces the

execution time by 75 to 78% compared to serial mode. Explicit

parallel R mode reduces this further up to 81%. This is due to

the fact that this mode requires only one batch job eliminating

the wait time in acquiring compute resources for the second

job as is the case for the first mode. The second reason is

the use of in-memory processing as opposed to file-based

processing eliminating the cost associated with file read and

write operations.

B. PI Estimation Using Monte Carlo Simulation

Monte Carlo method involves the process of repeated ran-

dom sampling to make numerical estimations of unknown

parameters. It is widely used in the fields of finance, game

theory etc. They rely on random number generation to solve

probabilistic problems. One example of this method is Pi esti-

mation. For performance analysis, we have varied the number

of iterations from 1000 to 100000. We used one core for serial

execution. In case of automatic parallelization using parallel

job array mode, we set the number of cores to 1000. Whereas

for mclapply using explicit parallel R mode we set the number

of cores to 48. The performance of each setting is depicted in

Table. II. At lower iterations, serial mode performs better than

auto-parallelization mode. This is caused by the overhead due

to workload distribution and output collection. As the number

of iterations is increased, parallelization overcomes the delay

caused by overhead and offers performance gains. mclapply
offers the best performance compared to the other two settings.

This is due to the fact that serial and auto-parallelization

3421

Authorized licensed use limited to: University of Louisville. Downloaded on July 04,2020 at 13:28:29 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Comparison of speed-up for Wordcount

Parallel Mechanism 10 files 50 files 100 files 200 files

Serial Parallel Serial Parallel Serial Parallel Serial Parallel
Parallel Job Array Mode
Auto-parallelization 4 1 15 3 30 8 69 15
Explicit Parallel R Mode
mclapply (48 cores) 4 0.6 15 0.869 30 1.233 69 2.651
mclapply (10 cores) 4 0.526 15 0.905 30 1.365 69 2.86

TABLE II: Comparison of speed-up for Pi Estimation

Parallel Mechanism 1000 iterations 5000 iterations 10000 iterations 50000 iterations 100000 iterations

Serial Parallel Serial Parallel Serial Parallel Serial Parallel Serial Parallel
Parallel Job Array Mode
Auto-parallelization 2 2 10 13 21 21 100 93 207 187
Explicit Parallel R Mode
mclapply (48 cores) 2 0.371 10 0.767 21 1.078 100 3.939 207 7.617

settings use file-based processing. Cost associated with read

and write operations increases as the number of iterations

increases. This cost is eliminated in explicit parallel R mode

because it uses in-memory processing.

IV. RELATED WORK

Many software frameworks have been developed for parallel

data analysis. These framework emphasize on different design

goals, programming language, algorithmic support, parallel

computing libraries etc.

SDPPF [27] is a MapReduce based framework for pro-

cessing spatial data using Java programming language. It

enables parallelization of existing binary code with minimum

code modification. Compared to SDPPF, our framework also

enables automatic parallelization of sequential code using

minimum programming effort. However, our framework can

be applied for wider range of problems and it support R

programming language which is widely used for data analysis.

In addition to that, R users are mostly domain experts who are

beginners in programming whereas, Java users typically have

stronger programming skills. In [31], Anala et al. propose

a framework to automatically parallelize serial C code. It

works by replacing ’for’ blocks with corresponding parallel

functions. Our framework, instead, proposes a simple divide

and conquer algorithm to rewrite loops and automatically

splits the data among different nodes thereby parallelizing

computing tasks.

In [28], Craus et al. propose a framework for executing

sequential algorithms in parallel environment using MPI li-

brary. PEACE [29] is a framework for enabling easier access

to clustering methods without compromising performance. It

uses MPI to enable parallel computing. These framework focus

on the performance offered by using HPC. Our framework

emphasizes on providing easier access to HPC using a web

UI without compromising on the performance.

Huang et al. in [32] have proposed a framework to paral-

lelize R using Hadoop. It works by allowing users to execute

their R scripts developed in single machine environment to be

executed on Hadoop without modification. Users must have

knowledge of the mechanisms of Hadoop in order to use this

system. Our framework provides access to HPC using a web

based environment to execute the parallel code implementation

without requiring additional knowledge about the underlying

system and skills to access it.

V. DISCUSSION AND FUTURE WORK

This paper proposes a framework that offers two modes

of parallel computing for a range of users. It reduces the

access barrier in bringing HPC to users and provides two

methods for parallel R computing. The current architecture

supports large-scale computations and offers a web UI to

enhance accessibility. The framework appeals to a wide range

of problems, provides flexibility in terms of input and output

formats and simplifies job configuration and scheduling.

The framework is still a prototype. There also remain some

open questions. Currently, the data must be transferred to HPC

for analysis leading to high latency. It also does not support

real-time processing. Comprehensive evaluation using varied

use cases is required to measure the usability, scalability and

performance under the two modes of operation.

ACKNOWLEDGMENT

This work was supported by NSF award #1726532. The

workflow and web-based UI is developed in collaboration with

TACC and tested on Wrangler cluster.

REFERENCES

[1] Ostrouchov, George & Chen, Wei-Chen & Schmidt, Drew. (2017). Par-
allel Statistical Computing with R: An Illustration on Two Architectures.

[2] Markus, Schmidberger & Martin, Morgan & Eddelbuettel, Dirk &
Hao, Yu & Tierney, Luke & Mansmann, Ulrich. (2009). State of the
Art in Parallel Computing with R. Journal of Statistical Software.
31.10.18637/jss.v031.i01.

[3] MPI (The Message Passing Interface).
http://www.mcs.anl.gov/research/projects/mpi/

[4] OpenMP.
http://openmp.org/

[5] F. Darema, ”SPMD model: past, present and future”, Recent Advances
in Parallel Virtual Machine and Message Passing Interface, 8th European
PVM/MPI Users’ Group Meeting, Santorini/Thera, Greece, 2001.

[6] T. Iwashita, A. Ida, T. Mifune and Y. Takahashi, ”Software framework
for parallel BEM analyses with H-matrices,” 2016 IEEE Conference
on Electromagnetic Field Computation (CEFC), Miami, FL, 2016, pp.
1-1.doi:10.1109/CEFC.2016.7816379.

3422

Authorized licensed use limited to: University of Louisville. Downloaded on July 04,2020 at 13:28:29 UTC from IEEE Xplore. Restrictions apply.

[7] M. E. Azema-Barac, ”A conceptual framework for implementing neural
networks on massively parallel machines,” Proceedings Sixth Interna-
tional Parallel Processing Symposium, Beverly Hills, CA, 1992, pp.
527-530. doi: 10.1109/IPPS.1992.222973

[8] Wrangler computing cluster
https://www.tacc.utexas.edu/systems/wrangler

[9] SLURM Workload Manager
https://hpcc.usc.edu/support/documentation/slurm/

[10] Xu, Weijia Huang, Ruizhu Wang, Yige. (2018). Enabling User Driven
Web Applications on Remote Computing Resource. 10.1109/SER-
VICES.2018.00038.

[11] Yoo, M. Jette, and M. Grondona, ”Slurm: Simple Linux Utility for Re-
source Management,” Job Scheduling Strategies for Parallel Processing,
Lecture Notes in Computer Science, vol. 2862, pp. 44-60, 2003

[12] Rstuido Team. R Studio. [Online].
https://www.rstudio.com/

[13] Merchant, Nirav, et al., ”The iPlant Collaborative: Cyberinfrastructure
for Enabling Data to Discovery for the Life Sciences,” PLOS Biology,
2016.

[14] R snowfall package.
http://cran.r-project.org/web/packages/snowfall/index.html/.

[15] R multicore package.
http://cran.r-project.org/web/packages/multicore/index.html/.

[16] Package ’Parallel’.
https://stat.ethz.ch/R-manual/R-devel/library/parallel/doc/parallel.pdf.

[17] RHadoop.
https://github.com/RevolutionAnalytics/RHadoop/wiki/.

[18] R MPI package.
http://cran.r-project.org/web/packages/Rmpi/index.html/.

[19] R foreach package.
https://cran.r-project.org/web/packages/foreach/index.html.

[20] Xu, Weijia & Huang, Ruizhu & Zhang, Hui & el-Khamra, Yaakoub &
Walling, David. (2016). Empowering R with High Performance Comput-
ing Resources for Big Data Analytics. 10.1007/978-3-319-33742-5 9.

[21] Dean, Jeffrey Ghemawat, Sanjay. (2004). MapReduce: Simplified Data
Processing on Large Clusters. Communications of the ACM. 51. 137-
150. 10.1145/1327452.1327492.

[22] Yuhuan Cui, Jingguo Qu, Weili Chen and Aimin Yang, ”Di-
vide and conquer algorithm for computer simulation and applica-
tion in the matrix eigenvalue problem,” 2009 International Con-
ference on Test and Measurement, Hong Kong, 2009, pp. 319-
322.doi:10.1109/ICTM.2009.5412930.

[23] Stuart Hadfield and Anargyros Papageorgiou, ”Divide and conquer
approach to quantum Hamiltonian simulation”, 2018 New Journal of
Physics.

[24] Horowitz and Zorat, ”Divide-and-Conquer for Parallel Processing,” in
IEEE Transactions on Computers, vol. C-32, no. 6, pp. 582-585, June
1983. doi:10.1109/TC.1983.1676280

[25] Hui Zhang, Yiwen Zhong, Juan Lin, ”Divide-and-Conquer Strategies for
Largescale Simulations in R”, 2017 IEEE International Conference on
Big Data (BIGDATA)

[26] Subramanian, Ranjini Zhang, Hui. (2018). Performance Analysis of
Divideand-Conquer strategies for Large scale Simulations in R. 4261-
4267. 0.1109/Big-Data.2018.8622068.

[27] D. Zhao and Z. Huang, ”SDPPF - A MapReduce based parallel
processing framework for spatial data,” 2011 International Conference
on Electrical and Control Engineering, Yichang, 2011, pp. 1258-1261.
doi: 10.1109/ICECENG.2011.6057775.

[28] M. Craus and L. Rudeanu, ”Parallel framework for ant-like algorithms,”
Third International Symposium on Parallel and Distributed Comput-
ing/Third International Workshop on Algorithms, Models and Tools for
Parallel Computing on Heterogeneous Networks, Cork, Ireland, 2004,
pp. 36-41. doi: 10.1109/ISPDC.2004.37.

[29] Dhananjai M. Rao. 2018. A parallel framework for ab initio
transcript-clustering. In Proceedings of the 40th International
Conference on Software Engineering: Companion Proceeedings
(ICSE ’18). ACM, New York, NY, USA, 331-332. DOI:
https://doi.org/10.1145/3183440.3194995.

[30] L. Lingqiao, Y. Huihua, H. Qian, Z. Jianbin and G. Tuo, ”Design and
Realization of the Parallel Computing Framework of Cross-Validation,”
2012 International Conference on Industrial Control and Electronics En-
gineering, Xi’an, 2012, pp. 1957-1960. doi: 10.1109/ICICEE.2012.520.

[31] M R, Anala & Dash, Deepika. (2018). Framework for Automatic
Parallelization. 112-118. 10.1109/HiPCW.2018.8634283.

[32] Y. Huang, Y. Chen, C. Tsai and H. Hsiao, ”Parallelizing R in Hadoop
(A Work-in-Progress Study),” 2015 IEEE International Conference on
Smart City/SocialCom/SustainCom (SmartCity), Chengdu, 2015, pp.
1114-1116. doi: 10.1109/SmartCity.2015.218.

[33] M. Liang, C. Trejo, L. Muthu, L. B. Ngo, A. Luckow and A. W.
Apon, ”Evaluating R-Based Big Data Analytic Frameworks,” 2015 IEEE
International Conference on Cluster Computing, Chicago, IL, 2015, pp.
508-509. doi: 10.1109/CLUSTER.2015.86.

3423

Authorized licensed use limited to: University of Louisville. Downloaded on July 04,2020 at 13:28:29 UTC from IEEE Xplore. Restrictions apply.

