2019 IEEE International Conference on Big Data (Big Data)

Parallel R Computing on the Web

Ranjini Subramanian
University of Louisville
Louisville, KY, USA
r0subr05 @louisville.edu

Abstract—R is the preferred language for Data analytics due to
its open source development and high extensibility. Exponential
growth in data has caused longer processing times leading to
the rise in parallel computing technologies for analysis. Using R
together with high performance computing resources is a cum-
bersome task. This paper proposes a framework that provides
users with access to high-performance computing resources and
simplifies the configuration, programming, uploading data and
job scheduling through a web user interface. In addition to
that, it provides two modes of parallelization of data-intensive
computing tasks, catering to a wide range of users. The case
studies emphasize the utility and efficiency of the framework.
The framework provides better performance, ease of use and
high scalability.

Index Terms—Parallel computing,
methodologies, Framework, R, Web UL

Divide-and-conquer

I. INTRODUCTION

R is an open-source programming language used mainly for
statistical analysis and widely used in data science due to its
ideal platform to conduct data analysis. R provides several
features that are common in other programming languages
such as loops, branching, conditional logic etc. R is easy to
learn, open source language and can be run across a variety
of operating systems. It is a “high productivity” language
but it lacks the structures and control to support efficient
code for large-scale computation. Rapid growth in data and
methodological advances such as the use of simulation and
re-sampling methods for analysis have led to challenges in
processing times. It is a known fact that execution time can
be prohibitively long as the size of data and computational
complexity increases [20].

R framework is designed to use single thread execution
mode. It is not designed to take advantage of modern in-
frastructure which includes computing clusters and parallel
processors. In order to scale up computational capability,
it is essential to utilize parallelism and high-performance
computing resources.

A. Parallelism using R

In many areas of research, data is growing much faster than
performance increases in hardware. To harness the full benefit
offered by computing platforms, we must develop software
with computing capabilities [1]. Although R is highly extensi-
ble through the use of packages, providing parallel packages
or software for HPC was not a primary goal [2]. The sheer

978-1-7281-0858-2/19/$31.00 © 2019 IEEE.

978-1-7281-0858-2/19/$31.00 ©2019 IEEE 3416

Hui Zhang
University of Louisville
Louisville, KY, USA
hOzhan22 @louisville.edu

volume of data poses a challenge in terms of methodologies
needed to reduce processing times. Some popular methods
employed in statistical analysis ae bootstrapping, Monte Carlo
simulation, Gibbs sampling etc. Rapid growth in data and the
demand for simulation methods have been approached with the
use of parallel computing. In the last decade more and more
research has been focused on developing parallel packages for
R in compute clusters, grid computing and multi-core systems.
Popular parallel R packages include snow [14], multicore [15],
parallel [16], R+Haddop [17], Rmpi [18], foreach [19] etc.
The paper [2] reviews the various parallel packages comparing
them on their usability, performance and parallel technology
used. Usage of parallel packages requires extensive knowledge
of parallelism offered by these packages.

B. Enabling parallelism using HPC

Propelled by the ever-increasing computation demand, sig-
nificant efforts have been made in developing parallel com-
puting technologies. The drivers for focus on HPC have
been larger datasets and the computation power required
for sophisticated methodologies. Parallel computation can be
performed using multiple cores within a single node or by
using multiple nodes. Although using a single node is less
expensive and easier, it may not be sufficient as the number of
parallel processes required for analysis increases. This leads
to the utilization of multiple nodes for effective processing.
Many libraries exist to enable easier access to parallel com-
puting technologies to support data processing problems that
can be regarded as Single Program Multiple Data (SPMD)
model [5]. The commonly used libraries include MPI [3] and
OpenMP [4]. They use programming methods to manipulate
massive resources. A new programming paradigm, developed
by Google, called MapReduce has become a standard for
big data processing. It enables automatic parallelization and
distribution thereby providing a powerful interface for large-
scale computations. This model uses function-level implemen-
tation which requires advanced programming skills and good
understanding of the underlying system architecture. It also
requires fixed computational steps. It works by splitting the
data and processing it in parallel while hiding the details of
load balancing, synchronization and fault tolerance. It takes
a set if input key/value pairs and produces a set of output
key/value pairs. It comprises of two functions - map and
reduce. Both functions are written by the user. The map
function takes input key/value pairs and produces a set of

Authorized licensed use limited to: University of Louisville. Downloaded on July 04,2020 at 13:28:29 UTC from IEEE Xplore. Restrictions apply.

intermediate key/value pairs that are then fed to the reducer
function. The reducer function accepts the key along with a
list of values for each key. It then merges the values and
produces output key/value pairs. Each input file contains a
set of records and each record is treated as a key/value
pair [21]. The input data is then partitioned and processed
by the map function. MapReduce model is used for a wide
range of applications including machine learning problems,
graph computations, clustering problems etc. HPCs are used
to empower R languages due to the following reasons:
o To address the computational complexity of big data
processing
o To overcome the design shortcomings of R
o To utilize modern computing infrastructure
o To reduce processing time and improve efficient utiliza-
tion of resources

C. Challenges

Despite the availability of parallel programming support
in R for state-of-the-art HPC, there exists access barriers in
bringing these resources to a wide range of users. Two major
challenges are:

o Accessibility to HPC - State-of-the-art high-performance
computing resources are often expensive and learning
how to effectively use the tools provided by HPC takes
a significant amount of time and training.

o Knowledge required to exploit parallelism - Although

R provides a number of packages to enable parallel
programming, it poses a significant challenge in terms of
its usability. Often domain users lack the training needed
to choose the most suitable package. This is important
towards performance gain, suitability towards specific
datasets and computing resource requirements.
A common usage of parallel packages is to rewrite se-
quential function implementation with its corresponding
parallel version. This requires extensive knowledge in
both existing R code as well as parallel R programming.
Users who are new to R programming are able to perform
sequential code implementation and are not yet to be
trained to take advantage of parallel packages.

D. Goals

To address the aforementioned issues, we propose a frame-
work with the following goals:
o Web UI to access HPC, upload data, execute scripts and
download results
o Parallel job array mode to enable automatic paralleliza-
tion of sequential code implementation
o Explicit parallel R mode to execute parallel code imple-
mentation
The framework provides the users the advantages of simplicity,
customization and scalability.

II. PROPOSED FRAMEWORK

The framework is implemented using R programming lan-
guage. The overall architecture of the framework is as depicted

3417

in Fig. 1. The framework consists of three loosely-coupled
layers - web UI, parallel scripts generator (PSG) and the
underlying high-performance computing resources. The PSG
layer is responsible for implementing both modes of paral-
lelization. Depending on the input from the user via the UI,
the appropriate mode is chosen for execution. Once the mode
is invoked, PSG automatically creates batch jobs to execute
user scripts on users’ input data. All jobs are executed on the
underlying HPC using SLURM resource manager.

Web User Interface (Ul)

User File Execute View
Authentication Upload Script Results
Parallel Scripts Generator (PSG)
Batch Processing Multi-core Batch Job
mode Mode Generation

High-Performance Computing Resources (HPC)

SLURM
lobs

Fig. 1: Overall Architecture.

A. Divide-and-Conquer (DC) paradigm

DC paradigm is a popular approach in parallel computing
owing to its versatility and computational benefits. It works
by recursively breaking down a problem into subproblems of
similar type and solving them in parallel. The results of the
subproblems are then combined to produce the solution to the
original problem. The independent nature of the subproblems
make them best suited for parallel processing. DC paradigm
is used to solve vast set of problems like matrix eigen value
problem [22], simulating quantum mechanical systems on
quantum computers using Hamiltonian structure [23], sorting
and matrix multiplication [24].

DC paradigm works in two steps - Divide and Conquer.
It can be implemented using sequential as well as parallel
approach. In [25], [26], the different DC implementation
strategies are presented, and their performance is analyzed.
The study found that using the parallel mode reduced the
execution time by over 98% compared to the serial mode.
The processing time decreased further in parallel mode with
the increase in the size of the dataset whereas in the serial
mode, the execution failed due to insufficient system memory.

We explore two types of DC implementation in our frame-
work for each of the modes. One, uses script-level parallelism
using file-based processing and the other uses function-level
parallelism using in-memory processing.

B. Web User Interface

Many models exist in the market that enable access to
computing resources. Some of them include secure shell con-
nection to submit batch processing jobs [11], remote session
[12], web portal [13] etc. All these require the users to have
compute resource allocation. In order to support intuitive

Authorized licensed use limited to: University of Louisville. Downloaded on July 04,2020 at 13:28:29 UTC from IEEE Xplore. Restrictions apply.

access and interactive analysis, we offer a web Ul to enable
easy access to the computing resources. We have developed
a web user interface in collaboration with Weija Xu et al. at
Texas Advance Computing Center, The University of Texas
[10]. The web UI is designed to use a set of predefined tasks
which is specified using a configuration file (workflow). The
workflow is reproducible and reusable. Users can use the UI to
upload data and user scripts, execute the scripts on the compute
cluster and download results. Users require TACC account to
login to the website in order to use the HPC and framework
via a workflow.

The workflow for web Ul is a JSON file. It contains a set
of predefined tasks - File upload (Fig. 2), Execute script (Fig.
3.4) and View results (Fig. 5). We use a different workflow for
each mode. The workflow differs only for the *Execute script’
task. Each of these tasks is described in detail below:

o File upload - This task allows the users to upload their
scripts and input data as zip files. The framework then
unzips the files and writes them to the appropriate folder.

Step 1: Upload Input Files and User Scripts
Description: Upload input data and user scripts

Choose Upload Input Files and User Scripts File

Browse...

Define root directory

ihome/05815/tg851146/P] [Expand Directory

Choose or Enter directory to upload the file

[home/05815/9851146/PSG]

4~ || thome/05815/1g851146 PSG
psg.sh
- 1] User_Seripts
- i Input
- U] Tntermediate
- 1) Interface
b] Results

‘ Go to parent directory H Expand chesen directory

Upload individual file

Fig. 2: File Upload.

o Execute script - This task involves executing the user
scripts on the input data to produce results. It takes a
number of parameters from the user. The parameters for
“parallel job array’ mode are:

— Application name

— Divide script name

— Conquer script name

— No. of cores for parallelization

The input parameters for "explicit parallel R’ mode are:
— Application name

— Parallel script name

— No. of cores for parallelization

3418

Step 2: Execute Script

Description: Script for parallel processing

Application Name ‘App_name ‘

Divide script name |Divide R |

Conguer script name ‘Cunqusr.ﬂ ‘

No. of cares for parallelization [3

Executable

SHOME/IEEE-PSGIpsg_pja sh

Save file

Fig. 3: Execute Script - Parallel Job Array Mode.

Step 2: Execute Script

Description: Script for parallel processing

Application Name [App_name |

Parallel script name ‘Paralleliscripl R |

No. of cores for llelization |4

Executable

[SHOME/IEEE-PSGlpsg_eprsh

Save file

Fig. 4: Execute Script - Explicit Parallel R Mode.

e View Results - This task allows the users to view/down-
load the result. At this time, the users can only view the
first 10 lines of the results if it is a text file. All other
formats can only be downloaded.

Step 3: View Results

Description: View Or Download Results

File Type

Define root directory o start exploring

[ihome/05815/tg851146/P|[Expand Directory

Choose or Enter path to file

[inome/05815/t9851146/PSG/Results |

{- 1] /home/03815/12851146/PSG/Results

‘ Go to parent directory H Expand chosen directory ‘

Hadoop File System

Top

Show Contents

Fig. 5: View Results.

C. Modes of Parallelization

The framework offers two modes of parallelization to cater
to the experience level of the user.

Authorized licensed use limited to: University of Louisville. Downloaded on July 04,2020 at 13:28:29 UTC from IEEE Xplore. Restrictions apply.

Input Data
Files

_ SplitData

HRBEE
s s s W L

<eeeeeeeee Conquer

Intermediate
Results

e e

Output

(a) Parallel Job Array Mode

Input Data

Files Ouiput

PN

b Master |———

-

Distribute *
Tasks

Collect
Results

v L] ¥ v L3
LWorkerl} [Wﬂfkerl] [WOMHJ {Wﬂrkeri} [Wurlcerhl}

(b) Explicit Parallel R Mode

Fig. 6: Modes of Operation. The framework has two modes - parallel job array mode and explicit parallel R mode. Parallel job
array mode uses file-based divide-and-conquer paradigm for processing. Explicit parallel R mode uses in-memory processing

via master-slave architecture.

1) Parallel Job Array Mode: The goal of this mode is to
have a reusable framework for executing sequential algorithms
in a parallel environment while hiding the parallelization
details from the end user. One approach to parallel processing
is to divide the data into chunks and process each chunk in
parallel by executing the serial code on each of them. This as-
sumes that each data chunk does not depend on other chunks.
This is also the case for simulation runs that are independent
of other simulations and can therefore be executed in parallel.
This mode uses three-step file-based processing as depicted
in Fig. 6a. The proposed algorithm for divide and conquer is
as shown in Algorithm. 1 and Algorithm. 2. This mode uses
script-level parallelism thereby providing a wider scope for
input and output formats. The granularity is at the file-level and
this reduces communication and synchronization overhead and
enables processing heterogeneous data. It also allows the user
to test and debug the sequential code implementation locally
before executing it on computing cluster.

The Divide step entails the bulk of the processing defined
by user-defined business logic. The result of this step is
stored in an intermediate folder which is then used as input
for the Conquer step. The conquer step entails light weight
processing. It involves aggregating the intermediate results
of the divide step and producing the final output. We have
parallelized only the divide step because the sequential code
can be used without any modification and synchronization
issues. Also, the conquer step is not as data intensive. The
conquer step will start upon the successful completion of
divide step thereby saving precious resources at the time of
failure.

The framework follows a predefined folder structure. The
user scripts are uploaded to User_Scripts/App_name folder.
The input data is stored in Input/App_name folder. The in-
termediate results from batch processing mode is written to

3419

Intermediate/App_name folder and the final results for both
modes are written to Results/App_name folder.

Algorithm 1: Parallel Job Array Mode - Divide
1 Divide (f,14);
Input:
ds: Dataset
f: Filename of ds
i: Intermediate folder path
2 Read f
3 Perform User-defined computation on f
4 Write IntermediateResult to i

Algorithm 2: Parallel Job Array Mode - Conquer
1 Conquer (i,0);
Input:
i: Intermediate folder path
o: Output folder path
2 for each IntermediateResult in i do
3 Result +— Aggregate
4 end
5 Write Result to o

This mode consists of three tasks:

o Split data task - The split data task is responsible for
splitting the input files equally among N nodes to process
them in parallel. This is done by getting the list of all file
paths F' and writing F/N file paths to each file. The files
are then passed to individual nodes to obtain the file paths
for processing. Fig. 7 illustrates the code automatically
generated by this task. In line 1, input points to the

Authorized licensed use limited to: University of Louisville. Downloaded on July 04,2020 at 13:28:29 UTC from IEEE Xplore. Restrictions apply.

data location containing the input dataset from user. In
line 4, numNodes variable holds the number of nodes
specified by the user. Lines 6-8, read the number of files
in the input folder, obtains the full path for each file
by recursively looping through all the sub folders and
splits them into a number of chunks which is equal to
numNodes. In lines 11-18, each chunk is then written to
a file. In our example, the path to input files are split into
3 chunks and written to files, files-1.txt, files-2.txt and
files-3.txt.

1 #User specified dataset - path to input
files

2 input <- "home/PSG/Input/App_Name"

3 #User specified # of nodes for
parallelization

4 numNodes <- 3

5 #List of full paths to all input files

6 pathlist <- dir(input, ".x",
recursive=TRUE, full.names=TRUE)

7 numfiles <- 1: length(pathlist)

#Split the paths into 3 chunks

9 chunk <-
split (numfiles, sort (numfiles%%numNodes))

[ee]

10 #Each chunk is written to a file - In this
case 3 files. files-1.txt,
files-2.txt, files-3.txt

11 for (x in 1l:numNodes)

12 {

13 for (c in l:length(chunk[[x]]))

14 {

15 index <- chunk[[x]][c]

16 write.table (pathlist[index],
pastelO("files-",x,".txt"),
row.names = FALSE, col.names =
FALSE, append =TRUE)

17 }

18 }

Fig. 7: Code generated by Split Data task. Code fragments in
red are user specified parameters.

o Divide task - The user-defined divide script is designed
to process one file at a time. The file path is obtained
from the file from the previous task. The framework
automatically generates batch job to execute the divide
task in all the nodes. It loops over all the file paths
listed in the file for that node and process them one
at a time using the user-defined divide script. Node 1
reads files-1.txt, node 2 reads files-2.txt and so on. This
is performed simultaneously in all the nodes until all the
files are processed. The results of this task are written to
an intermediate folder. The code generated by this task
is depicted in Fig. 8. In line 2, node variable stores the
node#. Since there are 3 nodes as specified in the previous
step, the nodes will be numbered from 0 to 2. Lines 3-
7 takes input parameters for user-defined divide script
name and intermediate folder path to store the output of
this step. In line 9, depending on the node#, filename

3420

variable stores the name of the file auto-generated in the
split data task.

1 #Environment variable used to obtain the

node #. The nodes are numbered from 0
to (numNodes-1)

2 node <-
as.integer (Sys.getenv () ["PMI_RANK"]) +
1

3 args <- commandArgs (trailingOnly TRUE)

4 4#User defined script name for divide task

5 divide_script <-
"home/PSG/User_Scripts/App_Name/Divide.R"

6 #Path to intermediate output folder

7 IntermediateFolder <-
"home/PSG/Intermediate/App_Name"
8 #Name of auto-genegrated file from task 1

9 filename <- paSteO("fileS—",node,".txt")
filepaths <- scan(filename,what="")

11 for (fp in filepaths)
12 {
13 system(paste("Rscript ", divide_script, fp,

IntermediateFolder

))
14}

Fig. 8: Code generated by Divide task. Code fragments in red
are user specified parameters.

o Conquer task - The framework then automatically gen-
erates batch job to execute conquer task. The conquer
task executes the user-defined conquer script on the
intermediate results from the divide task. The conquer
script loops over all the files and aggregates them to
produce the final output. This task is performed in serial
fashion in one node. The code generated by this task is
depicted in Fig. 9.

1 Rscript
"home/PSG/User_Scripts/App_Name/Conquer.R"

"home/PSG/Intermediate/App_Name"
"home/PSG/Results/App_Name"

Fig. 9: Code generated by Conquer task. Code fragments in
red are user specified parameters.

2) Explicit Parallel R Mode: In many domains, there are
numerous opportunities for discovering new things due to the
availability of high volumes of complex data. However, the
sheer volume of data poses a challenge in terms of method-
ologies needed to reduce processing times. The drivers for
focus on HPC have been larger datasets and the computation
power required for sophisticated methodologies. Some popular
methods employed in statistical analysis are bootstrapping,
Monte Carlo simulation, Gibbs sampling etc. Rapid growth
in data and the demand for simulation methods have been
approached with the use of parallel computing.

The goal of this mode is to provide a platform to execute
parallel code implementation using multiple cores. This mode
does not require the user to follow predefined algorithm

Authorized licensed use limited to: University of Louisville. Downloaded on July 04,2020 at 13:28:29 UTC from IEEE Xplore. Restrictions apply.

thereby reducing programming cost. The user has full control
over the number of steps and the input and output format.
The framework provides a convenient way to specify the
configuration and job scheduling.

This mode employs in-memory processing model as de-
picted in Fig. 6b. The model works as follows:

(a) N ’worker’ processes are initiated. N is the number of
cores specified by the user.

(b) Any data required for each task is sent to the workers.

(c) The task is split into N roughly equally sized chunks, and
the chunks (including the R code needed) are sent to the
workers.

(d) Wait for all the workers to complete their tasks and obtain
their results.

(e) Steps (b-d) are repeated for any further tasks.

(f) Worker processes are shut down.

Although many studies have shown the advantage of using
parallel R code over sequential R code, adapting the code
for parallel computing, requires skills and extra effort on
the part of the researcher. It is up to the user to efficiently
use the cores assigned to obtain the desired performance.
Parallel code implementations incur computational overhead.
Allocating higher number of cores for smaller datasets will
result in less or no work for some cores thereby lowering
performance and wasting compute resources. Using lower
number of cores may not improve performance significantly
compared to their sequential counterparts. The users must
allocate optimal number of cores for best performance. Users
can increase the number of cores for each run to compare
performance and analyze the gain per core added. This will
help them predict the number of cores needs as the size of the
dataset increases.

D. Compute Cluster

We used the XSEDE resource Wrangler [8] at The Univer-
sity of Texas at Austin’s Texas Advanced Computing Center
(TACC) as the backend to perform computing tasks. Wrangler
is the most powerful data analysis system available in XSEDE.
The system is designed for large-scale analytics, data transfer
and provides support for a wide range of workflows. It is
highly scalable for growth in the number of users and data
applications. It has more than 3000 embedded processors for
data analysis.

E. Resource Manager

Resource management tool can alleviate the challenges
that arise with the deployment of parallel computing appli-
cations. These include number of jobs, compute cores etc.
Resource managers help users submit, control and monitor
jobs. SLURM is a highly scalable resource manager. We have
used SLURM to execute all computing jobs using the batch
processing model. The framework can be put into practice
in any computing center where SLURM scheduler has been
deployed. SLURM has been deployed at various national and
international computing centers, and by approximately 60% of
the TOP 500 supercomputers in the world [9].

3421

III. PERFORMANCE EVALUATION

We demonstrate the usability of the framework using two
popular use cases - wordcount and Pi estimation using Monte
Carlo simulation. We chose these two examples to cover text
analysis and simulation, both of which are widely used in
analytics. We used XSEDE resource wrangler to evaluate the
performance of the framework. Each compute node on wran-
gler has 48 cores. We have analyzed the performance on three
settings - serial setting using for-loops, auto-parallelization
using parallel job array mode and explicit parallel R mode
using mclapply with multiple cores.

A. Wordcount

Wordcount is the problem of counting the number of
occurrences of each word in a collection of documents. For
performance evaluation, we have used 6 Kb files and varied
the number of files from 10 to 200. For parallel job array
mode, we have set the number of cores to 10, which means
that 10 files will be processed simultaneously. The divide and
conquer tasks are executed as two jobs requiring a different
set of compute resources for each task. We compare this to
sequential code implementation using for-loop by setting the
number of cores to 1. For explicit parallel R mode, we have
tested mclapply with cores=10 and cores=48. In this mode, the
code is implemented in one script thereby requiring only one
batch job.

Table. I shows performance comparison between the two
modes. We can observe that auto-parallelization reduces the
execution time by 75 to 78% compared to serial mode. Explicit
parallel R mode reduces this further up to 81%. This is due to
the fact that this mode requires only one batch job eliminating
the wait time in acquiring compute resources for the second
job as is the case for the first mode. The second reason is
the use of in-memory processing as opposed to file-based
processing eliminating the cost associated with file read and
write operations.

B. PI Estimation Using Monte Carlo Simulation

Monte Carlo method involves the process of repeated ran-
dom sampling to make numerical estimations of unknown
parameters. It is widely used in the fields of finance, game
theory etc. They rely on random number generation to solve
probabilistic problems. One example of this method is Pi esti-
mation. For performance analysis, we have varied the number
of iterations from 1000 to 100000. We used one core for serial
execution. In case of automatic parallelization using parallel
job array mode, we set the number of cores to 1000. Whereas
for mclapply using explicit parallel R mode we set the number
of cores to 48. The performance of each setting is depicted in
Table. II. At lower iterations, serial mode performs better than
auto-parallelization mode. This is caused by the overhead due
to workload distribution and output collection. As the number
of iterations is increased, parallelization overcomes the delay
caused by overhead and offers performance gains. mclapply
offers the best performance compared to the other two settings.
This is due to the fact that serial and auto-parallelization

Authorized licensed use limited to: University of Louisville. Downloaded on July 04,2020 at 13:28:29 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Comparison of speed-up for Wordcount

Parallel Mechanism 10 files 50 files 100 files 200 files

Serial | Parallel | Serial | Parallel | Serial | Parallel | Serial | Parallel
Parallel Job Array Mode
Auto-parallelization 4 1 15 3 30 8 69 15
Explicit Parallel R Mode
mclapply (48 cores) 4 0.6 15 0.869 30 1.233 69 2.651
mclapply (10 cores) 4 0.526 15 0.905 30 1.365 69 2.86

TABLE II: Comparison of speed-up for Pi Estimation

Parallel Mechanism 1000 iterations 5000 iterations 10000 iterations 50000 iterations 100000 iterations
Serial | Parallel | Serial | Parallel | Serial | Parallel | Serial | Parallel | Serial | Parallel

Parallel Job Array Mode

Auto-parallelization 2 2 10 13 21 21 100 93 207 187

Explicit Parallel R Mode

mclapply (48 cores) 2 0.371 10 0.767 21 1.078 100 3.939 207 7.617

settings use file-based processing. Cost associated with read
and write operations increases as the number of iterations
increases. This cost is eliminated in explicit parallel R mode
because it uses in-memory processing.

IV. RELATED WORK

Many software frameworks have been developed for parallel
data analysis. These framework emphasize on different design
goals, programming language, algorithmic support, parallel
computing libraries etc.

SDPPF [27] is a MapReduce based framework for pro-
cessing spatial data using Java programming language. It
enables parallelization of existing binary code with minimum
code modification. Compared to SDPPF, our framework also
enables automatic parallelization of sequential code using
minimum programming effort. However, our framework can
be applied for wider range of problems and it support R
programming language which is widely used for data analysis.
In addition to that, R users are mostly domain experts who are
beginners in programming whereas, Java users typically have
stronger programming skills. In [31], Anala et al. propose
a framework to automatically parallelize serial C code. It
works by replacing ’for’ blocks with corresponding parallel
functions. Our framework, instead, proposes a simple divide
and conquer algorithm to rewrite loops and automatically
splits the data among different nodes thereby parallelizing
computing tasks.

In [28], Craus et al. propose a framework for executing
sequential algorithms in parallel environment using MPI li-
brary. PEACE [29] is a framework for enabling easier access
to clustering methods without compromising performance. It
uses MPI to enable parallel computing. These framework focus
on the performance offered by using HPC. Our framework
emphasizes on providing easier access to HPC using a web
UI without compromising on the performance.

Huang et al. in [32] have proposed a framework to paral-
lelize R using Hadoop. It works by allowing users to execute
their R scripts developed in single machine environment to be
executed on Hadoop without modification. Users must have
knowledge of the mechanisms of Hadoop in order to use this

3422

system. Our framework provides access to HPC using a web
based environment to execute the parallel code implementation
without requiring additional knowledge about the underlying
system and skills to access it.

V. DISCUSSION AND FUTURE WORK

This paper proposes a framework that offers two modes
of parallel computing for a range of users. It reduces the
access barrier in bringing HPC to users and provides two
methods for parallel R computing. The current architecture
supports large-scale computations and offers a web UI to
enhance accessibility. The framework appeals to a wide range
of problems, provides flexibility in terms of input and output
formats and simplifies job configuration and scheduling.

The framework is still a prototype. There also remain some
open questions. Currently, the data must be transferred to HPC
for analysis leading to high latency. It also does not support
real-time processing. Comprehensive evaluation using varied
use cases is required to measure the usability, scalability and
performance under the two modes of operation.

ACKNOWLEDGMENT

This work was supported by NSF award #1726532. The
workflow and web-based Ul is developed in collaboration with
TACC and tested on Wrangler cluster.

REFERENCES
[1] Ostrouchov, George & Chen, Wei-Chen & Schmidt, Drew. (2017). Par-
allel Statistical Computing with R: An Illustration on Two Architectures.
Markus, Schmidberger & Martin, Morgan & Eddelbuettel, Dirk &
Hao, Yu & Tierney, Luke & Mansmann, Ulrich. (2009). State of the
Art in Parallel Computing with R. Journal of Statistical Software.
31.10.18637/jss.v031.i01.
MPI (The Message Passing Interface).
http://www.mcs.anl.gov/research/projects/mpi/
OpenMP.
http://openmp.org/
F. Darema, "SPMD model: past, present and future”, Recent Advances
in Parallel Virtual Machine and Message Passing Interface, 8th European
PVM/MPI Users’ Group Meeting, Santorini/Thera, Greece, 2001.
T. Iwashita, A. Ida, T. Mifune and Y. Takahashi, ”Software framework
for parallel BEM analyses with H-matrices,” 2016 IEEE Conference
on Electromagnetic Field Computation (CEFC), Miami, FL, 2016, pp.
1-1.doi:10.1109/CEFC.2016.7816379.

[2]

[3]
[4]
[5]

[6]

Authorized licensed use limited to: University of Louisville. Downloaded on July 04,2020 at 13:28:29 UTC from IEEE Xplore. Restrictions apply.

[7]

[8]
[9]
[10]

(1]

(12]

[13]

[14]
[15]
[16]
[17]
[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

M. E. Azema-Barac, A conceptual framework for implementing neural
networks on massively parallel machines,” Proceedings Sixth Interna-
tional Parallel Processing Symposium, Beverly Hills, CA, 1992, pp.
527-530. doi: 10.1109/IPPS.1992.222973

Wrangler computing cluster
https://www.tacc.utexas.edu/systems/wrangler

SLURM Workload Manager
https://hpcc.usc.edu/support/documentation/slurm/

Xu, Weijia Huang, Ruizhu Wang, Yige. (2018). Enabling User Driven
Web Applications on Remote Computing Resource. 10.1109/SER-
VICES.2018.00038.

Yoo, M. Jette, and M. Grondona, ”Slurm: Simple Linux Utility for Re-
source Management,” Job Scheduling Strategies for Parallel Processing,
Lecture Notes in Computer Science, vol. 2862, pp. 44-60, 2003
Rstuido Team. R Studio. [Online].

https://www.rstudio.com/

Merchant, Nirav, et al., "The iPlant Collaborative: Cyberinfrastructure
for Enabling Data to Discovery for the Life Sciences,” PLOS Biology,
2016.

R snowfall package.
http://cran.r-project.org/web/packages/snowfall/index.html/.

R multicore package.
http://cran.r-project.org/web/packages/multicore/index.html/.

Package ’Parallel’.
https://stat.ethz.ch/R-manual/R-devel/library/parallel/doc/parallel.pdf.
RHadoop.

https://github.com/RevolutionAnalytics/RHadoop/wiki/.

R MPI package.
http://cran.r-project.org/web/packages/Rmpi/index.html/.

R foreach package.
https://cran.r-project.org/web/packages/foreach/index.html.

Xu, Weijia & Huang, Ruizhu & Zhang, Hui & el-Khamra, Yaakoub &
Walling, David. (2016). Empowering R with High Performance Comput-
ing Resources for Big Data Analytics. 10.1007/978-3-319-33742-5_9.
Dean, Jeffrey Ghemawat, Sanjay. (2004). MapReduce: Simplified Data
Processing on Large Clusters. Communications of the ACM. 51. 137-
150. 10.1145/1327452.1327492.

Yuhuan Cui, Jingguo Qu, Weili Chen and Aimin Yang, “Di-
vide and conquer algorithm for computer simulation and applica-
tion in the matrix eigenvalue problem,” 2009 International Con-
ference on Test and Measurement, Hong Kong, 2009, pp. 319-
322.doi:10.1109/ICTM.2009.5412930.

Stuart Hadfield and Anargyros Papageorgiou, “Divide and conquer
approach to quantum Hamiltonian simulation”, 2018 New Journal of
Physics.

Horowitz and Zorat, "Divide-and-Conquer for Parallel Processing,” in
IEEE Transactions on Computers, vol. C-32, no. 6, pp. 582-585, June
1983. doi:10.1109/TC.1983.1676280

Hui Zhang, Yiwen Zhong, Juan Lin, "Divide-and-Conquer Strategies for
Largescale Simulations in R”, 2017 IEEE International Conference on
Big Data (BIGDATA)

Subramanian, Ranjini Zhang, Hui. (2018). Performance Analysis of
Divideand-Conquer strategies for Large scale Simulations in R. 4261-
4267. 0.1109/Big-Data.2018.8622068.

D. Zhao and Z. Huang, "SDPPF - A MapReduce based parallel
processing framework for spatial data,” 2011 International Conference
on Electrical and Control Engineering, Yichang, 2011, pp. 1258-1261.
doi: 10.1109/ICECENG.2011.6057775.

M. Craus and L. Rudeanu, "Parallel framework for ant-like algorithms,”
Third International Symposium on Parallel and Distributed Comput-
ing/Third International Workshop on Algorithms, Models and Tools for
Parallel Computing on Heterogeneous Networks, Cork, Ireland, 2004,
pp. 36-41. doi: 10.1109/ISPDC.2004.37.

Dhananjai M. Rao. 2018. A parallel framework for ab initio
transcript-clustering. In Proceedings of the 40th International
Conference on Software Engineering: Companion Proceeedings
(ICSE ’18). ACM, New York, NY, USA, 331-332. DOI
https://doi.org/10.1145/3183440.3194995.

L. Lingqiao, Y. Huihua, H. Qian, Z. Jianbin and G. Tuo, "Design and
Realization of the Parallel Computing Framework of Cross-Validation,”
2012 International Conference on Industrial Control and Electronics En-
gineering, Xi’an, 2012, pp. 1957-1960. doi: 10.1109/ICICEE.2012.520.
M R, Anala & Dash, Deepika. (2018). Framework for Automatic
Parallelization. 112-118. 10.1109/HiPCW.2018.8634283.

3423

[32]

[33]

Y. Huang, Y. Chen, C. Tsai and H. Hsiao, “Parallelizing R in Hadoop
(A Work-in-Progress Study),” 2015 IEEE International Conference on
Smart City/SocialCom/SustainCom (SmartCity), Chengdu, 2015, pp.
1114-1116. doi: 10.1109/SmartCity.2015.218.

M. Liang, C. Trejo, L. Muthu, L. B. Ngo, A. Luckow and A. W.
Apon, “Evaluating R-Based Big Data Analytic Frameworks,” 2015 IEEE
International Conference on Cluster Computing, Chicago, IL, 2015, pp.
508-509. doi: 10.1109/CLUSTER.2015.86.

Authorized licensed use limited to: University of Louisville. Downloaded on July 04,2020 at 13:28:29 UTC from IEEE Xplore. Restrictions apply.

