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Abstract

Pathological cardiac hypertrophy is a classical hallmark of heart failure. At the molecular level, inhibition of histone deacetylase (HDAC) enzymes attenuate
pathological cardiac hypertrophy in vitro and in vivo. Emodin is an anthraquinone that has been implicated in cardiac protection. However, it is not known if the
cardio-protective actions for emodin are mediated through HDAC-dependent regulation of gene expression. Therefore, we hypothesized that emodin would
attenuate pathological cardiac hypertrophy via inhibition of HDACs, and that these actions would be reflected in an emodin-rich food like rhubarb. In this study,
we demonstrate that emodin and Turkish rhubarb containing emodin inhibit HDAC activity in vitro, with fast-on, slow-off kinetics. Moreover, we show that
emodin increased histone acetylation in cardiomyocytes concomitant to global changes in gene expression; gene expression changes were similar to the well-
established pan-HDAC inhibitor trichostatin A (TSA). We additionally present evidence that emodin inhibited phenylephrine (PE) and phorbol myristate acetate
(PMA)-induced hypertrophy in neonatal rat ventricular myocytes (NRVMs). Lastly, we demonstrate that the cardioprotective actions of emodin are translated to
an angiotensin Il (Ang) mouse model of cardiac hypertrophy and fibrosis and are linked to HDAC inhibition. These data suggest that emodin blocked pathological

cardiac hypertrophy, in part, by inhibiting HDAC-dependent gene expression changes.

© 2020 Elsevier Inc. All rights reserved.
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1. Introduction

Pathological cardiac hypertrophy is a hallmark of heart failure that
affects millions of people and costs billions of dollars each year [1]. In
response to stress, muscle cells of the heart, or cardiomyocytes,
enlarge which leads to cardiac dysmorphism and subsequent
dysfunction, resulting in heart failure. Poor dietary habits such as the
Western Diet are associated with cardiac hypertrophy [2]. Conversely,
cardiac hypertrophy can be prevented through proper dietary
management [3].

A heart-healthy diet is defined by leading experts as one consisting
mainly of plant-based foods [4]. Indeed, reports from cellular studies
[5] as well as human [6] and epidemiology analyses [7, 8] suggest that
plant-based foods are beneficial to overall heart health and deter heart
disease. Plant-based foods like fruits, vegetables, whole grains and
legumes contain essential macronutrients and micronutrients includ-
ing fiber, vitamins and minerals. However, a building body of evidence
suggests that benefits of these plant-based foods are independent of
their essential nutrients [9]. This hints at the idea that other chemicals

in these foods, ie., phytochemicals, drive their efficacy. Indeed,
phytochemicals have been shown to be cardioprotective; many of
these early reports demonstrate protection via inhibition of oxidative
stress, inflammation and shifts in intracellular signaling [10-13].
However, more recent evidence suggests that phytochemicals can
regulate epigenetic modifications contributing to global changes in
gene expression [14].

Epigenetic modifications differentially regulate gene expression
independent of changes in DNA sequence. Lysine acetylation on
histone tails is a reversible epigenetic modification that is regulated by
two enzymes: histone deacetylases (HDACs) and histone acetyltrans-
ferases (HATSs) [15]. HDACs remove acetyl groups from lysine residues
on histones leading to nucleosome compaction and transcriptional
repression. Eighteen identified mammalian HDACs have been sepa-
rated into classes I (HDACs 1, 2, 3, 8), Il (HDACs 4, 5, 6, 7, 9, 10), 1lI
(Sirt1-7) and IV (HDAC 11). Class Il is further divided into sub-classes
[la and IIb. Of interest, inhibiting class 1 and II HDAC activity is
efficacious in experimental models of HF [16, 17] and several
phytochemicals have been characterized as HDAC inhibitors [14].
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However, it remains unclear if phytochemicals protect the heart
through HDAC-dependent regulation of gene expression.

Emodin is an anthraquinone phytochemical found in plant-based
foods like rhubarb, cabbage and beans [18-20]. Additionally, emodin-
rich plants, including buckthorn and knotweed, have been used in
traditional medicines for centuries against viral, bacterial and bowel
abnormalities. In the heart, emodin has been reported to reduce
mitochondrial oxidative stress [21] and attenuate inflammation [22].
Recently, we showed that emodin inhibited HDAC activity in a test
tube [23]. In this report, we sought to elucidate the cardioprotective
actions of emodin and emodin-rich rhubarb. We report that emodin
inhibited HDAC activity and increased histone acetylation in cardio-
myocytes concomitant to global changes in cardiac gene expression.
Moreover, we report that emodin normalized cardiac gene expression
changes similar to the well-known HDAC inhibitor TSA. Lastly, we
demonstrate that emodin blocked pathological cardiac hypertrophy in
vitro and in vivo, consistent with its role as an HDAC inhibitor.

2. Materials and methods
2.1. Reagents

Emodin was purchased from SelleckChem (S2295) and Turkey rhubarb purchased
through Prescribed for Life (Sb15-H091519). Phenylephrine (PE; 10 uM) was purchased
through Tocris Bioscience, phorbol-12-myristate-13-acetate (PMA; 50 nM) and
trichostatin A (TSA; 200 nM) were purchased through Sigma-Aldrich. Emodin, turkey
rhubarb and TSA were prepared in dimethyl sulfoxide (DMSO, Pharmco-AAPER).

2.2. HDAC activity assays

Bovine heart tissue was procured from the University of Nevada, Wolf Pack Meats.
Animal care and handling was approved by the University of Nevada, Reno, Institutional
Animal Care and Use Committee. HDAC activity assays were completed as previously
described [24]. Each substrate is based on &-N-acylated lysine, derivatized on the
carboxyl group with amino methylcoumarin (AMC) [25]. Heart tissue lysate was
prepared in PBS (pH 7.4) containing 0.5% Triton X-100, 300 mM NaCl and protease/
phosphatase inhibitor cocktail (ThermoFisher Scientific) using a Bullet Blender
homogenizer (Next Advance). Tissue was clarified by centrifugation prior to
determination of protein concentration using a BCA Protein Assay Kit (Pierce). Tissue
(30 pg protein/well) was diluted in PBS for a total volume of 100 pl/well in a 96-well
plate. For concentration-response determination, tissue was dosed with increasing
semi-log scale concentrations of emodin (SelleckChem) or Turkey Rhubarb (Prescribed
for Life) for 2 h. For kinetic analysis, heart lysate was treated with 50 pM emodin or 100
mg/L turkey rhubarb at the prescribed time points. Class-specific HDAC substrates were
added (5 pl of 1 mM DMSO stock solutions), and plates returned to the 37 °C incubator
for 2 h. HDAC substrates for HDAC activity experiments were as follows: ZLPA (Class I,
GeneScript custom peptide), [-1985 (Class Ila, Bachem, #4060676) and I-1875 (Class IIb,
Bachem, #4033792). Developer/stop solution was added (50 pl per well of PBS with
1.5% Triton X-100, 3 uM TSA, and 0.75 mg/ml trypsin) and plates incubated at 37 °C for
20 min. Subsequent to deacetylation, trypsin is used to release AMC, resulting in
increased fluorescence. AMC fluorescence was measured via BioTek Synergy plate
reader, with excitation and emission filters of 360 nm and 460 nm, respectively.
Background signals from buffer blanks were subtracted, and GraphPad Prism used to
calculate ICsq values for each compound. In addition, NRVMs were treated with PE (10
M) and co-stimulated with either emodin (10 pM) or TSA (200 nM) for 48 h prior to cell
lysis in PBS (0.5% Triton X-100, 300 mM NaCl and protease/phosphatase inhibitors).
Protein concentrations were determined via BCA and HDAC activity assessed via class-
selective HDAC substrates as described above. Fluorescence was measured via a BioTek
Synergy plate reader (excitation filter at 360 nm and emission filter at 460 nm). Finally,
male and female C57BL/6 mice were randomly assigned into groups to receive sham
with vehicle (DMSO:PEG-300), angiotensin II (1.5 pg/kg/min) with vehicle or
angiotensin II with emodin (30 mg/kg/day) for 14 days. On day 14, left ventricles
were dissected and flash frozen, later to be lysed in PBS (0.5% Triton X-100, 300 mM
NaCl and protease/phosphatase inhibitors). Protein concentrations were determined
via BCA and HDAC activity assessed via class-selective HDAC substrates as described
above. Fluorescence was measured via a BioTek Synergy plate reader (excitation filter at
360 nm and emission filter at 460 nm).

2.3. HPLC

An Agilent 1100 high performance liquid chromatography system, including a
programmable solvent delivery pump, autosampler, and diode-array UV detector, was
used for determination of emodin. Detection was set at 437 nm for emodin (6-methyl-
1,3,8trihydroxyanthraquinone) analysis. Emodin separation was carried out using a
Kinetex 5 um XBC18 100A 250 x 4.6 mm column (Phenomenex, Torrance, CA). HPLC-

grade methanol and water were used as reagents (Fisher Scientific). Isocratic separation
was performed with a methanol/water (70:30, v/v) mobile phase at a flow rate of 0.8
mL/min. A stock emodin standard of 100 pug/mL was used to develop a seven-point
calibration curve following serial dilution with methanol. Rhubarb extract was prepared
in methanol at 100 mg/L. Each sample or standard was then sonicated for 30 min prior to
triplicate injection via HPLC. A 30 pL aliquot of all samples or standards were injected
directly into the HPLC system for quantitation. Emodin was identified in unknown
samples by retention time matching between standards and unknowns, and the data
was expressed in ug/mL.

2.4. Neonatal rat ventricular myocyte (NRVM) isolation and culture

NRVMs were prepared as previously described [26]. Briefly, hearts from 1-3 day-
old Sprague-Dawley neonates were collected and digested in a solution containing
trypsin (Gibco Life Technologies) and DNasell from bovine (Sigma-Aldrich). Ventricular
myocytes were isolated and then cultured in 100-mm dishes or 6-well plates that were
coated with gelatin (0.2%, Sigma-Aldrich). Cardiomyocytes were placed in Minimum
Eagles Medium (MEM, Genesee Scientific) with 10% calf serum, 2 mM L-glutamine and
penicillin-streptomycin and incubated overnight. Media was replaced the next
morning with Nurtidoma-SP (Roche Applied Science) and Dulbecco's Modified Eagles
Medium (DMEM) prior to experimental treatments. Cells were co-spiked with either
hypertrophic agonist, PE (10 M) or PMA (50 nM), and emodin (10 pM), turkey rhubarb
(100 mg/L) or TSA (200 nM) and incubated for 48 h prior to being lysed or fixed for
experiments described below.

2.5. Immunoblotting

Cells were lysed in PBS containing 300 mM NaCl, 0.5% Triton-X and HALT™
protease/phosphatase inhibitors. Cell lysate was then sonicated and centrifuged
(16,000 g for 5 min) prior to BCA for protein quantification. Samples were resolved
with SDS-PAGE and transferred to a nitrocellulose membrane prior to overnight
incubation with primary antibodies for acetyl histone H3 lysine residues 9/14 (H3K9/
14; Cell Signaling Technology, 9677), H3K18 (Cell Signaling Technology, 13,998 s) and
H3K27 (Cell Signaling Technology, 8173 s) as well as Total histone H3 (Cell Signaling
Technology, 4499), phosphorylated ERK (Cell Signaling Technology, 4370), total ERK
(Santa Cruz Biotechnology; Sc-1647) and atrial natriuretic factor (ANP, Santa Cruz
Biotechnology, Sc-515,701). The next day, horseradish peroxidase-conjugated second-
ary antibodies (Southern Biotech) were used prior to exposing with SuperSignal West
Pico Chemiluminescence System (Thermo Fisher Scientific) on a ChemiDoc XRS+
Imager (BioRad).

2.6. Immunostaining

NRVMs were plated in 6-well dishes and treated as described above. Plates were
fixed with 4% paraformaldehyde at room temperature for 20 min and prepared for
immunostaining as previously described [27]. After fixation, cells were permeabilized
with PBS containing bovine serum albumin (3%, Fisher Bioreagents, BP1605) and
Nonidet NP-40 (0.1%, Sigma-Aldrich IGEPAL CA-630) prior to being incubated for 2 h
with a primary antibody containing ANF (1:1000, Phoenix Pharmaceuticals, H-005-24)
and a-actinin (1:750 Sigma A-7811). Cells were then incubated with a secondary
antibody cocktail (donkey anti-mouse FITC, Jackson ImmunoResearch; goat anti-rabbit
Cy3, Jackson ImmunoResearch) for 1 h and briefly washed and incubated with Hoechst
(10 uM, Invitrogen H3570) in PBS. Cells were washed with PBS and imaged via the EVOS
FL Cell Imaging System (Thermo Fisher Scientific) at 20x. Twenty images of cells were
taken per well. Cells were then analyzed for cell area and ANF expression via Image |
(NIH Software).

2.7. Cell viability

NRVMs, spiked with either DMSO (veh), emodin (Emod, 10 uM), phenylephrine
(PE, 10 pM) or PE + Emod, were exposed to Invitrogen alamarBlue™ HS Cell Viability
Reagent (Thermo Fisher Scientific) for cell viability analyses. Following manufacturer
instructions, NRVMs were incubated with Invitrogen alamarBlue™ HS Cell Viability
Reagent (10:1, media with NRVMs:Invitrogen alamarBlue™ HS Cell Viability Reagent)
in gelatin-coated 96-well plates for 1 h. Invitrogen alamarBlue™ HS Cell Viability
Reagent is resazurin based, which upon entering an NRVM will be reduced to the highly
fluorescent resorufin. After 1 h incubation, fluorescence was measured via BioTek
Synergy plate reader, with excitation and emission filters of 530 nm and 590 nm,
respectively. Results were normalized to DMSO control and expressed as % cell viability.

2.8. RNA-sequencing

To analyze transcriptome-wide changes, RNA was isolated from NRVMs using
QIAzol (Qiagen). RNA integrity was assessed via RNA Agilent Bioanalyzer; all samples
achieved a RIN value>8; 500 ng of RNA was used for cDNA library preparation with the
Ribo-Zero Human/Mouse/Rat TruSeq Stranded Total RNA kit from Illumina. Set-B
Adapters (Illumina) were used for the cDNA library prep. Validation of library prep was
performed with the Agilent Bioanalyzer and sequencing performed in the Genomics
Center at the University of Nevada Reno via the NextSeq 500.
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To assure the sequencing performance and library quality, we applied the RNA-SeQC
[28] tool to assess the data quality of each sequencing dataset. We used the Sailfish pipeline
[29] to quantify the mRNA expression from the raw sequencing data, using the Ensembl[30]
rat gene annotation (Rnor_6.0). Transcript per million reads (TPM) was used as the unit of
human gene expression level. We used the edgeR algorithm [31] to compare the groupwise
gene expression pattern. The TMM algorithm implemented in the edgeR package was
applied for reads count normalization and effective library size estimation. Groupwise
differential expression was estimated by the likelihood ratio test implicated in the edgeR
package. The genes were false discovery rate<5% were deemed differentially expressed.
Supplementary Table 1 illustrates genes examined via RNA-sequencing. RNA-seq data can
also be found on NCBI: https://www.ncbi.nlm.nih.gov/bioproject/PRINA602553/.

2.9. Real-time qPCR

RNA was isolated as described above and RNA quantity determined via NanoDrop
Spectrometry ND1000; 500 ng of RNA was reverse transcribed to cDNA via Verso cDNA
Synthesis Kit (ThermoFisher Scientific). Quantitative real-time polymerase chain
reaction (qPCR) was used to determine mRNA expression for select genes. In short,
cDNA underwent qPCR with Apex qPCR GREEN Master Mix (Genesee Scientific,
42-120) and the following IDT Primers were used: rat atrial natriuretic peptide/factor
(ANP, forward- GCC GGT AGA AGA RGA GGT CAT, reverse- GCT TCC TCA GTC TGC TCA
CTC A); rat b-type natriuretic peptide (BNP, forward- GGT GCT GCC CCA GAT GAT T,
reverse- CTG GAG ACT GGC TAG GAC TTC); rat skeletal muscle alpha actin (Kcnc3,
forward-GTA CTC TTC GCA AGC TCA TAC C, reverse-CCT GGG ACC TTA GCA CATTAAG);
and 18 s ribosomal RNA (forward- GCC GCT AGA GGT GAA ATT CTT A, reverse- CTT TCG
CTC TGG TCC GTC TT). Fluorescence was detected in real-time using the BioRad CF96X
qPCR instrument.

2.10. Experimental animals

Nine-week old C57BL/6 mice were housed at the University of Nevada, Reno. All
mice were maintained on standard chow and housed under standard 12 h light/dark
cycle. Animal care and use was approved by the Institutional Animal Use and Care
Committee at the University of Nevada, Reno. At 10 weeks of age, C57BL/6 male and
female mice were randomized to receive vehicle control (Sham) or angiotensin Il (Ang)
for 14 days. 14-day micro-osmotic pumps (Alzet, model 1002) were subcutaneously
implanted in mice under isoflurane anesthesia; pumps contained angiotensin II
(Bachem) at 1.5 pg/kg/min or vehicle control. Mice in both groups were further
randomized to receive: 1) sham dosed with vehicle (1:1 DMSO:PEG-300 (Acros
Organics)), 2) Ang osmotic pump dosed with vehicle or 3) Ang osmotic pump dosed
with emodin (30 mg/kg/day). Mice received intraperitoneal (IP) injection of vehicle or
emodin every day for 14 days. Three days prior to the end of the study, systolic blood
pressure measurements were taken via tail cuff using the Coda High Throughput
System (Kent Scientific); the first 2 days were used for acclimation and third day for
data collection. At the end of the study, whole hearts and left ventricles (LVs) were
weighed and compared to tibia length for morphology analyses. LVs were also dissected
for histology and HDAC activity experiments.

2.11. Histology

Left ventricles (LVs) were fixed in 4% paraformaldehyde for 24 h prior to 70%
ethanol housing. LVs were then processed using the Leica ASP300S and paraffin
embedded using Leica EG1160. PicroSirius Red for collagen staining was performed on
LVs cross-sectioned at 5 um as previously described [32]. Stained LVs were imaged using
the Keyence BZ-X700, and collagen staining was quantified using Image] software.

2.12. Statistical methods

A minimum of three experiments with an n=3 per experimental treatment group
was performed and data quantified. One-way ANOVA with Tukey's post-hoc was
performed unless otherwise specified using GraphPad7 (GraphPad Software, La Jolla,
CA). P<.05 was considered significant.

3. Results

3.1. Emodin and emodin-rich rhubarb inhibited HDAC activity in a dose-
dependent, fast-on/slow-off manner

Emodin is a phytochemical commonly found in rhubarb [18, 20].
Our lab previously identified emodin as a class I, Ila and IIb HDAC
inhibitor in vitro (Fig. 1A and [23]). As such, we postulated that
emodin-rich rhubarb would phenocopy HDAC inhibition. Indeed,
rhubarb inhibited class I and I HDAC activity in a dose-dependent
manner (ICso=100 mg/L, Fig. 1A). Similar to emodin, rhubarb
inhibited recombinant class [, Ila and IIb HDACs (Supplemental Fig.
1), only HDACs 2 and 6 differed between emodin and rhubarb. These

experiments demonstrated that both emodin and rhubarb inhibited
HDAC activity at a single point in time. To determine HDAC inhibition
kinetics, we incubated cardiac tissue with emodin (50 uM) or rhubarb
(100 mg/L) for 0.5, 1, 2,4, 8,12 or 24 h prior to analyzing class I, Ila and IIb
HDAC activity. Emodin rapidly inhibited HDAC activity (0.5 h), with
prolonged HDAC inhibition out through 24-h (Fig. 1B). Rhubarb HDAC
inhibition kinetics phenocopied emodin (Fig. 1B). As the phytochemical
profile of a plant can be affected by soil content, climate and other
environmental factors, we examined emodin content via high-
performance liquid chromatography (HPLC). We confirmed that emodin
is a key component of a turkey rhubarb extract (P4L, Fig. 2). Surprisingly,
100 mg/L of turkey rhubarb contained 2.67 pg/ml of emodin which
approximated to 10 pM, further supporting the postulate that emodin-
rich rhubarb inhibited HDAC activity. These results collectively suggest
that emodin is a fast-on, slow-off pan-HDAC inhibitor that is likely
responsible for rhubarb-dependent HDAC inhibition.

3.2. Emodin attenuated HDAC activity concomitant with increased
histone acetylation in cardiac myocytes

In vitro analysis above demonstrated that emodin inhibited HDAC
activity, however, these findings do not demonstrate inhibitory actions
for this compound within cells or tissue. Therefore, we sought to
elucidate the actions of emodin on HDAC activity and histone
acetylation in neonatal rat ventricular myocytes (NRVMs). We
postulated that emodin would inhibit HDAC activity in NRVMs. To test
this postulate, NRVMs were co-spiked with phenylephrine (PE, 10 pM)
in the absence or presence of vehicle control, emodin (10 uM) or the
well-established pan-HDAC inhibitor Trichostatin A (TSA, 200 nM). Cells
were lysed after 48 h for protein to assess HDAC activity. We report that
emodin significantly inhibited class I, Ila and IIb HDAC activity, similar to
TSA (Fig. 3A). As HDACs catalytically reduce histone acetylation and
we've shown that emodin inhibits HDAC activity, we postulated that
emodin would increase histone acetylation in cardiomyocytes. To test
this, we treated NRVMs with PE in the absence or presence of emodin as
described above. As hypothesized, emodin increased histone H3
acetylation on lysine residues 9/14 (Ac-H3K9/14), 18 (Ac-H3K18) and
27 (Ac-H3K27) in NRVMs (Fig. 3B and C). Finally, we performed a cell
viability assay to verify that HDAC inhibition and cardiac hypertrophy
(described below) were not secondary to cell death. NRVMs were
dosed with either vehicle (DMSO), emodin, PE or PE + emodin at
concentrations used in experiments above. No significant differences
were observed between treatments (Fig. 3D), suggesting that emodin at
10 puM is not cardiotoxic.

3.3. Emodin and rhubarb blocked receptor- and intracellular-mediated
cardiomyocyte hypertrophy

HDAC inhibitors have been shown to block cardiomyocyte
hypertrophy [16]. Thus, we postulated that emodin and emodin-rich
rhubarb (P4L) would attenuate receptor- and intracellular signaling-
mediated cardiac hypertrophy in NRVMs. Cells were co-spiked
with either emodin (10 pM) or rhubarb (P4L, 100 mg/L) and either
PE (10 uM) or PMA (50 nM) and incubated for 48 h prior to being fixed
and stained with antibodies against the sarcomere protein a-actinin
(green), the hypertrophic marker atrial natriuretic factor (ANF, red)
and Hoechst (nuclear stain, blue). Cardiomyocytes co-spiked with
emodin and either agonist were significantly smaller than those
spiked without emodin (Fig. 4A, B, D and E). Rhubarb (P4L, 100 mg/L)
similarly attenuated agonist-induced cardiac hypertrophy (Fig. 4A, B,
D and E). Moreover, as emodin-treated NRVMs co-spiked with or
without phenylephrine showed no significant differences in cell
viability (Fig. 3D), cardiotoxicity did not drive these observed
differences in NRVM size. Therefore, emodin blocked cardiomyocyte
hypertrophy that was induced either by receptor- or intracellular-
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Fig. 1. Emodin and rhubarb inhibit HDAC activity in bovine cardiac tissue with fast-on, slow-off kinetics. A) Bovine cardiac tissue was treated for 2 h with increasing doses of emodin
(Top Panel) or turkey rhubarb (bottom panel) prior to incubation with cell permeable fluorogenic HDAC substrates for 2 h and developer solution for 20 min. B) Bovine cardiac lysate
was treated with emodin (10 uM; Top Panel) or turkey rhubarb (100 mg/L) over time (24 h max) prior to incubation with the cell permeable fluorogenic HDAC substrates followed by
developer solution. Fluorescence was assessed via BioTek Synergy plate reader with excitation/emission set at 360/460 nm.

mediated agonists, suggesting that emodin elicits cardioprotective
actions within the cell.

Activation of intracellular signaling cascades such as the
mitogen-activated protein kinase (MAPK) pathway as well as re-
activation of fetal genes are common features involved in
pathological cardiac hypertrophy. Moreover, HDAC inhibition has
been shown to attenuate MAPK activation [33] and the fetal gene

program [16, 17]. We thus hypothesized that emodin would
suppress MAPK activation and attenuate the fetal gene ANF in
NRVMs. To test this hypothesis, PE treated NRVMs were co-spiked
with emodin as described above. Cells were then lysed for
immunoblotting experiments or fixed and stained for ANF protein
expression. Similar to cardiac hypertrophy, emodin significantly
attenuated the MAPK, extracellular signal-regulated kinase (ERK)
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Fig. 2. Turkey rhubarb contains appreciable emodin as determined by HPLC. High Performance Liquid Chromatography (HPLC) was used to determine emodin concentrations within
turkey rhubarb, 50 ug emodin standard was used to determine emodin peaks and compare emodin concentrations within turkey rhubarb. Turkey rhubarb spiked with emodin was used

to verify the emodin peak. B) Emodin concentration was quantified.

phosphorylation (Supp. Fig. 2A and B). In addition, emodin
attenuated ANF (part of the fetal gene program) protein expression
(Fig. 4A, C, D, F, Supp. Fig. 2A and C). Similar to emodin, rhubarb
(P4L) also inhibited ANF protein expression (Fig. 4A, C, D, F).

3.4. Emodin reversed stress-induced changes in the cardiomyocyte
transcriptome similar to TSA

HDAC inhibitors such as the well-established inhibitor TSA
regulate differential gene expression in cardiomyocytes [34].
Moreover, HDAC inhibitors attenuate the fetal gene program. We
thus postulated that emodin and TSA would similarly reverse PE-
induced differential gene expression in NRVMs. To test this
postulate, cells were treated with vehicle or PE. PE-treated
NRVMs were co-spiked with either vehicle control, emodin (10
uM) or TSA (200 nM), incubated for 48 h and then lysed for RNA-
sequencing. We report that emodin normalized 54 genes that were
upregulated with PE, 30 of which overlapped with TSA (Fig. 5A and
B). Furthermore, 18 genes were normalized with emodin that were
downregulated in PE-treated NRVMs, 12 genes overlapped with
TSA (Fig. 5A and B). As mentioned above, pathological cardiac
hypertrophy is linked to re-activation of the fetal gene program
and HDAC inhibitors attenuate this re-activation [16, 17]. In
keeping with these reports, emodin reversed agonist-induced
mRNA expression of the fetal genes atrial natriuretic peptide
(ANP) and brain natriuretic peptide (BNP) (Fig. 5C), as examined
by qPCR. Finally, our heat map showed that emodin also
upregulated genes that were suppressed by PE. Indeed, qPCR
demonstrated that emodin increased potassium voltage-gated
channel subfamily C member 3 (Kcnc3) mRNA (Fig. 5C). Combined,
these data demonstrate that emodin reverses stress-induced
differential gene expression in cardiomyocytes, similar to the
pan-HDAC inhibitor TSA.

3.5. Emodin attenuated pathological cardiac hypertrophy and fibrosis in
angiotensin Il-infused mice

To elucidate the role of emodin in regulating cardiac hypertrophy
in vivo, we treated angiotensin Il (ANG)-infused male and female
C57BL/6 mice with or without 30 mg/kg/day of emodin (Emod). After
14-days with ANG treatment in the absence or presence of Emod,
heart weight (HW) and left ventricle (LV) weight was examined and
data normalized to tibia length (TL). As anticipated, ANG significantly
increased systolic blood pressure (Table 1), HW and LV weight in male
and female mice compared to vehicle control mice (Fig. 6A and C).
However, HW and LV weight were significantly attenuated with Emod
treatment for male or female mice, Emod did not differ from Veh
control (Fig. 6A and C). Interestingly, differences in cardiac hypertro-
phy were not due to attenuation of systolic blood pressure, as no
significant difference was observed between ANG and ANG + Emod
male and female mice (Table 1). HDAC inhibitors have also been
shown to block angiotensin [I-induced cardiac fibrosis [32]. Consistent
with this, Emod significantly attenuated ANG-induced cardiac fibrosis
in male and female mice (Fig. 6B and D). Of note, treatment with Emod
significantly inhibited class I and Ila HDAC activity compared to ANG-
treated male and female mice (Supplemental Fig. 3). Combined, these
data suggest that emodin protects the heart from pathological cardiac
hypertrophy and fibrosis in vivo, in part, by inhibiting HDAC activity.

4. Discussion

In this study, we showed that emodin attenuated pathological
cardiac hypertrophy in vitro and in vivo, with in vivo findings further
demonstrating that emodin attenuated cardiac fibrosis. A rhubarb
extract rich in emodin, as confirmed via HPLC (Fig. 2), similarly
attenuated agonist-induced cardiomyocyte hypertrophy. These car-
dioprotective events correlated with increased histone acetylation
and attenuated HDAC activity in NRVMs treated with emodin.
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Fig. 3. Emodin inhibited HDAC activity in cardiac myocytes concomitant to increased histone acetylation. A) Neonatal rat ventricular myocytes (NRVMs) were incubated with
phenylephrine (10 pM; PE) with or without emodin (10 uM; Emod) or trichostatin A (200 nM; TSA) for 48 h prior to protein lysis. Cells were lysed and incubated against the cell
permeable fluorogenic HDAC substrates for 2 h and developer solution for 20 min. Fluorescence was assessed via BioTek Synergy plate reader with excitation/emission set at 360/460
nm. B) NRVMs were incubated with phenylephrine (10 uM; PE) with or without emodin (10 uM; Emod) or trichostatin A (200 nM; TSA) for 48 h prior to protein lysis. Cell lysate was then
incubated against antibodies for acetylated histone 3 at lysine (K) residues K9/14 (Ac-H3K9/14), K18 (Ac-H3K18), K27 (Ac-H3K27) as well as against total histone H3 (Total-Histone H3)
prior to analysis via immunoblot. C) Acetyl Histone H3 proteins were normalized to total H3 and quantitation performed via Image ] software. D) NRVMs were treated with DMSO or
emodin (10 uM; Emod) with or without phenylephrine (10 uM; PE) for 48 h prior to incubation with Invitrogen alamarBlue™ HS Cell Viability Reagent (10:1, media with NRVMs:
Invitrogen alamarBlue™ HS Cell Viability Reagent) for 1 h. Fluorescence was measured via BioTek Synergy plate reader, with excitation and emission filters of 530 nm and 590 nm,
respectively. All statistical analyses were run in GraphPad Prism Software. One-way ANOVA with Tukey's Post-hoc analysis was used for HDAC activity assays and cell viability, while

student's t-test with Welch's Correction used for immunoblot analysis.

Additionally, cardiac lysate spiked with either emodin or rhubarb
inhibited HDAC activity in a dose-dependent, fast-on, slow-off kinetic
manner. Emodin also inhibited HDAC activity in the hearts of mice
exposed to angiotensin II. Finally, PE induced differential changes in
the cardiomyocyte transcriptome; emodin reversed these changes
similar to the well-established pan-HDAC inhibitor, TSA. Combined,
our data support our postulate that dietary food bioactive HDAC
inhibitors like emodin attenuate cardiac hypertrophy via
transcriptome-wide changes in gene expression.

Class I and II HDAC inhibition is efficacious in primary cell
culture and animal models of pathological cardiac hypertrophy.
Antos and colleagues [16] first reported the pan-HDAC inhibitor,
TSA dose-dependently attenuated cardiomyocyte hypertrophy; this
was concomitant to increased histone acetylation and inhibition of
the fetal gene program, which is a set of genes (e.g., ANF and BNP)
that are re-activated in hypertrophic models in vitro and in vivo as
well as in human HF [35-37]. Later reports further demonstrated
that TSA increased histone acetylation and attenuated cardiac
hypertrophy and fetal gene program re-activation in mice exposed
to pressure-overload-induced hypertrophy [17]. Consistent with
these reports, our data showed that emodin inhibited cardiac

myocyte hypertrophy concomitant to increased histone acetylation
and inhibition of HDAC activity and the fetal gene program. HDACs
regulate the removal of acetyl marks from nucleosomal histones
and as such control DNA accessibility leading to global changes in
gene expression [38]. Not surprisingly, TSA has been shown to alter
the transcriptome in NRVMs, normalizing gene expression changes
in response to pathological stress [16, 39]. Consistent with these
findings, emodin reversed stress-induced changes in the cardio-
myocyte transcriptome similar to TSA, supporting the postulate
that emodin inhibits cardiac enlargement via epigenetic regulation
of HDAC activity. It should be noted however, that complete
overlap was not observed between emodin and TSA, suggesting
that emodin potentially regulates gene expression through other
diet-gene mechanisms. Of interest, some of these overlapping
genes were involved in pathological cardiac hypertrophy and
muscle contraction including the myosin light and heavy chains
and cardiac troponin as well as inflammatory mediators like
interleukin 6. Despite the non-complete overlap in gene expres-
sion, these are the first reports, to our knowledge, demonstrating
transcriptome wide changes in cardiac myocytes in response to the
dietary HDAC inhibitor emodin.
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Fig. 4. Emodin and rhubarb inhibit cardiomyocyte hypertrophy. A) Neonatal rat ventricular myocytes (NRVMs) were stimulated to hypertrophy with phenylephrine (10 uM; PE) in
the absence or presence of Emodin (10 uM) or rhubarb (100 mg/L; PAL) for 48 h. Cells were fixed and immunostained with antibodies directed against c-actinin or atrial natruetic factor
(ANF). Cell nuclei were stained with Hoechst. Cells were visualized with EVOS microscopy. Ten pictures were taken per well and cell size (area) and ANF expression (pixels) were
calculated using Image J software. GraphPad Prism was used to examine statistical significance. One-way ANOVA with Tukey's post-hoc analysis was used. Significance was set at P<.05.
B) Cell area and C) ANF expression was quantified. D) NRVMs were stimulated to hypertrophy with phorbol myristate acetate (50 nM; PMA) in the absence or presence of Emodin (10
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software. GraphPad Prism was used to examine statistical significance. One-way ANOVA with Tukey's post-hoc analysis was used. Significance was set at P<.05. E) Cell area and F) ANP

expression was quantified.

In addition to pan-HDAC inhibitors, class I selective HDAC
inhibitors have been shown to increase histone acetylation and inhibit
cardiomyocyte hypertrophy in NRVMs [40]. Moreover, class I selective
HDAC inhibition was shown to block transverse aortic constriction-
induced cardiac hypertrophy [40] as well as angiotensin Il-induced
fibrosis in mice [32]. Unlike class I selective inhibitors, inhibition of the
class II HDAC, HDAC6 was shown to improve cardiac contractile
function in a mouse model of hypertension, independent of changes to
cardiac hypertrophy [41]. Combined, these reports would suggest that

targeting class I and II HDACs contribute to cardioprotection via
improvements in cardiac enlargement and contractile function. In this
study, we report that emodin and emodin-rich rhubarb inhibited class
I and I HDAC activity, suggesting that cardioprotection noted for fruit
and vegetable intake is likely mediated through a myriad of epigenetic
and non-epigenetic mechanisms that contribute to normalization of
the transcriptome and improvements in muscle function.

Early reports involving non-epigenetic regulation showed that
emodin ameliorated oxidative stress and inflammation in the heart
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was set at P<.05.

[42-44]. For example, emodin attenuated inflammation and apoptosis
in cardiac myocytes in response to ischemia/reperfusion (I/R) [42].
Here, Ye and colleagues [42] showed that emodin dose-dependently
reduced the nuclear factor kappa B (NF-xB) inflammasome pathway.
Many intracellular signaling cascades play fundamental roles in
regulating pathological cardiac hypertrophy and contribute to cardiac
dysfunction, including NF-<B and the MAPKs [45-48]. For example,
nuclear ERK activation has been shown sufficient to drive cardiac
enlargement and fibrosis in mice [47, 48]. Of significance, HDAC
inhibitors, including TSA, have been shown to down-regulate NF-«B
[49] and MAPK activation [33]. In particular, class I HDAC inhibition
was shown to attenuate ERK activation in cardiac myocytes; this
partially contributed to inhibition of pathological cardiac hypertrophy
[33]. Consistent with this report, we showed that emodin inhibited
ERK phosphorylation in NRVMs. Combined, these data would suggest
that emodin elicits cardioprotection via regulation of intracellular
signaling cascades that are dependent on HDAC activity (e.g. ERK and
NF-B).

Emodin is found in many plants, with high concentrations noted in
rhubarb [18, 19]. We were unable to find studies that examined
rhubarb consumption or emodin bioavailability from rhubarb con-
sumption, yet would speculate low circulating levels of the compound
after a meal. While it is unlikely that rhubarb is consumed frequently
or in large amounts, it should be noted that our dose of emodin
approximated 10 pM in 100 mg/L of rhubarb, our dose used in these
studies. This dose of rhubarb would be considered low in a meal. In
addition, we reported fast-on and slow-off HDAC inhibition with

rhubarb or emodin. From these kinetic data, we would speculate that
rhubarb need not be ingested frequently for HDAC inhibition. Lastly,
we would argue that an emodin dietary supplement could also be
considered for HDAC inhibition. Despite these speculations, however,
emodin bioavailability remains low [18, 50], suggesting the need for
research examining its interactions with the microbiome on heart
health. Others have taken a more direct approach by examining ways
to improve emodin bioavailability e.g. with nanoparticle encapsula-
tion [51].

In this study we focused on emodin within rhubarb and neglected
the actions for the other phytochemicals present. These additional
phytochemicals likely played a role in the discrepancy observed
against the recombinant HDACs, in which emodin inhibited all HDACs
but HDAC 4 while rhubarb inhibited all HDACs except for HDACs 2, 4
and 6 (Supplemental Fig. 1). It should be noted, however, that emodin
and rhubarb similarly attenuated stress-induced cardiac hypertrophy
in NRVMs, suggesting that emodin is the primary compound in
rhubarb that epigenetically alters the transcriptome contributing to
anti-hypertrophic actions in the heart.

Lastly, reports have reviewed the therapeutic potential of HDAC
inhibition in pre-clinical models of HF [52, 53]; however, no study or
trial has been published (to our knowledge) that cites HDAC inhibition
as the primary or secondary target of any pharmacological agent in the
human heart. Several FDA-approved HDAC inhibitors, such as
Vorinostat (i.e. SAHA), are currently on the market to treat human T-
cell lymphoma, with several more in clinical trials for various cancers
(clinicaltrials.gov). It should be noted however that Xie and colleagues
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Fig. 6. Emodin attenuated angiotensin II-induced pathological hypertrophy and fibrosis in male and female mice. C57BL/6 male and female mice were surgically implanted with a
sham (Veh) or micro-osmotic pump containing angiotensin Il (Ang; 1.5 pg/kg/min) and dosed with or without emodin (Emod, 30 mg/kg/day) for 14 days. Fourteen days post Ang, whole
hearts and left ventricles were dissected and assessed for hypertrophy and fibrosis. Whole heart weight to tibia length (HW/TL, mg/mm) and left ventricle weight to tibia length (LV/TL,
mg/mm) of sham (Veh), Ang and Ang + Emod treated C57BL/6 male (A) and female (C) mice were examined at study end (14 days). Left ventricular collagen of sham (Veh), Ang and
Ang + Emod treated C57BL/6 mice was assessed via PicroSirius Red staining for male (B) and female (D) mice. Image] software was used to determine fibrotic area. GraphPad Prism was
used to examine statistical significance. One-way ANOVA with Tukey's post-hoc analysis was used. Significance was set at P<.05.

[54] showed efficacy for Vorinostat in I/R-induced cardiac dysfunc- rabbit) and therefore has established efficacy for moving SAHA into
tion; this study was important as it showed that HDAC inhibitors could clinical trials for HF patients. However, clinical trials are expensive and
reverse stress-induced cardiac damage in a large animal model (i.e. the duration from pre-clinical experiments to FDA-approval is



10 L.W. Evans et al. / Journal of Nutritional Biochemistry 79 (2020) 108339

Table 1
Body weight and blood pressure of animals in the emodin prevention trial

Emodin Prevention Trial

Males Females
Vehicle ANGII ANG Vehicle ANGII ANG
(n=10) (n= II + Emodin (n=8) (n=8) II + Emodin
13) (n=9) (n=8)
Study Start BW 26.384+ 26.40 26.55+1.75 19.084 18.83 18.90+1.09
(g) 2.44 +2.47 0.83 +1.05
Study End BW 26.894+ 27.43 24.07+1.62 21.164+ 21.25 20.09+1.45
(g) 244 +2.39 0.87 +0.56
Systolic Blood 124.95 141.17 134.85+ 123.98 149.32 137.59+
Pressure 41633 + 21.11* +936 + 8.99*
(mmHg) 15.80* 14.77*

ANG II; Angiotensin II; Data were analyzed by One-way ANOVA, with Tukey's post-hoc.
Significance was defined as P<.05.

lengthy. Dietary compounds provide intriguing preventative or
therapeutic options for their current lack-of-oversight from the FDA,
per the Dietary Supplement Health and Education Act of 1994
(DSHEA), and can reach the market without human study in a timely
manner. Future studies examining emodin or rhubarb supplementa-
tion in humans on HDAC activity in peripheral blood cells would lend
credible evidence toward this bioactive in cardiac protection.
Supplementary data to this article can be found online at https://
doi.org/10.1016/j.jnutbio.2019.108339.
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